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Abstract

We study the 0-Hecke algebra of an arbitrary finite Coxeter group, building on work of Nor-
ton [9]. We examine the correspondence between injective and projective modules, extensions
between simple modules and (in type A) the structure of induced simple modules.

1 Introduction

Suppose that W is a Coxeter group, i.e. a group with a presentation of the form

W =
〈
s1, . . . , sn

∣∣∣ (sis j)mi j = 1
〉

for some integer n and some symmetric n by n matrix (mi j) with entries inN∪ {∞}with mii = 1 and
mi j > 1 for i , j. Given a field F and an element q of F, we define the Iwahori–Hecke algebraHq(W)
to be the associative algebra over Fwith generators S1, . . . ,Sn and relations

S2
i = q + (q − 1)Si,

(SiS jSi . . . )mi j = (S jSiS j . . . )mi j

for all i , j, where (aba . . . )m denotes an alternating product of m terms. The Iwahori–Hecke algebra
arises in the study of groups with (B,N)-pairs.

The algebraHq(W) has been studied extensively in the case where q is non-zero, especially when
W is of type A or B; in these cases,Hq(W) is cellular, and the representation theory is correspondingly
well understood; however, this theory breaks down in the case q = 0. In [9], Norton studied the
‘0-Hecke algebra’H = H0(W); she classified the irreducible modules, decomposed the algebra into
left ideals and described the Cartan invariants. In [2], Carter studied H in type A, i.e. where W
is a symmetric group; he gave the decomposition numbers in this case. Krob and Thibon have
also studied H in type A, giving a representation-theoretic interpretation of non-commutative
symmetric functions [8]; this builds on earlier work of Duchamp, Krob, Leclerc and Thibon in [4].
Duchamp, Hivert and Thibon take this work further in [3], and that case prove some of the results
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in this paper. The author is grateful to the referee for pointing this reference out. In this paper we
study the representation theory ofH for W an arbitrary finite Coxeter group; we shall show thatH
is Frobenius, and classify those W for whichH is symmetric. We calculate Ext1

H
(M,N) for simple

modules M and N, and finally we provide a ‘branching rule’ which describes (the submodule lattice
of) a simple module induced from a 0-Hecke algebra of type An−1 to a 0-Hecke algebra of type An.

2 Background and notation

From now on, we fix an arbitrary field F and an arbitrary finite Coxeter group W (with presen-
tation as above), and write H = H0(W). We write l for the length function on W (in terms of the
generators s1, . . . , sn). Basic facts aboutH can be found in Chapter 1 of Mathas’s book [6]. Essential
facts about finite Coxeter groups can be found in [7]; in particular, we shall use the Deletion and
Exchange Conditions [7, §1.7] as well as the classification of finite Coxeter groups (with the notation
of [7]).

We make a slight change of notation for H , writing Ti for −Si. This simply has the effect of
removing the minus signs from the presentation of H given above (and from most of the rest of
this paper). We have the following.

Theorem 2.1. [6, Lemma 1.12 & Theorem 1.13]
H has a basis {Tw | w ∈W} with Tsi = Ti and

TiTw =

Tsiw (l(siw) > l(w))
Tw (l(siw) < l(w))

for all i = 1, . . . ,n and all w ∈W.

Theorem 2.2. [9, §3]
Given a subset J of {1, . . . ,n}, let MJ be theH-module with basis {x} andH-action given by

Tix =

x (i ∈ J)
0 (i < J).

Then
{
MJ

∣∣∣ J ⊆ {1, . . . ,n}
}

is a complete set of irreducible modules forH .

2.1 Finite Coxeter groups

Let W be a finite Coxeter group, and G the Coxeter graph of W. Since W is finite, it has a unique
longest element, which we denote w0. We shall use the following lemma repeatedly, often without
comment.

Lemma 2.3. [7, §1.8]
For any w ∈W, we have l(ww0) = l(w0w) = l(w0) − l(w). In particular, w0 is an involution.

It wil be useful later to describe the automorphism of W induced by conjugation by w0. It does
not seem likely that the following result is new, though the author has been unable to find it in the
literature.
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Proposition 2.4. The conjugation action of w0 on W is given by si 7→ sσ(i), where σ is the automorphism of
G which fixes each connected component of G set-wise, and which restricts to:

1. the identity on each component of type A1, Bn(n > 2), D2n(n > 2), E7, E8, F4, H3, H4 or I2(2m)(1 6 m);

2. the unique non-trivial automorphism of each other connected component of G.

In particular, w0 is central in W if and only if every connected component of G is of one of the types listed in
(1).

Proof. We have

l(w0siw0) = l(w0) − (l(siw0))
= l(w0) − (l(w0) − 1)
= 1,

so that w0siw0 = sσ(i) for some σ. σ must be an automorphism of G (as a labelled graph), since mi j
is the multiplicative order of sis j. Furthermore, since W is the direct product of the Coxeter groups
corresponding to the connected components of G, σ must fix each connected component set-wise.
So we may assume that W is irreducible.

The cases listed are precisely those for which all the degrees of (the elementary invariant poly-
nomials of) W are even [7, §3.7]. In these cases, we have by [7, Corollary 3.19] that w0 maps to
−I in the standard reflection representation of W. Since this representation is faithful, w0 must
be central. In the remaining cases, it is easy to find some si with which w0 does not commute.
Hence conjugation by w0 induces a non-trivial automorphism of G; by checking the Coxeter graphs
in these cases, it may be verified that there is a unique non-trivial automorphism of G in each case. �

3 Automorphisms ofH and duality

In this section, we describe some automorphisms and anti-automorphsisms ofH , and examine
the induced self-equivalences of the module category ofH . We begin with a lemma which we shall
use several times; it appears in the proof of [9, Lemma 4.3].

Lemma 3.1. For any i, j and any n > 1 we have

(
(Ti − 1)(T j − 1)(Ti − 1) . . .

)
n

= (TiT jTi . . . )n +

n−1∑
m=1

(−1)m−n
(
(TiT jTi . . . )m + (T jTiT j . . . )m

)
+ (−1)n.

In particular, we have(
(Ti − 1)(T j − 1)(Ti − 1) . . .

)
mi j

=
(
(T j − 1)(Ti − 1)(T j − 1) . . .

)
mi j
.

Proof. This is a simple induction on n. �
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Proposition 3.2.
• There is an automorphism θ ofH defined by

θ : Ti 7−→ 1 − Ti

for all i.

• There is an automorphism φ ofH defined by

φ : Ti 7−→ Tw0siw0

for all i.

• There is an anti-automorphism χ ofH defined by

χ : Ti 7−→ Ti

for all i.

Furthermore, θ, φ and χ commute and each has order 1 or 2.

Proof. It is trivial that θ2, φ2 and χ2 are all the identity map, and in particular that θ, φ and χ are
all invertible; it is also clear that they commute. It remains to verify the defining relations of H ,
which is routine for φ and χ. For θ, we have

(1 − Ti)2 = 1 − 2Ti + T2
i = 1 − Ti,

while the braid relations follow from Lemma 3.1. �

The involution θ is also discussed in [8].
Now suppose M is an H-module. We define M to be the module with the same underlying

vector space as M, and with action
h ·m = θ(h)m

for h ∈ H and m ∈M. We define M̂ to be the module with the same underlying vector space as M,
and with action

h ·m = φ(h)m

for h ∈ H and m ∈M. Then M 7→M and M 7→ M̂ define self-equivalences of mod(H) of order 1 or
2.

We also define M� to be the module to be the vector space dual to M withH-action given by

(h · f )(m) = f (χ(h)m)

for h ∈ H , f ∈M∗ and m ∈M. Finally, we define M◦ = (M̂)� � M̂�. M 7→M◦ defines an equivalence
of categories mod(H)→ (mod(H))op.

The effect of these functors on simple modules is easily found. For J ⊆ {1, . . . ,n}, write J for its
complement. Recall also the automorphism σ of the Coxeter graph of W from Proposition 2.4.
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Proposition 3.3. We have

MJ � MJ,

(MJ)� � MJ,

M̂J �(MJ)◦ � Mσ(J).

It turns out that M◦ is a good definition of a ‘dual module’ to M; in particular, we shall see that
any projective module is self-dual with this definition, and that induction from type An−1 to type
An preserves this notion of duality.

Proposition 3.4. ConsiderH as anH-module. Then

H � Ĥ � H� � H◦ � H .

Proof. The fact that θ and φ are automorphisms implies that H � Ĥ � H and H� � H◦, so we
need only show thatH� � H . Let { fw | w ∈W} be the basis forH ∗ dual to the the basis {Tw | w ∈W}
forH . Then Theorem 2.1 implies that

Ti fw =

 fw + fsiw (l(siw) > l(w))
0 (l(siw) < l(w)).

We shall find a basis for H which gives the same H-action. Given w ∈ W, let si1 . . . sir be any
reduced expression for w, and define

Xw = (Tsi1
− 1) . . . (Tsir

− 1).

As pointed out in the proof of [9, Lemma 4.3], Xw does not depend on the reduced expression
chosen: since any reduced expression for w can be transformed into any other by means of the
braid relations, we can apply Lemma 3.1. To show that {Xw | w ∈ W} is a basis for H , we prove
linear independence: if

∑
w∈W λwXw = 0, take w1 of maximal length such that λw1 , 0. Then

when we express
∑

w∈W λwXw in terms of the basis {Tw}, we find that the coefficient of Tw1 is λw1 ;
contradiction.

It remains to prove that

TiXw =

Xw + Xsiw (l(siw) > l(w)),
0 (l(siw) < l(w));

if l(siw) > l(w), then sisi1 . . . sir is a reduced expression for siw, and so we have

Xsiw = (Ti − 1)Xw

as required. If l(siw) < l(w), then by the Exchange Condition there is a reduced expression si1 . . . sir
for w with i1 = i. So

TiXw = Ti(Ti − 1)Wsiw = 0. �
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4 Injective and projective modules forH

Recall that an algebra A over F if Frobenius if there is a linear map λ : A → F whose kernel
contains no right or left ideal of A. If in addition we have

λ(ab) = λ(ba)

for all a, b ∈ A, we say that A is symmetric.

Proposition 4.1.H is Frobenius.

Proof. Define λ : H → F by mapping

Tw 7−→

1 (w = w0)
0 (w , w0).

We must show that for any 0 , h ∈ H , there are j, k ∈ H such that λ( jh) and λ(hk) are non-zero.
Express h in terms of the basis {Tw}, and let w be an element of maximal length such that Tw occurs
with non-zero coefficient. Now define j = Tw0w−1 and k = Tw−1w0

. We claim that jTw = Tw0 = Twk,
while λ( jTx) = 0 = λ(Txk) for any x , w with l(x) 6 l(w), which is sufficient. To prove the claim, we
notice that for any x, y ∈W, TxTy is of the form Tz, where l(x) 6 l(x) + l(y), with equality if and only
if l(xy) = l(x) + l(y) (in which case z = xy). �

Remark. Proposition 4.1 is proved in type A in [3].

H is not necessarily symmetric, but it is ‘quasi-symmetric’ in the following sense.

Proposition 4.2. Let λ : H → F be as in the proof of Proposition 4.1. Then for any a and b inH we have

λ(ab) = λ(φ(b)a).

Proof. By linearity, it suffices to consider the case where a = Tw and b = Tx for w, x ∈ W. Fix w,
and choose a reduced expression u1 . . . ur, where each ui equals some sk. Say that a sub-expression
u j1 . . . u jt (where 1 6 j1 < · · · < jt 6 r) is good if

• it is a reduced expression, and

• for any i, k such that jk−1 < i < jk, we have

l(u j1 . . . u jk−1ui) > l(u j1 . . . u jk−1).

Lemma 4.3. TwTx equals Tw0 if and only if x = u jt . . . u j1w0 for some good sub-expression u j1 . . . u jt of
u1 . . . ur.
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Proof. First suppose that u j1 . . . u jt is good. Since u jt . . . u j1 is reduced, we have

l(u jk−1 . . . u j1) < l(u jk . . . u j1),

so that
Tu jk

Tu jk1
...u j1 w0 = Tu jk u jk−1

...u j1 w0 .

For jk−1 < i < jk, we have l(uiu jk−1 . . . u j1) > l(u jk−1 . . . u j1), so that

TuiTu jk−1
...u j1 w0 = Tu jk−1

...u j1 w0 .

Hence if x = u jt . . . u j1w0 we have

TwTx = Tu1 . . .TurTu jt ...u j1 w0 = Tw0 .

Conversely, suppose that
Tw0 = TwTx = Tu1 . . .TurTx.

Let j1 < · · · < jt be those values of j for which

Tu jTu j+1 . . .TurTx , Tu j+1 . . .TurTx.

Then we have TwTx = Tu j1
. . .Tu jt

Tx = Tu j1 ...u jt w0 , so that x = u jt . . . u j1w0; the fact that u j1 . . . u jt is
good follows from the definition of j1, . . . , jt. �

Now we show that the ‘good’ condition is a red herring.

Lemma 4.4. The set of elements of W equal to u j1 . . . u jt for a good sub-expression u j1 . . . u jt of u1 . . . ur
equals the set of elements of W equal to u j1 . . . u jt for any sub-expression u j1 . . . u jt of u1 . . . ur.

Proof. Given a sub-expression u j1 . . . u jt which is not good, we shall transform it into a good sub-
expression without changing the element of W it represents. We proceed by induction on t, and for
fixed t, we proceed by reverse induction on j1 + · · · + jt.

First suppose u j1 . . . u jt is not reduced. Then by the Deletion Condition, we may delete two
entries in this subexpression without changing the element of W it represents. We are then done
by induction on t.

Now suppose u j1 . . . u jt is reduced but not good. Then there exist k, i such that jk−1 < i < jk and

l(u j1 . . . u jk−1ui) < l(u j1 . . . u jk−1).

By the Exchange Condition, there is some c 6 k − 1 such that

u j1 . . . û jc . . . u jk−1ui = u j1 . . . u jk−1 .

Hence
u j1 . . . u jt = u j1 . . . û jc . . . u jk−1uiu jk . . . u jt ,

so we may replace u jc with ui in our sub-expression, and we are done by induction on j1 + · · ·+ jt. �
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We conclude that TwTx equals Tw0 if and only if x = u jt . . . u j1w0 for some sub-expression u j1 . . . u jt
of u1 . . . ur. Similarly, we find that φ(Tx)Tw equals Tw0 if and only if

φ(Tx) = Tw0u jt ...u j1

for some sub-expression u j1 . . . u jt . But φ(Tx) = Tw0xw0 , and so φ(Tx)Tw equals Tw0 if and only if
TwTx does. �

Now we discuss the consequences for injective and projective modules. Given an H-module
M, let P(M) and I(M) denote its projective cover and injective hull, respectively.

Proposition 4.5.H is self-injective, with

P(MJ) � I(M̂J)

for all J ⊆ {1, . . . ,n}. Hence P◦ � P for any projective H-module P. H is symmetric if and only if each
connected component of G is of one of the types listed in Proposition 2.4.

Proof. SinceH is Frobenius, it is self-injective [1, Proposition 1.6.2]. Hence P = P(MJ) is isomorphic
to the injective hull of some simple module. Let e be an idempotent such that P(MJ) � He (Norton
[9] describes such an idempotent explicitly). ThenHφ(e) � P̂ � P(M̂J). Also, soc(P)e is a left ideal
inH and so there is some x ∈ soc(P) such that

0 , λ(xe) = λ(φ(e)x),

so
0 , φ(e) soc(P) � HomH (P̂, soc(P)),

and we must have soc(P) � M̂J.
SinceH◦ � H and P(MJ) � I(M◦J ), we find that any projective module is self-dual. Proposition

4.2 says that H is symmetric when φ is the identity; on the other hand, for a symmetric algebra,
P(S) � I(S) for a simple module S, soH is not symmetric when φ is not the identity. �

Remark. The correspondence between injective and projective modules also follows (once we have
self-injectivity) from [9, Lemma 4.23], in which the socle of each indecomposable left ideal ofH is
found explicitly.

5 Extensions of simple modules

In this section, we calculate the space Ext1
H

(M,N) for simple H-modules M and N. Since
all simple H-modules are one-dimensional, the easiest way to do this is simply to classify two-
dimensional modules. This gives the following result (which is also proved, in type A, in [3]).

Theorem 5.1. Suppose J,K ⊆ {1, . . . ,n}. Then dimF Ext1
H

(MJ,MK) is 1 if

• neither of J and K is contained in the other, and
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• for any j ∈ J \ K and k ∈ K \ J, we have m jk > 3,

and 0 otherwise.

Proof. Suppose we have a two-dimensional module M which is an extension of MJ by MK. Let
{e2} be a basis for a submodule isomorphic to MK, and extend to a basis {e1, e2} for M. If we let
Ji = 1(i ∈ J) and Ki = 1(i ∈ K), then Ti acts on M by the matrix

Ai =

(
Ji 0
ai Ki

)
for some ai. We must check the defining relations ofH .

The fact that Ti is idempotent simply means that ai = 0 whenever Ji = Ki. Now we check the
braid relations

(A jAkA j . . . )m jk = (AkA jAk . . . )m jk .

if either J j = K j or Jk = Kk then one of A j,Ak is either 0 or the identity matrix, and the braid relation
is immediate. In the case where J j = Jk = 1, K j = Kk = 0, we have

(A jAkA j . . . )m = A j

for any m > 0, so we must have a j = ak. Similarly if J j = Jk = 0, K j = Kk = 1, we have a j = ak. If
J j = Kk = 1, K j = Jk = 0, then we have

(A jAkA j . . . )m = 0

for all m > 2, while

(AkA jAk . . . )m =


 0 0
a j + ak 0

 (m = 2)

0 (m > 3).

We conclude that M affords a representation of H if and only if there exist a, b ∈ F such that
each Ai is one of the matrices (

0 0
0 0

)
,

(
1 0
0 1

)
,

(
0 0
a 1

)
,

(
1 0
b 0

)
,

and such that a + b = 0 if there exist j ∈ J \ K, k ∈ K \ J such that m jk = 2.
If a+b = 0, then these four matrices can be simultaneously conjugated to diagonal matrices, and

so M is a split extension. If a + b , 0, then the extension is non-split. But simultaneous conjugation

by the matrix
(
1 0
c d

)
takes the pair (a, b) to the pair (da + c, db − c), and so all non-split extensions

are isomorphic. The result follows. �
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Remark. Theorem 5.1 affords a slightly quicker classification of the blocks ofH in the case where
W is irreducible than in [9, Theorem 5.2]. Given a proper non-empty subset J of {1, . . . ,n}, we
wish to show that MJ lies in the same block of H as M{1}; we do this by exhibiting a sequence
J = J0, J1, . . . , Jr = {1} of subsets with Ext1

H
(MJi−1 ,MJi) , 0 for all i. By Theorem 5.1, we can construct

Ji from Ji−1 by replacing j ∈ Ji−1 with some k < Ji−1 which is adjacent to j in the Coxeter graph, or
by replacing j, j′ ∈ Ji−1 with some k < Ji−1 which is adjacent to both j and j′ in the Coxeter graph.
Since the Coxeter graph is connected, it is easily seen that we can get to Jr = {1} in this way.

6 Branching of induced representations in type A

In this section, we specialise to 0-Hecke algebras of type A. LetHn denote the 0-Hecke algebra
for the Coxeter group of type An, with generators s1, . . . , sn and

mi j =

3 (|i − j| = 1)
2 (|i − j| > 1).

By Proposition 2.4, the automorphism φ is given by Ti 7→ Tn+1−i.
Hn−1 is naturally a subalgebra ofHn, andHn is free as anHn−1-module. Given a simple module

MJ forHn−1, we wish to study the structure of the induced module

IndHn
Hn−1

MJ = Hn ⊗Hn−1
MJ.

We shall show that this module is multiplicity-free and describe its composition factors and sub-
module lattice.

In [8, §5], the induction of simple and projective modules from Hn−1 to Hn is discussed; the
authors of that paper look at the more general situation H0(Sn−m × Sm) 6 H0(Sn), and describe
the composition factors of an induced simple module, via quasi-symmetric functions. In fact, they
consider the filtration on an induced simple module which arises from the length filtration on
H0(Sn), and give a ‘graded characteristic’ which decribes the composition factors of the layers of
this filtration. But they do not describe in full the submodule lattice of an induced simple module,
which is our task.

Given a multiplicity-free module M (or indeed any module whose submodule lattice is dis-
tributive), we may encode its submodule lattice simply by imposing a partial order on the set of
composition factors: for composition factors S,T, we write S <M T if every submodule of M with
S as a composition factor also has T as a composition factor. Equivalently, we may simply write
down the poset of those submodules of M with simple cosocles, ordered by inclusion, and label
each such submodule by the isomorphism class of its cosocle.

We make a slight change of notation for simple modules: given J ⊆ {1, . . . ,n}, we write Ji = 1 if
i ∈ J and 0 otherwise, as before. Then we write

MJ = M(J1, . . . , Jn).

Now for J ⊆ {1, . . . ,n − 1} we examine the structure of M = IndHn
Hn−1

MJ. It is easy to find a
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filtration of M by simple modules. If {x} is a basis for MJ, then let

xn = 1 ⊗ x,
xn−1 = Tn ⊗ x,
xn−2 = Tn−1Tn ⊗ x,

...

x0 = T1T2 . . .Tn ⊗ x.

Proposition 6.1. {x0, . . . , xn} is a basis for M. Moreover, for i = 0, . . . ,n, the subspace

Mi = 〈x0, . . . , xi〉

is a submodule of M, and we have

Mn/Mn−1 � M(J1, . . . , Jn−1, 0),
Mn−1/Mn−2 � M(J1, . . . , Jn−2, 0, 1),
Mn−2/Mn−3 � M(J1, . . . , Jn−3, 0, 1, Jn−1),

...

M2/M1 � M(J1, 0, 1, J3, . . . , Jn−1),
M1/M0 � M(0, 1, J2, . . . , Jn−1),

M0 � M(1, J1, . . . Jn−1).

In particular, M is multiplicity-free.

Proof. Given 1 6 i 6 n and 0 6 j 6 n, we have

Tix j =


Jix j (i < j)
x j−1 (i = j)
x j (i = j + 1)
Ji−1x j (i > j + 1).

So x0, . . . , xn certainly span M. The fact that Mi is a submodule can also be seen from this action,
as can the eigenvalues of T1, . . . ,Tn on the quotients Mi/Mi−1. These quotients are then seen to be
non-isomorphic: if

M(J1, . . . , Ji−1, 0, 1, Ji+1, . . . , Jn) = M(J1, . . . , J j−1, 0, 1, J j+1, . . . , Jn)

with i < j, then we have
1 = Ji+1 = Ji+2 = · · · = J j−2 = J j−1 = 0.

So M is multiplicity-free, and has n + 1 composition factors. So dimFM > n + 1, and {x0, . . . , xn} is
a basis. �
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Remark. The action of Ti on M given in the above proof shows that M is a combinatorial module, as
defined in [3, §2.2].

We impose a total order on the composition factors of M according to this filtration:

M(J1, . . . , Jn, 0) > M(J1, . . . , Jn−1, 0, 1) > · · · > M(0, 1, J2, . . . , Jn−1) > M(1, J2, . . . , Jn−1).

Then the partial order <M which encodes the submodule lattice of M is a sub-partial order of >.
Our main result is as follows.

Theorem 6.2. Suppose MK and ML are composition factors of M. Then MK �M ML if and only if MK > ML
and neither of K,L is contained in the other.

The proof is slightly complicated. First we show that induction is well-behaved with respect to
the functors N 7→ N and N 7→ N◦.

Lemma 6.3. Let N be anyHn−1-module. Then IndHn
Hn−1

N � IndHn
Hn−1

N.

Proof. IndHn
Hn−1

N is spanned by elements

T j+1T j+2 . . .Tn ⊗m

for m ∈ N. Likewise, IndHn
Hn−1

N is spanned by elements

(1 − T j+1)(1 − T j+2) . . . (1 − Tn) ⊗m.

We define a map IndHn
Hn−1

N→ IndHn
Hn−1

N via

T j+1T j+2 . . .Tn ⊗m 7−→ (1 − T j+1)(1 − T j+2) . . . (1 − Tn) ⊗m

for all j and all m ∈ N. The fact that θ is an automorphism of H shows that this is a module
isomorphism. �

Lemma 6.4. Let N be anyHn−1-module. Then IndHn
Hn−1

N◦ � (IndHn
Hn−1

N)◦.

Proof. Let {e1, . . . , er} and {ε1, . . . , εr} be dual bases for N and N◦, so that if 〈 , 〉 is the bilinear form
given by 〈ei, ε j〉 = δi j, then

〈Tim, µ〉 = 〈m,Tn−iµ〉

for all m ∈ N, µ ∈ N◦. Then we claim that

{T j+1 . . .Tn ⊗ ek | 0 6 j 6 n, 1 6 k 6 r}

is a basis for IndHn
Hn−1

N; this follows as in the proof of Proposition 6.1. Similarly,

{(1 − T j+1) . . . (1 − Tn) ⊗ εk | 0 6 j 6 n, 1 6 k 6 r}
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is a basis for IndHn
Hn−1

N◦. Hence so is

{(T j+1 − 1) . . . (Tn − 1) ⊗ εk | 0 6 j 6 n, 1 6 k 6 r}.

Now we make these bases dual in such a way as to respect the Hn-action: let ( , ) be the bilinear
form given by

(T j+1 . . .Tn ⊗ ek, (Ts+1 − 1) . . . (Tn − 1) ⊗ εt) = δktδ j(n−s).

Then we claim
(Tim, µ) = (m,Tn+1−iµ)

for all m ∈ IndHn
Hn−1

N, µ ∈ IndHn
Hn−1

N◦, which is what we want. The claim follows by explicitly
considering the action of Ti on these basis elements. Specifically, we have

Ti(T j+1 . . .Tn ⊗ ek) =


T j+1 . . .Tn ⊗ Tiek (i < j)
T jT j+1 . . .Tn ⊗ ek (i = j)
T j+1 . . .Tn ⊗ ek (i = j + 1)
T j+1 . . .Tn ⊗ Ti−1ek (i > j + 1).

and

Ti(T j+1 − 1) . . . (Tn − 1) ⊗ εk =


(T j+1 − 1) . . . (Tn − 1) ⊗ Tiεk (i < j)
(T j − 1) . . . (Tn − 1) ⊗ εk + (T j+1 − 1) . . . (Tn − 1) ⊗ εk (i = j)
0 (i = j + 1)
(T j+1 − 1) . . . (Tn − 1) ⊗ Ti−1εk (i > j + 1);

the claim may now be checked. �

Proof of Theorem 6.2. We proceed by induction on n; small cases may be easily checked, so assume
now that n > 4. The inductive step is based on the following.

Claim. Given the inductive hypothesis, M has a submodule M− such that

• M/M− � M(J1, . . . , Jn−1, 1 − Jn−1);

• For any composition factors MK,ML of M−, we have MK �M− ML if and only if MK > ML
and neither of K,L is contained in the other.

Proof. By Lemma 6.3, we may assume that Jn−1 = 1. Then we may put M− = Mn−1 as
defined in Proposition 6.1. By the module action given in the proof of Proposition 6.1, M− is
isomorphic as anHn−1-module to IndHn−1

Hn−2
M(J1, . . . , Jn−2), while Tn acts on M− as the identity.

Hence by induction we know the submodule lattice of M−; since n ∈ K for all composition
factors MK of M−, we have K ⊂ L if and only if K \ {n} ⊆ L \ {n}, and the result follows. �

By taking dual modules and using Lemma 6.4 (or simply by a similar argument to that used to
justify the above claim), we deduce the following.
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Claim. Given the inductive hypothesis, M has a submodule S isomorphic to M(1−J1, J1, . . . , Jn−1),
and for any two composition factors MK,ML of M/S we have MK �M/S ML if and only if
MK > ML and neither of K,L is contained in the other.

This is almost enough to determine the submodule lattice of M: given composition factors
MK > ML, we now know whether MK �M ML except in the case

MK = M/M− � M(J1, . . . , Jn−1, 1 − Jn−1), ML = S � M(1 − J1, J1, . . . , Jn−1).

But we claim that there is a composition factor MN of M−/S such that

M(J1, . . . , Jn−1, 1 − Jn−1) �M MN �M M(1 − J1, J1, . . . , Jn−1); (∗)

this will then imply that M(J1, . . . , Jn−1, 1 − Jn−1) �M M(1 − J1, J1, . . . , Jn−1), and the theorem will be
proved.

By Proposition 6.1, the composition factors of M−/S are

M(J1, . . . , Jn−2, 0, Jn−1),
M(J1, . . . , Jn−3, 0, 1, Jn−1),
M(J1, . . . , Jn−40, 1, Jn−2, Jn−1),
...

M(J1, J2, 0, 1, J4, . . . , Jn−1),
M(J1, 0, 1, J3, . . . , Jn−1),
M(J1, 1, J2, . . . , Jn−1).

So suppose MN = M(J1, . . . , Ji−1, 0, 1, Ji+1, . . . , Jn−1) for some 2 6 i 6 n − 2, and that (∗) does not
hold, i.e. one of N ⊆ K, N ⊇ K, N ⊆ L or N ⊇ L holds. These four possibilities are equivalent to

1. 1 6 Ji+1 6 Ji+2 6 . . . 6 Jn−1 6 1 − Jn−1,

2. Ji = 0 and Ji+1 > Ji+2 > . . . > Jn−1 > 1 − Jn−1,

3. Ji = 1 and Ji−1 6 Ji−2 6 . . . 6 J1 6 1 − J1,

4. 0 > Ji−1 > Ji−2 > . . . > J1 > 1 − J1,

respectively. Neither (1) nor (4) can happen, so we have either

Ji = 0, Ji+1 = · · · = Jn−1 = 1

or
Ji = 1, J1 = · · · = Ji−1 = 0.

If there is no N such that (∗) holds, then this is true for all 2 6 i 6 n − 2. This then implies that for
some 1 6 i 6 n − 2 we have

J1 = · · · = Ji = 0, Ji+1 = · · · = Jn−1 = 1.

But then we take MN = M(J1, . . . , Jn−2, 0, Jn−1), and we are done. �
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7 Further questions

Further questions about 0-Hecke algebras present themselves. Firstly, it would be nice to extend
the results of Section 6, and find the structure of an induced simple module in types B and D, or
more generally for any embedding of a Coxeter group of rank n − 1 in a Coxeter group of rank n.
Calculation of small cases in type B shows that we cannot hope that induced simple modules will
be multiplicity-free in general, but it does seem plausible that the submodule lattice of an induced
simple module is always distributive.

Another natural question is to ask what the centre of H is. It is easy enough to write down a
condition in terms of length for a given element ofH to be central, but this does not seem easy to
apply.

Finally, one would like to know more about the structure of projective modules. It is tempting
to wonder whether a result analogous to Martin’s conjecture [5] for representations of symmetric
groups holds for 0-Hecke algebras: recall that a module is stable if its radical filtration coincides with
its socle filtration. In an earlier version of this paper, we conjectured that every indecomposable
projective module for a 0-Hecke algebra is stable, and we are grateful to Maud de Visscher for
pointing out that this conjecture fails for the Coxeter group of type A4. So we make a different
conjecture.

Conjecture 7.1. Suppose W is a finite Coxeter group. Then every indecomposable projective module for
H0(W) is stable if and only if every irreducible component of W is of rank less than or equal to 3 or of type
D4. Furthermore, if W is irreducible of rank at most 3 or type D4, then every indecomposable projective
module in the non-trivial block ofH0(W) has Loewy length h − 1, where h is the Coxeter number of W.

It is easy to calculate from Theorem 5.1 that every irreducible component of W is of rank at
most 3 or of type D4 if and only if the ordinary quiver of H0(W) is bipartite, and this provides a
further link with Martin’s conjecture. It would be routine but tedious to check the the second part
of the conjecture, and we have not done this in detail.
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