0 -Hecke algebras of finite Coxeter groups

Matthew Fayers
Magdalene College, Cambridge, CB3 0AG, U.K.*

2000 Mathematics subject classification: 16G99

Abstract

We study the 0-Hecke algebra of an arbitrary finite Coxeter group, building on work of Norton [9]. We examine the correspondence between injective and projective modules, extensions between simple modules and (in type A) the structure of induced simple modules.

1 Introduction

Suppose that W is a Coxeter group, i.e. a group with a presentation of the form

$$
W=\left\langle s_{1}, \ldots, s_{n} \mid\left(s_{i} s_{j}\right)^{m_{i j}}=1\right\rangle
$$

for some integer n and some symmetric n by n matrix $\left(m_{i j}\right)$ with entries in $\mathbb{N} \cup\{\infty\}$ with $m_{i i}=1$ and $m_{i j}>1$ for $i \neq j$. Given a field \mathbb{F} and an element q of \mathbb{F}, we define the Iwahori-Hecke algebra $\mathcal{H}_{q}(W)$ to be the associative algebra over \mathbb{F} with generators S_{1}, \ldots, S_{n} and relations

$$
\begin{aligned}
S_{i}^{2} & =q+(q-1) S_{i}, \\
\left(S_{i} S_{j} S_{i} \ldots\right)_{m_{i j}} & =\left(S_{j} S_{i} S_{j} \ldots\right)_{m_{i j}}
\end{aligned}
$$

for all $i \neq j$, where $(a b a \ldots)_{m}$ denotes an alternating product of m terms. The Iwahori-Hecke algebra arises in the study of groups with (B, N)-pairs.

The algebra $\mathcal{H}_{q}(W)$ has been studied extensively in the case where q is non-zero, especially when W is of type A or B; in these cases, $\mathcal{H}_{q}(W)$ is cellular, and the representation theory is correspondingly well understood; however, this theory breaks down in the case $q=0$. In [9], Norton studied the ' 0 -Hecke algebra' $\mathcal{H}=\mathcal{H}_{0}(W)$; she classified the irreducible modules, decomposed the algebra into left ideals and described the Cartan invariants. In [2], Carter studied \mathcal{H} in type A, i.e. where W is a symmetric group; he gave the decomposition numbers in this case. Krob and Thibon have also studied \mathcal{H} in type A, giving a representation-theoretic interpretation of non-commutative symmetric functions [8]; this builds on earlier work of Duchamp, Krob, Leclerc and Thibon in [4]. Duchamp, Hivert and Thibon take this work further in [3], and that case prove some of the results

[^0]in this paper. The author is grateful to the referee for pointing this reference out. In this paper we study the representation theory of \mathcal{H} for W an arbitrary finite Coxeter group; we shall show that \mathcal{H} is Frobenius, and classify those W for which \mathcal{H} is symmetric. We calculate $\operatorname{Ext}_{\mathcal{H}}^{1}(M, N)$ for simple modules M and N, and finally we provide a 'branching rule' which describes (the submodule lattice of) a simple module induced from a 0 -Hecke algebra of type A_{n-1} to a 0-Hecke algebra of type A_{n}.

2 Background and notation

From now on, we fix an arbitrary field \mathbb{F} and an arbitrary finite Coxeter group W (with presentation as above), and write $\mathcal{H}=\mathcal{H}_{0}(W)$. We write l for the length function on W (in terms of the generators s_{1}, \ldots, s_{n}). Basic facts about \mathcal{H} can be found in Chapter 1 of Mathas's book [6]. Essential facts about finite Coxeter groups can be found in [7]; in particular, we shall use the Deletion and Exchange Conditions [7, §1.7] as well as the classification of finite Coxeter groups (with the notation of [7]).

We make a slight change of notation for \mathcal{H}, writing T_{i} for $-S_{i}$. This simply has the effect of removing the minus signs from the presentation of \mathcal{H} given above (and from most of the rest of this paper). We have the following.

Theorem 2.1. [6, Lemma 1.12 \& Theorem 1.13]

\mathcal{H} has a basis $\left\{T_{w} \mid w \in W\right\}$ with $T_{s_{i}}=T_{i}$ and

$$
T_{i} T_{w}= \begin{cases}T_{s_{i} z v} & \left(l\left(s_{i} w\right)>l(w)\right) \\ T_{w} & \left.\left(l s_{i} w\right)<l(w)\right)\end{cases}
$$

for all $i=1, \ldots, n$ and all $w \in W$.

Theorem 2.2. [9, §3]

Given a subset Jof $\{1, \ldots, n\}$, let M_{J} be the \mathcal{H}-module with basis $\{x\}$ and \mathcal{H}-action given by

$$
T_{i} x= \begin{cases}x & (i \in J) \\ 0 & (i \notin J) .\end{cases}
$$

Then $\left\{M_{J} \mid J \subseteq\{1, \ldots, n\}\right\}$ is a complete set of irreducible modules for \mathcal{H}.

2.1 Finite Coxeter groups

Let W be a finite Coxeter group, and G the Coxeter graph of W. Since W is finite, it has a unique longest element, which we denote w_{0}. We shall use the following lemma repeatedly, often without comment.

Lemma 2.3. [7, §1.8]

For any $w \in W$, we have $l\left(w w_{0}\right)=l\left(w_{0} w\right)=l\left(w_{0}\right)-l(w)$. In particular, w_{0} is an involution.
It wil be useful later to describe the automorphism of W induced by conjugation by w_{0}. It does not seem likely that the following result is new, though the author has been unable to find it in the literature.

Proposition 2.4. The conjugation action of w_{0} on W is given by $s_{i} \mapsto s_{\sigma(i)}$, where σ is the automorphism of G which fixes each connected component of G set-wise, and which restricts to:

1. the identity on each component of type $A_{1}, B_{n}(n \geqslant 2), D_{2 n}(n \geqslant 2), E_{7}, E_{8}, F_{4}, H_{3}, H_{4}$ or $I_{2}(2 m)(1 \leqslant m)$;
2. the unique non-trivial automorphism of each other connected component of G.

In particular, w_{0} is central in W if and only if every connected component of G is of one of the types listed in (1).

Proof. We have

$$
\begin{aligned}
l\left(w_{0} s_{i} w_{0}\right) & =l\left(w_{0}\right)-\left(l\left(s_{i} w_{0}\right)\right) \\
& =l\left(w_{0}\right)-\left(l\left(w_{0}\right)-1\right) \\
& =1
\end{aligned}
$$

so that $w_{0} s_{i} w_{0}=s_{\sigma(i)}$ for some $\sigma . \sigma$ must be an automorphism of G (as a labelled graph), since $m_{i j}$ is the multiplicative order of $s_{i} s_{j}$. Furthermore, since W is the direct product of the Coxeter groups corresponding to the connected components of G, σ must fix each connected component set-wise. So we may assume that W is irreducible.

The cases listed are precisely those for which all the degrees of (the elementary invariant polynomials of) W are even [7, §3.7]. In these cases, we have by [7, Corollary 3.19] that w_{0} maps to $-I$ in the standard reflection representation of W. Since this representation is faithful, w_{0} must be central. In the remaining cases, it is easy to find some s_{i} with which w_{0} does not commute. Hence conjugation by w_{0} induces a non-trivial automorphism of G; by checking the Coxeter graphs in these cases, it may be verified that there is a unique non-trivial automorphism of G in each case.

3 Automorphisms of \mathcal{H} and duality

In this section, we describe some automorphisms and anti-automorphsisms of \mathcal{H}, and examine the induced self-equivalences of the module category of \mathcal{H}. We begin with a lemma which we shall use several times; it appears in the proof of [9, Lemma 4.3].

Lemma 3.1. For any i, j and any $n \geqslant 1$ we have

$$
\left(\left(T_{i}-1\right)\left(T_{j}-1\right)\left(T_{i}-1\right) \ldots\right)_{n}=\left(T_{i} T_{j} T_{i} \ldots\right)_{n}+\sum_{m=1}^{n-1}(-1)^{m-n}\left(\left(T_{i} T_{j} T_{i} \ldots\right)_{m}+\left(T_{j} T_{i} T_{j} \ldots\right)_{m}\right)+(-1)^{n}
$$

In particular, we have

$$
\left(\left(T_{i}-1\right)\left(T_{j}-1\right)\left(T_{i}-1\right) \ldots\right)_{m_{i j}}=\left(\left(T_{j}-1\right)\left(T_{i}-1\right)\left(T_{j}-1\right) \ldots\right)_{m_{i j}}
$$

Proof. This is a simple induction on n.

Proposition 3.2.

- There is an automorphism θ of \mathcal{H} defined by

$$
\theta: T_{i} \longmapsto 1-T_{i}
$$

for all i.

- There is an automorphism ϕ of \mathcal{H} defined by

$$
\phi: T_{i} \longmapsto T_{w_{0} s_{i}, w_{0}}
$$

for all i.

- There is an anti-automorphism χ of \mathcal{H} defined by

$$
\chi: T_{i} \longmapsto T_{i}
$$

for all i.
Furthermore, θ, ϕ and χ commute and each has order 1 or 2 .
Proof. It is trivial that θ^{2}, ϕ^{2} and χ^{2} are all the identity map, and in particular that θ, ϕ and χ are all invertible; it is also clear that they commute. It remains to verify the defining relations of \mathcal{H}, which is routine for ϕ and χ. For θ, we have

$$
\left(1-T_{i}\right)^{2}=1-2 T_{i}+T_{i}^{2}=1-T_{i},
$$

while the braid relations follow from Lemma 3.1.
The involution θ is also discussed in [8].
Now suppose M is an \mathcal{H}-module. We define \bar{M} to be the module with the same underlying vector space as M, and with action

$$
h \cdot m=\theta(h) m
$$

for $h \in \mathcal{H}$ and $m \in M$. We define \widehat{M} to be the module with the same underlying vector space as M, and with action

$$
h \cdot m=\phi(h) m
$$

for $h \in \mathcal{H}$ and $m \in M$. Then $M \mapsto \bar{M}$ and $M \mapsto \widehat{M}$ define self-equivalences of $\bmod (\mathcal{H})$ of order 1 or 2.

We also define M^{\ominus} to be the module to be the vector space dual to M with \mathcal{H}-action given by

$$
(h \cdot f)(m)=f(\chi(h) m)
$$

for $h \in \mathcal{H}, f \in M^{*}$ and $m \in M$. Finally, we define $M^{\circ}=(\widehat{M})^{\triangleright} \cong \widehat{M^{\circ}} . M \mapsto M^{\circ}$ defines an equivalence of categories $\bmod (\mathcal{H}) \rightarrow(\bmod (\mathcal{H}))^{\mathrm{op}}$.

The effect of these functors on simple modules is easily found. For $J \subseteq\{1, \ldots, n\}$, write \bar{J} for its complement. Recall also the automorphism σ of the Coxeter graph of W from Proposition 2.4.

Proposition 3.3. We have

$$
\begin{aligned}
& \overline{M_{J}} \cong M_{\overline{J^{\prime}}} \\
&\left(M_{J}\right)^{\circ} \cong M_{J}, \\
& \widehat{M_{J}} \cong\left(M_{J}\right)^{\circ} \cong M_{\sigma(J)} .
\end{aligned}
$$

It turns out that M° is a good definition of a 'dual module' to M; in particular, we shall see that any projective module is self-dual with this definition, and that induction from type A_{n-1} to type A_{n} preserves this notion of duality.

Proposition 3.4. Consider \mathcal{H} as an \mathcal{H}-module. Then

$$
\overline{\mathcal{H}} \cong \widehat{\mathcal{H}} \cong \mathcal{H}^{\circ} \cong \mathcal{H}^{\circ} \cong \mathcal{H} .
$$

Proof. The fact that θ and ϕ are automorphisms implies that $\overline{\mathcal{H}} \cong \widehat{\mathcal{H}} \cong \mathcal{H}$ and $\mathcal{H}^{\circ} \cong \mathcal{H}^{\circ}$, so we need only show that $\mathcal{H}^{\circ} \cong \mathcal{H}$. Let $\left\{f_{w} \mid w \in W\right\}$ be the basis for \mathcal{H}^{*} dual to the the basis $\left\{T_{w} \mid w \in W\right\}$ for \mathcal{H}. Then Theorem 2.1 implies that

$$
T_{i} f_{w}= \begin{cases}f_{w}+f_{s_{i} w} & \left(l\left(s_{i} w\right)>l(w)\right) \\ 0 & \left(l\left(s_{i} w\right)<l(w)\right)\end{cases}
$$

We shall find a basis for \mathcal{H} which gives the same \mathcal{H}-action. Given $w \in W$, let $s_{i_{1}} \ldots s_{i_{r}}$ be any reduced expression for w, and define

$$
X_{w}=\left(T_{s_{i_{1}}}-1\right) \ldots\left(T_{s_{i_{r}}}-1\right) .
$$

As pointed out in the proof of [9, Lemma 4.3], X_{w} does not depend on the reduced expression chosen: since any reduced expression for w can be transformed into any other by means of the braid relations, we can apply Lemma 3.1. To show that $\left\{X_{w} \mid w \in W\right\}$ is a basis for \mathcal{H}, we prove linear independence: if $\sum_{w \in W} \lambda_{w} X_{w}=0$, take w_{1} of maximal length such that $\lambda_{w_{1}} \neq 0$. Then when we express $\sum_{w \in W} \lambda_{w} X_{w}$ in terms of the basis $\left\{T_{w}\right\}$, we find that the coefficient of $T_{w_{1}}$ is $\lambda_{w_{1}}$; contradiction.

It remains to prove that

$$
T_{i} X_{w}= \begin{cases}X_{w}+X_{s_{i} w} & \left(l\left(s_{i} w\right)>l(w)\right), \\ 0 & \left(l\left(s_{i} w\right)<l(w)\right)\end{cases}
$$

if $l\left(s_{i} w\right)>l(w)$, then $s_{i} s_{i_{1}} \ldots s_{i_{r}}$ is a reduced expression for $s_{i} w$, and so we have

$$
X_{s_{i} i v}=\left(T_{i}-1\right) X_{w}
$$

as required. If $l\left(s_{i} w\right)<l(w)$, then by the Exchange Condition there is a reduced expression $s_{i_{1}} \ldots s_{i_{r}}$ for w with $i_{1}=i$. So

$$
T_{i} X_{w}=T_{i}\left(T_{i}-1\right) W_{s_{i} w}=0 .
$$

4 Injective and projective modules for \mathcal{H}

Recall that an algebra A over \mathbb{F} if Frobenius if there is a linear map $\lambda: A \rightarrow \mathbb{F}$ whose kernel contains no right or left ideal of A. If in addition we have

$$
\lambda(a b)=\lambda(b a)
$$

for all $a, b \in A$, we say that A is symmetric.
Proposition 4.1. \mathcal{H} is Frobenius.
Proof. Define $\lambda: \mathcal{H} \rightarrow \mathbb{F}$ by mapping

$$
T_{w} \longmapsto \begin{cases}1 & \left(w=w_{0}\right) \\ 0 & \left(w \neq w_{0}\right) .\end{cases}
$$

We must show that for any $0 \neq h \in \mathcal{H}$, there are $j, k \in \mathcal{H}$ such that $\lambda(j h)$ and $\lambda(h k)$ are non-zero. Express h in terms of the basis $\left\{T_{w}\right\}$, and let w be an element of maximal length such that T_{w} occurs with non-zero coefficient. Now define $j=T_{w_{0} w^{-1}}$ and $k=T_{w^{-1} w_{0}}$. We claim that $j T_{w}=T_{w_{0}}=T_{w} k$, while $\lambda\left(j T_{x}\right)=0=\lambda\left(T_{x} k\right)$ for any $x \neq w$ with $l(x) \leqslant l(w)$, which is sufficient. To prove the claim, we notice that for any $x, y \in W, T_{x} T_{y}$ is of the form T_{z}, where $l(x) \leqslant l(x)+l(y)$, with equality if and only if $l(x y)=l(x)+l(y)$ (in which case $z=x y)$.

Remark. Proposition 4.1 is proved in type A in [3].
\mathcal{H} is not necessarily symmetric, but it is 'quasi-symmetric' in the following sense.
Proposition 4.2. Let $\lambda: \mathcal{H} \rightarrow \mathbb{F}$ be as in the proof of Proposition 4.1. Then for any a and b in \mathcal{H} we have

$$
\lambda(a b)=\lambda(\phi(b) a) .
$$

Proof. By linearity, it suffices to consider the case where $a=T_{w}$ and $b=T_{x}$ for $w, x \in W$. Fix w, and choose a reduced expression $u_{1} \ldots u_{r}$, where each u_{i} equals some s_{k}. Say that a sub-expression $u_{j_{1}} \ldots u_{j_{t}}$ (where $1 \leqslant j_{1}<\cdots<j_{t} \leqslant r$) is good if

- it is a reduced expression, and
- for any i, k such that $j_{k-1}<i<j_{k}$, we have

$$
l\left(u_{j_{1}} \ldots u_{j_{k-1}} u_{i}\right)>l\left(u_{j_{1}} \ldots u_{j_{k-1}}\right) .
$$

Lemma 4.3. $T_{w} T_{x}$ equals $T_{w_{0}}$ if and only if $x=u_{j_{t}} \ldots u_{j_{1}} w_{0}$ for some good sub-expression $u_{j_{1}} \ldots u_{j_{t}}$ of $u_{1} \ldots u_{r}$.

Proof. First suppose that $u_{j_{1}} \ldots u_{j_{t}}$ is good. Since $u_{j_{t}} \ldots u_{j_{1}}$ is reduced, we have

$$
l\left(u_{j_{k-1}} \ldots u_{j_{1}}\right)<l\left(u_{j_{k}} \ldots u_{j_{1}}\right)
$$

so that

$$
T_{u_{j_{k}}} T_{u_{j_{k_{1}}} \ldots u_{j_{1}} w_{0}} T_{u_{j_{k}} u_{k-1} \ldots u_{j_{1}} w_{0}}
$$

For $j_{k-1}<i<j_{k}$, we have $l\left(u_{i} u_{j_{k-1}} \ldots u_{j_{1}}\right)>l\left(u_{j_{k-1}} \ldots u_{j_{1}}\right)$, so that

$$
T_{u_{i}} T_{u_{j_{k-1}} \ldots u_{j_{1}} w_{0}}=T_{u_{k-1} \ldots} \ldots u_{j_{1}} w_{0} .
$$

Hence if $x=u_{j_{t}} \ldots u_{j_{1}} w_{0}$ we have

$$
T_{w} T_{x}=T_{u_{1}} \ldots T_{u_{r}} T_{u_{j_{t}} \ldots u_{j 1} w_{0}}=T_{w_{0}} .
$$

Conversely, suppose that

$$
T_{w_{0}}=T_{w} T_{x}=T_{u_{1}} \ldots T_{u_{r}} T_{x} .
$$

Let $j_{1}<\cdots<j_{t}$ be those values of j for which

$$
T_{u_{j}} T_{u_{j+1}} \ldots T_{u_{r}} T_{x} \neq T_{u_{j+1}} \ldots T_{u_{r}} T_{x} .
$$

Then we have $T_{w} T_{x}=T_{u_{j_{1}}} \ldots T_{u_{j_{t}}} T_{x}=T_{u_{j_{1}} . . j_{j_{t}} w_{0}}$, so that $x=u_{j_{t}} \ldots u_{j_{1}} w_{0}$; the fact that $u_{j_{1}} \ldots u_{j_{t}}$ is good follows from the definition of j_{1}, \ldots, j_{t}.

Now we show that the 'good' condition is a red herring.
Lemma 4.4. The set of elements of W equal to $u_{j_{1}} \ldots u_{j_{t}}$ for a good sub-expression $u_{j_{1}} \ldots u_{j_{t}}$ of $u_{1} \ldots u_{r}$ equals the set of elements of W equal to $u_{j_{1}} \ldots u_{j_{t}}$ for any sub-expression $u_{j_{1}} \ldots u_{j_{t}}$ of $u_{1} \ldots u_{r}$.
Proof. Given a sub-expression $u_{j_{1}} \ldots u_{j_{t}}$ which is not good, we shall transform it into a good subexpression without changing the element of W it represents. We proceed by induction on t, and for fixed t, we proceed by reverse induction on $j_{1}+\cdots+j_{t}$.

First suppose $u_{j_{1}} \ldots u_{j_{t}}$ is not reduced. Then by the Deletion Condition, we may delete two entries in this subexpression without changing the element of W it represents. We are then done by induction on t.

Now suppose $u_{j_{1}} \ldots u_{j_{t}}$ is reduced but not good. Then there exist k, i such that $j_{k-1}<i<j_{k}$ and

$$
l\left(u_{j_{1}} \ldots u_{j_{k-1}} u_{i}\right)<l\left(u_{j_{1}} \ldots u_{j_{k-1}}\right) .
$$

By the Exchange Condition, there is some $c \leqslant k-1$ such that

$$
u_{j_{1}} \ldots \widehat{u_{j_{c}}} \ldots u_{j_{k-1}} u_{i}=u_{j_{1}} \ldots u_{j_{k-1}} .
$$

Hence

$$
u_{j_{1}} \ldots u_{j_{t}}=u_{j_{1}} \ldots \widehat{u_{j_{c}}} \ldots u_{j_{k-1}} u_{i} u_{j_{k}} \ldots u_{j_{t}}
$$

so we may replace $u_{j_{c}}$ with u_{i} in our sub-expression, and we are done by induction on $j_{1}+\cdots+j_{t}$.

We conclude that $T_{w} T_{x}$ equals $T_{w_{0}}$ if and only if $x=u_{j_{t}} \ldots u_{j_{1}} w_{0}$ for some sub-expression $u_{j_{1}} \ldots u_{j_{t}}$ of $u_{1} \ldots u_{r}$. Similarly, we find that $\phi\left(T_{x}\right) T_{w}$ equals $T_{w_{0}}$ if and only if

$$
\phi\left(T_{x}\right)=T_{w_{0} u_{j t} \ldots u_{j_{1}}}
$$

for some sub-expression $u_{j_{1}} \ldots u_{j_{t}}$. But $\phi\left(T_{x}\right)=T_{w_{0} x w_{0}}$, and so $\phi\left(T_{x}\right) T_{w}$ equals $T_{w_{0}}$ if and only if $T_{w} T_{x}$ does.

Now we discuss the consequences for injective and projective modules. Given an \mathcal{H}-module M, let $P(M)$ and $I(M)$ denote its projective cover and injective hull, respectively.
Proposition 4.5. \mathcal{H} is self-injective, with

$$
P\left(M_{J}\right) \cong I\left(\widehat{M_{J}}\right)
$$

for all $J \subseteq\{1, \ldots, n\}$. Hence $P^{\circ} \cong P$ for any projective \mathcal{H}-module $P . \mathcal{H}$ is symmetric if and only if each connected component of G is of one of the types listed in Proposition 2.4.
Proof. Since \mathcal{H} is Frobenius, it is self-injective [1, Proposition 1.6.2]. Hence $P=P\left(M_{J}\right)$ is isomorphic to the injective hull of some simple module. Let e be an idempotent such that $P\left(M_{J}\right) \cong \mathcal{H e}$ (Norton [9] describes such an idempotent explicitly). Then $\mathcal{H} \phi(e) \cong \widehat{P} \cong P\left(\widehat{M_{J}}\right)$. Also, soc $(P) e$ is a left ideal in \mathcal{H} and so there is some $x \in \operatorname{soc}(P)$ such that

$$
0 \neq \lambda(x e)=\lambda(\phi(e) x),
$$

so

$$
0 \neq \phi(e) \operatorname{soc}(P) \cong \operatorname{Hom}_{\mathcal{H}}(\widehat{P}, \operatorname{soc}(P)),
$$

and we must have $\operatorname{soc}(P) \cong \widehat{M_{J}}$.
Since $\mathcal{H}^{\circ} \cong \mathcal{H}$ and $P\left(M_{J}\right) \cong I\left(M_{J}^{0}\right)$, we find that any projective module is self-dual. Proposition 4.2 says that \mathcal{H} is symmetric when ϕ is the identity; on the other hand, for a symmetric algebra, $P(S) \cong I(S)$ for a simple module S, so \mathcal{H} is not symmetric when ϕ is not the identity.

Remark. The correspondence between injective and projective modules also follows (once we have self-injectivity) from [9, Lemma 4.23], in which the socle of each indecomposable left ideal of \mathcal{H} is found explicitly.

5 Extensions of simple modules

In this section, we calculate the space $\operatorname{Ext}_{\mathcal{H}}^{1}(M, N)$ for simple \mathcal{H}-modules M and N. Since all simple \mathcal{H}-modules are one-dimensional, the easiest way to do this is simply to classify twodimensional modules. This gives the following result (which is also proved, in type A, in [3]).
Theorem 5.1. Suppose $J, K \subseteq\{1, \ldots, n\}$. Then $\operatorname{dim}_{\mathbb{F}} \operatorname{Ext}_{\mathcal{H}}^{1}\left(M_{J}, M_{K}\right)$ is 1 if

- neither of J and K is contained in the other, and
- for any $j \in J \backslash K$ and $k \in K \backslash J$, we have $m_{j k} \geqslant 3$,
and 0 otherwise.
Proof. Suppose we have a two-dimensional module M which is an extension of M_{J} by M_{K}. Let $\left\{e_{2}\right\}$ be a basis for a submodule isomorphic to M_{K}, and extend to a basis $\left\{e_{1}, e_{2}\right\}$ for M. If we let $J_{i}=\mathbb{1}(i \in J)$ and $K_{i}=\mathbb{1}(i \in K)$, then T_{i} acts on M by the matrix

$$
A_{i}=\left(\begin{array}{cc}
J_{i} & 0 \\
a_{i} & K_{i}
\end{array}\right)
$$

for some a_{i}. We must check the defining relations of \mathcal{H}.
The fact that T_{i} is idempotent simply means that $a_{i}=0$ whenever $J_{i}=K_{i}$. Now we check the braid relations

$$
\left(A_{j} A_{k} A_{j} \ldots\right)_{m_{j k}}=\left(A_{k} A_{j} A_{k} \ldots\right)_{m_{j k}} .
$$

if either $J_{j}=K_{j}$ or $J_{k}=K_{k}$ then one of A_{j}, A_{k} is either 0 or the identity matrix, and the braid relation is immediate. In the case where $J_{j}=J_{k}=1, K_{j}=K_{k}=0$, we have

$$
\left(A_{j} A_{k} A_{j} \ldots\right)_{m}=A_{j}
$$

for any $m>0$, so we must have $a_{j}=a_{k}$. Similarly if $J_{j}=J_{k}=0, K_{j}=K_{k}=1$, we have $a_{j}=a_{k}$. If $J_{j}=K_{k}=1, K_{j}=J_{k}=0$, then we have

$$
\left(A_{j} A_{k} A_{j} \ldots\right)_{m}=0
$$

for all $m \geqslant 2$, while

$$
\left(A_{k} A_{j} A_{k} \ldots\right)_{m}= \begin{cases}\left(\begin{array}{cc}
0 & 0 \\
a_{j}+a_{k} & 0
\end{array}\right) & (m=2) \\
0 & (m \geqslant 3)\end{cases}
$$

We conclude that M affords a representation of \mathcal{H} if and only if there exist $a, b \in \mathbb{F}$ such that each A_{i} is one of the matrices

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 0 \\
a & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 0 \\
b & 0
\end{array}\right),
$$

and such that $a+b=0$ if there exist $j \in J \backslash K, k \in K \backslash J$ such that $m_{j k}=2$.
If $a+b=0$, then these four matrices can be simultaneously conjugated to diagonal matrices, and so M is a split extension. If $a+b \neq 0$, then the extension is non-split. But simultaneous conjugation by the matrix $\left(\begin{array}{ll}1 & 0 \\ c & d\end{array}\right)$ takes the pair (a, b) to the pair $(d a+c, d b-c)$, and so all non-split extensions are isomorphic. The result follows.

Remark. Theorem 5.1 affords a slightly quicker classification of the blocks of \mathcal{H} in the case where W is irreducible than in [9, Theorem 5.2]. Given a proper non-empty subset J of $\{1, \ldots, n\}$, we wish to show that M_{J} lies in the same block of \mathcal{H} as $M_{\{1\}}$; we do this by exhibiting a sequence $J=J_{0}, J_{1}, \ldots, J_{r}=\{1\}$ of subsets with $\operatorname{Ext}_{\mathcal{H}}^{1}\left(M_{J_{i-1}}, M_{J_{i}}\right) \neq 0$ for all i. By Theorem 5.1, we can construct J_{i} from J_{i-1} by replacing $j \in J_{i-1}$ with some $k \notin J_{i-1}$ which is adjacent to j in the Coxeter graph, or by replacing $j, j^{\prime} \in J_{i-1}$ with some $k \notin J_{i-1}$ which is adjacent to both j and j^{\prime} in the Coxeter graph. Since the Coxeter graph is connected, it is easily seen that we can get to $J_{r}=\{1\}$ in this way.

6 Branching of induced representations in type A

In this section, we specialise to 0 -Hecke algebras of type A. Let \mathcal{H}_{n} denote the 0 -Hecke algebra for the Coxeter group of type A_{n}, with generators s_{1}, \ldots, s_{n} and

$$
m_{i j}= \begin{cases}3 & (|i-j|=1) \\ 2 & (|i-j|>1) .\end{cases}
$$

By Proposition 2.4, the automorphism ϕ is given by $T_{i} \mapsto T_{n+1-i}$.
\mathcal{H}_{n-1} is naturally a subalgebra of \mathcal{H}_{n}, and \mathcal{H}_{n} is free as an \mathcal{H}_{n-1}-module. Given a simple module M_{J} for \mathcal{H}_{n-1}, we wish to study the structure of the induced module

$$
\operatorname{Ind}_{\mathcal{H}_{n-1}}^{\mathcal{H}_{n}} M_{J}=\mathcal{H}_{n} \otimes_{\mathcal{H}_{n-1}} M_{J} .
$$

We shall show that this module is multiplicity-free and describe its composition factors and submodule lattice.

In [8, §5], the induction of simple and projective modules from \mathcal{H}_{n-1} to \mathcal{H}_{n} is discussed; the authors of that paper look at the more general situation $\mathcal{H}_{0}\left(\Im_{n-m} \times \Im_{m}\right) \leqslant \mathcal{H}_{0}\left(\Im_{n}\right)$, and describe the composition factors of an induced simple module, via quasi-symmetric functions. In fact, they consider the filtration on an induced simple module which arises from the length filtration on $\mathcal{H}_{0}\left(\Im_{n}\right)$, and give a 'graded characteristic' which decribes the composition factors of the layers of this filtration. But they do not describe in full the submodule lattice of an induced simple module, which is our task.

Given a multiplicity-free module M (or indeed any module whose submodule lattice is distributive), we may encode its submodule lattice simply by imposing a partial order on the set of composition factors: for composition factors S, T, we write $S \geqslant_{M} T$ if every submodule of M with S as a composition factor also has T as a composition factor. Equivalently, we may simply write down the poset of those submodules of M with simple cosocles, ordered by inclusion, and label each such submodule by the isomorphism class of its cosocle.

We make a slight change of notation for simple modules: given $J \subseteq\{1, \ldots, n\}$, we write $J_{i}=1$ if $i \in J$ and 0 otherwise, as before. Then we write

$$
M_{J}=M\left(J_{1}, \ldots, J_{n}\right) .
$$

Now for $J \subseteq\{1, \ldots, n-1\}$ we examine the structure of $M=\operatorname{Ind}_{\mathcal{H}_{n-1}}^{\mathcal{H}_{n}} M_{J}$. It is easy to find a
filtration of M by simple modules. If $\{x\}$ is a basis for M_{J}, then let

$$
\begin{aligned}
x_{n} & =1 \otimes x, \\
x_{n-1} & =T_{n} \otimes x, \\
x_{n-2} & =T_{n-1} T_{n} \otimes x, \\
& \vdots \\
x_{0} & =T_{1} T_{2} \ldots T_{n} \otimes x .
\end{aligned}
$$

Proposition 6.1. $\left\{x_{0}, \ldots, x_{n}\right\}$ is a basis for M. Moreover, for $i=0, \ldots, n$, the subspace

$$
M_{i}=\left\langle x_{0}, \ldots, x_{i}\right\rangle
$$

is a submodule of M, and we have

$$
\begin{aligned}
M_{n} / M_{n-1} & \cong M\left(J_{1}, \ldots, J_{n-1}, 0\right), \\
M_{n-1} / M_{n-2} & \cong M\left(J_{1}, \ldots, J_{n-2}, 0,1\right), \\
M_{n-2} / M_{n-3} & \cong M\left(J_{1}, \ldots, J_{n-3}, 0,1, J_{n-1}\right), \\
\vdots & \\
M_{2} / M_{1} & \cong M\left(J_{1}, 0,1, J_{3}, \ldots, J_{n-1}\right), \\
M_{1} / M_{0} & \cong M\left(0,1, J_{2}, \ldots, J_{n-1}\right), \\
M_{0} & \cong M\left(1, J_{1}, \ldots J_{n-1}\right) .
\end{aligned}
$$

In particular, M is multiplicity-free.
Proof. Given $1 \leqslant i \leqslant n$ and $0 \leqslant j \leqslant n$, we have

$$
T_{i} x_{j}= \begin{cases}J_{i} x_{j} & (i<j) \\ x_{j-1} & (i=j) \\ x_{j} & (i=j+1) \\ J_{i-1} x_{j} & (i>j+1)\end{cases}
$$

So x_{0}, \ldots, x_{n} certainly span M. The fact that M_{i} is a submodule can also be seen from this action, as can the eigenvalues of T_{1}, \ldots, T_{n} on the quotients M_{i} / M_{i-1}. These quotients are then seen to be non-isomorphic: if

$$
M\left(J_{1}, \ldots, J_{i-1}, 0,1, J_{i+1}, \ldots, J_{n}\right)=M\left(J_{1}, \ldots, J_{j-1}, 0,1, J_{j+1}, \ldots, J_{n}\right)
$$

with $i<j$, then we have

$$
1=J_{i+1}=J_{i+2}=\cdots=J_{j-2}=J_{j-1}=0
$$

So M is multiplicity-free, and has $n+1$ composition factors. So $\operatorname{dim}_{\mathbb{F}} M \geqslant n+1$, and $\left\{x_{0}, \ldots, x_{n}\right\}$ is a basis.

Remark. The action of T_{i} on M given in the above proof shows that M is a combinatorial module, as defined in [3, §2.2].

We impose a total order on the composition factors of M according to this filtration:

$$
M\left(J_{1}, \ldots, J_{n}, 0\right)>M\left(J_{1}, \ldots, J_{n-1}, 0,1\right)>\cdots>M\left(0,1, J_{2}, \ldots, J_{n-1}\right)>M\left(1, J_{2}, \ldots, J_{n-1}\right) .
$$

Then the partial order \geqslant_{M} which encodes the submodule lattice of M is a sub-partial order of \geqslant. Our main result is as follows.

Theorem 6.2. Suppose M_{K} and M_{L} are composition factors of M. Then $M_{K}>_{M} M_{L}$ if and only if $M_{K}>M_{L}$ and neither of K, L is contained in the other.

The proof is slightly complicated. First we show that induction is well-behaved with respect to the functors $N \mapsto \bar{N}$ and $N \mapsto N^{\circ}$.

Lemma 6.3. Let N be any \mathcal{H}_{n-1}-module. Then $\operatorname{Ind}_{\mathcal{H}_{n-1}}^{\mathcal{H}_{n}} \bar{N} \cong \overline{\operatorname{Ind}_{\mathcal{H}_{n-1}}^{\mathcal{H}_{n}} N}$.
Proof. $\operatorname{Ind}_{\mathcal{H}_{n-1}}^{\mathcal{H}_{n}} N$ is spanned by elements

$$
T_{j+1} T_{j+2} \ldots T_{n} \otimes m
$$

for $m \in N$. Likewise, $\operatorname{Ind}_{\mathcal{H}_{n-1}}^{\mathcal{H}_{n}} \bar{N}$ is spanned by elements

$$
\left(1-T_{j+1}\right)\left(1-T_{j+2}\right) \ldots\left(1-T_{n}\right) \otimes m .
$$

We define a map $\overline{\operatorname{Ind}_{\mathcal{H}_{n-1}}^{\mathcal{H}_{n}} N} \rightarrow \operatorname{Ind}_{\mathcal{H}_{n-1}}^{\mathcal{H}_{n}} \bar{N}$ via

$$
T_{j+1} T_{j+2} \ldots T_{n} \otimes m \longmapsto\left(1-T_{j+1}\right)\left(1-T_{j+2}\right) \ldots\left(1-T_{n}\right) \otimes m
$$

for all j and all $m \in N$. The fact that θ is an automorphism of \mathcal{H} shows that this is a module isomorphism.

Lemma 6.4. Let N be any \mathcal{H}_{n-1}-module. Then $\operatorname{Ind}_{\mathcal{H}_{n-1}}^{\mathcal{H}_{n}} N^{\circ} \cong\left(\operatorname{Ind}_{\mathcal{H}_{n-1}}^{\mathcal{H}_{n}} N\right)^{\circ}$.
Proof. Let $\left\{e_{1}, \ldots, e_{r}\right\}$ and $\left\{\epsilon_{1}, \ldots, \epsilon_{r}\right\}$ be dual bases for N and N°, so that if \langle,$\rangle is the bilinear form$ given by $\left\langle e_{i}, \epsilon_{j}\right\rangle=\delta_{i j}$, then

$$
\left\langle T_{i} m, \mu\right\rangle=\left\langle m, T_{n-i} \mu\right\rangle
$$

for all $m \in N, \mu \in N^{\circ}$. Then we claim that

$$
\left\{T_{j+1} \ldots T_{n} \otimes e_{k} \mid 0 \leqslant j \leqslant n, 1 \leqslant k \leqslant r\right\}
$$

is a basis for $\operatorname{Ind}_{\mathcal{H}_{n-1}}^{\mathcal{H}_{n}} N$; this follows as in the proof of Proposition 6.1. Similarly,

$$
\left\{\left(1-T_{j+1}\right) \ldots\left(1-T_{n}\right) \otimes \epsilon_{k} \mid 0 \leqslant j \leqslant n, 1 \leqslant k \leqslant r\right\}
$$

is a basis for $\operatorname{Ind}_{\mathcal{H}_{n-1}}^{\mathcal{H}_{n}} N^{0}$. Hence so is

$$
\left\{\left(T_{j+1}-1\right) \ldots\left(T_{n}-1\right) \otimes \epsilon_{k} \mid 0 \leqslant j \leqslant n, 1 \leqslant k \leqslant r\right\} .
$$

Now we make these bases dual in such a way as to respect the \mathcal{H}_{n}-action: let (,) be the bilinear form given by

$$
\left(T_{j+1} \ldots T_{n} \otimes e_{k},\left(T_{s+1}-1\right) \ldots\left(T_{n}-1\right) \otimes \epsilon_{t}\right)=\delta_{k t} \delta_{j(n-s)} .
$$

Then we claim

$$
\left(T_{i} m, \mu\right)=\left(m, T_{n+1-i} \mu\right)
$$

for all $m \in \operatorname{Ind}_{\mathcal{H}_{n-1}}^{\mathcal{H}_{n}} N, \mu \in \operatorname{Ind}_{\mathcal{H}_{n-1}}^{\mathcal{H}_{n}} N^{\circ}$, which is what we want. The claim follows by explicitly considering the action of T_{i} on these basis elements. Specifically, we have

$$
T_{i}\left(T_{j+1} \ldots T_{n} \otimes e_{k}\right)= \begin{cases}T_{j+1} \ldots T_{n} \otimes T_{i} e_{k} & (i<j) \\ T_{j} T_{j+1} \ldots T_{n} \otimes e_{k} & (i=j) \\ T_{j+1} \ldots T_{n} \otimes e_{k} & (i=j+1) \\ T_{j+1} \ldots T_{n} \otimes T_{i-1} e_{k} & (i>j+1) .\end{cases}
$$

and

$$
T_{i}\left(T_{j+1}-1\right) \ldots\left(T_{n}-1\right) \otimes \epsilon_{k}= \begin{cases}\left(T_{j+1}-1\right) \ldots\left(T_{n}-1\right) \otimes T_{i} \epsilon_{k} & (i<j) \\ \left(T_{j}-1\right) \ldots\left(T_{n}-1\right) \otimes \epsilon_{k}+\left(T_{j+1}-1\right) \ldots\left(T_{n}-1\right) \otimes \epsilon_{k} & (i=j) \\ 0 & (i=j+1) \\ \left(T_{j+1}-1\right) \ldots\left(T_{n}-1\right) \otimes T_{i-1} \epsilon_{k} & (i>j+1)\end{cases}
$$

the claim may now be checked.

Proof of Theorem 6.2. We proceed by induction on n; small cases may be easily checked, so assume now that $n \geqslant 4$. The inductive step is based on the following.

Claim. Given the inductive hypothesis, M has a submodule M^{-}such that

- $M / M^{-} \cong M\left(J_{1}, \ldots, J_{n-1}, 1-J_{n-1}\right)$;
- For any composition factors M_{K}, M_{L} of M^{-}, we have $M_{K}>_{M^{-}} M_{L}$ if and only if $M_{K}>M_{L}$ and neither of K, L is contained in the other.

Proof. By Lemma 6.3, we may assume that $J_{n-1}=1$. Then we may put $M^{-}=M_{n-1}$ as defined in Proposition 6.1. By the module action given in the proof of Proposition 6.1, M^{-}is isomorphic as an \mathcal{H}_{n-1}-module to $\operatorname{Ind}_{\mathcal{H}_{n-2}}^{\mathcal{H}_{n-1}} M\left(J_{1}, \ldots, J_{n-2}\right)$, while T_{n} acts on M^{-}as the identity. Hence by induction we know the submodule lattice of M^{-}; since $n \in K$ for all composition factors M_{K} of M^{-}, we have $K \subset L$ if and only if $K \backslash\{n\} \subseteq L \backslash\{n\}$, and the result follows.

By taking dual modules and using Lemma 6.4 (or simply by a similar argument to that used to justify the above claim), we deduce the following.

Claim. Given the inductive hypothesis, M has a submodule S isomorphic to $M\left(1-J_{1}, J_{1}, \ldots, J_{n-1}\right)$, and for any two composition factors M_{K}, M_{L} of M / S we have $M_{K}>_{M / S} M_{L}$ if and only if $M_{K}>M_{L}$ and neither of K, L is contained in the other.

This is almost enough to determine the submodule lattice of M : given composition factors $M_{K}>M_{L}$, we now know whether $M_{K}>_{M} M_{L}$ except in the case

$$
M_{K}=M / M^{-} \cong M\left(J_{1}, \ldots, J_{n-1}, 1-J_{n-1}\right), \quad M_{L}=S \cong M\left(1-J_{1}, J_{1}, \ldots, J_{n-1}\right) .
$$

But we claim that there is a composition factor M_{N} of M^{-} / S such that

$$
\begin{equation*}
M\left(J_{1}, \ldots, J_{n-1}, 1-J_{n-1}\right)>_{M} M_{N}>_{M} M\left(1-J_{1}, J_{1}, \ldots, J_{n-1}\right) ; \tag{*}
\end{equation*}
$$

this will then imply that $M\left(J_{1}, \ldots, J_{n-1}, 1-J_{n-1}\right)>_{M} M\left(1-J_{1}, J_{1}, \ldots, J_{n-1}\right)$, and the theorem will be proved.

By Proposition 6.1, the composition factors of M^{-} / S are

$$
\begin{aligned}
& M\left(J_{1}, \ldots, J_{n-2}, 0, J_{n-1}\right), \\
& M\left(J_{1}, \ldots, J_{n-3}, 0,1, J_{n-1}\right), \\
& M\left(J_{1}, \ldots, J_{n-4} 0,1, J_{n-2}, J_{n-1}\right), \\
& \vdots \\
& M\left(J_{1}, J_{2}, 0,1, J_{4}, \ldots, J_{n-1}\right), \\
& M\left(J_{1}, 0,1, J_{3}, \ldots, J_{n-1}\right), \\
& M\left(J_{1}, 1, J_{2}, \ldots, J_{n-1}\right) .
\end{aligned}
$$

So suppose $M_{N}=M\left(J_{1}, \ldots, J_{i-1}, 0,1, J_{i+1}, \ldots, J_{n-1}\right)$ for some $2 \leqslant i \leqslant n-2$, and that (*) does not hold, i.e. one of $N \subseteq K, N \supseteq K, N \subseteq L$ or $N \supseteq L$ holds. These four possibilities are equivalent to

1. $1 \leqslant J_{i+1} \leqslant J_{i+2} \leqslant \ldots \leqslant J_{n-1} \leqslant 1-J_{n-1}$,
2. $J_{i}=0$ and $J_{i+1} \geqslant J_{i+2} \geqslant \ldots \geqslant J_{n-1} \geqslant 1-J_{n-1}$,
3. $J_{i}=1$ and $J_{i-1} \leqslant J_{i-2} \leqslant \ldots \leqslant J_{1} \leqslant 1-J_{1}$,
4. $0 \geqslant J_{i-1} \geqslant J_{i-2} \geqslant \ldots \geqslant J_{1} \geqslant 1-J_{1}$,
respectively. Neither (1) nor (4) can happen, so we have either

$$
J_{i}=0, J_{i+1}=\cdots=J_{n-1}=1
$$

or

$$
J_{i}=1, J_{1}=\cdots=J_{i-1}=0
$$

If there is no N such that (*) holds, then this is true for all $2 \leqslant i \leqslant n-2$. This then implies that for some $1 \leqslant i \leqslant n-2$ we have

$$
J_{1}=\cdots=J_{i}=0, \quad J_{i+1}=\cdots=J_{n-1}=1 .
$$

But then we take $M_{N}=M\left(J_{1}, \ldots, J_{n-2}, 0, J_{n-1}\right)$, and we are done.

7 Further questions

Further questions about 0-Hecke algebras present themselves. Firstly, it would be nice to extend the results of Section 6, and find the structure of an induced simple module in types B and D, or more generally for any embedding of a Coxeter group of rank $n-1$ in a Coxeter group of rank n. Calculation of small cases in type B shows that we cannot hope that induced simple modules will be multiplicity-free in general, but it does seem plausible that the submodule lattice of an induced simple module is always distributive.

Another natural question is to ask what the centre of \mathcal{H} is. It is easy enough to write down a condition in terms of length for a given element of \mathcal{H} to be central, but this does not seem easy to apply.

Finally, one would like to know more about the structure of projective modules. It is tempting to wonder whether a result analogous to Martin's conjecture [5] for representations of symmetric groups holds for 0-Hecke algebras: recall that a module is stable if its radical filtration coincides with its socle filtration. In an earlier version of this paper, we conjectured that every indecomposable projective module for a 0 -Hecke algebra is stable, and we are grateful to Maud de Visscher for pointing out that this conjecture fails for the Coxeter group of type A_{4}. So we make a different conjecture.

Conjecture 7.1. Suppose W is a finite Coxeter group. Then every indecomposable projective module for $\mathcal{H}_{0}(W)$ is stable if and only if every irreducible component of W is of rank less than or equal to 3 or of type D_{4}. Furthermore, if W is irreducible of rank at most 3 or type D_{4}, then every indecomposable projective module in the non-trivial block of $\mathcal{H}_{0}(W)$ has Loewy length $h-1$, where h is the Coxeter number of W.

It is easy to calculate from Theorem 5.1 that every irreducible component of W is of rank at most 3 or of type D_{4} if and only if the ordinary quiver of $\mathcal{H}_{0}(W)$ is bipartite, and this provides a further link with Martin's conjecture. It would be routine but tedious to check the the second part of the conjecture, and we have not done this in detail.

References

[1] D. Benson, Representations and cohomology I, Cambridge Studies in Advanced Mathematics 30, Cambridge University Press, Cambridge, 1998.
[2] R. Carter, 'Representation theory of the 0-Hecke algebra', J. Algebra 104 (1986), 89-103.
[3] G. Duchamp, F. Hivert \& J.-Y. Thibon, 'Noncommutative symmetric functions VI. Free quasisymmetric functions and related algebras', Internat. J. Algebra Comput. 12 (2002), 671-717.
[4] G. Duchamp, D. Krob, B. Leclerc \& J.-Y. Thibon, 'Fonctions quasi-symétriques, fonctions symétriques non-commutatives, et algèbres de Hecke à $q=0$ ', C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 107-12.
[5] S. Martin, Projective indecomposable modules for symmetric groups I, Quart. J. Math. Oxford Ser. (2) 44 (1994), 397-406.
[6] A. Mathas, Iwahori-Hecke algebras and Schur algebras of the symmetric group, University lecture series 15, American Mathematical Society, Providence, RI, 1999.
[7] J. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge, 1990.
[8] D. Krob \& J.-Y. Thibon, 'Noncommutative symmetric functions IV. Quantum linear groups and Hecke algebras at $q=0^{\prime}$, J. Algebraic Combin. 6 (1997), 339-76.
[9] P. Norton, ‘0-Hecke algebras’, J. Austral. Math. Soc. Ser. A 27 (1979), 337-57.

[^0]: *Current address: Queen Mary, University of London, Mile End Road, London E1 4NS, U.K.

