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1 Quasi–hereditary algebras

Tilting modules occur in a variety of contexts and we are fortunate to have
a unifying language with which to describe them. This is provided by the
language of quasi-hereditary algebras which for us will usually arise in the
context of highest weight categories. We will use this section to give three
definitions of quasi–hereditary algebras and in showing that all three are
equivalent.

Definition 1.1 (Cline, Parshall, Scott, [20]) Let k be a field, A a finite
dimensional algebra over k, Λ an indexing set for the isomorphism classes
of simple A-modules with correspondence λ ↔ L(λ), and ≤ a partial order
on Λ. We say that (A,≤) is a quasi-hereditary algebra if and only if for
all λ ∈ Λ there exists a left A-module, ∆(λ), called a standard module such
that

(I) there is a surjection φλ : ∆(λ) → L(λ) and the composition factors,
L(µ), of the kernel satisfy µ < λ.

(II) the indecomposable projective cover, P (λ), of L(λ) maps onto ∆(λ) via
a map ψλ : P (λ) → ∆(λ) whose kernel is filtered by modules ∆(µ) with
µ > λ.

We now give a series of examples to both illustrate the concept and to
demonstrate some of its characteristics. In these examples, and often in the
sequel, we will use the following notation:

Notation 1.1 In the situation that we have a filtered module

0 = M0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mi = M

with Mj/Mj−1 = Nj we will abbreviate this by the notation

M ∼=

Ni
...
N1

.
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Example

1. Put A1 =





k k k
0 k k
0 0 k



, the set of upper triangular matrices. Let Λ =

{1, 2, 3} and ei = eii, the corresponding matrix idempotent. Order Λ
by 1 < 2 < 3. We then have

P (1) = A1 · e1 =





k
0
0



 ,∆(1) = P (1) = L(1),

P (2) = A1 · e2 =





k
k
0



 ,∆(2) = P (2) ∼=
L(2)
L(1)

,

P (3) = A1 · e3 =





k
k
k



 ,∆(3) = P (3) ∼=

L(3)
L(2)
L(1)

.

So we have a quasi-hereditary algebra.

2. Put A2 =





k k k
0 k k
0 0 k



 , Λ = {1, 2, 3} and ei = eii, but order Λ by

3 < 2 < 1. We still have

∆(1) = P (1) = L(1).

However, if we try to set

∆(2) = P (2)

then we get that L(1) is a composition factor of ker(∆(2) → L(2)) and
this is not allowed. On the other hand, if we put

∆(2) = L(2),

we get the permitted

0 → L(1) ∼= ∆(1) → P (2) → L(2) ∼= ∆(2) → 0.

By similar reasoning, we must put

∆(3) = L(3).

In the end, we get 0 = P (0) ⊂ P (1) ⊂ P (2) ⊂ P (3) with P (i)/P (i −
1) = ∆(i). Thus we again have a quasi-hereditary algebra.
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3. Put A3 =





k k k
0 k k
0 0 k



. This time place the order 2 < 3 < 1 on Λ.

We then have
∆(1) = L(1),

∆(2) = L(2),

∆(3) ∼= P (3)/L(1).

So
0 → L(2) → ∆(3) → L(3) → 0,

and
0 → L(1) ∼= ∆(1) → P (3) → ∆(3) → 0.

These three examples demonstrate the importance of the order on the
quasi-hereditary structure.

4. Put A4 ⊂





k k k
0 k k
0 0 k



, with a11 = a33. In this case, we have the

two primitive idempotents





1 0 0
0 0 0
0 0 1



 ,





0 0 0
0 1 0
0 0 0



 .

We consider the two possible choices of orders

1 < 2 Here we get

∆(1) = L(1), and ∆(2) = P (2)

and so two short exact sequences

0 → L(1) → ∆(2) → L(2) → 0,

0 → ∆(2) → P (1) → ∆(1) → 0.

In this case (A4,≤) is a quasi-hereditary algebra.
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2 < 1 We begin with the short exact sequence

0 → L(1) → P (2) → L(2) → 0.

From this we conclude that ∆(2) 6= P (2) since then L(1) is a
composition factor of ∆(2) and this is not allowed. So we must
try ∆(2) = L(2). Now by the filtration of P (2), we must have
that ∆(1) = L(1). However, we have the short exact sequence

0 →? 6= 0 → P (1) → L(1) = ∆(1) → 0

and there are no indices larger than 1. We conclude that no
quasi-hereditary structure is possible with this ordering!

5. Put A5 = A4/





0 0 k
0 0 0
0 0 0



. We have two short exact sequences

0 → L(2) → P (1) → L(1) → 0,

and
0 → L(1) → P (2) → L(2) → 0.

If we try the filtration 1 < 2, then ∆(1) = L(1) implying that P (1)
has no appropriate filtration. If we try 2 < 1, then we get a symmetric
failure. Thus no ordering of the simples allows a quasi-hereditary
structure to be put on A5.

We next want to consider the dual of this definition. This is moti-
vated by the fact that any finite dimensional algebra, A, admits a duality:
−∗ = Homk(−, k) : A-mod ∼= mod-A ∼= Aop-mod , that is, a contravari-
ant equivalence between left and right modules. This duality sends simple
modules to simple modules and sends projectives to injectives. With this in
mind, we make the following dual

Definition 1.2 (Cline, Parshall, Scott [20]) Let k be a field, A a finite
dimensional algebra over k, Λ an indexing set for the set of isomorphism
classes of simple A-modules with correspondence λ↔ L(λ), and ≤ a partial
order on Λ. We say that (A,≤) is a quasi-hereditary algebra if and only if,
for all λ ∈ Λ there exists a left A-module ∇(λ), called a costandard module,
such that
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(I) there is an injection φλ : L(λ) → ∇(λ) and the composition factors,
L(µ), of the cokernel satisfy µ < λ.

(II) the indecomposable injective envelope of L(λ), I(λ), contains ∇(λ) as a
submodule, and the inclusion ψλ : ∇(λ) → I(λ) has a cokernel filtered
by modules ∇(µ) with µ > λ.

The two definitions are equivalent; in fact

Proposition 1.1 (Parshall, Scott [76]) A is quasi-hereditary if and only if
Aop is quasi-hereditary.

We postpone the proof until we give another definition which is again
equivalent to these two. But first, a few examples of this second definition.

Example

Ai =





k k k
0 k k
0 0 k





We know that the duality Homk(−, k) carries right projectives to left injec-
tives. Hence we get

I(1) =
(

k k k
)∗

=
L(3)
L(2)
L(1)

,

I(2) =
(

0 k k
)∗

=
L(3)
L(2)

,

I(3) =
(

0 0 k
)∗

= L(3) .

A1 : 1 < 2 < 3

∇(1) = L(1),∇(2) = L(2),∇(3) = L(3).

Here the required filtrations of the injectives by the ∇’s are given by
the Jordan-Hölder series. Note that the ∆’s are projective and the ∇’s
are simple.
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A2 : 1 > 2 > 3
∇(1) = I(1),∇(2) = I(2),∇(3) = I(3)

and here the ∆’s are simple and the ∇’s are injective.

A3 : 2 < 3 < 1

∇(1) =
L(3)
L(2)
L(1)

,∇(2) = L(2),∇(3) = L(3)

and we have now

0 → ∇(2) → I(2) → L(3) = ∇(3) → 0.

Since 3 < 2, all is well.

Example In our example, A4, from earlier, we now have

I(1) =
(

k k k
)∗

=
L(1)
L(2)
L(1)

,

where the entries in the upper left hand and lower right hand corners of the
matrix are equal; and

I(2) =
(

0 k k
)∗

=
L(1)
L(2)

.

In the case where the order is 1 < 2, we may put ∇(2) = I(2) and ∇(1) =
L(1). From the short exact sequence

0 → ∇(1) → I(1) → ∇(2) → 0

we see we have a quasi-hereditary algebra.
We leave it as an exercise to check the non quasi-hereditary examples.
A-mod is usually called a highest weight category if it satisfies either of

the previous definitions. These definitions can be made in more generality.
Call a poset, Λ, interval finite if for every µ ≤ λ in Λ, |{γ|µ ≤ γ ≤ λ}| is
finite. To be a highest weight category, an arbitrary abelian k-category, C, in
addition to satisfying the above conditions, must be closed under arbitrary
direct limits, have either enough projectives or injectives, the endomorphism
rings of simples must be finite dimensional, each object must be a direct limit
(i.e., union) of finitely generated ones, and the simples must be indexed by
an interval finite poset. These types of categories arise frequently in Lie
theory. They give rise, locally, to finite dimensional algebras:
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Definition 1.3 A subset, Π ⊂ Λ, of a partially ordered set is called an ideal
if for all pairs x ≤ y in Λ, y ∈ Π implies x ∈ Π. Dually, a subset Π′ ⊂ Λ,
is called a coideal if for all pairs x ≤ y in Λ, x ∈ Π′ implies y ∈ Π′.

Given a highest weight category C, let Λ′ ⊂ Λ be the intersection of an
ideal and a coideal containing a finite number of elements. Let C[Λ′] be the
full subcategory generated by {L(λ)|λ ∈ Λ′}, that is all those elements of C
which have a filtration whose sections are L(λ), λ ∈ Λ′. Then C[Λ′] is the
category A-mod for some quasi-hereditary algebra A. Under the situation
where C has enough projectives one takes for the standard modules, ∆Λ′(λ),
the largest factor of ∆(λ) with filtration whose sections are L(µ), µ ∈ Λ′.
As projectives, PΛ′(λ), one takes the largest quotient of P (λ) filtered by
the ∆Λ′(µ), µ ∈ Λ. Then A = End(⊕λ∈Λ′PΛ′(λ) is a quasi-hereditary
algebra whose poset is Λ′. The construction for the case that C has enough
injectives is exactly dual. Full details, along with proofs can be found in
Cline, Parshall, Scott [20].

Example

Ai =





k k k
0 k k
0 0 k



 ,

(1 < 2 < 3). We can take {1, 2}, {2, 3} or any singleton as Λ′. As an
example, if we take {1, 2}, we get that the projectives remain unchanged:

P (1) = L(1), P (2) =
L(2)
L(1)

but the injectives become truncated:

I(1) =
L(3)
L(2)
L(1)

is truncated to
L(2)
L(1)

and

I(2) =
L(3)
L(2)

is truncated to L(2).

As A we then get

(

k k
0 k

)

; if we had taken a singleton then we would have

gotten
(

k
)

.
Using these ideas we can construct new quasi-hereditary algebras from

old ones, in which the new one has an indexing set of smaller cardinality. The
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process, called truncation, allows us to set up an induction for proving facts
about quasi-hereditary algebras. Explicitly, we may complete the partial
order on the poset Λ to a total order {1 < 2 < . . . < n}. Now we remove
indices starting from the top, that is, first n, then n− 1, etc.

In this case, we may say even more. Let e be the idempotent so that
P (n) = Ae; then we claim that AeA is a direct sum of copies of P (n) and
that EndA(Ae) = eAe is semi-simple. To begin, we have P (n) = ∆(n)
since we have no candidates to filter the kernel of P (n) → ∆(n). L(n)
does not occur as a composition factor for any ∆(i), i 6= n. For any
given j < n, P (j) is filtered by ∆(n)’s and others; we in fact have
HomA(P (n), P (j)) = HomA(P (n), sum of ∆(n)’s in P (j)) since L(n) does
not occur as a composition factor for any ∆(i), i < n. It follows that each φ :
P (n) → P (j) is zero or injective, since the same holds true for EndA(P (n)).
We claim that trace of P (n) in P (j), thatis

∑

φ:P (n)→P (j) φ(P (n)), is a di-
rect sum of copies of P (n). This follows from the fact that for pair of maps,
φ1, φ2 : P (n) → P (j), im φ1 ∩ im φ2 is P (n) or is 0. To see this, consider
the short exact sequence

0 → im φ1 → im φ1 + im φ2 → cokernel → 0.

Then φ2 defines a map of P (n) onto the cokernel and so must be isomorphic
to it by a dimension count. Further P (n) equals the cokernel, being projec-
tive, this map must lift to im φ1 + im φ2 and so the short exact sequence
splits.

We can say even more. We have that the trace of P (n) in P (j) is
equal to P (j)∩AeA, where e is any idempotent associated to the projective
P (n). Carrying this a step further, we have that the trace of P (n) in A
is AeA ∼= P (n)l for some l. Conversely, if AeA ∼= P (n)l, then we have
submodules ∆(n)l in A. By induction we then get a proof that the previous
definitions are the same as the following.

Definition 1.4 (Cline, Parshall, Scott [20]) Given a finite dimensional al-
gebra A over a field k, we say

(a) a two sided ideal, J , is called a heredity ideal if and only if there is an
idempotent e such that J = AeA is left projective and EndA(Ae) =
eAe is semi-simple.

(b) A is quasi-hereditary if and only if there exists a chain of two sided
ideals, called a heredity chain,

0 ⊂ Jn ⊂ Jn−1 ⊂ . . . ⊂ J1 = A
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such that Jl/Jl+1 is a heredity ideal in A/Ji+1 for all l.

Remark 1.1 This particular construction gives rise to a so-called recolle-
ment structure between the bounded derived categories of A/J , A and eAe
allowing one to construct that of A from those of A/J and eAe.

Proposition 1.2 (Cline, Parshall, Scott [20]) The three definitions are
equivalent.

Proof: We have already shown how to build a heredity ideal from the top
weight and so have passed from Definition 1.1. to Definiton 1.4. To go in
the opposite direction, suppose we have a heredity chain:

0 ⊂ Jn ⊂ Jn−1 ⊂ . . . ⊂ J1 = A.

We may assume, without loss of generality that e is primitive, where J =
AeA. Put ∆(n) = Ae. The semi-simplicity of EndA(Ae) implies, as above,
that the trace of Ae = ∆(n) in A is a direct sum of copies of ∆(n). Further
we clearly have HomA(∆(n), A/AeA) = 0 since AeA is a trace ideal. Thus
we may pass to A/Jn and proceed by induction. The last definition is gotten
by a symmetric argument.

Corollary 1.3 If A is a quasi-hereditary algebra with heredity chain

Jn = AenA ⊂ Jn−1 = A(en + en−1)A ⊂ . . .

then all A/Jl are quasi-hereditary with respect to the same order as well as
all eAe with e = el + · · · + en for any l.

Example

Ai =





k k k
0 k k
0 0 k





(A1 : 1 < 2 < 3) We get the heredity chain





k k k
0 0 0
0 0 0



 ⊂





k k k
0 k k
0 0 0



 ⊂ A1
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(A2 : 1 > 2 > 3) We get the heredity chain





0 0 k
0 0 k
0 0 k



 ⊂





0 k k
0 k k
0 0 k



 ⊂ A2

( A3 : 2 < 3 < 1) We get the heredity chain





0 0 0
0 k k
0 0 0



 ⊂





0 0 0
0 k k
0 0 k



 ⊂





k k k
0 k k
0 0 k



 ⊂ A3

As an example of the usefulness of inductions constructed from such
truncations we prove the following important property of quasi-hereditary
algebras:

Theorem 1.4 (Bernstein-Gelfand-Gelfand [16], Cline-Parshall-Scott [20],
[76], Dlab-Ringel [32], [33]) If A is a quasi-hereditary algebra with poset
(Λ,≤), then the global dimension of A is less than or equal to 2l(Λ) − 2
where l(Λ) is the length of the longest chain in Λ.

Proof: Goes by induction on l(Λ). If l(Λ) = 1, then there are no compa-
rable elements and so A is semi-simple and its global dimension is 0. To
build the induction recall that the global dimension is equal to the max
{pdim L|L simple} by the long exact sequence in cohomology, where pdim
L is the projective dimension of L. Recall that if λ is a maximal weight in
Λ then ∆(λ) = P (λ) = Aeλ. Let e =

∑

λ maximal in Λ eλ. Then J = AeA
is a heredity ideal and we have

0 → J → A→ A/J → 0.

By induction gl dim A/J ≤ 2l(Λ) − 4.
Now take a projective A/J-resolution of any L ∈ A/J-mod:

0 → Pk → Pk−1 → . . . → P0 → L→ 0.

Each projective A/J module, Pj , is the surjective image of a projective A
module, P̃j, and the kernel is a direct sum of the various ∆’s which are
direct summands of J . Since these are themselves projective over A we get

pdimAL ≤ pdimA/JL+ 1 for all A/J-modules.
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All that remains are the simple A modules, L, which are not A/J mod-
ules. However, such a module is the homomorphic image of some ∆ which is
a direct summand of J . The kernel, K, of this surjection is an A/J-module
and so has projective dimension (over A) at most 2l(Λ)− 3. Thus from the
long exact sequence in cohomology we get that pdim L ≤ pdim K + 1 ≤
2l(Λ) − 2.
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2 Characteristic Tilting Modules

As part of our definitions for quasi-hereditary algebras we have given that
projective modules are filtered by standard modules (∆’s) and injective mod-
ules by costandard ones (∇’s). We extend these characterizations to modules
which are filtered by ∆’s by putting F(∆) equal to the full subcategory of
A-mod whose objects, X, have filtrations 0 ⊂ X1 ⊂ X2 ⊂ . . . ⊂ Xk = X,
such that Xj/Xj−1

∼= ∆(j), some standard module, for all j. Such modules
are called ∆-good and the filtration a ∆-filtration. We define F(∇) anal-
ogously calling its objects ∇-good and the relevant filtrations ∇-filtrations.
These categories have the following key homological property

Proposition 2.1 (Ringel [78], Auslander-Buchweitz [10], Auslander-
Reiten [11]) F(∇) = F(∆)⊥ and F(∆) = ⊥F(∇), in the following sense:

F(∆) = {X ∈ A-mod|Ext1A(X,∇(λ)) = 0, for all λ ∈ Λ}

= {X ∈ A-mod|ExtmA (X,∇(λ)) = 0, m ≥ 1, for all λ ∈ Λ}

= {X ∈ A-mod|Ext1A(X,Y ) = 0, for all Y ∈ F(∇)}

= {X ∈ A-mod|ExtmA (X,Y ) = 0, m ≥ 1, for all Y ∈ F(∇)}

and

F(∇) = {X ∈ A-mod|Ext1A(∆(λ),X) = 0, for all λ ∈ Λ}

= {X ∈ A-mod|Extm
A (∆(λ),X) = 0, m ≥ 1, for all λ ∈ Λ}

= {X ∈ A-mod|Ext1A(Y,X) = 0, for all Y ∈ F(∆)}

= {X ∈ A-mod|Extm
A (Y,X) = 0, m ≥ 1, for all Y ∈ F(∆)}.

Proof: We begin by showing

HomA(∆(λ),∇(µ)) =
{ EndAL(λ) if λ = µ

0 otherwise.

Since we have a surjection P (λ) → ∆(λ) from an indecomposable projec-
tive, it follows that ∆(λ) has a unique top, L(λ). Similarly, since we have
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an injection ∇(µ) → I(λ) an indecomposable injective, ∇(λ) must have a
unique socle, L(µ). So given a nonzero map ∆(λ) → ∇(µ) we have that
L(µ) must occur in the composition series of ∆(λ) and L(λ) must occur in
a composition series of ∇(µ). But the first requires µ ≤ λ and the second
λ ≤ µ. So Hom(∆(λ),∇(µ)) = 0, unless λ = µ. But in this case, the map
must factor ∆(λ) → L(λ) → ∇(λ), inducing an isomorphism L(λ) → L(λ).
Next

ExtmA (∆(λ),∇(µ)) = 0, for all λ, µ.

First, if λ is maximal then ∆(λ) is projective so the result is clear. Next, if
µ is maximal then ∇(µ) is injective and the result is again clear. If neither
is maximal, then let e be the idempotent associated to a maximal element of
λ ∈ Λ. Then both ∆(λ) and ∇(µ) are A/J modules for J = AeA a heredity
ideal. The statement now follows from:

Lemma 2.2 (Dlab-Ringel [32]) For all X,Y ∈ A/J-mod and all m ≥ 0,
ExtmA/J(X,Y ) = ExtmA (X,Y ).

Proof: This is clear for m = 0. For m = 1 both Ext-groups are equivalence
classes of short exact sequences

0 → Y → Z → X → 0.

Clearly, any such exact sequence over A/J is also one over A. On the other
hand, since e·Y = e·X = 0 gives that e2·Z = e·Z = 0. In general, though, for
any Z ∈ A-mod we have Z ∈ A/J-mod if and only if J ·Z = 0, which occurs
if and only if e · Z = 0. Finally, we have HomA/J(Z1, Z2) ∼= HomA(Z1, Z2)
for any pair of A/J modules and so any two short exact sequences are
isomorphic over A/J if and only if they are isomorphic over A.

Now for m > 1, we do a dimension shift. Let PA be a projective cover
of X in A. Then we have

0 → KA → PA → X → 0

is short exact. Multiplying by the idempotent e we get

0 → eKA = ∆(λ)l → ePA = ∆(λ)l → eX = 0 → 0

is short exact. Then putting KA/J = KA/eKA and PA/J = PA/ePA, this
last is projective. We derive the short exact sequence

0 → KA/J → PA/J → X → 0.
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Putting all this together we get the diagram

0 0

0 - ∆(λ)l
?

- ∆(λ)l
?

- 0

0 - KA

?
- PA

?
- X

?
- 0

0 - KA/J

?
- PA/J

?
- X

?
- 0

0
?

0
?

0
?

with the rows and columns exact. So from long exact sequences in cohomol-
ogy, we get

Extm
A (X,−) = Extm−1

A (KA,−)

= Extm−1
A (KA/J ,−) since ∆(n) is projective and m ≥ 2

= Extm−1
A/J (KA/J ,−) by induction

= ExtmA/J(X,−).

So we have ExtmA/J(F(∆),F(∇)) = 0.
Now we show the reverse inclusion. So assume X ∈ A-mod with

Ext1A(∆(µ),X) = 0 for all µ. We need to show X ∈ F(∇). Again, this
goes by induction on the length of the partial ordering. If l(µ) = 1 then A
is semi-simple, all Ext-groups vanish and F(∆)⊥ = F(∇), and the inclusion
is clear.

For the induction step, we again let e be the idempotent associated to
a maximal element of Λ and J = AeA. We let X ′ be the maximal A/J-
submodule of X and let X ′′ be the cokernel of X ′ →֒ X. Since the socle
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of X ′′ is ⊕L(λ) and the socle of a module must agree with the socle of
its injective envelope we have that the injective envelope of X ′′, I(X ′′), is
⊕∇(λ). We get a short exact sequence

0 → X ′′ → ∇(λ)l → C → 0,

with C an A/J module. Applying HomA(∆(µ),−) and passing to the long
exact sequence in homology, we have

0 → HomA(∆(µ),X ′′) → HomA(∆(µ),∇(λ)l) →
HomA(∆(µ), C) → Ext1A(∆(µ),X ′′) → 0.

For µ 6= λ there are no maps ∆(µ) → ∇(λ) and so

HomA(∆(µ),X ′′) = 0.

(We will also need in the last step of the proof that this gives

Hom1
A(∆(µ), C) ∼= Ext1A(∆(µ),X ′′).)

Now applying HomA(∆(µ),−) to

0 → X ′ → X → X ′′ → 0,

we get

0 → HomA(∆(µ),X ′) → HomA(∆(µ),X) →
HomA(∆(µ),X ′′) → Ext1A(∆(µ),X ′) → 0.

Now since HomA(∆(µ),X ′′) = 0 we get Ext1A(∆(µ),X ′) = 0. This Ext-
group also vanishes over A/J and we conclude, by induction, that X ′ ∈
FA/J (∇) ⊂ FA(∇).

Thus we will be done if we show X ′′ ∼= ∇(λ)l, that is C = 0. In the proof,
it is sufficient to show HomA(∆(µ), C) = 0 since every simple summand of
the socle of C is surjected upon by some ∆(µ). Now since C is an A/J
module we have HomA(∆(λ), C) = 0.

Now suppose µ 6= λ; then the above sequence continues

Ext1A(∆(µ),X ′) → Ext1A(∆(µ),X) → Ext1A(∆(µ),X ′′) → Ext2A(∆(µ),X ′).

Since X,X ′ ∈ F(∇) gives Ext1A(∆(µ),X) = Ext2A(∆(µ),X ′) = 0, in turn
forcing Ext1A(∆(µ),X ′′) = 0. But as remarked earlier Hom1

A(∆(µ), C) ∼=
Ext1A(∆(µ),X ′′), and the proof is complete.
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Now we look at our examples
Example

Ai =





k k k
0 k k
0 0 k



 .

Then the indecomposables are given by the diagram:

�
�

��

�
�

��

@
@

@R

@
@

@R

@
@

@R�
�

��





k
k
k









k
k
0









0̃
k
k









k
0
0









0̃
k
0









0̃

0̃
k





where the down arrows are surjections and the up arrows are injections. The
notation 0̃ indicates that this copy of k has been identified with 0 on passing
to a factor module. Now for the various orderings on Λ, we indicate which
modules belong to F(∆), (symbolized by ∆), F(∇), (symbolized by ∇), or
both (symbolized by ♦)

• A1 : 1 < 2 < 3 Here, the ∆’s are projective and the ∇’s are simple.

�
�

��

�
�

��

@
@

@R

@
@

@R

@
@

@R�
�

��

♦

♦ ∇

♦ ∇ ∇.

• A2 : 1 > 2 > 3 Here, the ∆’s are simple and the ∇’s are injective.
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�
�

��

�
�

��

@
@

@R

@
@

@R

@
@

@R�
�

��

♦

∆ ♦

∆ ∆ ♦.

• A3 : 1 > 3 > 2 Here we have

∆(1) = L(1),∆(2) = L(2),∆(3) =

(

L(3)
L(2)

)

and

∇(1) =





L(3)
L(2)
L(1)



 ,∇(2) = L(2),∇(3) = L(3).

�
�

��

�
�

��

@
@

@R

@
@

@R

@
@

@R�
�

��

♦

∆ ♦

∆ ♦ ∇.

Theorem 2.3 (Ringel [78]) Let (A,≤) be a quasi-hereditary algebra. Then
F(∆)∩F(∇) = add T , the full subcategory of A-mod consisting of all direct
sums of direct summands of a module T = ⊕λ∈ΛT (λ), where T has, up to
isomorphism, precisely card(Λ) indecomposable direct summands, T (λ).

T is called the (characteristic) tilting module of (A,≤). Often the T (λ)’s are
also called tilting modules. The meaning of tilting will be clarified later on.

Proof: We begin by proving uniqueness. Let X and Y ∈ F(∆) ∩ F(∇),
both indecomposable. Both have ∆-good filtrations and assume that ∆(λ)
embeds into both. Then we have short exact sequences:

0 → ∆(λ) → X → X ′ → 0,
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and
0 → ∆(λ) → Y → Y ′ → 0,

with both X ′ and Y ′ ∈ F(∆). We wish to prove X ∼= Y . To do so apply
Hom(−, Y ) to the first of the above exact sequences and consider the long
exact sequence in cohomology:

0 → Hom(X ′, Y ) → Hom(X,Y ) → Hom(∆(λ), Y ) → Ext1(X ′, Y ) = 0.

This last equality follows since X ′ ∈ F(∆) and Y ∈ F(∇). So Hom(X,Y )
surjects onto Hom(∆(λ), Y ); let α ∈ Hom(X,Y ) be a lift of the injection of
∆(λ) into Y . We get a commutative diagram:

∆(λ) - X - X ′

∆(λ)
?

- Y

α

?
- Y ′

We can repeat this applying Hom(−,X) to the second short exact se-
quence to get β lifting the embedding of ∆(λ) into X. Composing we get
α ◦ β : X → Y → X which sends ∆(λ) to ∆(λ). Because ∆(λ) has a unique
simple top EndA(∆(λ) is a skew field. Therefore, since the restriction of α◦β
to ∆(λ) is not zero, the restriction must be an automorphism. In particular,
α ◦ β is non-nilpotent. But X is indecomposable implying that EndAX is
a local artinian ring and so any non-nilpotent automorphism must be an
isomorphism.

Next we show their existence. To begin, note that in the case that
λ is a minimal weight, we have L(λ) = ∆(λ) = ∇(λ) = T (λ), so this
case presents no problem. Otherwise, given a non-minimal λ we want
a module with ∆(λ) on the bottom, and so a module constructed by
extensions. More precisely, we form universal extensions as follows. If
Ext1(∆(µ),∆(λ)) 6= 0 for some µ, then choose some such µ maximal. Since
the kernel of P (µ) → ∆(µ) is filtered by ∆(ν)’s with ν < µ and ∆(λ) is
filtered by L(ν)’s with ν ≤ λ we have that µ must be strictly less than λ.
Suppose dimEnd(∆(µ))Ext1(∆(µ),∆(λ)) = l. Pick a basis of l short exact
sequences for this Ext group:

0 → ∆(λ) → Ei → ∆(µ) → 0,

for 0 < i ≤ l. Add them together and form a pushout diagram:
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0 - ∆(λ)l - ⊕iEi
- ⊕∆(µ) - 0

0 - ∆(λ)

codiag

?
- Pushout = X

?
- ∆(µ)l

=

?
- 0.

Applying Hom(∆(µ),−) and passing to the long exact sequence in ho-
mology, we get

0 → Hom(∆(µ),∆(λ)) → Hom(∆(µ),X) →
Hom(∆(µ),∆(µ)l) → Ext1(∆(µ),∆(λ)) → Ext1(∆(µ),X) → 0.

Since no ∆(µ) is a direct summand of X, all maps ∆(µ) → X must lie in the
image of ∆(λ), thus we have Hom(∆(µ),∆(λ)) ∼= Hom(∆(µ),X). Further,
we have that both dim Hom(∆(µ),∆(µ)l) and dim Ext1(∆(µ),∆(λ)) equal
l and so Hom(∆(µ),∆(µ)l) ∼= Ext1(∆(µ),∆(λ)). So Ext1(∆(µ),X) = 0.
Thus there is no extension

0 → X → E → ∆(µ) → 0,

and X ∈ F(∆).
The construction continues recursively. If there is a ν with

Ext1(∆(ν),X) 6= 0, then choose ν maximal. We have ν < λ and ν 6≥ µ. We
then form a universal extension

0 → X → X ′ → ∆(ν)m → 0.

Arguing as above we have that Ext1(∆(ν),X ′) = 0. Further, since
ν 6≥ µ both Hom(∆(λ),∆(ν)m) = 0 and Ext1(∆(λ),∆(ν)m) = 0. So
Ext1(∆(λ),X ′) = Ext1(∆(λ),X) = 0. Continuing in this manner we eventu-
ally exhaust the set Λ′ = {µ ∈ Λ|µ < λ} and so obtain a module, X ∈ F(∆),
such that ∆(λ) ⊂ X is the bottom factor of the ∆-good filtration of X and
such that Ext1(∆(µ),X) = 0 for all µ ∈ Λ. Hence X ∈ F(∆)⊥ = F(∇) by
2.1 implying that X ∈ F(∆) ∩ F(∇).

It remains to show that X is indecomposable. We show that End X is
local, doing so by induction. To begin, ∆(λ) is clearly indecomposable. The
induction step relies on the short exact sequence:

0 → X ′ → X → ∆(µ)l → 0,
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where X is the relevant universal extension and X ′ is indecomposable by
induction. Now let 0 6= e : X → X be an idempotent in End(X). We want
to show that e = 1. Now X ′ is filtered by ∆’s with indices not smaller than
or equal to µ. This implies that Hom(X ′,∆(µ)) = 0 which, in turn, implies
that e|X′ maps X ′ to X ′. Now if e|X′ = 0 the sequence splits and we have a
contradiction. Thus by induction e|X′ = 1|X′ . But then (e− 1)|X′ = 0. But
then if e 6= 1 then e− 1 provides a splitting of the above exact sequence and
we again get a contradiction.

Let us follow the construction in some of the examples:
Example

Ai =





k k k
0 k k
0 0 k





A1 : 1 < 2 < 3 Here the ∆’s are projective and so there are no non-trivial
extensions; T (λ) = P (λ).

A2 : 3 < 2 < 1 Here, the ∆’s are simple. ∆(3) = L(3) = ∇(3) = T (3). We
construct T (2): ∆(2) = L(2) extends with L(3) = ∆(3) with

0 → ∆(2) →? → ∆(3) → 0.

Here Ext1(∆(3),∆(2)) is one dimensional and so we get the universal
extension

0 → ∆(2) → I(2) ∼=
L(3)
L(2)

→ ∆(3) → 0

and no further extension is possible. So T (2) = I(2). Analogously, we
get T (1) = I(1) after the formation of two universal extensions.

A3 : 2 < 3 < 1 We have

∆(1) = L(1),∇(1) =
L(3)
L(2)
L(1)

∆(2) = ∇(2) = L(2)

∆(3) =
L(3)
L(2)

,∇(3) = L(3).

We read immediately that T (2) = ∆(2) = ∇(2) = L(2) and T (3) =

∆(3) =
∇(3)
∇(2)

. We see that the number of factors in the ∆- good and

in the ∇-good filtrations may vary.
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Now ∆(1) extends with ∆(3):

0 → ∆(1) → I(1) = P (1) → ∆(3) → 0,

and here the process stops; so T (1) =
∆(3)
∆(1)

.

At this point it is important to note that the order with which one
takes the universal extensions is critical. For example, in this case,

∆(1) extends with ∆(2) to give
L(2)
L(1)

with no further extensions.

However, this is not a correct characterization of T (1). Note that these
T have already been seen in Example 2 where the tilting modules are
there indicated by the ♦.

For the last example: A4 ⊂





k k k
0 k k
0 0 k



, with a11 = a33. with 1 < 2.

Here we have

∆(1) = L(1), and ∆(2) = P (2) =
L(2)
L(1)

and

∇(1) = L(1), and ∇(2) = I(2) =
L(1)
L(2)

.

As usual, we have ∆(1) = ∇(1) = T (1). also ∆(2) extends with ∆(1)

to P (1) = I(1) =
L(1)
L(2)
L(1)

.

Notice that the homomorphism ∆(λ) → T (λ) played a crucial role in the
proof of the previous theorem. In fact, this is the link to general Auslander-
Reiten theory as expressed in the upcoming corollary:

Definition 2.1 Let C′ be a subcategory of C. We call M → N , with M ∈ C
and N ∈ C′, a left C′-approximation of M , if for all X ∈ C′ all maps M → X
factor through N . Dually, N ′ → M is a right C′-approximation if for all
X ∈ C′ all maps X →M factor through N .

And we arrive at the
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Corollary 2.4 For each λ ∈ Λ, there is a short exact sequence

0 → ∆(λ) → T (λ) → U(λ) → 0,

with U(λ) filtered by ∆(µ)’s with µ < λ. In particular, the composition
factor L(λ) occurs uniquely in a composition series for T (λ); that is, T (λ)
is determined by its highest weight. Moreover, ∆(λ) → T (λ) is a left F(∇)
approximation of ∆(λ).

Dually, there is a short exact sequence

0 → V (λ) → T (λ) → ∇(λ) → 0,

with V (λ) filtered by ∇(µ)’s with µ < λ. Further T (λ) → ∇(λ) is a right
F(∆) approximation of ∇(λ).

Proof: The veracity of the short exact sequence is clear. To substantiate
the claim that ∆(λ) → T (λ) is a right approximation, apply Hom(−,X),
X ∈ F(∇), to 0 → ∆(λ) → T (λ) → U(λ) → 0 to get a long exact sequence
in cohomology:

0 → Hom(U(λ),X) → Hom(T (λ),X) → Hom(∆(λ),X) → Ext1(U(λ),X) = 0.

This last equality holds since U(λ) ∈ F(∇) and so Hom(T (λ),X) surjects
onto Hom(∆(λ),X) and the second claim is clear.

The situation for ∇(λ) is dual.

Remark 2.1 Note that the highest weight composition factor, L(λ), deter-
mines T (λ) uniquely and so the dual construction starting with ∇(λ) pro-
duces the same T (λ).

In fact, one can copy the universal construction method to produce
such approximations for all objects in F(∇) or F(∆), (see Ringel [78] or
Auslander-Reiten [11]). Both categories are closed under extensions or di-
rect summands. In the language of that theory, we have

Theorem 2.5 (Ringel [78], Auslander-Reiten [11], Auslander-Smalø[13],
[14]) The categories F(∇) and F(∆) are functorially finite. In particular,
they have almost split sequences.

Proof: For a discussion of the terms and a proof see Auslander-Smalø[14].
One particular consequence of the above construction is :
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Corollary 2.6 1. T = ⊕T (λ) has no self-extensions, i.e., Exti(T, T ) = 0
for all i.

2. There exists a long exact sequence

0 → A→ T1 → . . . → Tl → 0,

for some l less than or equal to the global dimension of A and all
Ti ∈ add T .

3. The number of direct summands equals |Λ| = the number of isomor-
phism classes of simples.

Example A4. Here

T (1) = L(1), T (2) = P (1) = I(1) =
L(1)
L(2)
L(1)

and

A =
L(1)
L(2)
L(1)

⊕
L(2)
L(1)

.

So we get a short exact sequence

0 → A→ T1 =
L(1)
L(2)
L(1)

⊕
L(1)
L(2)
L(1)

→ T2 = L(1) → 0.

Corollary 2.5 says that T is a generalized tilting module and Happel’s
theorem [54] says that:

Corollary 2.7 There is a derived equivalence

Db(A-mod) ∼= Db(R-mod)

where R = EndA(T ) is called the Ringel dual of A.

We will take a closer look at the Ringel dual in the next section.
We finish the chapter with one last consequence of the approximation

property:
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Corollary 2.8 Let X ∈ F(∆) ∩ F(∇). Then T (λ) occurs as a direct sum-
mand of X if and only if the natural homomorphism ∆(λ) → L(λ) → ∇(λ)
factors through X.

Proof: Assume first that T (λ) occurs as a summand of X. We then have

T (λ)

�
�

�
�

��

∆(λ) - X
?

- ∇(λ)

�
�

�
�

��

T (λ)
?

and so ∆(λ) → L(λ) → ∇(λ) factors through X.
On the other hand, suppose ∆(λ) → L(λ) → ∇(λ) factors through X.

Then we have the diagram and the map T (λ) → X → T (λ) cannot carry
L(λ) to 0 and so must be an isomorphism as above. Thus T (λ) must be a
direct summand of X.
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3 Ringel Duals of quasi-hereditary algebras

The major goal of this section is to define the Ringel dual, R, of a quasi-
hereditary algebra, A, and to show that it is again a quasi-hereditary algebra.
But first we compute a few examples
Example

Ai =





k k k
0 k k
0 0 k





A1 : 1 < 2 < 3 Here the tilting modules are projective and so we get
R = A.

A2 : 1 > 2 > 3 Here the tilting modules are injective and so, again,
we have R = A.

A3 : 1 > 3 > 2 Here

T =
L(3)
L(2)
L(1)

⊕ L(2) ⊕
L(3)
L(2)

.

This gives us a new algebra

R =





k 0 k
0 k k
0 0 k



 ,

where ”Rij”= HomA(T (i), T (j)).

A4 : Here

T =
L(1)
L(2)
L(1)

⊕
L(2)
L(1)

.

In this case R is the same algebra except that the indices are reversed.
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Theorem 3.1 (Ringel [78]) Let (A,≤) be a quasi-hereditary algebra and
let T = ⊕T (λ) be its characteristic tilting module. Then R = EndA(T ) is
a quasi-hereditary algebra with respect to the opposite order on the poset.
Moreover, the Ringel dual of R is Morita equivalent to A.

Proof: The functor F = HomA(T,−) : A-mod → EndA(T )-mod be-
haves well with respect to direct sums. In particular, the indecompos-
able direct summands of T , T (λ), are carried to the projectives, say
PR(λ) = HomA(T, T (λ)). Since T ∈ F(∆), F is exact on F(∇) = F(∆)⊥.
Hence a ∇-filtration of any M ∈ A-mod is sent to a F (∇)-filtration of F (M).
Thus we try F (∇(λ)) = HomA(T,∇(λ)) as the new ∆R(λ). At least they
filter the R projectives and the sequence

0 → V (λ) → T (λ) → ∇(λ) → 0

goes to

0 → HomA(T, V (λ)) → HomA(T, T (λ)) → HomA(T,∇(λ)) → 0.

So, ∆R(λ) is a quotient of P (λ) and the kernel is filtered by ∆R(µ), µ >R λ,
by the construction of V (λ), where >R is the opposite order on the poset
defining the quasi-hereditary structure on A.

What are the composition factors of ∆R(λ)? We have ∆R(λ) =
HomA(T,∇(λ)) = HomA(⊕νT (ν),∇(λ)) = ⊕νHomA(T (ν),∇(λ)). Now
HomA(T (ν),∇(λ)) will certainly be 0 unless L(λ) = soc(∇(λ)) occurs as
a composition factor of T (ν). So the composition factors are L(ν), ν ≤R λ.
Further, ν = λ occurs precisely once since HomA(T (λ),∇(λ)) is one dimen-
sional over EndA(∇(λ)). This becomes clear on applying HomA(−,∇(λ))
to the short exact sequence

0 → ∆(λ) → T (λ) → U(λ) → 0.

The result is the short exact sequence

0 → HomA(U(λ),∇(λ)) → HomA(T (λ),∇(λ)) → HomA(∆(λ),∇(λ)) → 0,

with (U(λ),∇(λ) = 0. So all the axioms for a quasi-hereditary algebra are
satisfied with respect to the reverse order on the poset.

To prove the statement about the second Ringel dual, we have to find
the characteristic tilting module of R. We already know that F turns a ∇A-
filtration into a ∆R-filtration. So put I = ⊕λ∈ΛIA(λ). Then F (I) has a ∆R
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filtration. From the injectiveness of I we conclude Ext≥1
A (F(∇A), I) = 0.

But F is an exact functor on F(∇A) and so we get

Ext≥1
A (FF(∇A), F (I)) = Ext≥1

A (FF(∆R), F (I)) = 0.

So F (I) ∈ F(∆R). By construction it must be, up to multiplicity, TR. But
then EndR(F (I)) = EndA(I) = A and the proof is complete.

Now we check it on the examples.
Example

Ai =





k k k
0 k k
0 0 k





A1 : 1 < 2 < 3 As we have already seen the fact that the tilting
modules are projective implies that the underlying algebra of
the Ringel dual is the original algebra. So, in this case,
HomA(T,∇(λ)) must take the ∆’s to the ∇’s. Further, since
the projectives of the Ringel dual must be the image of the direct
summands of the characteristic tilting module we have that the
projectives are carried to the projectives.

A2 : 1 > 2 > 3 In this case, the tilting modules are the ∇’s which are
also the injectives, the ∆’s are simple and the ∇’s are injective.
Thus we get that the ∆R’s are projective and the same order
reversing correspondence we got in the above case.

A3 : 1 > 3 > 2 Here

T = T (1) ⊕ T (2) ⊕ T (3) =
L(3)
L(2)
L(1)

⊕ L(2) ⊕
L(3)
L(2)

.

We have the following identifications

∆(2) = ∇(2) = L(2)

∆(3) =
L(3)
L(2)

,∇(3) = L(3)

∆(1) = L(1),∇(1) =
L(3)
L(2)
L(1)

.
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We then get

HomA(T,∇(1)) = HomA(T (1),∇(1)) = HomA(∇(1),∇(1)) is simple

HomA(T,∇(2)) = HomA(T (2),∇(2)) = HomA(∇(2),∇(2)) is simple

and

HomA(T,∇(3)) has two factors:
L(3)
L(1)

.

We can conclude

∆R(1) = L(1),∆R(2) = L(2), and ∆R(3) =
L(3)
L(1)

.

and

R =





k 0 k
0 k k
0 0 k



 ,

with the ordered poset 1 < 3 < 2.

A4 Given that (1 < 2)

∆(1) = L(1), ∆(2) =
L(2)
L(1)

∇(1) = L(1), ∇(2) =
L(1)
L(2)

T (1) = L(1), T (2) =
L(1)
L(2)
L(1)

= P (1) = I(1).

Applying F , we have

HomA(T,∇(1)) = L(1)

HomA(T,∇(2)) = HomA(T (2),∇(2)) is simple

Again, R is the same algebra except that the indices are reversed.
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4 The Chief Examples

Chief among the examples of quasi-hereditary algebras are category O, Kac-
Moody algebras, the Frobenius kernels, and the Schur and the q-Schur al-
gebras. In this chapter, we will describe some of these naturally occurring
algebras. We begin with category O.

4.1 Category O

Let g be a finite dimensional semisimple complex Lie algebra. Fix a Cartan
subalgebra h and a Cartan decomposition g = h ⊕ n− ⊕ n+; then b+ =
n+ ⊕h and b− = n−⊕h are Borel subalgebras. The corresponding universal
enveloping algebras are denoted U(g), U(b+) and so on. The objects of
the BGG-category O, as originally defined by J.Bernstein, I.M.Gelfand and
S.I.Gelfand in [16], are left g-modules M with the following properties:

1. M is finitely generated as U(g)-module,

2. M is h diagonalizable (that is: M = ⊕µ∈h∗Mµ, where Mµ is the µ-
weight space {m ∈M : h ·m = µ(h)m for all h ∈ h}),

3. M is n+-finite (that is, for each m ∈M , U(n+) ·m is finite dimensional
over C).

The morphisms in O are arbitrary g-module homomorphisms. (Note that
this definition, and all that follows, depends on the choice of the Cartan
decomposition of g.)

Important objects of category O are the highest weight modules. Given
any g-module, M , an element m ∈Mλ (for some λ) which is annihilated by
n+ is called a highest weight vector of weight λ. If m generates M , then M
is called a highest weight module of highest weight λ. All finite dimensional
and many other simple g-modules (in particular, all simple objects in O)
are highest weight modules.

As a special case of highest weight modules, the category O contains the
Verma modules. Given a fixed weight λ ∈ h∗, the Verma module associated
to λ (i.e. having highest weight λ) is defined as

∆(λ) := U(g) ⊗U(b+) Cλ,
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where Cλ is the one-dimensional representation on which each h ∈ h ⊂ b+

acts as multiplication by λ(h) and b+ acts via the quotient map b+ → h.
The ∆(λ) also have another definition. Let I(λ) be the left ideal in U(g)
which is generated by n+ together with all elements h−λ(h) for h ∈ h; then
∆(λ) is the quotient U(g)/I(λ).

As U(n−)-modules, there is an isomorphism U(n−) · vλ
∼= ∆(λ), sending

u · vλ to u⊗ 1, where vλ is a generator of the free U(n−)-module U(n−) · vλ.
This is a consequence of the Poincaré-Birkhoff-Witt theorem, which implies
that U(g) is free over U(b+) (on each side). Hence ∆(λ) is a free U(n−)-
module of rank one. It follows that the Verma module ∆(λ) is the universal
highest weight module corresponding to the weight λ; it maps onto any other
highest weight module corresponding to the same weight λ.

Our next step is to show that these ∆’s have a composition series which
makes them appropriate choices for the standard objects for some quasi-
hereditary algebra. First, we have that ∆(λ) has a unique one dimensional
λ-weight space. As such it surjects onto the simple L(λ) with multiplicity
1. In addition, we have the following classical theorem usually referred to
as the BGG theorem.

Theorem 4.1 (Bernstein-Gelfand-Gelfand [16]) Let λ and µ be elements
of h∗.

1. Then the C-dimension of HomO(∆(λ),∆(µ)) is either 0 or 1. All
non-zero homomorphisms are injective.

2. The following assertions are equivalent:

(a) There is an inclusion ∆(λ) ⊂ ∆(µ);

(b) the simple module L(λ) is a composition factor of ∆(µ);

(c) there are positive roots γ1, . . . , γn such that there is a chain of
inequalities µ ≥ sγ1

(µ) ≥ . . . ≥ sγn · · · sγ1
(µ) = λ (where sγ

denotes the reflection associated with γ).

Remark 4.1 Recall that h∗ has a basis of simple roots, say λ1, . . . , λl. Let
sλi

be reflection in the hyperplane perpendicular to λi and passing through
the origin. Then these reflections generate the Weyl group.

The category O decomposes into a direct sum of categories Oθ, indexed
over central characters θ of U(g). To define these blocks of category O, begin
by fixing a central character θ, that is a homomorphism from the center Z(g)
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of U(g) to C. Given a module M in O, the subset of M containing all m
which are annihilated by a power of z−θ(z), z ∈ Z(g), is the direct summand
of M which lies in Oθ. Under this construction each block has but a finite
number of simples and the corresponding weights correspond to Weyl group
orbits acting on h∗. Further, as we will later need, the respective Hom sets
are finite dimensional.

The categories, Oθ, have enough projective and injective objects. We
will give an explicit construction of the projective objects. Fix a central
character θ and a weight λ ∈ h∗. The goal is to construct an object Q in O
(depending on λ and θ) which has a generator q with the property that for
each M in Oθ

HomO(Q,M) ≃Mλ

given by sending each φ ∈ HomO(Q,M) to φ(q) ∈ M . Since taking weight
spaces is exact, the functor HomO(Q,−) is exact and so the direct summand
of such a Q, lying in Oθ, must be a projective module and is the projective
for which we search. How then is such a Q constructed?

Note first that multiplication by elements of n− moves one down in the
weight lattice while multiplication by elements of n+ moves one up. Since
Oθ has only finitely many simple modules with highest weights λ1, . . . , λν , it
is possible to find an integer N >> 0 such that (n+)N annihilates all vectors
of weight λ of objects in the block Oθ. Let I be the left ideal in U(g) which
is generated by all elements h− λ(h) (for h ∈ h) and by the Nth powers of
n+. Define Q as the quotient of U(g) modulo the left ideal I and q as the
image of 1. Then q is a generator of Q of weight λ; hence the evaluation
map HomO(Q,M) → Mλ is well-defined and injective. Conversely, choose
a vector v in Mλ. To see that there is a map Q → M sending q 7→ v, note
that there is a map U(g) → M sending 1 to v. The kernel must contain
(n+)N by the choice of N and so must factor through Q.

So now we have that each block Oθ has only finitely many simples in-
dexed by a finite set of weights and that the category has enough projectives.
How should the weights be ordered? The last assertion in the BGG-theorem
defines a partial order on the set of weights. It turns out that this ordering
corresponds to the Bruhat ordering on the Weyl group in the following way.
If κ is a regular dominant weight and λ = w1 · κ and µ = w2 · κ are in the
orbit of κ under the dot action of the Weyl group, then λ ≤ µ in the above
ordering if and only if w1 ≥ w2 in the Bruhat ordering.

The next step in constructing a quasi-hereditary algebra is to see how a
finite dimensional algebra might arise. The key is the earlier cited property
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that the Hom sets are finite dimensional. Begin by fixing a finitely generated
projective, P in Oθ, whose direct summands include a representative of each
isomorphism class of indecomposable projective in the block. Let A be the
endomorphism ring EndO(P ). Then the functor HomO(P,−) defines an
equivalence between Oθ and mod-A. We call this algebra A ‘the’ algebra
associated with the block Oθ. Up to Morita equivalence, it is uniquely
defined.

To see that A is quasi-hereditary we need to know that each projective
module has a finite filtration, the subquotients of which are Verma modules.
To see this, consider the universal enveloping algebra U(n+) and factor out
the left ideal generated by (n+)N (where N is the integer defined above).
Since h acts diagonally on U , we may choose a basis of this vector space,
x̄1, . . . , x̄s such that the elements xi · q, have weight λi in Q and λi < λj

implies i > j. Now since x1 · q is anihilated by n+ it is a highest weight
vector of weight λ1. So there is a mapping of ∆(λ1) into Q whose image is
the submodule of Q generated by x1 · q. That this submodule is isomorphic
to the Verma module ∆(λ1) follows from the PBW basis theorem, (see, for
instance, Humphreys). The quotient of Q modulo this submodule contains
a submodule (generated by the image of x2 ·q) which is isomorphic to ∆(λ2)
and so on. This gives not only the desired filtration, but also an ordering
condition on the subquotients; the first subquotient has highest weight λ1

being maximal among the λi, and so on. Direct summands inherit such
filtrations.

In summary then, we have associated to each block of category O, a
quasi-hereditary algebra, A = EndO(POθ

). Each such block has a finite
number of simples indexed by highest weights corresponding to some factor
group of the Weyl group and ordered according to the Bruhat order on the
Weyl group. The standard objects are given by the Verma modules.

4.2 Schur algebras

We next consider the classical Schur algebras (associated with the group
GLn); these are much better known than the other Schur algebras, and
their elementary definition gives us the possibility to compute some explicit
examples for later use. The generalized Schur algebras (associated with
other reductive groups) are shortly discussed at the end of this subsection.

There are many ways to define these algebras. We will begin with a
definition via the category of polynomial representations of GLn. Let k be
an infinite field and G = GLn(k), the general linear group over k. A finite
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dimensional representation V of G is given by sending the elements g ∈ G
to matrices in Endk(V ). The entries of these matrices are functions f of the
entries of g. The representation V is called a polynomial representation of G
if all these functions f are polynomials in the coordinate functions, ci,j, which
sends g to its (i, j)th entry. Among the polynomial representations are the
trivial representation, det sending g to det(g), the natural n-dimensional
representation, and the symmetric, divided powers and exterior algebras.
Tensor products of polynomial representations are again polynomial.

Schur showed in his 1901 thesis that each polynomial representation
is a direct sum of homogeneous representations (where the polynomials are
homogeneous of a fixed degree). The category of polynomial representations
of G of fixed homogeneous degree turn out to be a highest weight category;
the resulting quasi-hereditary algebras are called Schur algebras (see Green
[52] and Martin [64]).

There are other definitions of these algebras. The Schur algebra Sk(n, r)
depends on the field k and two integers n (fixed by G) and r (which will
correspond to the degree of the homogeneous polynomials). It turns out
that all these definitions give the same algebra:

1. Let V be the natural n-dimensional representation of G and E = V ⊗r

its r-fold tensor product. Let G act diagonally by g · (e1 ⊗ . . .⊗ er) =
g · e1 ⊗ . . .⊗ g · er. This representation defines a ring homomorphism
ψ : kG→ Endk(E). The span of the image of ψ is Sk(n, r).

2. The symmetric group Sr acts on E by place permutation from the
right: (e1 ⊗ . . . ⊗ er) · σ = eσ(1) ⊗ . . .⊗ eσ(r). Then the Schur algebra
is the centralizer of this action: Sk(n, r) = EndkSr

(E).

3. Since the base field k is infinite, the coefficient functions ci,j are alge-
braically independent. Hence they generate a polynomial ring Ak(n).
Its subspace Ak(n, r) with basis the homogeneous polynomials of de-
gree r is not an algebra, of course, but a coalgebra. Let ci,j be such
a homogeneous polynomial (which is given by a pair of multi-indices
i = (i1, . . . , ir) and j = (j1, . . . , jr), so ci,j = ci1,j1 · . . . · cir ,jr). Then
one defines the comultiplication by ∆(ci,j) =

∑

l ci,l ⊗ cl,j (which is
the natural comultiplication induced by the multiplication of matri-
ces by going from G × G → G to k[G] → k[G] ⊗ k[G], which gives
ci,j(g · h) =

∑

l ci,l(g) · cl,j(h)). For the counit, put ǫ(ci,j) = δi,j (the
generalized Kronecker symbol). Then Sk(n, r) = Ak(n, r)

∗ is the alge-
bra which is dual to this coalgebra.
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It is the ∇’s which are most naturally defined in this set up. Let H ⊂
B ⊂ G be the diagonal matrices lying within a Borel subgroup of G. For
any λ ∈ H∗, put kλ equal to the one-dimensional representation where each
h ∈ H acts by multiplication by λ(h) and each b ∈ B acts via its image
under the natural map B → H. Such a representation can be lifted to G
via induction in the sense of algebraic groups to

{

algebraic f : G −→ kλ

∣

∣

∣

f(xb) = λ(b)−1f(x) for all
x ∈ G and for all b ∈ B.

}

These modules sometimes go under the name of Schur modules. Their duals
are the ∆(λ)’s and are called the Weyl modules.

With these, Sk(n, r) becomes a quasi-hereditary algebra. The simples
are indexed by the partitions of r into at most n parts; thus λ ∈ Λ(n, r)
is given as λ = (λ1, . . . , λn), the λi nonnegative integers satisfying λ1 ≥
λ2 ≥ . . . ≥ λn and

∑

λi = r. These are ordered by the so-called dominance
order: E. We have that λ E µ, if and only if, for all i,

∑i
1 λj ≤

∑i
1 µj. The

combinatorics and the characters, that is, the formal characters in terms of
the dimensions of the weight spaces, of the ∆’s and ∇’s are well known. To
describe these we consider the Young diagram associated to each partition.
That is, the subset of N × N, consisting of those ordered pairs (i, j), such
that 0 < i ≤ n and 0 < j ≤ λi. We picture such a diagram as:

λ1
λ2...

(Fortunately, the geometry of the situation allows for only eight different
conventions on how these are drawn. Unfortunately, each such convention is
used by at least one person in the field.) These diagrams can then be filled
by the integers 1, . . . , n. Such a filling is called semi-standard, sometimes
costandard, if the numbers are weakly increasing along the rows and strictly
increasing along the columns. It turns out that the standard module ∆(λ)
and under the conventions implicit from the first section, the costandard
module, ∇(λ) as well, has a basis indexed by the semi-standard fillings of
the diagram for λ.

When char k = 0, these statements are shown by considering an idem-
potent e ∈ S(n, r) such that eS(n, r)e ∼= Sr, at least when r ≤ n. Then the
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Schur functor: M 7→ eM maps representations of the Schur algebra to rep-
resentations of the symmetric group. These are already known to be indexed
by the appropriate partitions. To proof the case for general k, it turns out
that the Schur algebra, S(n, r) can be defined over the integers and then the
Schur algebra over k is given by tensoring with k. This allows the structure
of the ∆’s and ∇’s to be given over the integers and then transported to the
algebras over arbitrary k.

These algebras may be generalized to arbitrary algebraic groups. Let
G be a semisimple algebraic group over an algebraically closed field, k, of
arbitrary characteristic. In this situation, we have a coalgebra of regular
functions on the underlying variety of the group given by rational functions
G → k. These have finite dimensional coalgebras analogous to the Ak(n)
above. which can be dualized to give one brand of the generalized Schur
algebras. A twist is that these algebras give the rational representation
theory of the underlying group ([35] [36]).

Recently Doty [43] has given another method for constructing general-
izations that capture a polynomial representation theory. In this case, the
arbitrary algebraic group, G, is embedded into some Gln and hence into
some Mn(k), the set of all matrices. Then Doty considers the regular func-
tions on the Zariski closure of the embedding. This is again a coalgebra and
has finite dimensional subcoalgebras whose duals give finite dimensional al-
gebras.

4.3 Other Examples

We finish this section with a brief list of some other quasi-hereditary alge-
bras:

1. One may replace g by a Kac-Moody algebra. In this case there are
analogs of category O, except that the resulting categories are infinite
highest weight categories and contain no projectives. Nevertheless,
they may be described ”locally” as the category of modules for a quasi-
hereditary algebra.

2. Given semisimple g, we can replace U(g) by Uq(g), the quantized en-
veloping algebra or quantum group of which there are several versions.
These are usually specified by generators and relations; details we will
here omit. In these cases, we have Verma modules, highest weight
representations and a form of category O.

36



3. One may also form q-Schur algebras. As in the classical definition,
there are many equivalent ways to define them. One is to place an
action of Uq(gln) on V ⊗r. The algebra Sq(n, r) may then be taken
as the image of Uq(gln) in End V ⊗r. This turns out to be the en-
domorphism ring for V ⊗r considered as a particular module over the
Hecke algebra associated to the symmetric group. These are quasi-
hereditary algebras closely analogous to their classical cousins which,
in fact, is what one obtains for q = 1. The interest in these algebras
stems from the fact that on specialization of q to a root of unity their
module categories are related to that of the finite general linear groups
in non-describing characteristic.

4. TG1 the first Frobenius kernel is also a highest weight category, see,
for example, Cline [18].
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5 Fusion Rules for the Schur Algebras

For the current section we work over the Schur algebras. Our goal is to
characterize the tilting modules and the Ringel duals. To do so we will
need the fact that the tensor product of two tilting modules, taken over the
ground field, is again a tilting module. This involves a little sleight of hand
since the modules occurring in this product are modules over different Schur
algebras. This result follows from the

Theorem 5.1 If M1, . . . ,Mt are all in F(∇) (respectively, F(∆)) then their
tensor product, M1 ⊗R . . .⊗R Mt is also in F(∇) (respectively, F(∆)).

This is the work of many people. For algebraic groups, J.-p. Wang [85]
worked out a special case and S. Donkin [34] settled most cases; Mathieu
[65] settled the general case in an elegant way that relied on the previous
work of Joseph and Polo (see van der Kallen [59]). Littelmann [63] gave
a different proof using standard monomials. Padarowski [71] proved it for
quantum groups using Lusztig’s canonical basis, following a suggestion of
Donkin. Unfortunately all these proofs are too complicated to go into here,
but we do provide a few remarks.

We have already seen that F(∇) = F(∆)⊥, so to show that a module has
a ∇-good filtration, it is enough to check that Ext1A(F(∇),M) vanishes. This
is more or less what has been known in this context, even before the result
of Ringel, as Donkin’s criterion. This is used in all the proofs. Mathieu,
and most of the others use geometric methods, in particular, the so-called
Frobenius splittings.

An easy, but very nice, consequence of 5.1 is the following description of
tilting modules for the Schur algebras.

Proposition 5.2 (Donkin [40]). The indecomposable tilting modules over
the Schur algebra Sk(n, r) are precisely the indecomposable direct summands
of the modules Λα̃V := Λα̃1V ⊗ . . .⊗Λα̃mV for α ∈ Λ+(n, r) where α̃ is the
conjugate partition to the partition α.

Proof: The proof begins with the fact that Λ0 = k and Λi = ∆(1i) =
∇(1i) for 1 ≤ i ≤ n. Each of these modules is simple and each of the
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weight spaces are one-dimensional. In fact, an exterior power Λj(V ) has a

basis ei1 ∧ . . . ∧ eij for i1 < . . . < ij with dimension

(

n
j

)

. It is the jth

fundamental representation and is simple. ∆(1j) has a basis consisting of
the semistandard fillings of

Here the rows are trivial and the columns are strictly increasing. Since the
two modules have the same dimension and ∆(1j) is universal among highest
weight modules, we may conclude that in fact ∆(1j) ∼= Λj(V ). Then, by
Theorem 5.1, we get that all Λα are tilting.

The converse is: given an indecomposable tilting module, T , it is charac-
terized by its highest weight α. But the highest weight of Λα̃(V ) corresponds
to the unique vector

(e1 ∧ . . . ∧ eα̃1
) ⊗ (e1 ∧ . . . ∧ eα̃2

) ⊗ . . .⊗ (e1 ∧ . . . ∧ eα̃α1
).

Now any given basis element ei of V has weight ǫi, where
ǫi(diag(a11, . . . , ann)) = aii. So this highest weight vector has weight

(ǫ1 + . . . + ǫα̃1
) + (ǫ1 + . . .+ ǫα̃2

) + . . . + (ǫ1 + . . . + ǫα̃α1
)

which is equal to α and the proof is complete.

Remark 5.1 For those readers familiar with Green’s book you will note that
this is how he constructs the simple modules. That is, he proves that there
is a unique L(λ) in T (λ).

Our next aim, the main result of the section, is to compute the Ringel
dual of SK(n, r) in the case n ≥ r.

Theorem 5.3 (Donkin) For SK(n, r), T = ⊕α∈Λ+(n,r)T (α), SK(n, r) ∼=
EndSK(n,r)(T ); that is, SK(n, r) is its own Ringel dual.

Remark 5.2 This also holds for the q-Schur algebras.
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Proof (sketch): Donkin has given two proofs. We will sketch the earlier
one here and mention the latter in the context of Howe duality later. To
consider the proof, we will need to collect some information on the Schur
algebras. First, the indecomposable injective SK(n, r)-modules are precisely
the indecomposable direct summands of

Sα(V ) = Sα1(V ) ⊗ Sα2(V ) ⊗ . . .⊗ Sαn(V ),

where α ∈ Λ+(n, r) and S(V ) is the symmetric powers of V . We will also
need the fact that SK(n, r) is the dual of AK(n, r), the coalgebra of polyno-
mials of degree r in n2 variables.

As mentioned in the previous section, whenever n ≥ r there is an idem-
potent e = e2 ∈ SK(n, r), such that eSK(n, r)e ∼= kΣr, the symmetric
group algebra over k. In this situation, we have the functor, called the
Schur functor, HomSK(n,r)(SK(n, r)e,−) which is the same as multiplying
the given module on the left by e. This functor sends SK(n, r)-modules to
kΣr-modules. It is an equivalence of categories in the cases that the char
k = 0 or is greater than r.

One checks that eSα(E) ∼= IndΣr

Σα
k, where k is the trivial module for the

Young subgroup Σα = Σα1
× Σα2

× . . . × Σαn and that eΛα(E) ∼= IndΣr

Σα
k̃,

where k̃ is the sign representation for the Young subgroup. One accomplishes
this by explicit computation.

One then verifies that the Schur functor induces an isomorphism

HomSK(n,r)(S
α(E), Sβ(E)) ∼= HomkΣr

(eSα(E), eSβ(E))

and
HomSK(n,r)(Λ

α(E),Λβ(E)) ∼= HomkΣr
(eΛα(E), eΛβ(E))

for all α, β ∈ Λ+(n, r). In each case one shows that the dimensions over k are
the same and that they are independent of k. Then one confirms injectivity
by hand.
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One then constructs the isomorphism explicitly:

SK(n, r) ∼= EndSK(n,r)(⊕αS
α(E))

∼= EndkΣr
(⊕αeS

α(E)) Schur functor

∼= EndkΣr
(⊕αIndΣr

Σα
k) first claim

∼= EndkΣr
(⊕α(k̃ ⊗ IndΣr

Σα
k)) k̃ ⊗

∼= EndkΣr
(⊕αeΛ

α(E))

∼= EndSK(n,r)(⊕αΛα(E)) first claim

= R the Ringel dual.

Several nice consequences may be found in Donkin and Erdmann [42].
We limit our presentation to the following from Donkin [40]

Corollary 5.4 If n ≥ r, then [T (α) : ∇(β)] = [∆(β̃) : L(α̃)].

Proof: HomSK(n,r)(T,−) is exact on F(∇), hence [T (α) : ∇(β)] = [PR(α̃) :

L(β̃)], since the order is changed and the α exchanges with the α̃. In par-
ticular, tilting modules ’contain’ the decomposition numbers of GLn.

Theorem 5.5 (Donkin, [39]) Let X = M(n)m over k = k̄, where M(n)
is the n × n matrices, and G =GLn(k). Then the algebra of invariants
k[X]G is generated by the functions x1, . . . , xm 7→ χs(xi1 , . . . , xir ) where
r, s ∈ N, i1, . . . , ir ∈ {1, . . . ,m} and xi1 , . . . , xir are elements of M(n) with
their induced actions on Λs(kn) and χs are their traces.

In characteristic 0, this result is due to Sibirski and Procesi. Donkin has
further generalized it to arbitrary quivers. In order to prove the statement,
Donkin first reduces the problem to computing relative class functions of
G →֒ G×m, that is the regular functions on G× . . .×G which are invariant
under conjugation by G. These differ from invariants by a localization at the
determinant. He then computes class functions via rational modules, namely
the tilting modules. The actual proof uses many of the above arguments and
others.
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6 Tilting Modules and Representations of Sym-

metric Groups

In section 4 we saw that the Schur algebra could be defined as the endomor-
phism ring of V ⊗r for the action of Σr, acting by the permutation of the
factors. In fact these algebras satisfy a classical double centralizer property
called Schur-Weyl Duality which we now describe. Assume k = k̄ and that
V = kn is the natural module for the action of GLn. Then GLn also acts
diagonally on V ⊗r. We have as well a right action of Σr on V ⊗r which is
permutation of the places. Schur-Weyl duality gives that EndΣr(V

⊗r) is the
image of kGLn in Endk(V

⊗r) = Sk(n, r) and EndSk(n,r)(V
⊗r) is the image

of kΣr in Endk(V
⊗r). When n ≥ r this image is just kΣr and is a cellu-

lar quotient (see Graham–Lehrer, [51]), otherwise. The basic idea of this
section will be to use Schur-Weyl duality to transfer information about the
representation theory of the general linear group GLn to information about
the representation theory of the symmetric group Σr.

We begin by noting that V = Λ1V is simple and tilting since Sk(n, 1) ∼=
GLn is a full matrix ring. Therefore, V ⊗r is tilting as well. We then have that
V ⊗r ∼= ⊕λ∈ΛT (λ)ηλ . The maximal semisimple quotient of EndSk(n,r)(V

⊗r)
has the form ⊕λMatηλ

(k). So the EndSk(n,r)(V
⊗r) simples (which are simple

kΣr modules, as well) have dimension ηλ, this being a general fact about
endomorphism algebras. We thus get the principle that decomposing the
tilting module V ⊗r into indecomposables gives the simple representations of
kΣr.

This principle has been used by several people including Erdmann [46].
Now we look at the results of Mathieu, Georgiev and Papadopoulo ([66],
[49], [50], [68], [69]). We will get a nice explicit dimension formula for a
class of simple kΣr representations. The involved combinatorics is in terms
of paths in a certain graph. To understand this, we first recall the situation
in characteristic zero. In this case, kΣr is semisimple and its representations
are parametrized by the partitions of r, that is, those λ = (λ1, . . . λn) with
(λ1 ≥ λ2 ≥ . . . ≥ λn) and Σλi = r, written λ ⊢ r. Then a basis for the
simple L(λ) is indexed by the standard tableaux of shape λ, that is, bijective
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fillings of the Young diagram for λ with the set {1, . . . , r} which increases
along rows and columns.

Now let Y be the set of Young diagrams and let us associate to Y a
graph whose vertices consist of the elements of Y and whose edges are given
by the rule that there is an arrow Y → Y ’ if Y ′ = Y plus one box:

∅ - - -

?

-

?

- . . .

?

-

?

- . . .

Now a standard tableau of shape λ corresponds precisely to a path from
∅ to λ ; reading the filling in order tells you which box to add. So, for
example we associate to the tableau

1 2 4
3 6
5

the path
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∅ - x - x

x

?

-
x

x

?

@@R

x

In this set-up the Frobenius Theorem says that the dim of L(λ) equals the
number of paths from ∅ to λ .

Next, let us return to char k = p; we still have Schur-Weyl
duality and that the simple Sk(n, r) modules are parametrized by
the partitions of r. Then the Schur functor, that is multiplying
by e sends a simple either to 0 or to a simple. Now define an
infinite subclass of partitions as follows. Fix l < p, Yl(p) =
{Young diagrams associated to partitions (m1, . . . ,ml) such that ml −
m1 ≤ p− l}.

Theorem 6.1 (Mathieu [65]) Suppose λ ∈ Yl(p), then the kΣ|λ| simple
Lk(λ) has dimension equal to the number of paths from ∅ to λ inside the
subgraph spanned by vertices lying in Yl(p).

We will sketch Mathieu’s proof using the above principle. An alternative
proof can be given using the results of Kleschev (see Brundan-Kleschev-
Suprunenko). This last works for Hecke algebras of type A as well (See
Wenzl [86]).

Example Consider the hook (a + 1, 1b) in the case where l = b + 1 and
a + b + 1 = p is prime. In char 0, dim L(λ) is the number of standard
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tableaux =

(

a+ b
a

)

. What is the dimension in characteristic p? Note that

this satisfies the hypothesis: m1−ml = a+1−1 < a+b+1− (b+1) = p− l.
What are the possible paths? It’s actually easier to think of traversing the
path in the reverse direction. So to begin, we must remove a box from the
top row if we are to remain in Yl(p). After the removal of this box however,

we are free to proceed in any order. Thus dim Lp(λ) =

(

a+ b− 1
a− 1

)

.

Proof (sketch): Now for the proof. The idea is to produce tilting modules
via tensoring. An induction is started with a class of simple tilting modules
like V : T (λ) = L(λ) if and only if L(λ) = ∇(λ) = ∆(λ). We will find such
things in the so-called fundamental alcove. Given G = GLl(k) for k = F̄p,
we let H be the diagonal matrices and P = H∗ the character group. Then
P = Zǫ1 + . . .+ Zǫl where ǫi sends an l× l matrix to its (i, i)th entry. Then
let P ∗ = Hom (P,Z). Make the following identifications:

αi = ǫi − ǫi+1

α0 = ǫ1 − ǫl =
∑

i αi

hi = ǫ∗i − ǫ∗i+1

h0 = ǫ∗1 − ǫ∗l

.

If p ∈ P is in the weight lattice, define si : p 7→ p − hi(p)αi. Then the si ∈
GL(P ) generate the Weyl group W ∼= Sl via the permutation representation
on Zl. Let s0 be the affine reflection on P : s0 : λ 7→ (ho(λ) − p)α0. Then
〈W, s0〉 generates the affine Weyl group Waff.

Now put P+ = {λ ∈ P |λ(hi) ≥ 0 for all 1 ≤ i ≤ l}. So ǫi(λ) = λ(ǫ∗i ) ≥
λ(ǫ∗i+1) = ǫi+1(λ) and so the elements of P+ are partitions.; in other words,
P+ is the index set for Λ of the highest weight category we are here con-
sidering. Let C = {λ ∈ P+|λ(h0) ≤ p− l + 1}. Since λ(h0) = ǫ1(λ) − ǫl(λ)
these are exactly the weights which satisfy the condition of the theorem. Let
C0 = {λ ∈ P+|λ(h0) < p− l + 1}. This is the fundamental alcove.

Definition 6.1 For any rational representation, M , let

ch M =
∑

µ∈P

(dim Mµ)eµ ∈ Z[P ]

be the formal character of M .

Lemma 6.2 1. If λ ∈ C, then T (λ) = ∆(λ) = ∇(λ) = L(λ).
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2. For λ, µ ∈ C, λ 6= µ, then the L(λ) and L(µ) are in different blocks.

Proof: We use the ordering given by the usual dominance order and then
block decomposition is given by the strong linkage principle (Andersen [3]):
L(λ) and L(µ) are in the same block if there exists a w ∈ Waff such that
λ + ρ = w(µ + ρ), that is, if λ and µ are in the same orbit under the dot
action. Now λ ∈ C is minimal in its block and the conclusions follow.

Now we want to form tensor products by V = kl in order to produce
new tilting modules. In order to distinguish T (λ) with λ ∈ C0, from all the
other ones, we look at dimensions:

Proposition 6.3 p|dimkT (λ) if and only if λ /∈ C0.

Before we proceed to the proof, we collect some general facts on the
divisibility by p of dimensions of group representations. For this G can be
any group (finite or infinite). Let M be a finitely dimensional G-module.
Then let MG be the G invariants of M , that is {m ∈M |gm = m for all g ∈
G}. Let MG be the G-coinvariants, that is MG = ((M∗)G)∗. We then have
natural maps MG →֒ M and (M∗)G →֒ M∗, giving M ∼= M∗∗ → MG and
so MG →M →MG. Denote the image of this map by T (M) and its kernel
by U(M).

Now given any pair of G-modules Homk(M,N) is also a a G-module.
Put T (M,N) equal to T (Hom (M,N)) and U(M,N) = U(Hom (M,N)).
Now the identity map induces a natural embedding π : MG ⊗ NG →
(M ⊗ N)G since G acts diagonally, g(m ⊗ n) = (gm ⊗ gn). We then
have π(MG ⊗ U(N)) ⊂ U(M ⊗ N) and π(U(M) ⊗ NG) ⊂ U(M ⊗ N)
inducing a map T (M) ⊗ T (N) → T (M ⊗ N). In particular, T (M,M)
is a quotient of EndG(M) and since the standard composition EndG(M)
and EndG(M∗) preserves G invariance, T (M,M) becomes a k-algebra via
T (M,M) ⊗ T (M,M) → T (EndG(M) ⊗ EndG(M)) → T (EndG(M)) =
T (M,M). T (M,M) has a unit element 1M , which is 0 if and only if
T (M,M) = 0 if and only if T (M,N) = T (N,M) = 0 for all N .

Our need is for the

Lemma 6.4 Given M , N indecomposable G modules then T (M,N) ∼= k if
M ∼= N and p does not divide dim M and is 0 otherwise.

Thus the divisibility of the dim M by p is decided by T (M,M).
Proof: We give a sketch of the proof. We have that U(M,N) is the kernel
of the map

HomG(M,N) → Homk(M,N) → (HomG(N,M))∗.

46



So φ : M → N is in U(M,N) if and only if, for all ψ : N → M , the
composition φ◦ψ has trace 0, by definition. Given an indecomposable M , a
G invariant endomorphism, α, of M has a unique eigenvalue, say λ(α) with
multiplicity dim M . Thus the trace of α = dim M · λ(α). Thus if α 6= 0
then trace(α) = 0 only if p|dim M . If M 6∼= N , then trace(α) = 0.

As an immediate consequence, we have that if X is any indecomposable
with p|dim X, then p|dim Z for any direct summandZ ofX⊗Y for any mod-
ule Y . One uses the fact that if M = ⊕mNN then T (M,M) = ⊕MmN

(k)
summed over those N whose dimension is not a multiple of p. One then
reasons that p|dim X gives T (X⊗Y,X⊗Y ) = 0 since T (X⊗Y,X⊗Y ) = 0
is a right T (X,X) module. Last, this gives T (Z,Z) = 0.

Returning to the proposition, p|dim T (λ) if and only if λ /∈ C0. For
λ ∈ C, T (λ) = ∆(λ), but p|dim ∆(λ) is known; in fact, ∆(λ) is obtained as
k ⊗Z LZ(λ) where LZ(λ) is a free Z lattice with C ⊗Z LZ(λ) = LC(λ), the
finite dimensional simple module with highest weight λ in char 0, that is for
the finite dimensional module of the corresponding Lie algebra. Now this,
in turn, implies that dimk∆(λ) = dimCLC(λ) which is given by the Weyl
character formula:

ch L(λ) =
∏

α∈{positive roots}

(λ+ ρ)(hα)

ρ(hα)
.

Recall that λ ∈ C is defined by (λ+ρ)(h0) ≤ p and λ ∈ C0 by (λ+ρ)(h0) < p.
Hence, the same is true for all hα since h0 =

∑

hi is the longest root. This
implies that the denominator is not divisible by p and the numerator is so
if and only if λ /∈ C0. So the proposition is true for λ /∈ C.

We continue by induction. Let λ ∈ P+ and λ /∈ C. Then there is a
fundamental weight, ω, such that λ− ω ∈ P . This implies that T (λ)|T (λ−
ω) ⊗ T (ω), the last being a tilting module of highest weight λ. Next we
have that (λ − ω)(h0) = λ(h0) − 1 implying that λ − ω /∈ C0. so we may
conclude that p|dim T (λ−ω) and so, by the lemma, that p|dim T (λ). Thus
the proposition is OK.

Now we tensor tilting modules:

Lemma 6.5 Given l < p, ω a fundamental weight:

1. If λ ∈ C0 then T (ω) ⊗ T (λ) = ⊕T (λ + ν), the sum being over those
ν which are weights occurring in ∆(ω); that is, over those ν ∈ W · ω
with λ+ ν ∈ P+.

2. If λ /∈ C0 then T (ω) ⊗ T (λ) = ⊕T (ν)ην with ην 6= 0 only if ν /∈ C0.
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Proof:

1. T (ω) = ∆(ω), T (λ) = ∆(λ). A classical formula, the Littlewood-
Richardson decomposition gives that, up to filtration ∆(ω) ⊗ ∆(λ) =
∑

∆(λ + ν). One then observes that, in this case, each summand
occuring in this composition series belongs to a different block. Since
there are no non-trivial extensions between modules in different blocks,
this must, in fact, be a direct sum. Last, since direct summands of
tilting modules are tilting modules, we get that ∆(λ+ ν) = T (λ+ ν)
and the conclusion follows.

2. λ /∈ C0 implies that p|dim T (λ) implying that p|dim T (ω)⊗ T (λ) and
all its direct summands. We apply the previous proposition.

The theorem now follows: we know that V ⊗r = ⊕λT (λ)mλ for
some indecomposable tilting modules. We want to determine mλ for
λ ∈ C0. We proceed by induction on r. The result is trivial for
r = 1. Assume it true for r − 1. Then V ⊗r = ⊕λT (λ − ǫi)

mλ−ǫi ⊕
other tilting modules lying outside of C0 and mλ−ǫi

is given by the appro-
priate number of paths. Tensoring with V = ∆(1, 0, . . .) and using the above
lemma mλ =

∑

(mλ−ǫi
), the sum over those λ− ǫi that lie in C0. The point

being that for those weights lying outside of C0, tensoring by V can produce
no summands lying in C0.

Example Another example shows that the Young diagrams can be quite
large. For example, given p = l + 1, 1 ≤ b ≤ p and a any natural number,
then if Y is the diagram for the partition ((a+ 1)b, a(l−b)), then there is but
one path from ∅ to Y . (In fact, Mathieu states this is the sign representation
for Σla+b).

Remark 6.1 In the same paper, Mathieu shows that dim L(λ) can generally
be described by paths. Let mµ be defined by V ⊗T (λ) ∼= T (µ)mµ ⊕rest. Then
form a graph as above with the number of λ→ µ. equal to mµ. The reasoning
above then tells us that dim Lk(λ) = the number of paths. Unfortunately, the
graph depends on p and is not known. (However, this may be a convenient
language.)

If G is any algebraic group, then there is an analogue to this result
decomposing tensor products.

Theorem 6.6 (Goergiev-Mathieu [49]): Either p|dim T (λ) or λ ∈ C0 and
T (λ) is simple.
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So again, if we leave C0 we never come back.
Their interest in this topic is in understanding fusion rules. That is rules

that give the decomposition of tensor products of modules. To understand
this form a category whose objects are tilting modules for G and whose mor-
phisms are T (M,N) with tensor product as usual. Note that, in particular,
this kills everything outside of C0!

There is a close relationship to Moore and Seiberg’s tensor products
(see Kazhdan and Lusztig [62]) and also to those of Gel’fand and Kazhdan.
Moore and Seiberg are working with category O of a fixed level l for affine
Kac-Moody algebras. The normal tensor product, however, increases the
level. So they define a new tensor product that stays in the category. Their
multiplicities remain the same.

Remark 6.2 Georgiev and Mathieu [50] believe that this is explained by
lifting to the quantum group. See paper by Finkelberg [47] and a recent
paper by Ostrik [70]. See also a paper by Andersen and Paradowski [8].

We have now seen how to use tilting modules for computing the decom-
position numbers of the symmetric groups and GLn. In fact, one can also
use tilting modules to show that both problems are equivalent. James had
already shown that the decomposition numbers for Σr are the decomposition
numbers for GLn. This is, in fact, easily reproved using the Schur functors
(see Green [53]).

The converse is due to Erdmann [46]. Precisely, let λ, µ be elements of
Λ+(n, r), then [∆(µ) : L(λ)] = [St(µ′) : Dt(λ′)], where t(µ) = pµ+(p−1)(µ−
1, µ − 2, . . . , 1, 0) ∈ Λ+(n, r). The proof is based on tilting modules, using
arguments similar to those we have already seen.

We finish with a conjecture of Mathieu announced at Reims in the Sum-
mer of ’95 [66]:

Conjecture 6.7 Let Y be a Young diagram and Y0 = Y . Let Yn = (nl)+Y .
Then QY (z) =

∑

dim Lp(Yn) is a rational function.
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7 Character formulae–known or conjectured

We have seen that knowledge of the tilting modules implies character for-
mulae in various settings. Thus it is natural to ask for the characters of the
tilting modules themselves, either over algebraic groups or over quantum
groups. There is a plethora of conjectures by Andersen and Soergel and a
proof (by Soergel based on the work of Sergei Arkhipov) for one of these.
One should note that, like the Kazhdan-Lusztig and the Lusztig conjectures,
these conjectures give the formulas in terms of the so-called Kazhdan-Lusztig
polynomials. We will not go into combinatorial details here, but refer you
to Soergel’s recent paper; for now we discuss only his method of proof.

From the work of Kazhdan-Lusztig (or Moore and Seiberg) certain equiv-
alences are known between certain categories of representations over quan-
tum groups and over affine Kac-Moody algebras. Hence, we start with the
latter. Let g =

∑

gi be a Z-graded Lie algebra over a field k = k̄. Assume
that g satisfies:

• all the graded pieces, gi, are finite dimensional,

• g is generated by g−1, g0, and g1,

• there exists a semi-infinite character, tr : g0 → k, such that
tr(adXadY : g0 → g0) equals tr([X,Y ]) for allX ∈ g1 and all Y ∈ g−1.

We then have a triangular decomposition, N = N− = g<0, B = g≥0 and
enveloping algebras U of g, N of N and B of B. Put M equal to the
category of Z-graded g-modules which are graded free of finite rank over N .

Theorem 7.1 (Arkhipov [9], see also Soergel [81], [82], [83]). M is self-
dual. More precisely, there is an equivalence M → Mop which is exact and
which sends U⊗BE to U⊗B (k−µ⊗E

∗) for every finite dimensional Z-graded
g0-representation E.

More general results are due to Arkhipov and, earlier, to Voronov. The
equivalence is a tensor product with a certain bimodule followed by duality.
The bimodule is constructed by direct computation.
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In any case, we can restrict to char k = 0 and g semisimple as a g0

module under the adjoint action. Let Θ be the category of Z-graded g-
modules which are semisimple over g0 and locally finite over g≥0. Put
Λ = {finite dimensional simple Z-graded g0-modules}/ ∼=. Then E ∈ Λ
is concentrated in just one degree. For E ∈ Λ define a Verma module
∆(E) = U ⊗B E and put L(E) equal to its unique simple quotient. In this
way one gets all the simples for Θ. Note that ∆-filtrations may have infinite
lengths; however, the multiplicities are finite and so the finite parts may be
described by quasi-hereditary algebras. Define ∇(E) to be the graded dual
of U ⊗U(g≤0) E by which we mean that we dualize each finite dimensional
graded piece: (M∗)i = (Mi)

∗. Then, by the Ringel formalism, we have
a unique indecomposable tilting module T (E) for each E ∈ Λ. It turns
out that Θ does not have enough projectives but does have enough injec-
tives. Further, after truncating to get Θ≤n, there are projective covers. If
we assume L = L(k−µ ⊗ E∗) has the projective cover P (k−µ ⊗ E∗) in Θ,
this will have a ∆-filtration. Here, we have a Brauer-Humphreys reciprocity:
[P (k−µ ⊗ E∗) : ∆(F )]. = [∇(F ) : L(k−µ ⊗ E∗)].

Now we use the equivalence M ∼= Mop, in particular, the fact that
it sends ∆’s to ∆’s, to get more information. Consider the image of P .
The image, call it T , has a filtration by the images of the ∆’s filtering P ,
where the order is turned around. So we get a bottom factor of ∆(k−µ ⊗
E∗) = ∆(E) .Then from the fact that Ext1(P,∆) = 0 we conclude that
Ext1(∆(F ), T ) = 0 for all F . This implies that T is the tilting module
T (E). Now compare the multiplicities in ∆-filtrations:

[T (E) : ∆(F )] = [P (k−µ⊗E
∗) : ∆(k−µ⊗F

∗)] = [∇(k−µ⊗E
∗) : L(k−µ⊗F

∗)].

Conjecture and Theorem 7.2 (Soergel) Characters of the tilting mod-
ules are given by the characters of the ∆’s together with the decompositions
of the ∇’s; that is, by a ”Kostant function” plus a ”Lusztig conjecture” .

This covers the Kac-Moody algebras since µ exists. More accurately,
it covers the affine case, negative level (the needed character formulas for
simples is then in the positive level). Here, Kashiwara and Tanisaki proved
the character formulas for simples in the simply laced cases (the other cases
are yet missing in the literature.) Kazhdan and Lusztig then relate the
Lusztig conjecture to the Lusztig conjecture for quantum groups at roots of
unity. Still much remains to be done.

We next consider another related open problem. Suppose U is quantum
GLn, then there is Jimbo’s or Du’s quantized Schur duality Uq(gln)(V

⊗r)H,
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where H is the Hecke algebra (in effect, the quantized kΣr). Now , as we’ve
already seen, the character formulas of the tilting modules determine the
dimensions of the simple H-modules at roots of unity. These are known
by the so-called Lascoux-Leclerc-Thibidon conjecture, proven recently by
Ariki. These are determined from a canonical basis and their combinatorics
look very different from the Kazhdan-Lusztig combinatorics. This, in turn, is
related to the representation theory of the symmetric groups via a conjecture
of James. Putting all these together, we see that the characters of the
tilting modules are, at least conjecturally, more or less known. A series of
conjectures by Andersen (and Soergel) then relates these characters to those
for the algebraic groups.

Somewhat more specifically, suppose G is an algebraic group and U its
quantized enveloping algebra Uq(g) over Q(v) and UA its Lusztig form over
A = Z[v, v−1]. Suppose further that q is a pth root of unity in C ; then C

becomes an A module by specializing v to q. Put Uq = UA ⊗A C. Then
the simple (type 1) Uq-modules are parametrized by their highest weights,
λ ∈ X+. Call them Lq(λ). These imbed into a set of costandard objects
∇(λ) and are surjected upon by a set of standard objects ∆(λ). The category
also has tilting modules T (λ). Let Cp2 be the bottom p2 alcove; that is,
Cp2 = {λ ∈ X+|〈λ+ ρ, α∨〉 < p2, for all roots α}. Then we have

Conjecture 7.3 (Andersen and Soergel): Suppose p ≥ h, the Coxeter num-
ber (i.e., order of (ω0)). Then λ ∈ Cp2 implies that char T (λ) = char Tq(λ).

The right side is what is more of less known by Soergel.
What is the evidence? First, according to Andersen, Jantzen and Soergel

[7], the statement is true for λ ∈ Cp2 ∩ ((p − 1)ρ + X1 and p >> 0, where
X1 is the set of restricted weights, that is, those λ such that 〈λ, α∨〉 < p for
all p. The conjecture is also true in the cases A1 and A2 where Paradowski
[71] has worked it all out by hand. They are, as well, consistent with other
results and with the following more precise conjectures.

Let B = Z[v](v−1,p), a local ring. The map v → 1 ∈ k makes B into
a local ring whose residue field is k. This implies that the Uk modules are
the finite dimensional G-modules (Andersen-Polo-Wen). Now one can lift
all relevant data from k to B: that is, all ∆’s, ∇’s and T (λ)’s. This last, by
using Ringel’s construction and comparing Ext’s under base change. But
also C is a B-algebra via v → q, q a primitive lth root of unity. Denote
TB(λ) the lifted tilting module. Clearly TB(λ) ⊗B C is a tilting module for
Uq (via filtrations) and has highest weight λ. This gives that TB(λ)⊗B C =
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Tq(λ) ⊕ some others. The content of the previous conjecture is that in the
bottom p2-alcove there are ”no others” and so here we have the equivalent

Conjecture 7.4 TB(λ) ⊗B C = Tq(λ) and TB(λ) ⊗B k = T (λ).
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8 Howe duality in positive characteristic

Recall that if A is a quasi-hereditary algebra and T is a full tilting module
then R = EndA(T ) is called the Ringel dual of A. If A = SK(n, r) is a
Schur algebra then T =

∑

α∈Λ(n,r) ΛαV is a full tilting module and if n ≥ r
SK(n, r) is its own Ringel dual. In [38] Donkin gave a second proof, later
extended in his book on q-Schur algebras, which we now describe.

Fix n ≥ r and let V be the natural left module for GLn. Let W be the
natural right GLn module. Then V ⊗W is a bimodule and Λ(V ⊗W ) is also
a module for GLn (although this requires some work in the quantum case).
We consider the rth component Λr(V ⊗W ). We can work out a specific
basis: If V has the basis {v1, . . . , vn} and W has the basis {w1, . . . , wn}, then
V ⊗W has a basis of the form {b1 = v1⊗w1, . . . , bn2 = vn⊗wm}. This implies
that Λr(V ⊗W ) has a basis {bi1 ∧ bi2 ∧ . . . ∧ bir |1 ≤ i1 < i2 < . . . < ir, n

2},
which again requires some work in the quantum case.

Now for each α ∈ Λ(n, r), define a map φα : V ⊗r → Λr(V ⊗W ) by

ei = vi1 ⊗ vi2 ⊗ . . . ⊗ vir 7→

(vi1⊗w1)∧. . .∧(viα1
⊗w1)∧(viα1+1

⊗w2)∧. . .∧(viα1+α2
⊗w2)∧. . .∧(vir⊗wl(α)).

It then follows that φα is a left module homomorphism and, by checking
the relations directly, one can confirm that it factors through ΛαV . So one
gets an induced map, with abuse of notation, φα : ΛαV → Λr(V ⊗W ). By
direct computation on basis elements, one confirms that this map is in fact
injective. Doing a similar check one then gets the

Proposition 8.1 (Donkin [40]) Λr(V ⊗W ) ∼= ⊕α∈Λ(n,r)Λ
αV as left GLn

modules and Λr(V ⊗W ) ∼= ⊕α∈Λ(n,r)Λ
αW as right GLn modules.

We can thus conclude that Λr(V ⊗ W ) is a full tilting module on both
sides (provided that n ≥ r.) We know that the Ringel dual R =
EndSK(n,r)

∑

α∈Λ(n,r) ΛαV ∼= EndA=SK(n,r)(Λ
r(V ⊗W )). But Λr(V ⊗W )

is a right SK(n, r)-module, that is, a left SK(n, r)op module. It follows that
there is a homomorphism of algebras SK(n, r)op → R. Now W⊗r is a tilting
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module and one can verify by direct computation that it is a direct sum-
mand of ⊕ΛαW . However both W⊗r and ⊕ΛαW are faithful; this gives that
SK(n, r)op → R is injective. But both SK(n, r)op and R have dimensions
which are independent of the ground ring. (This follows from the fact that
the ∆’s and ∇’s, as well as the filtration multiplicities are, themselves, inde-
pendent of the ground ring.) It follows that we need only check the equality
in char 0. and so we get

Corollary 8.2 SK(n, r)op is the Ringel dual of R. Moreover, SK(n, r) ∼=
SK(n, r)op by contravariant duality via the map sending a standard basis
element ξi,j 7→ ξj,i.

Note that in the above set up we could replace W by the natural right
GLm module for some m and the theorem 8.1 would continue to hold. This
is a particular case of Howe duality as studied by Adamovich and Rybnikov
[1]. The name is motivated by the results of Howe [56] in characteristic 0,
relating certain Lie algebras with each other via actions on modules familiar
from invariant theory. In particular, Adamovich and Rybnikov extend the
results of Donkin to additional pairs of groups.

Let k = k̄ be any field in the first two cases and any field not of char 2
in the last four. Let m,n ∈ N0 and (G1, G2) be any of the following pairs of
groups

• (GLm, GLn)

• (Sp2m, Sp2n)

• (O2m, SO2n)

• (O2m+1, Spin2n)

• (Pin2m, SO2n+1)

• (Spin2m+1, Spin2m+1)

where the spinor groups are the two-fold coverings

Pin2m
- O2m

Spin2m

⊂

6

- SO2m

⊂

6

Consider the following module categories, C:
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• finite dimensional polynomial for GLn,

• finite dimensional rational for O, SO, or Sp,

• finite dimensional rational with weights in Z+ 1
2 for Pin or Spin (over

Z, C is a category over the orthogonal group).

In each case, one may attach to a standard (or costandard) representation
a Young diagram. These diagrams are related to the action of a subgroup
of diagonal elements. In the case, of GLn this is given by the action of the
diagonal elements on the highest weight. For the other groups, the rules are
more complex, for example, for SO2m, one attaches not only a diagram, but
a sign indicating the sign of the last coordinate of the weight. Full details
can be found in Adamovich and Rybnikov’s paper and in the classic work
by Weyl [87].

Each of these subcategories is a limit of subcategories depending on j ∈ N

with coordinates smaller than j + 1. These are modules over a generalized
Schur algebra. If this corresponds to the group G1, then j = n and we get a
Schur algebra we may designate as S1(m,n). The corresponding dominant
weights are those whose Young diagram fits in an m× n box.

n

m

Each pair comes, then, with two Schur algebras, S1(m,n) and S2(n,m),
where the weights for the latter fit in an n×m box.

m

n
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The claim is that there always exists a G1(m) × G2(n) module, M(m,n),
such that

• M is a full tilting module both for S1 and S2,

• the natural morphisms S1 → EndS2
M and S2 → EndS1

M are isomor-
phisms.

Remark 8.1 Changing the order, ≤, is given by transposing positions
within the rectangle. When G1 = O then a sign change is also needed.

In this situation, one then gets the usual consequences: these include a
derived equivalence and a formulae:

∆1(λ) ∼= HomS2
(M,∇(λ∗)) and

∆2(λ) ∼= HomS1
(M,∇(λ∗))

[T1(λ) : ∆1(µ)] = [∇2(µ
∗) : L2(λ

∗)] and
[T2(µ

∗) : ∆2(λ
∗)] = [∇1(λ) : L1(µ)]

ExtiG2
(∆2(λ

∗),∆2(µ
∗) = ExtiG1

(∇1(λ),∇1(µ) and

ExtiG1
(∆1(λ),∆1(µ) = ExtiG2

(∇2(λ
∗),∇2(µ

∗) for all i

The construction of M generalizes that of Donkin: find natural modules,
tensor them and form exterior powers. In some sense, this is characteristic
free classical invariant theory.

We return to GLn(k), k = F̄p. Mathieu and Papadopoulo have given
a reinterpretation of the Georgiev-Mathieu and Mathieu results in the set-
up of Howe duality. They have obtained a character formula for a class of
simple GLn-modules. By stabilization, they get a formula for a family of
simple GL∞-modules as well.

In another paper, the same authors lifted this result to char 0 to obtain
a combinatorial formula for the weight multiplicities of some infinite di-
mensional highest weight gln modules without the use of Kazhdan-Lusztig.
Essentially, these characters are limits over the above characters in char p.

Remark 8.2 There is no known counterpart in char 0, that is for Category
O, of Howe duality. Also there is no quantized version except for Donkin’s
result on q-Schur algebras in Type A.
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