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Recently it has been noticed that many interesting combinatorial objects belong to a
class of semigroups called left regular bands, and that random walks on these semigroups
encode several well-known random walks. For example, the set of faces of a hyperplane
arrangement is endowed with a left regular band structure. This paper studies the module
structure of the semigroup algebra of an arbitrary left regular band, extending results
for the semigroup algebra of the faces of a hyperplane arrangement. In particular, a
description of the quiver of the semigroup algebra is given and the Cartan invariants
are computed. These are used to compute the quiver of the face semigroup algebra of a
hyperplane arrangement and to show that the semigroup algebra of the free left regular
band is isomorphic to the path algebra of its quiver.
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1. Introduction

A left reqular band is a semigroup S satisfying 22 = x and zyx = xy forall z,y € S.
Recent interest in left regular bands and their semigroup algebras arose due to the
work of Brown [3], in which the representation theory of the semigroup algebra
is used to study random walks on the semigroup. There are several interesting
examples of such random walks, including the random walk on the chambers of a
hyperplane arrangement. Several detailed examples are included in [3].

The starting point of this paper is the fact that the irreducible representations of
the semigroup algebra of a left regular band are all one-dimensional. This implies
that there is a canonical quiver (a directed graph) associated to the left regular
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band, and that the semigroup algebra is a quotient of the path algebra of the quiver.
This paper determines a combinatorial description of this quiver and the Cartan
invariants of the semigroup algebras and illustrates the theory through detailed
examples.

The paper is structured as follows. Section 2 recalls the definition and collects
some properties of left regular bands, and introduces the examples that will be
used throughout the paper. Section 3 describes the irreducible representations of
the semigroup algebra of a left regular band. In Sec. 4, a complete system of prim-
itive orthogonal idempotents for the semigroup algebra is explicitly constructed.
Section 5 describes the projective indecomposable modules of the semigroup alge-
bra. Sections 6 through 9 deal with computing the quiver of the semigroup algebra.
Sections 10 through 13 compute the Cartan invariants of the semigroup algebras.
Finally, Sec. 14 discusses future directions for this project.

2. Left Regular Bands

See [3, Appendix B] for foundations of left regular bands and for proofs of the
statements presented in this section.
A left reqular band is a semigroup S satisfying the following two properties.

(LRB1) 22 =z for allz € S.
(LRB2) zyxz = ay for all z,y € S.

Define a relation on the elements of S by y < x iff yx = x. This relation is a
partial order (reflexive, transitive, and antisymmetric), so S is a poset.

Define another relation on the elements of S by y < x iff xy = z. This relation
is reflexive and transitive, but not necessarily antisymmetric. Therefore, we get a
poset L by identifying z and y if + < y and y = x. Let supp : S — L denote the
quotient map. L is called the support semilattice of S and supp : S — L is called
the support map.

Proposition 2.1. If S is a left regular band, then there is a semilattice L and a
surjection supp : S — L satisfying the following properties for all x,y € S.

[

) If y < =, then supp(y) < supp(z);

) supp(zy) = supp(z) V supp(y);

) wy = x iff supp(y) < supp(x);

) if S is a subsemigroup of S, then the image of S’ in L is the support semilattice

of S'.

2

A~~~
w

Statement (1) says that supp is an order-preserving poset map, (2) says that
supp is a semigroup map where we view L as a semigroup with product Vv, (3) follows
from the construction of L, and (4) follows from the fact that (3) characterizes L
up to isomorphism. If S has an identity element then L has a minimal element 0. If,
in addition, L is finite, then L has a maximal element 1, and is therefore a lattice
[6, Proposition 3.3.1]. In this case L is the support lattice of S.
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Example 2.2 (The Free Left Regular Band). The free left reqular band F(A)
with identity on a finite set A is the set of all (ordered) finite sequences of distinct
elements from A with multiplication defined by

(@1, ea1) - (B1y e bm) = @1y ey ar, by b)) o,

where 8 means “delete any element that has occurred earlier”. Equivalently, F'(A)
is the set of all words on the alphabet A that do not contain any repeated letters.

The empty sequence is an element of F(A), therefore F(A) contains an identity
element. The support lattice of F/(A) is the lattice L of subsets of A and the support
map supp : F(A) — A sends a sequence (ay,...,a;) to the set of elements in the
sequence {ai,...,a;}. Figure 1 shows the Hasse diagrams of the poset (F(A), <)
and the support lattice of F'(A), where A = {a,b,c}.

Example 2.3 (Hyperplane Arrangements). A (central) hyperplane arrange-
ment A is a finite collection of hyperplanes containing the origin in some real vector
space V = R?, for some d € N. For each hyperplane H € A, let H* and H~ denote
the two open half spaces of V' determined by H. The choice of labels H* and H™
on the two open half spaces is arbitrary, but fixed throughout. For convenience, let
H° denote H. A face of the arrangement A is a non-empty intersection of the form
Npea H, where eg € {0,+,—}. Let F denote the set of all faces of A. Define
a relation on F by = < y iff x C 7, where 7 denotes the closure of the set y. The
relation is a partial order.

If 2 =y H" is a face, then let og(z) = eg and let o(x) = (o (z))HecA-
The sequence o(x) is called the sign sequence of x. Define the product of two faces
x,y € F to be the face xy with sign sequence

UH({E), if O’H(l') 75 0,

ou(y), ifop(x)=

op(zy) = {

This product has a geometric interpretation: the product zy of two faces x,y is
the face entered by moving a small positive distance along a straight line from any
point in x to a point in y. It is straightforward to verify that this product gives F
the structure of an associative left regular band. Since all the hyperplanes in the
arrangement contain the origin, F contains an identity element: Nge 4 H. The left

abe ach  bac bca  cab cha abe
\ \ | | \ | 1N
ab ac ba be ca cb ab ac be
\ / \ / \ / | XX
a b c a b c
1 0

Fig. 1. The poset of the free left regular band F({a,b,c}) on three generators and its support
lattice.
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regular band F is called the face semigroup of A, and the semigroup algebra kF of
F is called the face semigroup algebra of A.

Let £ denote the set of subspaces of V' that can be obtained as the intersection
of some hyperplanes in A. Then L is a finite lattice, called the intersection lattice
of A, where the subspaces are ordered by inclusion and the meet operation is
intersection. (Note that some authors order £ by reverse inclusion rather than
inclusion.) £ is the support lattice of F and the support map supp : F — £ maps
a face x € F to the intersection of all the hyperplanes of the arrangement that
contain the face: supp(z) = ﬂ{HeA:mgH} H.

3. Representations of the Semigroup Algebra

Let k denote a field and S a left regular band. The semigroup algebra of S is denoted
by kS and consists of all formal linear combinations ) g Ass, with Ay € &k and
multiplication induced by Ags - Adit = AgA¢st, where st is the product of s and ¢ in
the semigroup S. The following summarizes [3, Sec. 7.2].

Since S and L are semigroups and supp : S — L is a semigroup morphism, the
support map extends linearly to a surjection of semigroup algebras supp: kS — kL.
The kernel of this map is nilpotent and the semigroup algebra kL is isomorphic to
a product of copies of the field k, one copy for each element of L. Standard ring
theory implies that ker(supp) is the Jacobson radical of kS and that the irre-
ducible representations of kS are given by the components of the composition
kS TP kL = [Ixcp k- This last map sends X € L to the vector with 1 in
the Y-component if Y > X and 0 otherwise. The X-component of this surjection
is the map xx : kS — k defined on the elements y € S by

) 1, if supp(y) < X,
X = 0, otherwise.
The elements
Ex =3 p(x,v)y (3.1)

Y>X

in kL, one for each X € L, correspond to the standard basis vectors of [[y .,
under the isomorphism kL = [] ., k. In the above p denotes the Mébius function
of the lattice L [6, Sec. 3.7]. The elements {Ex}xey form a basis of kL and a
complete system of primitive orthogonal idempotents for kL (see the next section
for the definition).

4. Primitive Idempotents of the Semigroup Algebra

Let A be a k-algebra. An element e € A is idempotent if e? = e. It is a primitive
idempotent if e is idempotent and we cannot write e = e; + es, where e; and es
are nonzero idempotents in A with ejeq = 0 = egey. Equivalently, e is primitive iff
Ae is an indecomposable A-module. A set of elements {e;};cr C A is a complete
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system of primitive orthogonal idempotents for A if e; is a primitive idempotent for
every i, if e;e; = 0 for ¢ # j and if )", e; = 1. If {e;}ier is a complete system of
primitive orthogonal idempotents for A, then A = &p._; Ae; as left A-modules and
A=, jo;eide; as k-vector spaces.

Let S denote a left regular band with identity. For each X € L, fix an = € S
with supp(z) = X and define elements in kS recursively by the formula

ex =T — Z zey . (4.1)

Y>X

icl

Lemma 4.1. Let w € S and X € L. If supp(w) £ X, then wex = 0.

Proof. We proceed by induction on X. This is vacuously true if X = 1. Suppose
the result holds for all Y € L with Y > X. Suppose w € S and W = supp(w) £ X.
Using the definition of ex and the identity wzw = wz (LRB2),

wex = wr — Z wrey = wr — Z wz(wey ).
Y>X Y>X
By induction, wey = 0 if W £ Y. Therefore, the summation runs over Y with
WL<Y.ButY >XandY >W iff Y > WV X, so the summation runs over Y
with Y > W Vv X.

wex = wr — Z wz(wey ) = wr — Z wrey .
Y>X Y>XVW
Now let z be the element of support X V W chosen in defining exyw. So
exvw = Z — Yy xyw 2ey. Note that zexyw = exvw since z = 22. There-
fore, z = >y vyw 2ey. Since supp(wz) = WV X = supp(z), it follows from
Proposition 2.1(3) that wz = waz. Combining the last two statements,

wex = wr — Z wxeyzwx<z— Z zey>:O. -

Y>XVW Y>XVW

Theorem 4.2. Let S denote a finite left reqular band with identity and L its support
lattice. Let k denote an arbitrary field. The elements {ex}xer form a complete
system of primitive orthogonal idempotents in the semigroup algebra kS.

Proof. Complete. 1 is the only element of support 0. Hence, eg=1-> vy pey.
Equivalently, Y ex = 1.

Idempotent. Since ey is a linear combination of elements of support at least Y,
eyz = ey for any z with supp(z) <Y (Proposition 2.1(3)). Using the definition of
ex, the facts ex = xex and ey = eyy, and Lemma 4.1,

e§(=<x— E xey>eX=xeX— g zey (yex) = xex = ex.

Y>X Y>X
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Orthogonal. We show that for every X € L, exey = 0for Y # X.If X = 1, then
exey = exxey = 0 for every Y # X by Lemma 4.1 since X = 1 implies X £Y.
Now suppose the result holds for Z > X. That is,ezey = 0forallY # Z. If X LY,
then exey = 0 by Lemma 4.1. If X <Y, then exey = ey — ),y z(ezey) =
rey — a:e% =0.

Primitive. We will show that ex lifts Ex = Yy ¢ u(X, Y)Y (see Eq. (3.1))
for all X € L, a primitive idempotent in kL. (The}l since ex lifts a primitive
idempotent, it is itself a primitive idempotent.) If X = 1, then supp(e;) = 1= E;.
Suppose the result holds for Y > X. Then supp(ex) = supp(z — >y y Tey) =
X = > yox(X V Ey). Since Fy is a linear combination of elements Z > Y, it
follows that X V Ey = Ey if Y > X. Therefore, supp(ex) = X — > .y Ey.
The Mobius inversion formula [6, Sec. 3] applied to Ex = >y~ ¢ u(X, Y)Y gives
X =3 y>x Ex. Hence, supp(ex) = X — 3y x By = Ex. m|

Remark 4.3. We can replace x € S in Eq. (4.1) with any linear combination
T = Zsupp(aj):X Azx of elements of support X whose coefficients A, sum to 1.
The proofs still hold since the element Z is idempotent and satisfies supp(z) = X
and Ty = & for all y with supp(y) < X. Unless explicitly stated we will use the

idempotents constructed above.

Corollary 4.4. The set {Tegpp(x) | © € S} is a basis of kS of primitive idempo-
tents (not necessarily orthogonal idempotents).

Proof. Let y € S. Then by Theorem 4.2 and Lemma 4.1,

y=yl=y> ez= Y  yez= Y  (y2)ez,
Z

Z>supp(y) Z>supp(y)

where z € S was the element used to define ez. Since supp(yz) = supp(y) V
supp(z) = Z, every element y € S is a linear combination of elements of the form
Tesupp(x)- S0 the elements zeg,pp (2, one for each  in S, span kS. Since the number
of these elements is the cardinality of S, which is the dimension of k.5, the set forms
a basis of k£S. The elements are idempotent since (rex)? = (zvex)(vex) = re% =
zex (since zyx = xy for all x,y € 5). Since zex lifts the primitive idempotent
Ex =) yox (X, Y)Y € kL, it is also a primitive idempotent (see the end of the

proof of Theorem 4.2). m|

5. Projective Indecomposable Modules of the Semigroup Algebra
For X € L, let Sx C S denote the set of elements of S of support X. For y € §
and x € Sx, define
yow— {yx supp(y) < supp(z),
0,  supp(y) £ supp(z).
Then - defines an action of kS on the k-vector space kSx spanned by Sx.
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Lemma 5.1. Let X € L. Then {zex | supp(z) = X} is a basis for (kS)ex.

Proof. Suppose ) s Apwex € kSex. If supp(w) £ X, then wex = 0. So,
suppose supp(w) < X. Then supp(wz) = supp(w) V X = X. Therefore,

> dwwex = > Ay(wr)ex € spany{yex | supp(y) = X},

weS weS
where z is the element chosen in the construction of ex (recall that ex = zex
since 22 = z). So the elements span kSex. These elements are linearly independent
being a subset of a basis of kS (Corollary 4.4). m|

Proposition 5.2. There is a kS-module isomorphism kSx = kSex given by right
multiplication by ex. Therefore, the kS-modules kSx are all the projective inde-
composable kS-modules. The radical of kSx s span,{y —y' | v,y € Sx}.

Proof. Define a map ¢ : kSx — kSex by w — wex. Then ¢ is surjective since
#(y) = yex for y € Sx and since {yex | supp(y) = X} is basis for kSex (Lemma
5.1). Since dim kSx = #Sx = dimkSex, the map ¢ is an isomorphism of k-vector
spaces.

¢ is a kS-module map. Let y € S and let z € Sx. If supp(y) < X, then ¢(y-x) =
d(yx) = yrex = yo(z). Iif supp(y) £ X, then y - x = 0. Hence, ¢(z - y) = 0. Also,
since supp(y) £ X, it follows from Lemma 4.1 that yex = 0. Therefore, yo(z) =
yrex = yx(yex) = yx0 = 0. So ¢(y - ©) = yo(z). Hence ¢ is an isomorphism of
kS-modules.

Since all the projective indecomposable kS-modules (up to isomorphism) are of
the form kSex for a complete system of primitive orthogonal idempotents {ex},
the kS-modules £Sx are all the indecomposable projective kS-modules. O

6. The Quiver of the Semigroup Algebra

Let A be a finite-dimensional k-algebra whose simple modules are all one-
dimensional. The Ext-quiver or quiver of A is the directed graph @) with one vertex
for each isomorphism class of simple modules and dimy(Ext! (Mx, My)) arrows
from X to Y, where Mx and My are simple modules of the isomorphism classes
corresponding to the vertices X and Y, respectively. The path algebra kQ of @Q is
the k-algebra spanned by paths of @) with multiplication induced by path composi-
tion: if two paths in Q compose to form another path, then that is the product; if
the paths do not compose, then the product is 0. If () is the quiver of A, then there
exists a k-algebra surjection from k@ onto A. Although the quiver @ is canonical,
this surjection is not.

Let S be a left regular band with identity and let L denote the support lattice
of S. Let X,Y € L with Y < X and fix y € S with supp(y) = Y. Define a relation
on the elements of Sy by x — 2’ if there exists an element w € S satisfying
y < w, w < yzx, and w < yx'. (Equivalently, yw = w, wx = yx, wr’ = ya’, and
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supp(w) < X.) Note that = — 2’ iff z — yz’. Also note that for X =1 and Y = 0,
the relation becomes z — a2’ iff there exists w # 1 such that z > w and 2’ > w.

The relation — is symmetric and reflexive, but not necessarily transitive. Let
~ denote the transitive closure of —. Let axy = #(Sx/~) — 1, the number of
equivalence classes of ~ minus one. If Y £ X, define axy = 0. In order to avoid
confusion, we denote by aiy the number axy computed in S. Since u < v implies
yu < yv for all u,v,y € S (follows from (LRB2)), it follows that the relations —
and ~ do not depend on the choice of y with supp(y) =Y.

Lemma 6.1. Let S be a finite left regular band with identity and L its support
lattice. Let Mx and My denote the simple modules with irreducible characters x x
and xy, respectively. Then

dim(EthlcS(Mx, My)) = axy-.
Proof. The proof is rather lengthy, so we postpone it until Appendix. O

Theorem 6.2. Let S be a left reqular band with identity and L the support lattice
of S. Let k denote a field. The quiver of the semigroup algebra kS has L as the
vertex set and axy arrows from the vertex X to the vertex Y.

7. An Inductive Construction of the Quiver

In this section we describe how knowledge about the numbers a% for certain sub-
semigroups S’ of S determine all the numbers a%-. This allows for an inductive
construction of the quiver of a left regular band.

Suppose S is a left regular band with identity. Let XY € L with ¥ < X
and let y € S be an element with supp(y) = Y. Then yS = {yw : w € S} and
S<x ={w € S : supp(w) < X} are subsemigroups of S.

Proposition 7.1. Let S be a left regular band with identity, and let L denote the
support lattice of S. Suppose y € S and X € L. The quiver of the semigroup
algebra k(yS<x) of the left reqular band yS<x is the full subquiver of the quiver of
the semigroup algebra kS on the vertices in the interval [supp(y), X] C L.

The Proposition follows from the following lemma that shows the number of
arrows from X to Y in the quiver of kS is the number of arrows from 1 to 0 in the
quiver of k(yS<x), where y € S is any element of support Y. Recall that a%jggx
denotes the number aj5 computed in the left regular band yS<x.

Lemma 7.2. Let S be a left reqular band with identity. Then a3y = agi/ggx. That
is, the number axy computed in S is the number ajy computed in yS<x.

yS<x

Proof. If supp(y) £ X, then yS<x is empty. So a}g(’y =0 =aj;;~" . So suppose

supp(y) < X.
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Since o ~ 2’ iff x ~ yz’ for any elements x, 2’ of support X, every equivalence
class of ~ (on Sx) contains an element of ySx. Therefore, axy + 1 is the number
of equivalence classes of ~ restricted to ySx.

Since yS<x is a subsemigroup of S, the support lattice of yS<x is the image
of yS<x in L. Therefore, the support lattice of yS<x is the interval [V, X] in L.
Since the top and bottom elements of [Y, X] are X and Y, respectively, the number

yS<x

a;s= +1is the number of equivalence classes of ~ restricted to ySx. O

Therefore, if the numbers azi’ggx are known for all the subsemigroups of S of

the form yS<x, then the quiver of kS is known. We illustrate this technique with
two examples in the next two sections.

8. Example: The Free Left Regular Band

Let S = F(A) denote the free left regular band on a finite set A (defined in
Example 2.2). Recall that the support lattice L of S is the set of subsets of A.

Let y € S and Y C A denote the set of elements occurring in the sequence y.
Then yS is the set of all sequences of elements of A (without repetition) that begin
with the sequence y. Therefore, y.S is isomorphic to the free left regular band on
A\Y. If X C A (so X € L), then S<x is the set of all sequences containing only
elements from X (without repetition). Therefore, S<x is also a free left regular
band. It follows that yS<x is a free left regular band for any y € S and X C A.
Therefore, the quiver of S is determined once the numbers ag; = a4y are known
for any free left regular band.

If two sequences x,y € S begin with the same element a € A, then ax = x and
ay = y. Therefore, x ~ y. Conversely, if z — y, then there is a nonempty sequence
w such that wr = x and wy = y. Then x and y both begin with the first element of
w. Therefore, x ~ y iff z and y are sequences beginning with the same element. So,
the equivalence classes of ~ are determined by the first elements of the sequences in
S. Hence, aj; = #(A) — 1. This argument applies to any free left regular band with
identity, so axy = #(X\Y) — 1 since yS<x is isomorphic to the free left regular
band on the elements X\Y.

AN,
L R
N%

ab

a

Fig. 2. The support lattice and the quiver of the semigroup algebra of the free left regular band
on three generators. See also Fig. 1.
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Theorem 8.1 (Brown, private communication). Let S = F(A) be the free
left reqular band on a finite set A and let k denote a field. Then the quiver of the
semigroup algebra kS has one vertex X for each subset X of A and #(X\Y) — 1
arrows from X toY if Y C X (and no other arrows or vertices).

9. Example: The Face Semigroup of a Hyperplane Arrangement

Let F be the face semigroup of a central hyperplane arrangement A and let £ be
the intersection lattice of A (see Example 2.3). Let X, Y € £ and y be a face of
support Y. Then the subsemigroup yF<x is the semigroup of faces of a hyper-
plane arrangement with intersection lattice [V, X] C L. (Explicitly, this hyperplane
arrangement is given by {X N H : H € A,Y C H,X ¢ H}.) Therefore, we know
all the numbers axy for F if we know the number a;; for the face semigroup of an
arbitrary arrangement.

If £ contains only one element, then 0 = 1 and ajp = 0. Suppose that £ contains
at least two elements. It is well known that for any two distinct chambers ¢ and d,
there exists a sequence of chambers ¢y = ¢, c1,...,¢; = dsuch that ¢;_; and c; share
a common codimension one face w; for each 1 < j < i [2, Sec. I.4E Proposition 3].
Therefore, c¢j_1 ~— ¢; unless w; is of support 0, in which case £ has two elements.
Equivalently, ¢ ~ d iff the arrangement is of rank greater than 2. So if £ has exactly
two elements, then ajy = 1 and if £ has more than two elements then aj; = 0.

Theorem 9.1 ([5, Corollary 8.4]). The quiver Q of the semigroup algebra kF
coincides with the Hasse diagram of L. That is, there is exactly one arrow X — 'Y
iff V¥ < X.

In [5], the relations of the quiver are also determined. Let I be the ideal generated
by the following elements, one for each interval [Z, X| of length two in L,

Z X Y = Z.
Y Z<Y <X

Then kF = kQ/I as k-algebras, where kQ is the path algebra of Q.

10. Idempotents in the Subalgebras k(yS) and kS>x

This section describes the subalgebras of kS generated by the subsemigroups y.S
and S<y of S.

Let S be a left regular band. Recall that for y € S, the set yS = {yw:w €
St ={we S:w >y} is a subsemigroup of S (and hence a left regular band). Note
that if supp(y’) = supp(y) then the left regular bands yS and y’S are isomorphic
with isomorphism given by multiplication by y (the inverse is multiplication by y’).
Since yS is a subsemigroup of S, the support lattice of yS is the image of yS in L
by Proposition 2.1, which is the interval [V, 1].

Proposition 10.1. Let S be a left reqular band, let y € S and let Y = supp(y).
There exists a complete system of primitive orthogonal idempotents {ex:X € L} in
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kS such that {ex : X > Y} is a complete system of primitive orthogonal idempotents
in the semigroup algebra k(yS). Moreover, k(yS) = (3 x>y ex)kS.

Proof. For each X € L, fix € S with supp(z) = X. If X > Y, then replace x
with yx. Note that supp(yz) = supp(z) since X > Y. Therefore, x > y if X > Y.
The formula ex = x—> ;- y wew for X € L defines a complete system of primitive
orthogonal idempotents for kS (Theorem 4.2). And since the support lattice of yS
is [Y, i] C L, the elements ex = = — ZW>X zew for X > Y define a complete
system of primitive orthogonal idempotents in k(yS). Since y is the identity of ¢S,
we have y = > ¢~y ex. Therefore, k(yS) = y(kS) = (3_ x>y ex)kS. O

IfY € L, then S<y = {w € S : supp(w) < Y} is a subsemigroup of S. The
support lattice of S<y is the interval [0, Y] of L. Let projis_, kS — kS<x denote
the projection onto the subspace kS<x of kS. -

Proposition 10.2. Let S be a left regular band and Y € L. Let {ex:X € L}
denote a complete system of primitive orthogonal idempotents of kS. Then
{projis_, (ex): X < Y} is a complete system of primitive orthogonal idem-
potents of kS<y. Moreover, the semigroup algebra k(S<y) is isomorphic to

kS(ZXgY ex).

Proof. The map proj,g_, is an algebra morphism kS — kS<y. This follows from
the fact that supp(wz) = supp(w) V supp(z) for any z,w € S. Soif X <Y,
then projus_, (ex) = @ — Xy x TProjrg_, (ew) since ex = @ — > o ¢ zew.
Therefore, the elements projg_, (ex) for X < Y form a complete system of
primitive orthogonal idempotents for the semigroup algebra of the left regular
band S<y (Theorem 4.2). Since proj,g_,, is an algebra morphism, it restricts
to a surjective morphism of algebras proj,s_,, :kS(>_x<y ex) — k(S<y). Since
ESx = (kS)ex for all X € L as kS-modules (Proposition 5.2), dim(kS<y) =
dim(}_ y <y (kS)ex). So proj,g_, is an isomorphism. Its inverse is right multipli-
cation by >~y ex. O

11. Cartan Invariants of the Semigroup Algebra

The Cartan invariants of a finite-dimensional k-algebra A are the numbers
dimy (Hom4 (Aex, Aey)), where {ex} xer is a complete system of primitive orthog-
onal idempotents for A. They are independent of the choice of {ex}xer.

Let S be a left regular band with identity and let L denote the support lattice
of S. For X,Y € L, define numbers m(Y, X) follows. If Y £ X, then m(Y, X) = 0.
If Y < X, then define m(Y, X) by the formulas

> mY,X) =#(wSx), (11.1)
WY <X

one for each W € L, where w is an element of support W. (Recall that the
number #(wSx) does not depend on the choice of w with supp(w) = W.)
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Equivalently,
m(Y, X) = Z (Y, W) #(wSX),
Y<W<X

where p is the Mdbius function of L [6, Sec. 3.7].

Proposition 11.1. Let S be a left reqular band with identity. Let {ex}xecs denote
a complete system of primitive orthogonal idempotents for kS. Then for any X,Y,

dim(ey kSex) = dim Homyg(kSey, kSex) = m(Y, X).

Therefore, the numbers m(Y, X) are the Cartan invariants of kS.

Proof. The first equality follows from the identity Homa(Ae, Af) = eAf for idem-
potents e, f of a k-algebra A. If Y £ X, then it follows from (LRB2) and Lemma
4.1 that eykSex = 0. Suppose that ¥ < X. From the previous section, k(yS) =
> wsy ewksS for some complete system of primitive orthogonal idempotents. Com-
bined with the isomorphism kSx = kSex we get E(ySx) = @y <p<x ewkSex.
Therefore, -

Z m(W, X) = dim(k(ySx)) = Z dim(ewkSex).
Y<W<X Y<W<X

The result now follows by induction. If X = Y, then dimexkSex = m(X,X).
Suppose the result holds for all W with Y < W < X. Then

dimeykSex = Z m(W, X) — Z dimewkSex

Y<W<X Y<W<X
= > mWX)— > mWX)

Y<W<X Y<W<X

=m(Y, X). m|

12. Example: The Face Semigroup of a Hyperplane Arrangement

Let F denote the semigroup of faces of a hyperplane arrangement A. Then # (wFx )
is the number of faces of support X containing w as a face. Zaslavsky’s theorem
[7] gives that this is ) oy <y (Y, X)|, where p is the Mobius function of the
intersection lattice of A. Comparing this with Eq. (11.1), we conclude that the
Cartan invariants of kF are m(Y, X) = |u(Y, X)|. These were also computed in
[5, Proposition 6.4].

13. Example: The Free Left Regular Band

Let S be a free left regular band on a finite set A. The support lattice of S is the
lattice of subsets of A. Therefore, u(Y,W) = (—1)#(W\Y) [6, Example 3.8.3] for
any Y,W € L. And #(wSx) = #(X\W)! since the number of elements of maximal
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support in the free left regular band on A4 is precisely (# A)l. If n = # X and j = #Y,
and Y C X, then

m(Y. X)= > w(Y.,W)*(wSx)

Y<W<X
= Y )V m=Fw)!
Y<W<X

n

Y ()T

i=j YCWCX
#HW=i

= (=)'

Therefore, the number m(Y, X)) depends only on the cardinality of X\Y and we
denote it by m;, where i = #(X\Y).

We will now prove that these numbers count paths in the quiver of kS. For a
set A of cardinality n, let @, be the directed graph with one vertex for each subset
of A and #(X\Y) — 1 arrows from X to Y if Y C X. Let p, denote the number
of paths in @,, beginning at A and ending at (). Note that if Y C X C A, then the
number of paths beginning at X and ending at Y in Q,, is p,,, where m = #(X\Y).

For each 0 < i <n — 1, there are n — 7 — 1 arrows from A to sets of size i, and
there are (?) such sets, S0 P, = > gcicn_1 (?) (n—1i—1)p; for n > 1. Equivalently,

n n )
> (e= X ()o-om
0<i<n 0<i<n—1
If m; satisfy the above recurrence, then m; = p; for all 7 since my = 1 = pg. Well,

> <ZL> (n —i)m;

0<i<n-—1

0<i<n—1

- Y |2 S
L (n—i—1)dl | L= !

0<i<n—1 0<<e
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Theorem 13.1 (Brown, private communication). Let S = F(A) be the free
left regular band on a finite set A. Then kS = kQ, where kQ is the path algebra of
the quiver @ of kS.

Proof. Since @ is the quiver of kS, there is an algebra surjection kQ — kS, where
k@ is the path algebra of Q). The canonical basis for kQ is the set of paths in @, so
using the fact that m(Y, X) = dim(eykSex) counts the number of paths in @ from
X to Y (see the preceding two paragraphs), we have dim(kQ) = 3y y m(Y, X) =
>y x dim(eykSex) = dim(kS). O

14. Future Directions

We conclude this paper by providing a few problems for future exploration.
Although this paper successfully determines the quiver of the semigroup algebra
of a left regular band, it says nothing about the quiver relations. Describe the quiver
relations of the semigroup algebra of a left regular band with identity.
The face semigroup algebra of a hyperplane arrangement is a Koszul algebra
[5, Proposition 9.4] and its Koszul dual is the incidence algebra of the opposite
lattice of the support lattice of the semigroup. Since this algebra is the semigroup
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algebra of a left regular band, it is natural to ask this question for all left regular
bands. Determine which class of left reqular bands give Koszul semigroup algebras
and identify their Koszul duals. One source of examples of left regular bands giving
Koszul algebras comes from interval greedoids (see [1] for an introduction to interval
greedoids). This will be explored in an upcoming paper.

Another nice property of the face semigroup algebra of a hyperplane arrange-
ment is that the quiver of the semigroup algebra coincides with the support lattice
of the semigroup. In fact, the support lattice completely determines the semigroup
algebra. Determine the left reqular bands S for which the quiver of kS coincides
with the support lattice of L. (From our description of the quiver of kS, we have
a description of these left regular bands in terms of the equivalence classes of ~.)
Determine those S for which the support lattice L completely determines kS.

A band is a semigroup B satisfying b?> = b for all b € B. Since left regular
bands are bands it is natural to try to generalize these results to arbitrary bands.
Describe the quiver of the semigroup algebra kB of a band B with identity. Construct
a complete system of primitive orthogonal idempotents for kB. Determine the bands
B for which kB is a Koszul algebra.

Appendix: Proof of Lemma 6.1

Lemma 6.1. Let S be a finite left reqular band with identity and L its support
lattice. Let Mx and My denote the simple modules with irreducible characters xx
and xy, respectively, where X,Y € L. Then

dim(EXtiS(Mx,My)) =axy-. (Al)

Proof. Here is an outline of the proof. Let X € L. Recall that Mx = k is a vector
space and the action of kS on Mx is given by yx: if y € S and A € k, then
y- A= xx(y)A Let K =ker(xx|rs)-

(1) Using basic homological algebra, the computation of the dimension of
Extyg(My, My ) is reduced to computing the dimensions of Homys (ker(x x |s),
My) and Homks(k’SX, My).

(2) For Y ¢ X we have Homyg (ker(xx|rs), My) = 0, which implies Ext;g(Mx,
My) =0 for Y £ X. This agrees with axy =0 for Y £ X.

(3) If Y < X, then Extjq(Mx, My) = Homys (ker(x x |rs), My). So we need only
show that the dimension of the latter space is axy .

(4) Let f € Homyg(ker(xx|xs), My). We show: if z ~ 2, then f(z — 2’) = 0;
and if u ~ z and w' ~ 2/, then f(u — ') = f(z — 2’). This implies
dim(Homyg (ker(x x|ks), My)) < axy.

(5) We construct axy linearly independent k£S-module maps in the k-vector space
Homys (ker(xx |ks), My ), establishing the inequality

dim(Homyggs (ker(xx|ks), My)) > axy.
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At this point the proof of the lemma is complete: step (2) shows Eq. (A.1) holds
for Y £ X; steps (3)—(5) show Eq. (A.1) holds for ¥ < X.

Step 1. Computing Homyg(ker(xx|rs), My) and Homyg(kSx, My) is sufficient
to determine Ext} (M, My).

Since the following is a short exact sequence of kS-modules and kSx is
projective,

0— keI‘(Xx|ks) — k‘SX X—)>( MX — 07
by [4, Proposition 7.2, Chap. V], the following is an exact sequence,
Homys (kSx, My) — Homys (ker (X x|xs), My)
— Extyg(Mx, My) — 0.

Therefore, Extjq(Mx, My) will be determined once Homys(kSx, My) and
Homygs(ker (xx|rs) , My) are determined.

Step 2. If Y £ X, then Homyg (ker(xx|rs), My) = 0. This implies Eq. (A.1) holds
for Y £ X since axy =0 for Y £ X.

Let K denote the kernel of xx|ksy. Then K is spanned by the differences of
elements of support X. If f € Homyg(K, My) and z,2’ are elements of support
X, then f(z —2') = 1f(z — ') = xy () (& — 2') =y fla— ) = f(y- (& —2')),
for any element y of support Y. So if Y £ X or if Y = X, then f = 0. Therefore,
Homys (K, My) =01 Y £ X. It follows from the exact sequence above that

Extpg(Mx,My)=0=axy forY £ X.

Step 3. If Y < X, then Extjq(Mx, My) = Homys(ker(xx |xs), My ).

Suppose Y < X. If f € Homys(kSx, My), then for all € Sx, f(x) = f(2?) =
flx-z) =a- f(x) = xy(x)f(z) = 0f(x) = 0 for all z € S with supp(z) = X.
Therefore, Homys(kSx, My) = 0. Hence, by the exact sequence in Step (1) above,

Extyg(Mx, My) =2 Homys (K, My) forY < X.

Step 4. Let f € Homyg(ker(xx|rs), My). If x ~ 2/, then f(x — 2a’) = 0;
and if u ~ 2z and v ~ a', then f(u — ') = f(z — 2’). This implies
dim(HomkS(ker(XX|k5), My)) S axy.

Suppose © — 2. Then there exists a w € S with y < w, supp(w) < X,
wr = yx, and wx = ya’. Then z — 2’ € K, and for any f € Homygs(K, My), we
have f(z —2') = xy (y) f(z —2') = flyz —y2') = f(wr —wa’) = f(w- (x —2')) =
w-f(z—2") = xy(w)f(xr—a') =0f(x—2') = 0. Therefore, f(x—2') =0if x — 2. If
x ~ ', then there exist g = z,z1,...,2; = 2’ such that x;_1 — z; for 1 <j <,
and f(x — ') = f(zo — z1) + f(x1 — x2) + -+ + f(wi—1 + x;) = 0. Therefore,
fle—2') =01if x ~ 2’. So f can only be nonzero on differences of elements in
different equivalence classes of ~. Moreover, the equivalence classes determine f: if
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u~xand v’ ~ ' then f(u—u')=flu—2x)+ flx —2')+ f(a' —u') = f(x —2').
Therefore,

dim(Exty.g(Mx, My)) = dim(Homys (K, My)) < axy-.

Step 5. There are axy linearly independent k£S-module maps in the k-vector space
Homys (ker(xx|ks), My ). This implies the inequality,

dim(Homyggs (ker(xx|ks), My)) > axy.

Fix y with supp(y) =Y and let z,2’ € Sx with = # 2. Since {u — z : u # «x,
supp(u) = X} is a basis for K, we get a well-defined linear function f : K — k by
defining

A ) 1, ifu~a,
u—2x)=
0, otherwise.

We now show that f : K — My is a kS-module map. That is, f(w - (u — z)) =
Xy (w) - f(u—x) for all w € S and for all u € Sx.

Suppose supp(w) £ Y. Then w - f(u — z) = 0 since w acts trivially on My . If
supp(w) £ X, then w acts trivially on K and sow- f(u—z) =0 = f(w-(u—2x)). So
suppose supp(w) < X. Then f(w- (v —1x)) = f(wu—wz) = f(wu—2z)— f(wer —x).
Since v ~ 2’ iff yv ~ 2’ for any v € Sy, it follows that f(wu — z) = f(ywu — x)
and f(wz — z) = f(ywz — x). If supp(yw) = X, then ywu = yw = ywz (LRB2),
so f(w-(u—x)) =0. If supp(yw) < X, then we have an element v = yw satisfying
v >y, supp(v) < X, v(wu) = y(wu), and v(wz) = y(wz). That is, wu ~ wz and it
follows that f(wu —z) = f(wx —z). So f(w- (u—x)) =0.

Suppose supp(w) < Y. Then w acts as the identity on My . Hence, w- f(u—x) =
f(u— ). Since supp(w) <Y and Y < X, we have that supp(w) < X. Therefore,
flw-(u—2)) = flwu —wz) = flwu —z) — f(wzr — x). Since v ~ &’ iff yv ~ 2/,
we have f(wu —z) = f(y(wu) —x) = f(yu — ) = f(u — z) since supp(w) < Y.
Similarly, f(wz —x) = f(x — ) = 0. Therefore, f(w - (v —x)) = f(u — x).

This establishes that f: K — My is a kS-module map. And since f is nonzero
only on differences of the form v — u' with w ~ x and v’ ~ 2/, there are exactly
axy such kS-module maps. These maps are linearly independent, therefore

dim(Exty.g(Mx, My)) = dim(Homys (K, My)) > axy-.

The proof of the lemma is complete. O
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