J. Austral. Math. Soc. (Series A) 27 (1979), 337-357

0-HECKE ALGEBRAS

P. N. NORTON

(Received 8 March 1978)

Communicated by D. E. Taylor

Abstract

The structure of a 0-Hecke algebra H of type (W, R) over a field is examined. H has 2^n distinct irreducible representations, where n = |R|, all of which are one-dimensional, and correspond in a natural way with subsets of R. H can be written as a direct sum of 2^n indecomposable left ideals, in a similar way to Solomon's (1968) decomposition of the underlying Coxeter group W.

Subject classification (Amer. Math. Soc. (MOS) 1970): 16 A 48.

1. Introduction

NOTATION. $\{i_1, ..., i_s, ..., i_n\}$ denotes the set $\{i_1, ..., i_n\} - \{i_s\}$, \cup denotes set union and \cap denotes set intersection. $(xyx...)_n$ denotes the product of the first *n* terms of the sequence x, y, x, y, x, ... ACC denotes the ascending chain condition and DCC denotes the descending chain condition. Let S be a set and A a subset of S. Then |A| denotes the number of elements in A, and \hat{A} denotes the complement of A in S.

Let K be any field, and let (W, R) be a finite Coxeter system, with root system Φ , positive system Φ^+ and simple system II. For each $J \subseteq R$, let Φ_J , Φ_J^+ and Π_J be the corresponding root system, positive system and simple system. $w_i \in R$ is the reflection in the hyperplane perpendicular to $r_i \in \Pi$. For each $J \subseteq R$, let

$$X_J = \{ w \in W : w(\Pi_J) \subseteq \Phi^+ \} \text{ and } Y_J = \{ w \in W : w(\Pi_J) \subseteq \Phi^+, w(\Pi_J) \subseteq \Phi^- \},$$

where $\hat{J} = R - J$. We shall assume all the standard results on finite Coxeter systems, as found in Bourbaki (1968), Carter (1972) and Steinberg (1967).

1.1 DEFINITION. The 0-Hecke algebra H over K of type (W, R) is the associative algebra over K with identity 1 generated by $\{a_i : w_i \in R\}$ subject to the relations:

- (i) $a_i^2 = -a_i$ for all $w_i \in R$,
- (ii) $(a_i a_j a_i \dots)_{n_{ij}} = (a_j a_i a_j \dots)_{n_{ij}}$ for all $w_i, w_j \in R$, $w_i \neq w_j$, where n_{ij} = the order of $w_i w_j$ in W.

For all $w \in W$, define $a_w = a_{i_1} \dots a_{i_e}$, where $w = w_{i_1} \dots w_{i_e}$ is a reduced expression for $w \in W$ in terms of the elements of R. Note that $a_{1w} = 1$, where 1_W denotes the identity element of W. It is easy to show that a_w is independent of the reduced expression for w, and that every element of H is a K-linear combination of elements a_{w} , for $w \in W$.

By Bourbaki (1968) (Exercise 23, p. 55), $\{a_w : w \in W\}$ are linearly independent over K and so form a K-basis of H.

1.2 SOME EXAMPLES. (i) Let G = G(q) be a Chevalley group over the finite field F = GF(q) of q elements, where $q = p^m$ for some prime p and positive integer m. Then G has a (B, N) pair (G, B, N, R) and Weyl group W such that for each $w_i \in R$ there is a positive integer c_i such that $|B: B \cap B^{w_i}| = q^{c_i}$. If K is a field of characteristic p, then the Hecke algebra $H_K(G, B)$ is a 0-Hecke algebra.

(ii) Let G be a finite group with a split (B, N) pair (G, B, N, R, U) of rank n and characteristic p with Weyl group W, and let K be a field of characteristic p. Then the Hecke algebra $H_K(G, B)$ is a 0-Hecke algebra of type (W, R) over K.

1.3 LEMMA. For all $w_i \in R$ and all $w \in W$,

$$a_{i} a_{w} = \begin{cases} a_{w_{i}w} & \text{if } l(w_{i}w) = l(w) + 1, \\ -a_{w} & \text{if } l(w_{i}w) = l(w) - 1; \end{cases}$$
$$a_{w} a_{i} = \begin{cases} a_{ww_{i}} & \text{if } l(ww_{i}) = l(w) + 1, \\ -a_{w} & \text{if } l(ww_{i}) = l(w) - 1. \end{cases}$$

PROOF. If $l(w_i w) = l(w) + 1$, then $a_{w_i w} = a_i a_w$ by the definition of $a_{w_i w}$. Suppose $l(w_i w) = l(w) - 1$; then there is a reduced expression for w beginning with w_i : say $w = w_i w'$ where l(w) = l(w') + 1. Then $a_w = a_i a_{w'}$, and so

$$a_i a_w = a_i a_i a_{w'} = -a_i a_{w'} = -a_w$$

Similarly for $a_w a_i$.

1.4 COROLLARY. (1) For all $w, w' \in W$, (a) $a_w a_{w'} = \pm a_{w'}$ for some $w'' \in W$, with $l(w'') \ge \max(l(w), l(w'))$; (b) $a_w a_{w'} = a_{ww'}$ if and only if l(ww') = l(w) + l(w'); 0-Hecke algebras

- (c) $a_w a_{w'} = (-1)^{l(w')} a_w$ if and only if $w(r_i) \in \Phi^-$ for each $r_i \in \Pi_J$, where $J = \{w_i \in R: w_i \text{ occurs in some reduced expression for } w'\}$.
- (d) $a_w a_{w'} = (-1)^{l(w)} a_{w'}$ if and only if $(w')^{-1}(r_i) \in \Phi^-$ for each $r_i \in \Pi_J$, where $J = \{w_i \in R: w_i \text{ occurs in some reduced expression for } w\};$
- (e) $a_w a_{w'} = \pm a_{w'}$ with l(w'') > l(w), where $l(w) \ge l(w')$, if and only if there exists $r_i \in \prod_J$ such that $w(r_i) \in \Phi^+$, where $J = \{w_j \in R: w_j \text{ occurs in some reduced expression for w'\}.$
- (2) Let w_0 be the unique element of maximal length in W. Then for all $w \in W$,

$$a_w a_{w_0} = (-1)^{l(w)} a_{w_0}$$
 and $a_{w_0} a_w = (-1)^{l(w)} a_{w_0}$.

2. The nilpotent radical of H

Let N be the nilpotent radical of H. Since H is a finite-dimensional algebra over K, H has the DCC and ACC and so N is also the Jacobson radical of H, and is the unique maximal nilpotent ideal of H.

There is a natural composition series for H, consisting of (two-sided) ideals of H such that every factor is a one-dimensional H-module. This series arises as follows: list the basis elements $\{a_w: w \in W\}$ in order of increasing length of w, and if w, $w' \in W$ have the same length it does not matter in which order a_w and $a_{w'}$ occur on the list. Rename these elements $h_1, h_2, \ldots, h_{|W|}$ respectively. Note that $h_1 = 1$ and $h_{|W|} = a_{w_0}$. Let H_j be the ideal of H generated by $\{h_m: m \ge j\}$. H_j has K-basis $\{h_m: m \ge j\}$ and dimension |W| - j + 1. Then

2.1
$$H = H_1 > H_2 > ... > H_{|W|} = a_{w_0} H > 0$$

is the natural composition series of H described above. H_i/H_{i+1} is a one-dimensional H-module, $1 \le i \le |W|$, where $H_{|W|+1} = 0$, with basis $h_i + H_{i+1}$, where $h_i = a_w$ for some $w \in W$. Either $a_w^2 = (-1)^{l(w)} a_w$ or $a_w^2 \in H_{i+1}$; in the first case, the factor ring H_i/H_{i+1} is generated by an idempotent, and in the second case it is nilpotent.

2.2 LEMMA. The number of factors which are generated by an idempotent is equal to 2^n , where n = |R|.

PROOF. The factors generated by idempotents correspond to elements $w \in W$ such that $a_{w}^{2} = (-1)^{l(w)} a_{w}$. Let $w \in W$ be such an element. Write $w = w_{i_{1}} \dots w_{i_{d}}$, where l(w) = s, and let $J = \{w_{i_{j}} : 1 \leq j \leq s\}$. Then $w \in W_{J}$, and by 1.4(1c), $w(\Pi_{J}) \subseteq \Phi^{-}$. Hence $w = w_{0J}$, the unique element of maximal length in W_{J} . Conversely, for each subset J of R, $a_{w_{0J}}^{2} = (-1)^{l(w_{0J})} a_{w_{0J}}$. Hence the number of factors which are generated by an idempotent is equal to the number of subsets of R, that is, 2^{n} , where n = |R|.

[3]

P. N. Norton

By Schreier's theorem, any series of ideals of H can be refined to a composition series, and all so obtained have the same number of terms in them as the natural series, and with the factors in one-one correspondence with those of the natural series. In particular, consider $H > N \ge 0$. This can be refined to a composition series $H = H'_1 > ... > H'_{|W|} > H'_{|W|+1} = 0$, where $N = H'_r$, $2 < r \le |W|+1$. Now each factor H'_i/H'_{i+1} , $i \ge r$, is nilpotent as $H'_i \le N$, and each factor H'_i/H'_{i+1} , $i+1 \le r$, must be generated by an idempotent as $H'_i \le N$, a semi-simple ring. Hence the number of factors which are nilpotent is equal to the dimension of N. Thus, dim $N = |W| - 2^n$, where n = |R|.

We can, however, give a precise basis of N.

2.3 THEOREM. Let $w \in W$, and suppose $w \neq w_{0J}$ for any $J \subseteq R$. Write $w = w_{i_1} \dots w_{i_8}$, l(w) = s, and let $J(w) = \{w_{i_j}: 1 \le j \le s\}$. Then $E(w) = a_w + (-1)^{\lfloor (w_{0J(w)}) + \lfloor (w) + 1 \rfloor} a_{w_{0J(w)}}$ is nilpotent, and $\{E(w): w \in W, w \ne w_{0J} \text{ for any } J \subseteq R\}$ is a basis of N.

PROOF. Show E(w) is nilpotent by induction on $l(w_{0J(w)}) - l(w)$. Note that if $w = w_{0J}$ for some $J \subseteq R$ then E(w) = 0. Suppose $l(w_{0J(w)}) - l(w) = 1$. Then since a reduced expression for w involves all $w_i \in J(w)$, $w \neq w_{0J(w)}$, there exists $r_j \in \Pi_{J(w)}$ such that $w(r_j) \in \Phi^+$. So $a_w^2 = (-1)^{l(w)-1} a_{w_{0J(w)}}$. Thus

$$\begin{split} E(w)^2 &= a_w^2 + a_w \, a_{w_{0J(w)}} + a_{w_{0J(w)}} \, a_w + a_{w_{0J(w)}}^2 \\ &= a_{w_{0J(w)}}^b \quad \text{where } b = (-1)^{l(w)-1} + 2(-1)^{l(w)} + (-1)^{l(w_{0J(w)})} \\ &= 0 \text{ as } l(w_{0J(w)}) = l(w) + 1. \end{split}$$

Now suppose $l(w_{0,J(w)}) - l(w) > 1$. Consider the product $a_w a_w$. Since $w \neq w_{0,J(w)}$, there exists $r_j \in \prod_{J(w)}$ such that $w(r_j) \in \Phi^+$. As any reduced expression for w involves all $w_i \in J(w)$, we have $a_w a_w = (-1)^{2l(w)-l(w')} a_{w'}$, with $w' \in W_{J(w)}$ and l(w') > l(w). Further, J(w') = J(w). Then

$$\begin{split} E(w)^2 &= a_w^2 + 2(-1)^{l(w_{0J(w)})+1} a_{w_{0J(w)}} + (-1)^{l(w_{0J(w)})} a_{w_{0J(w)}} \\ &= (-1)^{l(w')} a_{w'} + (-1)^{l(w_{0J(w)})+1} a_{w_{0J(w)}} \\ &= (-1)^{l(w')} (a_{w'} + (-1)^{l(w_{0J(w')})+l(w')+1} a_{w_{0J(w')}}) \\ &= (-1)^{l(w')} E(w'). \end{split}$$

As l(w') > l(w), either $w' = w_{0,J(w)}$ and thus $E(w)^2 = 0$ or $w' \neq w_{0,J(w)}$ and then by induction E(w') is nilpotent. Thus E(w) is nilpotent.

Finally, note that we get a nilpotent element for each $w \in W$, $w \neq w_{0J}$ for any $J \subseteq R$. The set of all E(w), $w \neq w_{0J}$ for any $J \subseteq R$, is obviously linearly independent, and there are $|W| - 2^n$ elements in all, where n = |R|. Hence they are a K-basis for N.

2.4 COROLLARY. H/N is commutative.

PROOF. We show that $a_i a_j - a_j a_i \in N$ for all $w_i, w_j \in R$. If $a_i a_j = a_j a_i$, the result is obvious. So suppose $a_i a_j \neq a_j a_i$. Then we can form $E(w_i w_j)$ and $E(w_j w_i)$ and $E(w_i w_j) - E(w_j w_i) = a_i a_j - a_j a_i \in N$ as each of $E(w_i w_j)$ and $E(w_j w_i)$ is in N.

3. The irreducible representations of H

Consider the one-dimensional *H*-modules which arise from the natural composition series of *H*. Let the factor H_i/H_{i+1} be generated as left *H*-module by $a_w + H_{i+1}$. The action of *H* on this element is determined as follows: for each $w_i \in R$,

$$a_i(a_w + H_{i+1}) = \begin{cases} -(a_w + H_{i+1}) & \text{if } w^{-1}(r_i) \in \Phi^-, \\ 0 & \text{if } w^{-1}(r_i) \in \Phi^+. \end{cases}$$

For any $w \in W$, let $J(w) = \{w_{i_j}: 1 \le j \le s\}$ where $w = w_{i_1} \dots w_{i_s}$ is a reduced expression for w. Then for $w' \in W$,

$$a_{w}(a_{w}+H_{i+1}) = \begin{cases} (-1)^{l(w')}(a_{w}+H_{i+1}) & \text{if } w^{-1}(\prod_{J(w')}) \subseteq \Phi^{-}, \\ 0 & \text{if there exists } r_{i} \in \prod_{J(w')} \text{ such} \\ & \text{that } w^{-1}(r_{i}) \in \Phi^{+}. \end{cases}$$

Hence the action of H on $a_w + H_{i+1}$ depends on w^{-1} .

3.1 DEFINITION. For each $J \subseteq R$, let λ_J be the one-dimensional representation of H defined by

$$\lambda_J(a_i) = \begin{cases} 0 & \text{if } w_i \in J, \\ -1 & \text{if } w_i \in J. \end{cases}$$

For all $w \in W$, let $w = w_{i_1} \dots w_{i_s}$ with l(w) = s. Then $\lambda_J(a_w) = \lambda_J(a_{i_1}) \dots \lambda_J(a_{i_s})$. Extend λ_J to H by linearity.

For each $J \subseteq R$, let $H_{i(J)}/H_{i(J)+1}$ be the factor of the natural series which is generated by $a_{wof} + H_{i(J)+1}$. Then the left *H*-module $H_{i(J)}/H_{i(J)+1}$ affords the representation λ_J of *H*.

Since each composition factor of H is one-dimensional, it follows that all irreducible representations of H are one-dimensional. Let μ be an irreducible representation of H. Then μ is completely determined by the values $\mu(a_i)$ for all $w_i \in R$. Since μ is an algebra homomorphism, $\mu(a_i)^2 = -\mu(a_i)$ for all $w_i \in R$. Let $\mu(a_i) = u_i \in K$ for all $w_i \in R$. Then $u_i^2 = -u_i$ in K implies that $u_i = 0$ or $u_i = -1$.

Thus each irreducible representation of H can be described by an *n*-tuple $(u_1, ..., u_n)$, where n = |R|, with $u_i = 0$ or -1 for all *i*. In particular, λ_J corresponds to the *n*-tuple $(u_1, ..., u_n)$ where $u_i = 0$ if $w_i \in J$ and $u_i = -1$ if $w_i \in \hat{J}$. There are 2^n such irreducible representations, and they all occur in the natural series of H.

 2^n maximal ideals of H are determined as follows: for each $J \subseteq R$, form the *n*-tuple (u_1, \ldots, u_n) , where $u_i = 0$ if $w_i \in J$ and $u_i = -1$ otherwise. Let M_J be the left ideal of H generated by $\{a_i - u_i \ 1 : w_i \in R\}$. Then $M_J = \ker \lambda_J$, and as each λ_J is irreducible, M_J is a maximal left ideal of H.

Now H/N is semi-simple Artinian. So by extending K to its algebraic closure \hat{K} and considering H as an algebra over \hat{K} , we deduce that

$$H/N \cong \overline{K} \oplus \overline{K} \oplus ... \oplus \overline{K}$$
, a direct sum of 2^n fields.

(Actually, we will show that

$$H/N \cong K \oplus K \oplus \ldots \oplus K$$
, 2^n copies of K,

regardless of which field K is.)

4. Some decompositions of H

For each $J \subseteq R$, let H_J be the subalgebra of H generated by $\{a_i : w_i \in J\}$.

4.1 DEFINITION. For each $J \subseteq R$, let

$$e_J = \sum_{w \in W_J} a_w, \quad o_J = (-1)^{l(w_{0J})} a_{w_{0J}}.$$

4.2 LEMMA. For all $w_i \in J$,

$$a_i e_J = 0 = e_J a_i$$
 and $a_i o_J = -o_J = o_J a_i$.

PROOF. Use 1.3.

4.3 LEMMA. Let $w_{0J} = w_{i_1} \dots w_{i_n}$, $l(w_{0J}) = s$. Then

$$e_J = (1 + a_{i_1}) \dots (1 + a_{i_n})$$

and is independent of the reduced expression for w_{0J} .

NOTATION. For all $w \in W$, if $w = w_{i_1} \dots w_{i_k}$ with l(w) = t, write

$$[1+a_w] = (1+a_{i_1})\dots(1+a_{i_k}).$$

By the following proof it follows that $[1+a_w]$ is independent of the reduced expression for w.

0-Hecke algebras

PROOF. Firstly, we show that $[1 + a_{w_0 j}]$ is independent of the reduced expression for $w_{0,j}$. Since we can pass from one reduced expression for $w_{0,j}$ to another by substitutions of the form $(w_i w_j w_i ...)_{n_{ij}} = (w_j w_i w_j ...)_{n_{ij}}, i \neq j$, where n_{ij} is the order of $w_i w_j$ in W, we need to show that

$$[1 + a_{(w_i w_j w_i \dots)_{n_{ij}}}] = [1 + a_{(w_j w_i w_j \dots)_{n_{ij}}}].$$

To do this, we use induction on $n, n \leq n_{ij}$, to show that

$$[1 + a_{(w_i w_j w_i \dots)_n}] = 1 + \sum_{m=1}^n a_{(w_i w_j w_i \dots)_m} + \sum_{m=1}^{n-1} a_{(w_j w_i w_j \dots)_m}$$

This is clearly true for n = 1. Suppose it is true for all integers $\leq k$, and suppose that k is odd. Then

$$[1 + a_{(w_i w \ w_i \dots)_{k+1}}] = [1 + a_{(w_i w_j w_i \dots)_k}](1 + a_j)$$

= $\left(1 + \sum_{m=1}^k a_{(w_i w_j w_i \dots)_m} + \sum_{m=1}^{k-1} a_{(w_j w_i w_j \dots)_m}\right)(1 + a_j)$
= $\left(1 + \sum_{m=1}^k a_{(w_i w_j w_i \dots)_m} + \sum_{m=1}^{k-1} a_{(w_j w_i w_j \dots)_m}\right) + a_j$
+ $\sum_{m=0}^{\frac{1}{2}(k-1)} a_{(w_i w_j w_i \dots)_{2m-1}} a_j + \sum_{m=1}^{\frac{1}{2}(k-1)} a_{(w_i w_j w_i \dots)_{2m}} a_j$
+ $\sum_{m=1}^{\frac{1}{2}(k-1)} a_{(w_j w_i w_j \dots)_{2m-1}} a_j + \sum_{m=1}^{\frac{1}{2}(k-1)} a_{(w_j w_i w_j \dots)_{2m}} a_j.$

Now,

$$a_{(w_i w_j w_i \dots)_{2m-1}} a_j = -a_{(w_i w_j w_i \dots)_{2m}} a_j, \quad 1 \le m \le \frac{1}{2} (k-1),$$

and

$$a_{(w_j w_j w_j \dots)_{2m-1}} a_j = -a_{(w_j w_j w_j \dots)_{2m-2}} a_j, \quad 1 \le m \le \frac{1}{2} (k-1),$$

where $a_{(w w_i w_{i,...})_0} = 1$. Then

$$[1 + a_{(w_i w_j w_i \dots)_{k+1}}] = 1 + \sum_{m=1}^{k} a_{(w_i w_j w_i \dots)_m} + \sum_{m=1}^{k-1} a_{(w_j w_i w_j \dots)_m} + a_{(w_i w_j w_i \dots)_k} a_j + a_{(w_j w_i w_j \dots)_{k-1}} a_j$$
$$= 1 + \sum_{m=1}^{k+1} a_{(w_i w_j w_i \dots)_m} + \sum_{m=1}^{k} a_{(w_j w_i w_j \dots)_m}.$$

Similarly, we get the above result if we assume k is even.

Similarly, for all $n \leq n_{ij}$,

 $[1 + a_{(w_j,w_i,w_j,...)_m}] = 1 + \sum_{m=1}^n a_{(w_j,w_i,w_j,...)_m} + \sum_{m=1}^{n-1} a_{(w_i,w_j,w_i,...)_m}.$

Then, for all $n \leq n_{ij}$,

$$[1 + a_{(w_i w_j w_i \dots)_n}] - [1 + a_{(w_j w_i w_j \dots)_n}] = a_{(w_i w_j w_i \dots)_n} - a_{(w_j w_i w_j \dots)_n}$$

When $n = n_{ij}$, this difference is zero, and so

$$[1 + a_{(w_i w_j w_i \dots)_{n_{ij}}}] = [1 + a_{(w_j w_i w_j \dots)_{n_{ij}}}]$$

and thus $[1+a_{w_{0,T}}]$ is independent of the reduced expression for $w_{0,T}$ chosen.

Finally, $[1 + a_{w_0 J}]$ is a linear combination of certain a_w with $w \in W_J$. We show by induction on l(w) for all $w \in W_J$ that a_w occurs in the expansion of $[1 + a_{w_0 J}]$ with coefficient 1. If l(w) = 0, then w = 1 and obviously 1 occurs with coefficient 1. Suppose l(w) > 0. Let $w = w'w_j$, $w' \in W_J$, $w_j \in J$, where l(w) = l(w') + 1. By induction $a_{w'}$ occurs in $[1 + a_{w_0 J}]$ with coefficient 1. Choose an expression for w_{0J} ending in w_j , and then $[1 + a_{w_0 J}] = [1 + a_{w_0 J}w_j](1 + a_j)$. Since $l(w'w_j) > l(w')$, the only contribution to $a_{w'}$ from the last bracket is from the 1. If instead we take a_j from the last bracket, we get a_w , with coefficient 1. Now suppose a_w occurs in $[1 + a_{w_0 J}w_j]$ with coefficient m. Then

$$ma_w(1+a_i) = ma_w + ma_w a_i = ma_w - ma_w = 0$$
 as $w(r_i) \in \Phi^{-1}$

Thus a_w occurs in the expansion of $[1+a_{w_{0J}}]$ with coefficient 1, and hence $e_J = [1+a_{w_{0J}}]$.

4.4 COROLLARY. (1) If $J, L \subseteq R, J \cap L \neq \emptyset$, then $o_J e_L = 0$ and $e_J o_L = 0$. (2) If $L \subseteq J \subseteq R$, then $e_L e_J = e_J = e_J e_L$ and $o_L o_J = o_J = o_J o_L$.

PROOF. Use 4.2 and 4.3.

4.5 LEMMA. Let $y \in Y_J$ for some $J \subseteq \mathbb{R}$. Then $a_y \circ_j = a_y$ and $a_y \circ_j e_J = \sum_{w \in W_J} a_{yw}$, with l(yw) = l(y) + l(w) for all $w \in W_J$, that is, $a_y \circ_j e_J$ is equal to a_y plus a sum of certain a_w with l(w) > l(y).

PROOF. If $y \in Y_J$, then $y = ww_{0,\hat{j}}$ for some $w \in W$ with $l(y) = l(w) + l(w_{0,\hat{j}})$. Hence $a_y \circ_{\hat{j}} = (-1)^{l(w_{0,\hat{j}})} a_w a_{w_{0,\hat{j}}} a_{w_{0,\hat{j}}}$, and so $a_y \circ_{\hat{j}} = a_y$. Now for all $w \in W_J$, as $y \in Y_J \subseteq X_J$, we have l(yw) = l(y) + l(w). So for all $w \in W_J$, $a_y a_w = a_{yw}$. Thus

$$a_y o_j e_J = a_y e_J = \sum_{w \in W_J} a_y a_w = \sum_{w \in W_J} a_{yw} = a_y + \sum_{w \in W_J, w \neq 1} a_{yw},$$

and l(yw) > l(y) if $w \neq 1$, $w \in W_J$.

344

4.6 LEMMA. For $y \in Y_J$, a_y occurs in the expansion of $a_y e_J o_j$ with coefficient 1, and if, for any $w \in W$, a_w occurs in the expansion of $a_y e_J o_j$ with non-zero coefficient, then w = y or l(w) > l(y).

PROOF. By 4.5, $a_y e_J = \sum_{w \in W_J} a_{yw}$, with l(yw) = l(y) + l(w) for all $w \in W_J$. So

$$a_{\mathbf{y}}e_{\mathbf{J}}o_{\hat{\mathbf{j}}} = \sum_{\mathbf{w}\in W_{\mathbf{J}}}a_{\mathbf{y}\mathbf{w}}o_{\hat{\mathbf{j}}} = a_{\mathbf{y}}o_{\hat{\mathbf{j}}} + \sum_{\mathbf{w}\in W_{\mathbf{J}}, \mathbf{w}\neq 1}a_{\mathbf{y}\mathbf{w}}o_{\hat{\mathbf{j}}}.$$

From the proof of 4.5, $a_y o_{\hat{J}} = a_y$, and for all $w \in W_J$, $w \neq 1$,

$$a_{yw} o_{j} = a_{yw} (-1)^{l(w_{0}j)} a_{w_{0}j} = \pm a_{w}$$

for some $w' \in W$ with $l(w') \ge l(yw) > l(y)$.

4.7 THEOREM. (i) The elements $\{a_y \circ_j e_J = a_y e_J : y \in Y_J, J \subseteq R\}$ are linearly independent and form a basis of H.

(ii) The elements $\{a_y e_J o_{\hat{J}} : y \in Y_J, J \subseteq R\}$ are linearly independent and form a basis of H.

PROOF. (i) Suppose that for each $y \in Y_J$ and each $J \subseteq R$ there is an element $k_y \in K$ such that $\sum_{J \subseteq R} \sum_{y \in Y_J} k_y a_y e_J = 0$. Let

$$S_n = \sum_{J \subseteq R} \sum_{y \in Y_J, l(y) \ge n} k_y a_y e_J.$$

We show that if $S_n = 0$, then $k_y = 0$ whenever l(y) = n and hence $S_{n+1} = 0$.

Let $y_1, ..., y_i$ be those elements of W for which $l(y_i) = n$. Then by 4.5, if $y_i \in Y_{J(i)}$ for some $J(i) \subseteq R$,

 $a_{y_i}e_{J(i)} = a_{y_i} + (a \text{ linear combination of certain } a_w \text{ where } l(w) > l(y_i)).$

Hence,

$$S_n = \sum_{i=1}^{l} k_{y_i} a_{y_i} + (a \text{ linear combination of certain } a_w \text{ with } l(w) > n)$$

If $S_n = 0$, then as $\{a_w : w \in W\}$ are a basis of *H*, we must have $k_{y_i} = 0$ for all *i*, $1 \le i \le t$. Then $S_{n+1} = 0$.

Since $S_0 = 0$, $k_y = 0$ for all y whenever l(y) = 0, and then $S_1 = 0$. By induction, all k_y are zero, and so $\{a_y e_J : y \in Y_J, J \subseteq R\}$ is a set of linearly independent elements. As there are |W| of them, they must form a basis of H.

(ii) This is proved using similar arguments.

4.8 COROLLARY. (i) For any $L \subseteq R$, the elements of the set

$$\{a_y o_j e_J o_{\hat{L}} = a_y e_J o_{\hat{L}} : y \in Y_J, J \subseteq L\}$$

are linearly independent.

(ii) For any $L \subseteq R$, the elements of the set $\{a_y e_J \circ_{\hat{J}} e_L : y \in Y_J, J \supseteq L\}$ are linearly independent.

PROOF. (i) $a_y e_J o_{\hat{L}} = \sum_{w \in W_J} a_{yw} o_{\hat{L}}$. As $J \subseteq L$, $\hat{L} \subseteq \hat{J}$ and so $a_{w_0 j} o_{\hat{L}} = a_{w_0 j}$. Then $a_y e_J o_{\hat{L}} = a_y o_{\hat{L}} + \sum_{w \in W_J, w \neq 1} a_{yw} o_{\hat{L}}$ $= a_y + \sum_{w \in W_J, w \neq 1} a_{yw} o_{\hat{L}}$ as $y \in Y_J$ $= a_y + (a \text{ linear combination of certain } a_w \text{ with } l(w) > l(y)).$

The result now follows by using an argument similar to that used in the proof of 4.7.

(ii) For any $y \in Y_J$, $a_y e_J o_{\hat{J}} = a_y + (\sum_{w \in W} k_w a_w)$, where $k_w \in K$ and $k_w = 0$ if $l(w) \leq l(y)$. Then

$$\begin{aligned} a_y e_J o_{\hat{J}} e_L &= a_y e_L + \left(\sum_{w \in W} k_w a_w\right) e_L, \quad k_w \in K \text{ given as above,} \\ &= a_y + \left(\sum_{w \in W} k'_w a_w\right) \quad \text{for certain } k'_w \in K, \text{ with } k'_w = 0 \text{ if } l(w) \leq l(y). \end{aligned}$$

Once again the result is given using an argument similar to that given in the proof of 4.7.

4.9 THEOREM. (i) For each $a \in H$ and for any $J \subseteq R$, there exist elements $k_y \in K$ such that

$$ao_{\hat{j}}e_J = \sum_{y \in Y_J} k_y a_y e_J = (\sum_{y \in Y_J} k_y a_y o_{\hat{j}} e_J).$$

(ii) For each $a \in H$ and for any $J \subseteq R$, there exist elements $k_y \in K$ such that

$$ae_J o_{\hat{J}} = \sum_{y \in Y_J} k_y a_y e_J o_{\hat{J}}.$$

PROOF. (i) As $\{a_w : w \in W\}$ is a basis of H, we may write $a = \sum_{w \in W} u_w a_w$ with $u_w \in K$ for all $w \in W$. It is thus sufficient to express $a_w o_j e_j$ as a linear combination of the elements $\{a_y e_j : y \in Y_j\}$ for all $w \in W$. Use induction on l(w) to prove this.

If l(w) = 0, then w = 1 and $1o_{\hat{j}}e_J = (-1)^{l(w_0)}a_{w_0j}e_J$. The result is true for w = 1 as $w_{0,\hat{j}} \in Y_J$.

Suppose l(w) > 0. Let $w = w_i w'$ for some $w_i \in R$, $w' \in W$, l(w) = l(w') + 1. By induction,

$$a_{w'} o_{\hat{J}} e_J = \sum_{y \in Y_J} u_y a_y e_J$$
 for some $u_y \in K$.

Then

$$a_w o_{\hat{j}} e_J = a_i a_{w'} o_{\hat{j}} e_J = \sum_{y \in Y_J} u_y a_i a_y e_J$$

Hence for each $y \in Y_J$ we have to express $a_i a_y e_J$ as a combination of $\{a_v e_J : v \in Y_J\}$. Now for any $y \in Y_J$,

(4.10)
$$a_{i}a_{y}e_{J} = \begin{cases} -a_{y}e_{J}, & \text{if } y^{-1}(r_{i}) \in \Phi^{-}, \\ 0, & \text{if } y^{-1}(r_{i}) = r_{j} \text{ for some } r_{j} \in \Pi_{J}, \\ & \text{as then } a_{i}a_{y} = a_{y}a_{j}, \\ a_{w_{i}y}e_{J}, & \text{where } w_{i}y \in Y_{J} \text{ if } y^{-1}(r_{i}) \in \Phi^{+}, \\ & y^{-1}(r_{i}) \neq r_{j} \text{ for any } r_{j} \in \Pi_{J}. \end{cases}$$

The result follows.

(ii) Since $\{a_y e_L o_{\hat{L}} : y \in Y_L, L \subseteq R\}$ is a basis of H, there exist elements $u_y \in K$ such that

$$ae_J o_{\hat{J}} = \sum_{L \subseteq R} \sum_{y \in Y_L} u_y a_y e_L o_{\hat{L}}.$$

Choose any $M \subseteq R$ with $M \cap \hat{J} \neq \emptyset$. Then $ae_J o_{\hat{J}} e_M = 0$; so

$$\sum_{L\subseteq R} \sum_{\mathbf{y}\in Y_L} u_{\mathbf{y}} a_{\mathbf{y}} e_L o_{\hat{L}} e_M = 0.$$

But $o_{\hat{L}}e_M = 0$ if $\hat{L} \cap M \neq \emptyset$. So the only non-zero terms in the above equation involve those $L \subseteq R$ for which $\hat{L} \cap M = \emptyset$. Thus

$$\sum_{L,M\subseteq L\subseteq R}\sum_{y\in Y_L}u_ya_ye_Lo_{\hat{L}}e_M=0$$

By 4.8(ii), $u_y = 0$ for all $y \in Y_L$, $M \subseteq L \subseteq R$. Hence we have that $u_y = 0$ for all $y \in Y_L$, with $L \cap \hat{J} \neq \emptyset$. Thus

$$ae_J o_{\hat{J}} = \sum_{L \subseteq J} \sum_{y \in Y_L} u_y a_y e_L o_{\hat{L}}.$$

Let $S_J = \{w \in W : u_w \neq 0, w \in Y_L \text{ for some } L \subset J\}$. Suppose $S_J \neq \emptyset$. Choose an element $y_0 \in S_J$ of minimal length, and suppose $y_0 \in Y_{J_0}$ for some $J_0 \subset J$. Consider

$$ae_J o_{\hat{J}} o_{\hat{J}_0} = \sum_{L \subseteq J} \sum_{y \subseteq Y_L} u_y a_y e_L o_{\hat{L}} o_{\hat{J}_0}.$$

As $J_0 \subset J$, $e_J o_{\hat{J}} o_{\hat{J}_0} = e_J o_{\hat{J}_0} = 0$. Then

(*)
$$\sum_{L \subset J} \sum_{y \in Y_L} u_y a_y e_L o_{\hat{L}} o_{\hat{J}_0} = 0$$

347

Now if $L \subset J$ and $y \in Y_L$,

$$a_y e_L o_{\hat{L}} o_{\hat{J}_0} = a_y o_{\hat{J}_0} + \sum_{w \in \mathcal{W}, l(w) > l(y)} k_w a_w$$

where $k_w \in K$, and $a_y o_{\hat{J}_0} = \pm a_w$, for some $w \in W$ with $l(w) \ge l(y)$.

Since y_0 is of minimal length in S_J , the coefficient of a_{y_0} on the left side of (*) is u_{y_0} . As $\{a_w : w \in W\}$ is a basis of H, so $u_{y_0} = 0$, which is a contradiction. Hence $S_J = \emptyset$ and $ae_J o_{\hat{J}} = \sum_{y \in Y_J} u_y a_y e_J o_{\hat{J}}$.

REMARK. Let $z \in Z$. Then z can be regarded as an element of K in a natural way —it is the element $zl_K = l_K + ... + l_K$ (z times), where l_K is the identity of K.

4.11 COROLLARY. (1) For each $w \in W$, there exist rational integers $u_y = u_y(w)$ such that $a_w o_{\hat{j}} e_J = \sum_{y \in Y_J} u_y a_y o_{\hat{j}} e_J$.

(2) For each $w \in W$, there exist rational integers $u_y = u_y(w)$ such that

$$a_{w_i}e_J o_{\hat{J}} = \sum_{y \in Y_J} u_y a_y e_J o_{\hat{J}}.$$

PROOF. (1) Follows from the proof of 4.9(i).

(2) List the elements y_1, \ldots, y_m of Y_J in order of increasing length; if i < j then $l(y_i) \leq l(y_j)$. Let c_{ij} be the coefficient of a_{y_i} in $a_{y_j}e_J o_j$. Clearly c_{ij} is an integer as $a_{y_j}e_J o_j$ is an integral combination of certain elements $a_{w'}$, $w' \in W$. Also, $c_{ii} = 1$ for all $i, 1 \leq i \leq m$, and $c_{ij} = 0$ if i < j by 4.6. Let h_i be the coefficient of a_{y_i} in $a_w e_J o_j$. Clearly h_i is an integer, and

$$h_i = \sum_{j=1}^m k_j c_{ij} \quad \text{where} \quad a_w e_J o_{\hat{J}} = \sum_{i=1}^m k_i a_{y_i} e_J o_{\hat{J}}$$

for some $k_i \in K$. Hence, $h_i = \sum_{j=1}^{i-1} k_j c_{ij} + k_i$. Let i = 1. Then $h_1 = k_1$, an integer. Now use increasing induction on *i* to show k_i is an integer for all $i, 1 \le i \le m$.

4.12 THEOREM. (1) $Ho_{\hat{j}}e_J$ is a left ideal of H with K-basis $\{a_y \circ_{\hat{j}}e_J = a_y e_J; y \in Y_J\}$. Hence dim $Ho_{\hat{j}}e_J = |Y_J|$. Let $Y_J = \{y_1, \dots, y_s\}$, with $l(y_i) \leq l(y_j)$ if i < j, and let $H_{J,i} = \{\sum_{j=i}^s k_j a_{y_i} \circ_{\hat{j}} e_J : k_J \in K\}$; then

$$Ho_{\hat{J}}e_J = H_{J,1} > H_{J,2} > \dots > H_{J,s} > 0$$

is a composition series of Ho_je_J of left H-modules, and $H_{J,i}/H_{J,i+1}$ affords the representation λ_M of H, where $y_i^{-1} \in Y_M$, and $H_{J,s+1} = 0$. Finally, $H = \sum_{J \subseteq R}^{\oplus} Ho_je_J$, a direct sum of 2^n left ideals, where n = |R|.

(2) $He_J o_{\hat{j}}$ is a left ideal of H with K-basis $\{a_y e_J o_{\hat{j}} : y \in Y_J\}$. Hence dim $He_J o_{\hat{j}} = |Y_J|$. Let $Y_J = \{y_1, \dots, y_s\}$, with $l(y_i) \leq l(y_j)$ if i < j, and let

$$H_{J,i} = \left\{ \sum_{j=i}^{s} k_j a_{y_j} e_J o_{\hat{J}} \colon k_j \in K \right\};$$

then

$$He_J o_{\hat{J}} = H_{J,1} > H_{J,2} > \dots > H_{J,s} > 0$$

is a composition series of $He_J o_{\hat{J}}$ of left H-modules, and $H_{J,i}/H_{J,i+1}$ affords the representation λ_M of H, where $y_i^{-1} \in Y_M$, and $H_{J,s+1} = 0$. Finally, $H = \sum_{J \subseteq R}^{\oplus} He_J o_{\hat{J}}$, a direct sum of 2^n left ideals, where n = |R|.

PROOF. The results follow by 4.7, 4.8, 4.10 and the fact that

$$\dim H = |W| = \sum_{J \subseteq R} |Y_J|.$$

4.13 COROLLARY. $Ho_{\hat{j}}e_J$ and $He_Jo_{\hat{j}}$ are indecomposable left ideals of H, for all $J \subseteq R$, and they are isomorphic as left ideals of H.

PROOF. From the theory of Artinian rings and the fact that H/N is a direct sum of 2^n irreducible components (see remarks at the end of Section 3), it follows that H can be expressed as the direct sum of 2^n indecomposable left ideals. Hence $Ho_j e_J$ and $He_J o_j$ must be indecomposable left ideals of H for all $J \subseteq R$.

To show they are isomorphic, first note that $He_J o_{\hat{j}} = Ho_{\hat{j}} e_J o_{\hat{j}}$. Then define the homomorphism $f_J: Ho_{\hat{j}} e_J \rightarrow He_J o_{\hat{j}}$ by $f_J(ao_{\hat{j}} e_J) = ao_{\hat{j}} e_J o_{\hat{j}}$, for all $ao_{\hat{j}} e_J \in Ho_{\hat{j}} e_J$. As f_J is given by right multiplication by $o_{\hat{j}}$, it is well defined and is a homomorphism of left ideals of $H. f_J$ is onto, since $He_J o_{\hat{j}} = Ho_{\hat{j}} e_J o_{\hat{j}}$ and an element $ao_{\hat{j}} e_J o_{\hat{j}} \in He_J o_{\hat{j}}$ is the image under f_J of $ao_{\hat{j}} e_J$. f_J is one-one as dim $Ho_{\hat{j}} e_J = \dim He_J o_{\hat{j}}$. Hence f_J is an isomorphism of left ideals of H.

4.14 COROLLARY. (1) For any $L \subseteq R$,

$$Ho_{\hat{L}} = \sum_{J \subseteq L} \oplus Ho_{\hat{J}} e_J o_{\hat{L}}, \text{ and } \dim Ho_{\hat{L}} = \sum_{J \subseteq L} |Y_J| = |X_{\hat{L}}|.$$

(2) For any $L \subseteq R$,

$$He_L = \sum_{J \supseteq L} \bigoplus He_J o_{\hat{J}} e_L$$
, and dim $He_L = \sum_{J \supseteq L} |Y_J| = |X_L|$.

PROOF. Use 4.12 and 4.8.

4.15 THEOREM. For any $J \subseteq R$,

$$He_J = \{a \in H : aa_i = 0 \text{ for all } w_i \in J\}$$
$$= \{a \in H : a(1+a_i) = a \text{ for all } w_i \in J\}.$$

Further, $He_J = \sum_{J \subseteq L}^{\oplus} Ho_{\hat{L}}e_L$, and He_J has basis $\{a_w e_J : w \in X_J\}$ and dimension $|X_J|$. Finally,

$$Ho_{\hat{J}}e_J = \{a \in H : aa_i = 0 \text{ for all } w_i \in J, ae_L = 0 \text{ for all } L \supset J\}$$
$$= He_J \cap (\bigcap_{J \supset L} \ker e_L),$$

where ker $e_L = \{a \in H : ae_L = 0\}$.

PROOF. Clearly, $He_J \leq \{a \in H: aa_i = 0 \text{ for all } w_i \in J\}$. Conversely, take $a \in H$ and suppose $aa_i = 0$ for all $w_i \in J$. Then $a(1+a_i) = a$ for all $w_i \in J$, and so $ae_J = a$, and so $a \in He_J$. Thus the first part is proved.

Now $Ho_{\hat{L}}e_L \leq He_J$ for all $L \supseteq J$, and so $\sum_{L \supseteq J}^{\oplus} Ho_{\hat{L}}e_L \leq He_J$. By 4.14, dim $He_J = |X_J|$, and as dim $Ho_{\hat{L}}e_L = |Y_L|$, we have $He_J = \sum_{L \supseteq J}^{\oplus} Ho_{\hat{L}}e_L$.

Let $a = \sum_{w \in W} u_w a_w \in He_J$, where $u_w \in K$. Let $w_i \in J$. Then $aa_i = 0$, and so $\sum_{w \in W} u_w a_w a_i = 0$. Now

$$\sum_{w \in W} u_w a_w a_i = \sum_{w \in W, w(r_i) \in \Phi^+} u_w a_{ww_i} - \sum_{w \in W, w(r_i) \in \Phi^-} u_w a_w = 0.$$

That is,

$$\sum_{w \in W, w(r_i) \in \Phi^-} u_{ww_i} a_w - \sum_{w \in W, w(r_i) \in \Phi^-} u_w a_w = 0.$$

Since $\{a_w : w \in W\}$ form a basis of H, we have $u_{ww_i} = u_w$ for all $w \in W$ with $w(r_i) \in \Phi^-$. Hence $u_w = u_{ww_i}$ for all $w \in W$, with $w(r_i) \in \Phi^+$. Now if $w \in W$, w can be expressed uniquely in the form $w = yw_J$, where $y \in X_J$, $w_J \in W_J$ and $l(w) = l(y) + l(w_J)$. Write $w_J = w_{i_1} \dots w_{i_k}, w_{i_k} \in J, l(w_J) = t$. By the above, we have

$$u_y = u_{yw_{l_1}} = \ldots = u_{yw_J} = u_w$$

Hence $a = \sum_{y \in X_J} u_y a_y e_J$. Conversely, for each $y \in X_J$, $a_y e_J \in He_J$, and as $\{a_y e_J : y \in X_J\}$ is linearly independent and dim $He_J = |X_J|$, $\{a_y e_J : y \in X_J\}$ is a basis of He_J .

Finally, $Ho_{\hat{J}}e_J \leq \{a \in H: aa_i = 0 \text{ for all } w_i \in J, ae_L = 0 \text{ for all } L \supset J\}$. Let $a = \sum_L \sum_{y \in Y_L} u_y a_y o_{\hat{L}}e_L, u_y \in K$, satisfy $aa_i = 0$ for all $w_i \in J$ and $ae_L = 0$ for all $L \supset J$. Since $a \in He_J$, $u_y = 0$ for all $y \in Y_L$ if $J \not\in L$. So $a = \sum_{L \supseteq J} \sum_{v \in Y_L} u_v a_v o_{\hat{L}}e_L$. Set $S_J = \{w \in W: u_w \neq 0, w \in Y_L, L \supset J\}$. Suppose $S_J \neq \emptyset$. Then there exists an element y_0 of minimal length in S_J ; suppose $y_0 \in Y_M$, $M \supset J$. Then $ae_M = 0$. Also $o_{\hat{J}}e_Je_M = 0$ as $M \supset J$. For other $L \supset J$, if $y \in Y_L$,

 $a_y o_{\hat{L}} e_L e_M = a_y e_L e_M = a_y + (a \text{ combination of certain } a_w,$

$$w \in W$$
, with $l(w) > l(y)$).

Then $ae_M = 0$ gives $\sum_{L \supset J} \sum_{y \in Y_L} u_y a_y o_{\hat{L}} e_L e_M = 0$. As y_0 is of minimal length in S_J , the coefficient of a_{y_0} in the left-hand side of the last equation is u_{y_0} . By the linear independence of $\{a_w: w \in W\}$, we have $u_{y_0} = 0$, which is a contradiction. Hence $S_J = \emptyset$ and $a = \sum_{y \in Y_J} u_y a_y o_{\hat{J}} e_J \in Ho_{\hat{J}} e_J$. Thus

$$Ho_{\hat{J}}e_J = \{a \in He_J : ae_L = 0 \text{ for all } L \supset J\}.$$

4.16 THEOREM. For any $J \subseteq R$,

$$Ho_J = \{a \in H: a(1+a_i) = 0 \text{ for all } w_i \in J\}.$$

Ho_J has basis $\{a_w: w \in Y_{\hat{L}}, \hat{L} \subseteq \hat{J}\}$, dimension $|X_J|$ and $Ho_J = \sum_{L=J}^{\oplus} He_{\hat{L}}o_L$. Finally, $He_{\hat{J}}o_J = \{a \in Ho_J: ao_L = 0 \text{ for all } L \supset J\}$.

PROOF. Similar to the proof of 4.15.

4.17 LEMMA. Let ψ_J be the character of the representation of H on $Ho_{\hat{J}}e_J$. Then ψ_J takes values as follows: for each $w \in W$, let $w = w_{i_1} \dots w_{i_t}$ be a reduced expression for w, and set $J(w) = \{w_{i_j}: 1 \le j \le t\}$. Then $\psi_J(a_w) = (-1)^{J(w)} N_J(w)$, where $N_J(w) = the$ number of elements $y \in Y_J$ such that $y^{-1}(\prod_{J(w)}) \subseteq \Phi^-$.

PROOF. Use 4.10.

4.18 LEMMA. Let ϕ_J be the character of the representation of H on He_J . Then ϕ_J takes values as follows: for $w \in W$ let $w = w_{i_1} \dots w_{i_t}$ be a reduced expression for w. Set $J(w) = \{w_{i_j}: 1 \leq j \leq t\}$. Then $\phi_J(a_w) = (-1)^{l(w)} M_J(w)$, where $M_J(w) =$ the number of elements $x \in X_J$ such that $x^{-1}(\prod_{J(w)}) \subseteq \Phi^-$. Also, $M_J(w) = \sum_{L \geq J} N_L(w)$.

PROOF. He_J has basis $\{a_w e_J : w \in X_J\}$. For any $w_i \in R$,

$$a_{i}a_{w}e_{J} = \begin{cases} -a_{w}e_{J} & \text{if } w^{-1}(r_{i}) < 0, \\ a_{w_{i}w}e_{J}, & \text{where } w_{i}w \in X_{J} & \text{if } w^{-1}(r_{i}) > 0, \text{ and} \\ & w^{-1}(r_{i}) \neq r_{j} & \text{for any } r_{j} \in \Pi, \\ 0 & \text{if } w^{-1}(r_{i}) = r_{j} & \text{for some } r_{j} \in \Pi_{J}, \text{ for then} \\ & a_{i}a_{w} = a_{w}a_{j} & \text{and} & a_{j}e_{J} = 0. \end{cases}$$

The result now follows.

4.19 LEMMA. Let μ_J be the character of the representation of H on Ho_J . Then μ_J takes values as follows: for each $w \in W$, let $w = w_{i_1} \dots w_{i_t}$ be a reduced expression for w, and set $J(w) = \{w_{i_j}: 1 \le j \le t\}$. Then $\mu_J(a_w) = (-1)^{l(w)} L_J(w)$, where $L_J(w) = the$ number of elements $z \in Z_J$ such that $z^{-1}(\prod_{J(w)}) \subseteq \Phi^-$, and $Z_J = \{w \in W: w(\prod_J) \subseteq \Phi^-\}$. Note that $Z_J = \sum_{L \subseteq \hat{J}} Y_L$.

[15]

PROOF. Ho_J has basis $\{a_w : w \in Z_J\}$. For all $w_i \in R$,

$$a_i a_w = \begin{cases} -a_w & \text{if } w^{-1}(r_i) < 0, \\ a_{w_i w} & \text{if } w^{-1}(r_i) > 0. \end{cases}$$

If $w \in Z_J$, $w_i \in R$ and $w^{-1}(r_i) > 0$, then $w_i w \in Z_J$, for if $r_j \in \prod_J$, $w(r_j) = -s$ for some $s \in \Phi^+$, and $w_i(s) < 0$ if and only if $s = r_i$. But if $s = r_i$, $w^{-1}(r_i) = -r_j$ —impossible. The result now follows.

4.20 COROLLARY. (1)
$$\phi_J = \sum_{J \ge L} \psi_L$$
 for all $J \subseteq R$.
(2) $\mu_J = \sum_{J \ge L} \psi_L$ for all $J \subseteq R$.

A direct sum decomposition of H into indecomposable left ideals is equivalent to expressing the identity of H as a sum of mutually orthogonal primitive idempotents. Let $1 = \sum_{J \subseteq R} q_J$ and $1 = \sum_{J \subseteq R} p_J$ be the decompositions of 1 corresponding to the decompositions $H = \{\sum_{J \subseteq R}^{\oplus} Ho_j e_J \text{ and } H = \sum_{J \subseteq R}^{\oplus} He_J o_j$ respectively, where $Hq_J = Ho_j e_J$ and $Hp_J = He_J o_j$. (There does not appear to be a specific expression for the q_J or the p_J in terms of $\{a_y o_j e_J : y \in Y_J\}$ or $\{a_y e_J o_j : y \in Y_J\}$ respectively).

4.21 THEOREM. Let $\{q_J: J \subseteq R\}$ be a set of mutually orthogonal primitive idempotents with $q_J \in Ho_j e_J$ for all $J \subseteq R$ such that $1 = \sum_{J \subseteq R} q_J$. Then $Ho_j e_J = Hq_J$, and if N is the nilpotent radical of H, $No_j e_J = Nq_J$ is the unique maximal left ideal of Hq_J , and $Hq_J/Nq_J \cong K$. Hq_J/Nq_J affords the representation λ_J of H defined in 3.1. Finally,

$$H/N \cong \sum_{J \subseteq R}^{\oplus} Hq_J/Nq_J \cong K \oplus K \oplus ... \oplus K, \quad 2^n \text{ summands, where } n = R$$

PROOF. By the theory of Artinian rings, Nq_J is the unique maximal left ideal of Hq_J , and $H/N \cong \sum_{J\subseteq R}^{\oplus} Hq_J/Nq_J$. Since $q_J \in Ho_j e_J$, $Hq_J \leq Ho_j e_J$. As

$$H = \sum_{J \subseteq R}^{\oplus} Hq_J = \sum_{J \subseteq R}^{\oplus} Ho_{\hat{J}}e_J,$$

we must have $Hq_J = Ho_j e_J$ for all $J \subseteq R$. Then $Nq_J = NHq_J = NHo_j e_J = No_j e_J$ is the unique maximal left ideal of Hq_J . But

$$\left\{\sum_{\boldsymbol{y} \in \boldsymbol{Y}_{J}, \boldsymbol{y} \neq w_{0} \hat{\boldsymbol{j}}} u_{\boldsymbol{y}} a_{\boldsymbol{y}} o_{\hat{\boldsymbol{j}}} e_{\boldsymbol{J}} \colon u_{\boldsymbol{y}} \in \boldsymbol{K}\right\}$$

is a maximal left ideal of $Ho_{\hat{J}}e_J$ (see 4.10), and so

$$Nq_J = \{ \sum_{y \in Y_J, y \neq w_0 j} u_y a_y o_j e_J : u_y \in K \}.$$

352

Then Hq_J/Nq_J is a one-dimensional *H*-module generated by $a_{w_0j} o_j e_J + Nq_J$ which affords the representation λ_J of *H*, and since every element of Hq_J/Nq_J is of the form $ka_{w_0j} o_j e_J + Nq_J$ for some $k \in K$, $Hq_J/Nq_J \cong K$ for all $J \subseteq R$. Hence the result.

4.22 THEOREM. Let $\{p_J: J \subseteq R\}$ be a set of mutually orthogonal primitive idempotents with $p_J \in He_J \circ_{\hat{J}}$ for all $J \subseteq R$ such that $1 = \sum_{J \subseteq R} p_J$. Then $He_J \circ_{\hat{J}} = Hp_J$, and if N is the nilpotent radical of H, $Ne_J \circ_{\hat{J}} = Np_J$ is the unique maximal left ideal of Hp_J , and $Hp_J/Np_J \cong K$. Hp_J/Np_J affords the representation λ_J of H defined in 3.1. Finally, $H/N \cong \sum_{J \subseteq R}^{\oplus} Hp_J/Np_J \cong K \oplus K \oplus ... \oplus K$, 2^n summands, where n = |R|.

4.23 LEMMA. $\{ka_{w_0 w_0 J} o_j e_J : k \in K\}$ and $\{ka_{w_0 w_0 J} e_J o_j : k \in K\}$ are minimal submodules of $Ho_j e_J$ and $He_J o_j$ respectively, where $w_0 w_{0J}$ is the unique element of maximal length in Y_J . These minimal left ideals both afford the representation $\lambda_{\overline{J}}$ of H, where $\overline{J} = \{w_i \in R : \text{there exists } w_j \in J \text{ with } w_0 w_j = w_i w_0\}$, or, alternatively, $\Pi_{\overline{J}}$ is defined by $w_0(\Pi_J) = -\Pi_{\overline{J}}$.

4.24 NOTE. By the same methods, $H = \sum_{J=R}^{\oplus} e_J o_j H$ and $H = \sum_{J=R}^{\oplus} o_j e_J H$, both being direct sum decompositions of H into 2^n right ideals, where n = |R|. Further, $e_J o_j H$ has K-basis $\{e_J o_j a_y: y^{-1} \in Y_J\}$, and $o_j e_J H$ has K-basis $\{o_j e_J a_y: y^{-1} \in Y_J\}$. All the results for the left ideals He_J , Ho_J , $He_J o_j$ and $Ho_j e_J$ have analogues for the right ideals $e_J H$, $o_J H$, $o_j e_J H$ and $e_J o_j H$ respectively.

Let G be a finite group with a split (B, N) pair of rank n and characteristic p with Weyl group W, and let K be a field of characteristic p. Then the above decomposition of $H = H_K(G, B)$ gives a decomposition of 1_B^G , where 1_B is the principal character of the subgroup B of G, which will be discussed in a later paper.

5. The Cartan matrix of H

We have that $H = \sum_{J \subseteq R}^{\oplus} U_J$, where $U_J = Ho_J e_J$ is an indecomposable left *H*-module. Thus $\{U_J: J \subseteq R\}$ are the principal indecomposable *H*-modules. $\{U_J/\operatorname{rad} U_J: J \subseteq R\}$, where $\operatorname{rad} U_J$ is the unique maximal submodule of U_J , are irreducible *H*-modules, such that $M_J = U_J/\operatorname{rad} U_J$ affords the representation λ_J of *H*.

DEFINITION. The Cartan matrix C of H, where H is of type (W, R), with |R| = n, is a $2^n \times 2^n$ matrix with rows and columns indexed by the subsets of R, and if we write $C = (c_{JL})$, then

 c_{JL} = the number of times M_L is a composition factor of U_J .

5.1 THEOREM. For all J, $L \subseteq R$,

$$c_{JL} = |Y_J \cap (Y_L)^{-1}| = |Y_L \cap (Y_J)^{-1}| = c_{LJ}.$$

Hence C is a symmetric matrix.

PROOF. U_J has K-basis $\{a_y \circ_j e_J = a_y e_J : y \in Y_J\}$. Let y_1, \ldots, y_s be all the elements of Y_J written in order of increasing length; if i > j then $l(y_i) \ge l(y_j)$. Then set $U_J(i) = \{\sum_{j \ge i} k_{y_j} a_{y_j} e_J : k_{y_j} \in K\}$. $U_J(i)$ is a left ideal of H for all i, and $U_J(i) > U_J(i+1)$ for all $i, 1 \le i \le s-1$. Then $U_J = U_J(1) > U_J(2) > \ldots > U_J(s) > 0$ is a composition series of U_J , with $U_J(i)/U_J(i+1)$ being an irreducible H-module with basis $a_{y_i} e_J + U_J(i+1)$ and affording the irreducible representation λ_L , defined in 3.1, where L is determined as follows: recall 4.10; let $w_j \in R$ and $y_i \in Y_J$. Then

$$a_{j}a_{y_{i}}e_{J} = \begin{cases} -a_{y_{i}}e_{J} & \text{if } y_{i}^{-1}(r_{j}) < 0, \\ 0 & \text{if } y_{i}^{-1}(r_{j}) = r_{k} \text{ for some } r_{k} \in \Pi, \\ a_{w_{j}y_{i}}e_{J} & \text{where } w_{j}y_{i} = y_{l} \text{ for some } y_{l} \in Y_{J} \text{ with } i < l, \text{ if } \\ y_{i}^{-1}(r_{j}) > 0 \text{ but } y_{i}^{-1}(r_{j}) \neq r_{k} \text{ for any } r_{k} \in \Pi. \end{cases}$$

Hence

$$\lambda_L: a_j \to \begin{cases} -1 & \text{if } y_i^{-1}(r_j) < 0, \\ 0 & \text{if } y_i^{-1}(r_j) > 0. \end{cases}$$

That is, $y_i^{-1} \in Y_L$.

Hence c_{JL} = the number of elements $y \in Y_J$ such that $y^{-1} \in Y_L$

$$= |Y_J \cap (Y_L)^{-1}| = |Y_L \cap (Y_J)^{-1}|$$

since if $y \in Y_J \cap (Y_L)^{-1}$, then $y^{-1} \in Y_L \cap (Y_J)^{-1}$.

5.2 THEOREM. Let H be the 0-Hecke algebra over the field K of type (W, R), where W is indecomposable. Then if |R| > 1, H has three blocks. If |R| = 1, then H has two blocks.

PROOF. If |R| = 1, then $W = W(A_1)$ and $H = H(1+a_1) \oplus H(-a_1)$, where $R = \{w_1\}$. Both $(1+a_1)$ and $(-a_1)$ are primitive idempotents as well as being central. Hence H has only two blocks.

Now suppose that |R| > 1. $e_R = [1 + a_{w_0}]$ and $(-1)^{l(w_0)} a_{w_0}$ are primitive and centrally primitive idempotents in H and so correspond to two distinct blocks.

[18]

The other primitive idempotents in H, that is, $\{q_J: J \neq \emptyset, R\}$ as in 4.21, determine at least one other block. We will show that provided W is indecomposable the Cartan matrix C' corresponding to the indecomposables U_J for $J \neq \emptyset$, R and the

irreducibles M_L for $L \neq \emptyset$, R cannot be expressed in the form $C' = \begin{bmatrix} C_1 & 0 \\ 0 & C_2 \end{bmatrix}$ (see Dornhoff (1972), Theorem 46.3).

Suppose that C' can be put in the form above. Let

 $S_1 = \{J \subset R: U_J \text{ and } M_J \text{ index the rows and columns of } C_1\},\$

 $S_2 = \{J \subseteq R : U_J \text{ and } M_J \text{ index the rows and columns of } C_2\}.$

Suppose for some $J \subseteq R$, |J| = n-1 (where n = |R|), that $J \in S_1$. Then we show

(1) for all $L \subseteq R$ with $|L| = n-1, L \in S_1$,

(2) by decreasing induction on |J| for all $J \neq \emptyset$, R that $J \in S_1$.

(a) Suppose $J = \{w_1, ..., \hat{w}_j, ..., w_n\}$ and $L = \{w_1, ..., \hat{w}_{j+1}, ..., w_n\}$, where the nodes corresponding to w_j and w_{j+1} in the graph of W are joined. Then the order of $w_j w_{j+1}$ is greater than 2. Now $w_{0,\hat{J}} = w_j \in Y_J$ and $w_{0,\hat{L}} = w_{j+1} \in Y_L$. Since the order of $w_j w_{j+1}$ is greater than 2, $w_{j+1} w_j \in Y_J$ and $w_j w_{j+1} \in Y_L$; that is, $w_{j+1} w_j \in Y_J \cap (Y_L)^{-1}$. Hence $J \in S_1$ if and only if $L \in S_1$.

Hence if there is some $J \in S_1$, with |J| = n-1, then all $L \subseteq R$ with |L| = n-1 are in S_1 by the above.

(b) Suppose that for all $J \subseteq R$ with |J| > m that $J \in S_1$. Choose $L \subseteq R$ with |L| = m. We show $L \in S_1$. Suppose $L = \{w_{i_1}, \dots, w_{i_m}\}$ with $1 \le i_1 < \dots < i_m \le n$. Since W is indecomposable and $L \neq \emptyset$, R, then $|Y_L| > 1$. Choose some $w_{i_j} \in L$ and $w_k \in \hat{L}$ such that $w_{i_j} w_k$ has order r, where $r \ge 3$. Then $w_{i_j} w_{0\hat{L}} \in Y_L$ (as $w_{0\hat{L}}(r_{i_j}) \neq r_i$ for any $r_i \in \Pi_L$, for $w_{0\hat{L}}(r_{i_j}) = r_i$ for some $r_i \in \Pi_L$ implies that $r_{i_j} = r_i$ and $w_{0\hat{L}}$ is a product of reflections corresponding to roots orthogonal to r_{i_j} , and so for all $w_k \in \hat{L}$, $w_{i_j} w_k = w_k w_{i_j}$, which is a contradiction). Now consider $(w_{i_j} w_{0\hat{L}})^{-1} = w_{0\hat{L}} w_{i_j}$. Then suppose $w_{i_i} \in L$, $w_{i_i} \neq w_{i_j}$. Then $w_{0\hat{L}} w_{i_j} \in \Phi^+$. Also $w_{0\hat{L}} w_{i_j}(r_{i_j}) \in \Phi^-$. Suppose $w_k \in \hat{L}$. Then

$$w_{0\hat{L}} w_{ij}(r_k) = w_{0\hat{L}}(r_k + ur_{ij}) \quad \text{with } u \ge 0$$
$$= w_{0\hat{L}}(r_k) + uw_{0\hat{L}}(r_{ij}).$$

If u = 0, that is, if $w_{i_j}w_k = w_k w_{i_j}$, then $w_{0\hat{L}}w_{i_j}(r_k) \in \Phi^-$. If u > 0, as $w_{0\hat{L}}(r_k) = -r_i$ for some $r_i \in \Pi_{\hat{L}}$, and $w_{0\hat{L}}(r_{i_j}) \in \Phi^+$, $w_{0\hat{L}}(r_{i_j}) \neq r_{i_s}$ for any $r_{i_s} \in \Pi_L$, we have $w_{0\hat{L}}w_{i_i}(r_k) \in \Phi^+$. Hence $w_{0\hat{L}}w_{i_s} \in Y_M$, where

$$M = \{L - \{w_{ij}\}\} \cup \{w_k \in \hat{L} : w_{ij} w_k \text{ has order } > 2\}$$
$$= \{L - \{\{w_{ij}\}\} \cup \{w_k \in \hat{L} : \text{ the node corresponding to } w_k \text{ in the graph of } W \text{ is joined to that corresponding to } w_{ij}\}.$$

Now |M| > |L| if the node corresponding to w_{i_j} is joined to at least two nodes corresponding to elements of \hat{L} , and then $L \in S_1$ by induction.

Let P_i be the node of the graph of W which corresponds to $w_i \in R$, $1 \le i \le n$. Then suppose P_{i_j} is joined to only one P_k for all $w_k \in \hat{L}$. Then the above argument shows that $L = \{w_{i_1}, ..., w_{i_m}\}$ and $M = \{w_{i_1}, ..., \hat{w}_{i_j}, ..., w_{i_m}, w_k\}$ belong to the same S_i , where i = 1 or i = 2. Since $|L| \le n-2$, $|\hat{L}| \ge 2$. Let w_{k_1} and w_{k_2} be any two elements of \hat{L} , such that there exists a sequence $P_{k_1} = P_{j_0}, P_{j_1}, ..., P_{j_r} = P_{k_2}$ of nodes such that P_{j_i} and $P_{j_{i+1}}$ are joined for all i, $0 \le i \le r-1$, and P_{j_i} corresponds to an element of L for all i, $1 \le i \le r-1$. If r = 1, then P_{k_1} and P_{k_2} are joined. Without loss of generality, we may suppose there exists $w_{i_2} \in L$ such that P_{i_4} is joined to P_{k_1} . Then let $M = \{L - \{w_{i_4}\}\} \cup \{w_{k_1}\}$. M and L belong to the same S_i , and by the above, as M has an element w_{k_1} such that $w_{k_1}w_{i_4}$ and $w_{k_1}w_{k_3}$ both have order > 2, where $w_{i_4}, w_{k_2} \in \hat{M}, w_{i_4} \neq w_{k_2}$, then $M \in S_1$. If r = 2, then L and M are in the same S_i , where $M = \{L - \{\{w_{j_1}\}\} \cup \{w_{k_1}, w_{k_3}\}$, and by induction $M \in S_1$. If r > 2, define

$$\begin{split} L_0 &= L, \\ L_1 &= \{L - \{w_{j_1}\}\} \cup \{w_{j_0}\}, \\ \dots \\ L_{r-2} &= \{L_{r-3} - \{w_{j_{r-2}}\}\} \cup \{w_{j_{r-3}}\}. \end{split}$$

Then $L_0, L_1, ..., L_{r-2}$ are all in the same S_i , and by the above, $L_{r-2} \in S_1$. Hence $L \in S_1$. Then $S_2 = \emptyset$, and so H has precisely three blocks.

5.3 THEOREM. Let H be a 0-Hecke algebra of type (W, R). Suppose W is decomposable, and let $W = W_1 \times W_2 \times \ldots \times W_r$, where each W_i is an indecomposable Coxeter group, and the corresponding Coxeter system is (W_i, R_i) . Let H_i be the 0-Hecke algebra of type (W_i, R_i) , and let m_i be the number of blocks of H_i . Then H has $m_1 m_2 \ldots m_r$ blocks.

PROOF. Suppose that $1 = \sum_{i=1}^{t} e_i$ where the e_i are mutually orthogonal centrally primitive idempotents in H. Then the number of blocks of H is equal to t.

Now for all $w \in W_i$, $w' \in W_i$, where $1 \le i, j \le r$ and $i \ne j$, we have that

$$a_w a_{w'} = a_{ww'} = a_{w'w} = a_{w'} a_w,$$

and so it follows that if f_i is a centrally primitive idempotent of H_i , then $f_1 \dots f_r$ is a centrally primitive idempotent of H. Suppose $1_{H_i} = \sum_{j=1}^{l(i)} f_{ij}$ where for a fixed i, $\{f_{ij}: 1 \le j \le t(i)\}$ is a set of mutually orthogonal central primitive idempotents in H_i . Then $1_H = \sum_{j=1}^{l(1)} \dots \sum_{j=1}^{l(r)} f_{1j_1} \dots f_{rj_r}$, a sum of mutually orthogonal central primitive idempotents in H, and so H has $t(1) t(2) \dots t(r)$ blocks, where $t(i) = m_i$.

0-Hecke algebras

Acknowledgement

This work was carried out while the author was at the Mathematics Institute, University of Warwick, Coventry, England, supported by a scholarship from the Association of Commonwealth Universities.

References

- N. Bourbaki (1968), Groupes et algèbres de Lie, Chapitres 4, 5 et 6 (Hermann, Paris).
- R. W. Carter (1972), Simple groups of Lie type (John Wiley and Sons, New York).
- C. W. Curtis and I. Reiner (1962), Representation theory of finite groups and associative algebras (Interscience Publishers, New York).
- L. Dornhoff (1972), Group representation theory, Part B. Marcel Decker, Inc., New York).
- L. Solomon (1968), 'A decomposition of the group algebra of a finite Coxeter group', J. Algebra, 9, 220-239.

R. Steinberg (1967), Lectures on Chevalley groups (Yale University).

Technical Education Division Education Department of W.A. 36 Parliament Place West Perth, Western Australia, 6005, Australia