0-HECKE ALGEBRAS

P. N. NORTON

(Received 8 March 1978)
Communicated by D. E. Taylor

Abstract

The structure of a 0 -Hecke algebra H of type (W, R) over a field is examined. H has 2^{n} distinct irreducible representations, where $n=|R|$, all of which are one-dimensional, and correspond in a natural way with subsets of $R . H$ can be written as a direct sum of $2^{\boldsymbol{n}}$ indecomposable left ideals, in a similar way to Solomon's (1968) decomposition of the underlying Coxeter group W.

Subject classification (Amer. Math. Soc. (MOS) 1970): 16 A 48.

1. Introduction

Notation. $\left\{i_{1}, \ldots, \hat{i}_{s}, \ldots, i_{n}\right\}$ denotes the set $\left\{i_{1}, \ldots, i_{n}\right\}-\left\{i_{s}\right\}, \cup$ denotes set union and \cap denotes set intersection. $(x y x \ldots)_{n}$ denotes the product of the first n terms of the sequence x, y, x, y, x, \ldots ACC denotes the ascending chain condition and DCC denotes the descending chain condition. Let S be a set and A a subset of S. Then $|A|$ denotes the number of elements in A, and A denotes the complement of A in S.

Let K be any field, and let (W, R) be a finite Coxeter system, with root system Φ, positive system Φ^{+}and simple system Π. For each $J \subseteq R$, let Φ_{J}, Φ_{J}^{+}and Π_{J} be the corresponding root system, positive system and simple system. $w_{i} \in R$ is the reflection in the hyperplane perpendicular to $r_{i} \in \Pi$. For each $J \subseteq R$, let

$$
X_{J}=\left\{w \in W: w\left(\Pi_{J}\right) \subseteq \Phi^{+}\right\} \quad \text { and } \quad Y_{J}=\left\{w \in W: w\left(\Pi_{J}\right) \subseteq \Phi^{+}, w\left(\Pi_{\hat{J}}\right) \subseteq \Phi^{-}\right\}
$$

where $\hat{J}=R-J$. We shall assume all the standard results on finite Coxeter systems, as found in Bourbaki (1968), Carter (1972) and Steinberg (1967).
1.1 Definition. The 0 -Hecke algebra H over K of type (W, R) is the associative algebra over K with identity 1 generated by $\left\{a_{i}: w_{i} \in R\right\}$ subject to the relations:
(i) $a_{i}^{2}=-a_{i}$ for all $w_{i} \in R$,
(ii) $\left(a_{i} a_{j} a_{i} \ldots\right)_{n_{j}}=\left(a_{j} a_{i} a_{j} \ldots\right)_{n_{k j}}$ for all $w_{i}, w_{j} \in R, w_{i} \neq w_{j}$, where $n_{i j}=$ the order of $w_{i} w_{j}$ in W.
For all $w \in W$, define $a_{w}=a_{i_{1}} \ldots a_{i}$, where $w=w_{i_{1}} \ldots w_{i_{i}}$ is a reduced expression for $w \in W$ in terms of the elements of R. Note that $a_{1 w}=1$, where 1_{W} denotes the identity element of W. It is easy to show that a_{w} is independent of the reduced expression for w, and that every element of H is a K-linear combination of elements a_{w}, for $w \in W$.

By Bourbaki (1968) (Exercise 23, p. 55), $\left\{a_{w}: w \in W\right\}$ are linearly independent over K and so form a K-basis of H.
1.2 Some Examples. (i) Let $G=G(q)$ be a Chevalley group over the finite field $F=G F(q)$ of q elements, where $q=p^{m}$ for some prime p and positive integer m. Then G has a (B, N) pair (G, B, N, R) and Weyl group W such that for each $w_{i} \in R$ there is a positive integer c_{i} such that $\left|B: B \cap B^{v_{i}}\right|=q^{c_{i}}$. If K is a field of characteristic p, then the Hecke algebra $H_{K}(G, B)$ is a 0 -Hecke algebra.
(ii) Let G be a finite group with a split (B, N) pair (G, B, N, R, U) of rank n and characteristic p with Weyl group W, and let K be a field of characteristic p. Then the Hecke algebra $H_{K}(G, B)$ is a 0 -Hecke algebra of type (W, R) over K.
1.3 Lemma. For all $w_{i} \in R$ and all $w \in W$,

$$
\begin{aligned}
& a_{i} a_{w}= \begin{cases}a_{w, w} & \text { if } l\left(w_{i} w\right)=l(w)+1, \\
-a_{w} & \text { if } l\left(w_{i} w\right)=l(w)-1 ;\end{cases} \\
& a_{w} a_{i}= \begin{cases}a_{w w_{i}} & \text { if } l\left(w w_{i}\right)=l(w)+1, \\
-a_{w} & \text { if } l\left(w w_{i}\right)=l(w)-1 .\end{cases}
\end{aligned}
$$

Proof. If $l\left(w_{i} w\right)=l(w)+1$, then $a_{w_{p} w}=a_{i} a_{w}$ by the definition of $a_{w_{r} o}$. Suppose $l\left(w_{i} w\right)=l(w)-1$; then there is a reduced expression for w beginning with w_{i} : say $w=w_{i} w^{\prime}$ where $l(w)=l\left(w^{\prime}\right)+1$. Then $a_{w}=a_{i} a_{w^{\prime}}$, and so

$$
a_{i} a_{w}=a_{i} a_{i} a_{w v^{\prime}}=-a_{i} a_{w^{\prime}}=-a_{w} .
$$

Similarly for $a_{w} a_{i}$.
1.4 Corollary. (1) For all $w, w^{\prime} \in W$,
(a) $a_{w} a_{w v^{\prime}}= \pm a_{w}$ for some $w^{\prime \prime} \in W$, with $l\left(w^{\prime \prime}\right) \geqslant \max \left(l(w), l\left(w^{\prime}\right)\right)$;
(b) $a_{w} a_{w^{\prime}}=a_{w w^{\prime}}$ if and only if $l\left(w w^{\prime}\right)=l(w)+l\left(w^{\prime}\right)$;
(c) $a_{w} a_{w^{\prime}}=(-1)^{1\left(w^{\prime}\right)} a_{w}$ if and only if $w\left(r_{i}\right) \in \Phi^{-}$for each $r_{i} \in \Pi_{J}$, where $J=\left\{w_{i} \in R: w_{i}\right.$ occurs in some reduced expression for $\left.w^{\prime}\right\}$.
(d) $a_{w} a_{w^{\prime}}=(-1)^{(w)} a_{w^{\prime}}$ if and only if $\left(w^{\prime}\right)^{-1}\left(r_{i}\right) \in \Phi^{-}$for each $r_{i} \in \Pi_{J}$, where $J=\left\{w_{i} \in R: w_{i}\right.$ occurs in some reduced expression for $\left.w\right\} ;$
(e) $a_{w} a_{w^{\prime}}= \pm a_{w^{+}}$with $l\left(w^{\prime \prime}\right)>l(w)$, where $l(w) \geqslant l\left(w^{\prime}\right)$, if and only if there exists $r_{i} \in \Pi_{J}$ such that $w\left(r_{i}\right) \in \Phi^{+}$, where $J=\left\{w_{j} \in R: w_{j}\right.$ occurs in some reduced expression for $\left.w^{\prime}\right\}$.
(2) Let w_{0} be the unique element of maximal length in W. Then for all $w \in W$,

$$
a_{w} a_{w_{0}}=(-1)^{l(w)} a_{w_{0}} \quad \text { and } \quad a_{w_{0}} a_{w}=(-1)^{l(w)} a_{w_{0}}
$$

2. The nilpotent radical of H

Let N be the nilpotent radical of H. Since H is a finite-dimensional algebra over K, H has the DCC and ACC and so N is also the Jacobson radical of H, and is the unique maximal nilpotent ideal of H.

There is a natural composition series for H, consisting of (two-sided) ideals of H such that every factor is a one-dimensional H-module. This series arises as follows: list the basis elements $\left\{a_{w}: w \in W\right\}$ in order of increasing length of w, and if w, $w^{\prime} \in W$ have the same length it does not matter in which order a_{w} and $a_{w^{\prime}}$ occur on the list. Rename these elements $h_{1}, h_{2}, \ldots, h_{|W|}$ respectively. Note that $h_{1}=1$ and $h_{|W|}=a_{w_{0}}$. Let H_{j} be the ideal of H generated by $\left\{h_{m}: m \geqslant j\right\} . H_{j}$ has K-basis $\left\{h_{m}: m \geqslant j\right\}$ and dimension $|W|-j+1$. Then

$$
H=H_{1}>H_{2}>\ldots>H_{|W|}=a_{w_{0}} H>0
$$

is the natural composition series of H described above. H_{i} / H_{i+1} is a one-dimensional H-module, $1 \leqslant i \leqslant|W|$, where $H_{|W|+1}=0$, with basis $h_{i}+H_{i+1}$, where $h_{i}=a_{w}$ for some $w \in W$. Either $a_{w}^{2}=(-1)^{l(w)} a_{w}$ or $a_{w}^{2} \in H_{i+1}$; in the first case, the factor ring H_{i} / H_{i+1} is generated by an idempotent, and in the second case it is nilpotent.
2.2 Lemma. The number of factors which are generated by an idempotent is equal to 2^{n}, where $n=|R|$.

Proof. The factors generated by idempotents correspond to elements $w \in W$ such that $a_{w}^{2}=(-1)^{(w)} a_{w}$. Let $w \in W$ be such an element. Write $w=w_{i_{1}} \ldots w_{i_{s}}$, where $l(w)=s$, and let $J=\left\{w_{i_{j}}: 1 \leqslant j \leqslant s\right\}$. Then $w \in W_{J}$, and by 1.4(lc), $w\left(\Pi_{J}\right) \subseteq \Phi^{-}$. Hence $w=w_{0 J}$, the unique element of maximal length in W_{J}. Conversely, for each subset J of $R, a_{w_{0, J}}^{2}=(-1)^{l\left(w_{a j}\right)} a_{w_{a} \text {. Hence the number of factors which are }}$ generated by an idempotent is equal to the number of subsets of R, that is, 2^{n}, where $n=|R|$.

By Schreier's theorem, any series of ideals of H can be refined to a composition series, and all so obtained have the same number of terms in them as the natural series, and with the factors in one-one correspondence with those of the natural series. In particular, consider $H>N \geqslant 0$. This can be refined to a composition series $H=H_{1}^{\prime}>\ldots>H_{|W|}^{\prime}>H_{|W|+1}^{\prime}=0$, where $N=H_{r}^{\prime}, \quad 2<r \leqslant|W|+1$. Now each factor $H_{i}^{\prime} / H_{i+1}^{\prime}, i \geqslant r$, is nilpotent as $H_{i}^{\prime} \leqslant N$, and each factor $H_{i}^{\prime} / H_{i+1}^{\prime}, i+1 \leqslant r$, must be generated by an idempotent as $H_{i}^{\prime} / N \leqslant H / N$, a semi-simple ring. Hence the number of factors which are nilpotent is equal to the dimension of N. Thus, $\operatorname{dim} N=|W|-2^{n}$, where $n=|R|$.

We can, however, give a precise basis of N.
2.3 Theorem. Let $w \in W$, and suppose $w \neq w_{0 J}$ for any $J \subseteq R$. Write $w=w_{i_{1}} \ldots w_{i_{s}}$, $l(w)=s$, and let $J(w)=\left\{w_{i_{j}}: 1 \leqslant j \leqslant s\right\}$. Then $E(w)=a_{w}+(-1)^{\left(w_{0}(w)\right)+l(w)+1} a_{w_{0 J(w)}}$ is nilpotent, and $\left\{E(w): w \in W, w \neq w_{0 J}\right.$ for any $\left.J \subseteq R\right\}$ is a basis of N.

Proof. Show $E(w)$ is nilpotent by induction on $l\left(w_{0 J(w)}\right)-l(w)$. Note that if $w=w_{0 J}$ for some $J \subseteq R$ then $E(w)=0$. Suppose $l\left(w_{0 J(w)}\right)-l(w)=1$. Then since a reduced expression for w involves all $w_{i} \in J(w), w \neq w_{0 J(w)}$, there exists $r_{j} \in \Pi_{J(w)}$ such that $w\left(r_{j}\right) \in \Phi^{+}$. So $a_{w}^{2}=(-1)^{1(w)-1} a_{w_{0 J(w)}}$. Thus

$$
\begin{aligned}
E(w)^{2} & =a_{w}^{2}+a_{w} a_{w_{0 J}(w)}+a_{w_{0 J}(w)} a_{w}+a_{w_{0 J}(w)}^{2} \\
& =a_{w_{0} J(w)}^{b} \quad \text { where } b=(-1)^{l(w)-1}+2(-1)^{l(w)}+(-1)^{l\left(w_{0 J}(w)\right)} \\
& =0 \text { as } l\left(w_{0 J(w)}\right)=l(w)+1 .
\end{aligned}
$$

Now suppose $l\left(w_{0 J(w)}\right)-l(w)>1$. Consider the product $a_{w} a_{w}$. Since $w \neq w_{0 J(w)}$, there exists $r_{j} \in \Pi_{J(w)}$ such that $w\left(r_{j}\right) \in \Phi^{+}$. As any reduced expression for w involves all $w_{i} \in J(w)$, we have $a_{w} a_{w}=(-1)^{2(w)-l\left(w^{\prime}\right)} a_{w^{\prime}}$, with $w^{\prime} \in W_{J(w)}$ and $l\left(w^{\prime}\right)>l(w)$. Further, $J\left(w^{\prime}\right)=J(w)$. Then

$$
\begin{aligned}
E(w)^{2} & =a_{w}^{2}+2(-1)^{l\left(w_{0 J}(w)\right)+1} a_{w_{0 J}(w)}+(-1)^{l\left(w_{0 J(w) l}\right)} a_{w_{0 J}(w)} \\
& =(-1)^{l\left(w^{\prime}\right)} a_{w^{\prime}}+(-1)^{l\left(w_{0 J}(w)\right)+1} a_{w_{0 J(w)}} \\
& =(-1)^{l\left(w^{\prime}\right)}\left(a_{w^{\prime}}+(-1)^{l\left(w_{0 J} J\left(w^{\prime}\right)+l\left(w^{\prime}\right)+1\right.} a_{w_{0 J}\left(w^{\prime}\right)}\right) \\
& =(-1)^{l\left(w^{\prime}\right)} E\left(w^{\prime}\right) .
\end{aligned}
$$

As $l\left(w^{\prime}\right)>l(w)$, either $w^{\prime}=w_{0 J(w)}$ and thus $E(w)^{2}=0$ or $w^{\prime} \neq w_{0 J(w)}$ and then by induction $E\left(w^{\prime}\right)$ is nilpotent. Thus $E(w)$ is nilpotent.

Finally, note that we get a nilpotent element for each $w \in W, w \neq w_{0 J}$ for any $J \subseteq R$. The set of all $E(w), w \neq w_{0 J}$ for any $J \subseteq R$, is obviously linearly independent, and there are $|W|-2^{n}$ elements in all, where $n=|R|$. Hence they are a K-basis for N.

2.4 Corollary. H / N is commutative.

Proof. We show that $a_{i} a_{j}-a_{j} a_{i} \in N$ for all $w_{i}, w_{j} \in R$. If $a_{i} a_{j}=a_{j} a_{i}$, the result is obvious. So suppose $a_{i} a_{j} \neq a_{j} a_{i}$. Then we can form $E\left(w_{i} w_{j}\right)$ and $E\left(w_{j} w_{i}\right)$ and $E\left(w_{i} w_{j}\right)-E\left(w_{j} w_{i}\right)=a_{i} a_{j}-a_{j} a_{i} \in N$ as each of $E\left(w_{i} w_{j}\right)$ and $E\left(w_{j} w_{i}\right)$ is in N.

3. The irreducible representations of H

Consider the one-dimensional H-modules which arise from the natural composition series of H. Let the factor H_{i} / H_{i+1} be generated as left H-module by $a_{w}+H_{i+1}$. The action of H on this element is determined as follows: for each $w_{i} \in R$,

$$
a_{i}\left(a_{w}+H_{i+1}\right)= \begin{cases}-\left(a_{w}+H_{i+1}\right) & \text { if } w^{-1}\left(r_{i}\right) \in \Phi^{-} \\ 0 & \text { if } w^{-1}\left(r_{i}\right) \in \Phi^{+}\end{cases}
$$

For any $w \in W$, let $J(w)=\left\{w_{i_{j}}: 1 \leqslant j \leqslant s\right\}$ where $w=w_{i_{1}} \ldots w_{i_{s}}$ is a reduced expression for w. Then for $w^{\prime} \in W$,

$$
a_{w^{\prime}}\left(a_{w}+H_{i+1}\right)= \begin{cases}(-1)^{l\left(w^{\prime}\right)}\left(a_{w}+H_{i+1}\right) & \text { if } w^{-1}\left(\Pi_{J\left(w^{\prime}\right)}\right) \subseteq \Phi^{-} \\ 0 & \text { if there exists } r_{i} \in \Pi_{J\left(w^{\prime}\right)} \text { such } \\ & \text { that } w^{-1}\left(r_{i}\right) \in \Phi^{+}\end{cases}
$$

Hence the action of H on $a_{w}+H_{i+1}$ depends on w^{-1}.
3.1 Definition. For each $J \subseteq R$, let λ_{J} be the one-dimensional representation of H defined by

$$
\lambda_{J}\left(a_{i}\right)= \begin{cases}0 & \text { if } w_{i} \in J \\ -1 & \text { if } w_{i} \in \hat{J}\end{cases}
$$

For all $w \in W$, let $w=w_{i_{1}} \ldots w_{i_{s}}$ with $l(w)=s$. Then $\lambda_{J}\left(a_{w}\right)=\lambda_{J}\left(a_{i_{1}}\right) \ldots \lambda_{J}\left(a_{i_{s}}\right)$. Extend λ_{J} to H by linearity.

For each $J \subseteq R$, let $H_{i(J)} / H_{i(J)+1}$ be the factor of the natural series which is generated by $a_{w_{0 j}}+H_{i(J)+1}$. Then the left H-module $H_{i(J)} / H_{i(J)+1}$ affords the representation λ_{J} of H.

Since each composition factor of H is one-dimensional, it follows that all irreducible representations of H are one-dimensional. Let μ be an irreducible representation of H. Then μ is completely determined by the values $\mu\left(a_{i}\right)$ for all $w_{i} \in R$. Since μ is an algebra homomorphism, $\mu\left(a_{i}\right)^{2}=-\mu\left(a_{i}\right)$ for all $w_{i} \in R$. Let $\mu\left(a_{i}\right)=u_{i} \in K$ for all $w_{i} \in R$. Then $u_{i}^{2}=-u_{i}$ in K implies that $u_{i}=0$ or $u_{i}=-1$.

Thus each irreducible representation of H can be described by an n-tuple (u_{1}, \ldots, u_{n}), where $n=|R|$, with $u_{i}=0$ or -1 for all i. In particular, λ_{J} corresponds to the n-tuple $\left(u_{1}, \ldots, u_{n}\right)$ where $u_{i}=0$ if $w_{i} \in J$ and $u_{i}=-1$ if $w_{i} \in \hat{J}$. There are 2^{n} such irreducible representations, and they all occur in the natural series of H.
2^{n} maximal ideals of H are determined as follows: for each $J \subseteq R$, form the n-tuple $\left(u_{1}, \ldots, u_{n}\right)$, where $u_{i}=0$ if $w_{i} \in J$ and $u_{i}=-1$ otherwise. Let M_{J} be the left ideal of H generated by $\left\{a_{i}-u_{i} 1: w_{i} \in R\right\}$. Then $M_{J}=\operatorname{ker} \lambda_{J}$, and as each λ_{J} is irreducible, M_{J} is a maximal left ideal of H.

Now H / N is semi-simple Artinian. So by extending K to its algebraic closure R and considering H as an algebra over R, we deduce that

$$
H / N \cong R \oplus R \oplus \ldots \oplus R, \quad \text { a direct sum of } 2^{n} \text { fields. }
$$

(Actually, we will show that

$$
H / N \cong K \oplus K \oplus \ldots \oplus K, \quad 2^{n} \text { copies of } K
$$

regardless of which field K is.)

4. Some decompositions of H

For each $J \subseteq R$, let H_{J} be the subalgebra of H generated by $\left\{a_{i}: w_{i} \in J\right\}$.
4.1 Definition. For each $J \subseteq R$, let

$$
e_{J}=\sum_{w \in W,} a_{w,}, \quad o_{J}=(-1)^{l\left(w_{0 J}\right)} a_{w_{0} J}
$$

4.2 Lemma. For all $w_{i} \in J$,

$$
a_{i} e_{J}=0=e_{J} a_{i} \quad \text { and } \quad a_{i} o_{J}=-o_{J}=o_{J} a_{i}
$$

Proof. Use 1.3.
4.3 LEMMA. Let $w_{0 J}=w_{i_{1}} \ldots w_{i,}, l\left(w_{0 J}\right)=s$. Then

$$
e_{J}=\left(1+a_{i_{1}}\right) \ldots\left(1+a_{i_{s}}\right)
$$

and is independent of the reduced expression for $w_{0 J}$.
Notation. For all $w \in W$, if $w=w_{i_{1}} \ldots w_{i_{i}}$ with $l(w)=t$, write

$$
\left[1+a_{w}\right]=\left(1+a_{i_{1}}\right) \ldots\left(1+a_{i_{l}}\right)
$$

By the following proof it follows that $\left[1+a_{w}\right]$ is independent of the reduced expression for w.

Proof. Firstly, we show that [$1+a_{w_{0 J}}$] is independent of the reduced expression for $w_{0 J}$. Since we can pass from one reduced expression for $w_{0 J}$ to another by substitutions of the form $\left(w_{i} w_{j} w_{i} \ldots\right)_{n_{i j}}=\left(w_{j} w_{i} w_{j} \ldots\right)_{n_{b}}, i \neq j$, where $n_{i j}$ is the order of $w_{i} w_{j}$ in W, we need to show that

$$
\left[1+a_{\left(w_{i} w_{j} w_{j}, \ldots\right)_{n_{k}}}\right]=\left[1+a_{\left(w_{j}, w_{i}, w_{j} \ldots\right)_{n_{i}}}\right]
$$

To do this, we use induction on $n, n \leqslant n_{i j}$, to show that

$$
\left[1+a_{\left(w_{c} w_{j} w_{k} \ldots\right)_{n}}\right]=1+\sum_{m=1}^{n} a_{\left(w_{i} w_{j} w_{i} \ldots\right)_{m}}+\sum_{m=1}^{n-1} a_{\left(w_{j} w_{i} w_{g} \ldots\right)_{m}}
$$

This is clearly true for $n=1$. Suppose it is true for all integers $\leqslant k$, and suppose that k is odd. Then

$$
\begin{aligned}
& {\left[1+a_{\left(w_{t} w w_{i} \ldots\right)_{k+1}}\right]=\left[1+a_{\left(w_{t} w_{j} w_{k} \ldots\right)_{k}}\right]\left(1+a_{j}\right)} \\
& =\left(1+\sum_{m=1}^{k} a_{\left(w_{i} v_{j} v_{i} \ldots\right)_{m}}+\sum_{m=1}^{k-1} a_{\left.\left(v_{j} w_{i} v_{j} \ldots\right)_{m}\right)}\right)\left(1+a_{j}\right) \\
& =\left(1+\sum_{m=1}^{k} a_{\left(w_{i} w_{j} w_{i} \ldots\right)_{m}}+\sum_{m=1}^{k-1} a_{\left.\left(w_{j} w_{i} w_{j} \ldots\right)_{m}\right)}\right)+a_{j} \\
& +\sum_{m=0}^{\frac{1}{(k-1)}} a_{\left(w_{s} w_{j} w_{i} \ldots\right)_{2 m+1}} a_{j}+\sum_{m=1}^{\frac{1}{(k-1)}} a_{\left(w_{j} w_{j} w_{i} \ldots\right)_{2 m}} a_{j}
\end{aligned}
$$

Now,

$$
a_{\left(w_{i} w_{j} w_{j} \ldots\right)_{m-1}} a_{j}=-a_{\left(w_{i} w_{j} w_{i} \ldots\right)_{2 m}} a_{j}, \quad 1 \leqslant m \leqslant \frac{1}{2}(k-1),
$$

and

$$
a_{\left(w_{j} w_{1} v_{j} \ldots\right)_{2 m-1}} a_{j}=-a_{\left(w_{j} w_{1} w_{j} \ldots\right)_{2 m-2}} a_{j}, \quad 1 \leqslant m \leqslant \frac{1}{2}(k-1)
$$

where $a_{\left(w v_{s} v_{j} . .\right)_{0}}=1$. Then

$$
\begin{aligned}
& {\left[1+a_{\left(w_{i} v_{j} w_{1} \ldots\right)_{k+1}}\right]=1+\sum_{m=1}^{k} a_{\left(w_{i} v_{j} w_{k} \ldots\right)_{m}}+\sum_{m=1}^{k-1} a_{\left(w_{j} w_{s} v_{j} \ldots\right)_{m}} } \\
&+a_{\left(w_{1} v_{j} w_{i} \ldots\right)_{k}} a_{j}+a_{\left(w_{j} w_{j} w_{j} \ldots\right)_{k-1}} a_{j} \\
&=1+\sum_{m=1}^{k+1} a_{\left(w_{s} w_{j} w_{i} \ldots\right)_{m}}+\sum_{m=1}^{k} a_{\left(w_{j} w_{i} w_{j} \ldots\right)_{m} .}
\end{aligned}
$$

Similarly, we get the above result if we assume k is even.

Similarly, for all $n \leqslant n_{i j}$,

$$
\left[1+a_{\left(w_{j} v_{1} v_{j} v_{j}\right)_{n}}\right]=1+\sum_{m=1}^{n} a_{\left(w_{j} v_{r} v_{1} \ldots\right)_{m}}+\sum_{m=1}^{n-1} a_{\left(w_{1} v_{j}, w_{1} \ldots\right)_{m}} .
$$

Then, for all $n \leqslant n_{i j}$,

$$
\left[1+a_{\left(w_{i} w_{j} v_{i} \ldots\right)_{n}}\right]-\left[1+a_{\left(w_{j} w_{i} v_{j} \ldots\right)_{n}}\right]=a_{\left(w_{i} v_{f} v_{i} \ldots\right)_{n}}-a_{\left(w_{p}, w_{t} w_{j} \ldots\right)_{n}}
$$

When $n=n_{i j}$, this difference is zero, and so

$$
\left[1+a_{\left(w_{1} w_{f} w_{t} \ldots\right)_{n_{i j}}}\right]=\left[1+a_{\left(w_{j} w_{i} w_{j} \ldots\right)_{n_{t}}}\right]
$$

and thus $\left[1+a_{w_{0 J}}\right]$ is independent of the reduced expression for $w_{0 J}$ chosen.
Finally, $\left[1+a_{w_{0}}\right]$ is a linear combination of certain a_{w} with $w \in W_{J}$. We show by induction on $l(w)$ for all $w \in W_{J}$ that a_{w} occurs in the expansion of [$1+a_{w_{0} J}$] with coefficient 1 . If $l(w)=0$, then $w=1$ and obviously 1 occurs with coefficient 1 . Suppose $l(w)>0$. Let $w=w^{\prime} w_{j}, w^{\prime} \in W_{J}, w_{j} \in J$, where $l(w)=l\left(w^{\prime}\right)+1$. By induction $a_{w^{\prime}}$ occurs in $\left[1+a_{w_{0} J}\right]$ with coefficient 1 . Choose an expression for $w_{0 J}$ ending in w_{j}, and then $\left[1+a_{w_{0} J}\right]=\left[1+a_{w_{a} w_{j}}\right]\left(1+a_{j}\right)$. Since $l\left(w^{\prime} w_{j}\right)>l\left(w^{\prime}\right)$, the only contribution to $a_{w^{\prime}}$ from the last bracket is from the 1 . If instead we take a_{j} from the last bracket, we get a_{v}, with coefficient 1 . Now suppose a_{v} occurs in [$\left.1+a_{\left.v_{0}, v_{j}\right]}\right]$ with coefficient m. Then

$$
m a_{w}\left(1+a_{j}\right)=m a_{w}+m a_{w} a_{j}=m a_{w}-m a_{w}=0 \quad \text { as } w\left(r_{j}\right) \in \Phi^{-}
$$

Thus a_{w} occurs in the expansion of $\left[1+a_{w_{0}}\right]$ with coefficient 1 , and hence $e_{J}=\left[1+a_{w_{0, J}}\right]$.
4.4 Corollary. (1) If $J, L \subseteq R, J \cap L \neq \emptyset$, then $o_{J} e_{L}=0$ and $e_{J} o_{L}=0$.
(2) If $L \subseteq J \subseteq R$, then $e_{L} e_{J}=e_{J}=e_{J} e_{L}$ and $o_{L} o_{J}=o_{J}=o_{J} o_{L}$.

Proof. Use 4.2 and 4.3.
4.5 Lemma. Let $y \in Y_{J}$ for some $J \subseteq R$. Then $a_{y} o_{\hat{J}}=a_{y}$ and $a_{y} o_{\hat{J}} e_{J}=\sum_{w_{\epsilon} W_{J}} a_{\nu w}$, with $l(y w)=l(y)+l(w)$ for all $w \in W_{J}$, that is, $a_{v} o_{\hat{J}} e_{J}$ is equal to a_{v} plus a sum of certain a_{w} with $l(w)>l(y)$.

Proof. If $y \in Y_{J}$, then $y=w w_{0 . \hat{J}}$ for some $w \in W$ with $l(y)=l(w)+l\left(w_{0, \hat{J}}\right)$. Hence $a_{y} o_{\hat{\jmath}}=(-1)^{\mathfrak{(}\left(w_{0} \hat{}\right)} a_{w} a_{w_{0} \hat{\hat{j}}} a_{w_{0} \hat{\jmath}}$, and so $a_{y} o_{\hat{J}}=a_{y}$. Now for all $w \in W_{J}$, as $y \in Y_{J} \subseteq X_{J}$, we have $l(y w)=l(y)+l(w)$. So for all $w \in W_{J}, a_{y} a_{w}=a_{y w}$. Thus

$$
a_{y} o_{\hat{J}} e_{J}=a_{\nu} e_{J}=\sum_{w \in W_{J}} a_{\nu} a_{w}=\sum_{w \in W_{J}} a_{\nu w}=a_{\nu}+\sum_{w \in W_{J}, w \neq 1} a_{\nu w v}
$$

and $l(y w)>l(y)$ if $w \neq 1, w \in W_{J}$.
4.6 Lemma. For $y \in Y_{J}, a_{y}$ occurs in the expansion of $a_{y} e_{j} o_{j}$ with coefficient 1 , and if, for any $w \in W, a_{w}$ occurs in the expansion of $a_{y} e_{J} \circ_{j}$ with non-zero coefficient, then $w=y$ or $l(w)>l(y)$.

Proof. By 4.5, $a_{y} e_{J}=\Sigma_{w \in W_{J}} a_{y w o}$, with $l(y w)=l(y)+l(w)$ for all $w \in W_{J}$. So

$$
a_{\nu} e_{J} o_{\hat{J}}=\sum_{w \in W,} a_{\nu v w} o_{\hat{J}}=a_{\nu} o_{\hat{J}}^{+} \sum_{w \in W /, v \neq 1} a_{\nu v w} o_{\hat{J}}
$$

From the proof of 4.5, $a_{y} o_{\hat{j}}=a_{y}$, and for all $w \in W_{J}, w \neq 1$,

$$
a_{\nu v o} o_{j}=a_{y v o}(-1)^{\left(t w_{0} j\right)} a_{v \sigma_{0} \hat{j}}= \pm a_{v \sigma^{\prime}}
$$

for some $w^{\prime} \in W$ with $l\left(w^{\prime}\right) \geqslant l(y w)>l(y)$.
4.7 Theorem. (i) The elements $\left\{a_{y} o_{\hat{J}} e_{J}=a_{\nu} e_{J}: y \in Y_{J}, J \subseteq R\right\}$ are linearly independent and form a basis of H.
(ii) The elements $\left\{a_{y} e_{J} o_{\hat{j}}: y \in Y_{J}, J \subseteq R\right\}$ are linearly independent and form a basis of H.

Proof. (i) Suppose that for each $y \in Y_{J}$ and each $J \subseteq R$ there is an element $k_{\nu} \in K$ such that $\Sigma_{J \subseteq R} \Sigma_{y \in Y_{J}} k_{y} a_{y} e_{J}=0$. Let

$$
S_{n}=\sum_{J \subseteq R} \sum_{y \in Y, J}{ }_{j y) \geqslant n} k_{y} a_{y} e_{J}
$$

We show that if $S_{n}=0$, then $k_{\nu}=0$ whenever $l(y)=n$ and hence $S_{n+1}=0$.
Let y_{1}, \ldots, y_{l} be those elements of W for which $l\left(y_{i}\right)=n$. Then by 4.5, if $y_{i} \in Y_{J(i)}$ for some $J(i) \subseteq R$,

$$
a_{y_{i}} e_{J(i)}=a_{y_{i}}+\left(\text { a linear combination of certain } a_{w} \text { where } l(w)>l\left(y_{i}\right)\right)
$$

Hence,

$$
S_{n}=\sum_{i=1}^{i} k_{v_{i}} a_{y_{i}}+\left(\text { a linear combination of certain } a_{w} \text { with } l(w)>n\right)
$$

If $S_{n}=0$, then as $\left\{a_{w}: w \in W\right\}$ are a basis of H, we must have $k_{\nu_{i}}=0$ for all i, $1 \leqslant i \leqslant t$. Then $S_{n+1}=0$.

Since $S_{0}=0, k_{y}=0$ for all y whenever $l(y)=0$, and then $S_{1}=0$. By induction, all k_{y} are zero, and so $\left\{a_{y} e_{J}: y \in Y_{J}, J \subseteq R\right\}$ is a set of linearly independent elements. As there are $|W|$ of them, they must form a basis of H.
(ii) This is proved using similar arguments.
4.8 Corollary. (i) For any $L \subseteq R$, the elements of the set

$$
\left\{a_{y} o_{\hat{J}} e_{J} o_{\hat{L}}=a_{y} e_{J} o_{\hat{L}}: y \in Y_{J}, J \subseteq L\right\}
$$

are linearly independent.
(ii) For any $L \subseteq R$, the elements of the set $\left\{a_{\nu} e_{J} 0_{J} e_{L}: y \in Y_{J}, J \supseteq L\right\}$ are linearly independent.

Proof. (i) $a_{\nu} e_{J} o_{\hat{L}}=\Sigma_{w \in W_{J}} a_{y w} o_{\hat{L}}$. As $J \subseteq L, \hat{L} \subseteq \mathcal{J}$ and so $a_{v \sigma_{0}} o_{\mathcal{L}}=a_{w \sigma_{0}}$. Then

$$
\begin{aligned}
a_{\nu} e_{J} o_{\hat{L}} & =a_{y} o_{\hat{L}}+\sum_{w \in W J, w \neq 1} a_{y w} o_{\hat{L}} \\
& =a_{\nu}+\sum_{w \in W J, w \neq 1} a_{v w} o_{\hat{L}} \text { as } y \in Y_{J} \\
& =a_{y}+\left(\text { a linear combination of certain } a_{w} \text { with } l(w)>l(y)\right) .
\end{aligned}
$$

The result now follows by using an argument similar to that used in the proof of 4.7.
(ii) For any $y \in Y_{J}, a_{y} e_{J} o_{j}=a_{y}+\left(\sum_{w \in W} k_{w} a_{v o}\right)$, where $k_{w} \in K$ and $k_{w o}=0$ if $l(w) \leqslant l(y)$. Then

$$
\begin{aligned}
a_{y} e_{J} o_{\mathcal{J}} e_{L} & =a_{v} e_{L}+\left(\sum_{w \in W} k_{w} a_{w}\right) e_{L}, \quad k_{w} \in K \text { given as above, } \\
& =a_{v}+\left(\sum_{w \in W} k_{w}^{\prime} a_{w}\right) \text { for certain } k_{w}^{\prime} \in K, \text { with } k_{w}^{\prime}=0 \text { if } l(w) \leqslant l(y) .
\end{aligned}
$$

Once again the result is given using an argument similar to that given in the proof of 4.7.
4.9 Theorem. (i) For each $a \in H$ and for any $J \subseteq R$, there exist elements $k_{\nu} \in K$ such that

$$
a a_{\hat{J}} e_{J}=\sum_{y \in Y, J} k_{v} a_{v} e_{J}=\left(\sum_{v \in Y_{J}} k_{v} a_{v} o_{\hat{\jmath}} e_{J}\right)
$$

(ii) For each $a \in H$ and for any $J \subseteq R$, there exist elements $k_{\nu} \in K$ such that

$$
a e_{J} o_{\hat{J}}=\sum_{\nu \in Y_{J}} k_{y} a_{\nu} e_{J} o_{\hat{J}}
$$

Proof. (i) As $\left\{a_{w}: w \in W\right\}$ is a basis of H, we may write $a=\Sigma_{w \in W} u_{w} a_{w}$ with $u_{w} \in K$ for all $w \in W$. It is thus sufficient to express $a_{w} o_{\hat{J}} e_{J}$ as a linear combination of the elements $\left\{a_{v} e_{J}: y \in Y_{J}\right\}$ for all $w \in W$. Use induction on $l(w)$ to prove this.

If $l(w)=0$, then $w=1$ and $\left.\log _{\hat{j}} e_{J}=(-1)^{\left(2 v_{0}\right)}\right) a_{w_{0} j} e_{J}$. The result is true for $w=1$ as $w_{0 \hat{J}} \in Y_{J}$.

Suppose $l(w)>0$. Let $w=w_{i} w^{\prime}$ for some $w_{i} \in R, w^{\prime} \in W, l(w)=l\left(w^{\prime}\right)+1$. By induction,

$$
a_{w^{\prime}} o_{\hat{J}} e_{J}=\sum_{y \in Y,} u_{y} a_{y} e_{J} \text { for some } u_{y} \in K
$$

Then

$$
a_{w} o_{\hat{J}} e_{J}=a_{i} a_{w^{\prime}} o_{\hat{J}} e_{J}=\sum_{y \in Y_{J}} u_{y} a_{i} a_{y} e_{J}
$$

Hence for each $y \in Y_{J}$ we have to express $a_{i} a_{y} e_{J}$ as a combination of $\left\{a_{v} e_{J}: v \in Y_{J}\right\}$. Now for any $y \in Y_{J}$,

$$
a_{i} a_{y} e_{J}= \begin{cases}-a_{y} e_{J}, & \text { if } y^{-1}\left(r_{i}\right) \in \Phi^{-} \tag{4.10}\\ 0, & \text { if } y^{-1}\left(r_{i}\right)=r_{j} \text { for some } r_{j} \in \Pi_{J} \\ \quad \text { as then } a_{i} a_{y}=a_{y} a_{j} \\ a_{w_{i}} e_{J}, & \text { where } w_{i} y \in Y_{J} \text { if } y^{-1}\left(r_{i}\right) \in \Phi^{+} \\ y^{-1}\left(r_{i}\right) \neq r_{j} \text { for any } r_{j} \in \Pi_{J}\end{cases}
$$

The result follows.
(ii) Since $\left\{a_{y} e_{L} o_{\hat{L}}: y \in Y_{L}, L \subseteq R\right\}$ is a basis of H, there exist elements $u_{y} \in K$ such that

$$
a e_{J} o_{\hat{J}}=\sum_{L \subseteq R} \sum_{y \in Y_{L}} u_{y} a_{y} e_{L} o_{\hat{L}}
$$

Choose any $M \subseteq R$ with $M \cap \hat{J} \neq \varnothing$. Then $a e_{J} o_{\hat{J}} e_{M}=0$; so

$$
\sum_{L \subseteq} \sum_{y \in Y_{L}} u_{y} a_{y} e_{L} o_{\hat{L}} e_{M}=0
$$

But $o_{\hat{L}} e_{M}=0$ if $\mathcal{L} \cap M \neq \varnothing$. So the only non-zero terms in the above equation involve those $L \subseteq R$ for which $\mathcal{L} \cap M=\varnothing$. Thus

$$
\sum_{L, M \leq L \leq R} \sum_{y \in Y_{L}} u_{\nu} a_{y} e_{L} o_{\hat{L}} e_{M}=0
$$

By 4.8(ii), $u_{v}=0$ for all $y \in Y_{L}, M \subseteq L \subseteq R$. Hence we have that $u_{y}=0$ for all $y \in Y_{L}$, with $L \cap \hat{J} \neq \varnothing$. Thus

$$
a e_{J} o_{\hat{J}}=\sum_{L \leq J} \sum_{y \in Y_{L}} u_{y} a_{y} e_{L} o_{\hat{L}}
$$

Let $S_{J}=\left\{w \in W: u_{w} \neq 0, w \in Y_{L}\right.$ for some $\left.L \subset J\right\}$. Suppose $S_{J} \neq \varnothing$. Choose an element $y_{0} \in S_{J}$ of minimal length, and suppose $y_{0} \in Y_{J_{0}}$ for some $J_{0} \subset J$. Consider

$$
a e_{J} o_{\hat{J}} o_{\hat{J}_{0}}=\sum_{L \leq J} \sum_{\nu \leq F_{L}} u_{\nu} a_{y} e_{L} o_{\hat{L}} o_{\hat{J}_{0}}
$$

As $J_{0} \subset J, e_{J} o_{\hat{J}} o_{\hat{J}_{0}}=e_{J} o_{\hat{J}_{0}}=0$. Then

$$
\begin{equation*}
\sum_{L \subset J} \sum_{\nu \in Y_{L}} u_{\nu} a_{\nu} e_{L} o_{\hat{L}} o_{\hat{J}_{0}}=0 \tag{*}
\end{equation*}
$$

Now if $L \subset J$ and $y \in Y_{L}$,

$$
a_{y} e_{L} o_{\hat{L}} o_{\hat{J}_{0}}=a_{y} o_{\hat{J}_{0}}+\sum_{w \in W \lambda(w)>(y)} k_{w} a_{w}
$$

where $k_{w} \in K$, and $a_{y} o_{\hat{J}_{o}}= \pm a_{w}$, for some $w \in W$ with $l(w) \geqslant l(y)$.
Since y_{0} is of minimal length in S_{J}, the coefficient of $a_{y_{0}}$ on the left side of (*) is $u_{y_{0}}$ As $\left\{a_{w}: w \in W\right\}$ is a basis of H, so $u_{\nu_{0}}=0$, which is a contradiction. Hence $S_{J}=\varnothing$ and $a e_{J} o_{\hat{J}}=\Sigma_{y_{\in} Y_{J}} u_{y} a_{y} e_{J} o_{\hat{J}}$.

Remark. Let $z \in Z$. Then z can be regarded as an element of K in a natural way -it is the element $z 1_{K}=1_{K}+\ldots+1_{K}$ (z times), where 1_{K} is the identity of K.
4.11 Corollary. (1) For each $w \in W$, there exist rational integers $u_{y}=u_{\nu}(w)$ such that $a_{w} o_{\hat{J}} e_{J}=\Sigma_{y \in Y_{J}} u_{y} a_{y} o_{\hat{J}} e_{J}$.
(2) For each $w \in W$, there exist rational integers $u_{v}=u_{y}(w)$ such that

$$
a_{u q} e_{J} o_{\hat{J}}=\sum_{\nu \in Y J} u_{y} a_{y} e_{J} o_{\hat{J}}
$$

Proof. (1) Follows from the proof of 4.9(i).
(2) List the elements y_{1}, \ldots, y_{m} of Y_{J} in order of increasing length; if $i<j$ then $l\left(y_{i}\right) \leqslant l\left(y_{j}\right)$. Let $c_{i j}$ be the coefficient of $a_{y_{i}}$ in $a_{y_{j}} e_{J} o_{\hat{\jmath}}$. Clearly $c_{i j}$ is an integer as $a_{\nu_{j}} e_{J} \sigma_{\hat{J}}$ is an integral combination of certain elements $a_{w^{\prime}}, w^{\prime} \in W$. Also, $c_{i i}=1$ for all $i, 1 \leqslant i \leqslant m$, and $c_{i j}=0$ if $i<j$ by 4.6. Let h_{i} be the coefficient of $a_{\nu_{i}}$ in $a_{w} e_{J} o_{\hat{J}}$. Clearly h_{i} is an integer, and

$$
h_{i}=\sum_{j=1}^{m} k_{j} c_{i j} \quad \text { where } \quad a_{w} e_{J} o_{\hat{J}}=\sum_{i=1}^{m} k_{i} a_{y_{i}} e_{J} o_{\hat{J}}
$$

for some $k_{i} \in K$. Hence, $h_{i}=\sum_{j=1}^{i-1} k_{j} c_{i j}+k_{i}$. Let $i=1$. Then $h_{1}=k_{1}$, an integer. Now use increasing induction on i to show k_{i} is an integer for all $i, 1 \leqslant i \leqslant m$.
4.12 Theorem. (1) $H o_{\hat{J}} e_{J}$ is a left ideal of H with K-basis $\left\{a_{y} o_{\hat{J}} e_{J}=a_{y} e_{J}: y \in Y_{J}\right\}$. Hence $\operatorname{dim} H o_{\hat{J}} e_{J}=\left|Y_{J}\right|$. Let $Y_{J}=\left\{y_{1}, \ldots, y_{s}\right\}$, with $l\left(y_{i}\right) \leqslant l\left(y_{j}\right)$ if $i<j$, and let $H_{J, i}=\left\{\sum_{j=i}^{s} k_{j} a_{v_{j}} o_{\hat{J}} e_{J}: k_{J} \in K\right\} ;$ then

$$
H o_{\hat{J}} e_{J}=H_{J, 1}>H_{J, 2}>\ldots>H_{J, 8}>0
$$

is a composition series of $H o_{\hat{J}} e_{J}$ of left H-modules, and $H_{J, i} / H_{J, i+1}$ affords the representation λ_{M} of H, where $y_{i}^{-1} \in Y_{M}$, and $H_{J, s+1}=0$. Finally, $H=\Sigma_{J \leq R}^{\oplus} H o_{\hat{J}} e_{J}$, a direct sum of 2^{n} left ideals, where $n=|R|$.
(2) $H e_{J} o_{\hat{J}}$ is a left ideal of H with K-basis $\left\{a_{j} e_{J} o_{\hat{J}}: y \in Y_{J}\right\}$. Hence $\operatorname{dim} H e_{J} o_{\hat{J}}=\left|Y_{J}\right| . \operatorname{Let} Y_{J}=\left\{y_{1}, \ldots, y_{s}\right\}$, with $l\left(y_{i}\right) \leqslant l\left(y_{j}\right)$ if $i<j$, and let

$$
H_{J, i}=\left\{\sum_{j=i}^{s} k_{j} a_{y_{j}} e_{J} o_{\hat{j}}: k_{j} \in K\right\}
$$

then

$$
H e_{J} o_{\vec{J}}=H_{J, 1}>H_{J, 2}>\ldots>H_{J, 8}>0
$$

is a composition series of $H e_{J} o_{\hat{J}}$ of left H-modules, and $H_{J, i} / H_{J, i+1}$ affords the representation λ_{M} of H, where $y_{i}^{-1} \in Y_{M}$, and $H_{J, s+1}=0$. Finally, $H=\Sigma_{J}^{\oplus} \subseteq_{R} H e_{J} o_{\hat{J}}$, a direct sum of 2^{n} left ideals, where $n=|R|$.

Proof. The results follow by $4.7,4.8,4.10$ and the fact that

$$
\operatorname{dim} H=|W|=\sum_{J \subseteq R}\left|Y_{J}\right|
$$

4.13 Corollary. $H o_{\hat{J}} e_{J}$ and $H e_{J} o_{\hat{J}}$ are indecomposable left ideals of H, for all $J \subseteq R$, and they are isomorphic as left ideals of H.

Proof. From the theory of Artinian rings and the fact that H / N is a direct sum of 2^{n} irreducible components (see remarks at the end of Section 3), it follows that H can be expressed as the direct sum of 2^{n} indecomposable left ideals. Hence $H o_{\hat{J}} e_{J}$ and $H e_{J} o_{\hat{J}}$ must be indecomposable left ideals of H for all $J \subseteq R$.

To show they are isomorphic, first note that $H e_{J} o_{\hat{J}}=H o_{\hat{J}} e_{J} o_{\hat{J}}$. Then define the homomorphism $f_{J}: H o_{\hat{J}} e_{J} \rightarrow H e_{J} o_{\hat{J}}$ by $f_{J}\left(a o_{\hat{J}} e_{J}\right)=a o_{\hat{J}} e_{J} o_{\hat{J}}$, for all $a o_{\hat{J}} e_{J} \in H o_{\hat{J}} e_{J}$. As f_{J} is given by right multiplication by $o_{\hat{J}}$, it is well defined and is a homomorphism of left ideals of $H . f_{J}$ is onto, since $H e_{J} o_{\hat{J}}=H o_{\hat{J}} e_{J} o_{\hat{J}}$ and an element $a o_{\hat{J}} e_{J} o_{\hat{J}} \in H e_{J} o_{\hat{J}}$ is the image under f_{J} of $a o_{\hat{J}} e_{J} . f_{J}$ is one-one as $\operatorname{dim} H o_{\hat{J}} e_{J}=\operatorname{dim} H e_{J} o_{\hat{J}}$. Hence f_{J} is an isomorphism of left ideals of H.
4.14 Corollary. (1) For any $L \subseteq R$,

$$
H o_{\hat{L}}=\sum_{J \subseteq L}^{\oplus} H o_{\hat{J}} e_{J} o_{\hat{L}}, \quad \text { and } \operatorname{dim} H o_{\hat{L}}=\sum_{J \subseteq L}\left|Y_{J}\right|=\left|X_{\hat{L}}\right|
$$

(2) For any $L \subseteq R$,

$$
H e_{L}=\sum_{J \supseteq L}^{\oplus} H e_{J} o_{\hat{J}} e_{L}, \quad \text { and } \operatorname{dim} H e_{L}=\sum_{J \supseteq L}\left|Y_{J}\right|=\left|X_{L}\right|
$$

Proof. Use 4.12 and 4.8.
4.15 Theorem. For any $J \subseteq \boldsymbol{R}$,

$$
\begin{aligned}
H e_{J} & =\left\{a \in H: a a_{i}=0 \text { for all } w_{i} \in J\right\} \\
& =\left\{a \in H: a\left(1+a_{i}\right)=a \text { for all } w_{i} \in J\right\} .
\end{aligned}
$$

Further, $H e_{J}=\Sigma \sum_{J \subseteq L}^{\oplus} H o_{\hat{L}} e_{L}$, and $H e_{J}$ has basis $\left\{a_{w} e_{J}: w \in X_{J}\right\}$ and dimension $\left|X_{J}\right|$. Finally,

$$
\begin{aligned}
H o_{\hat{J}} e_{J} & =\left\{a \in H: a a_{i}=0 \text { for all } w_{i} \in J, a e_{L}=0 \text { for all } L \supset J\right\} \\
& =H e_{J} \cap\left(\bigcap_{J \supset L} \operatorname{ker} e_{L}\right)
\end{aligned}
$$

where ker $e_{L}=\left\{a \in H: a e_{L}=0\right\}$.

Proof. Clearly, $H e_{J} \leqslant\left\{a \in H: a a_{i}=0\right.$ for all $\left.w_{i} \in J\right\}$. Conversely, take $a \in H$ and suppose $a a_{i}=0$ for all $w_{i} \in J$. Then $a\left(1+a_{i}\right)=a$ for all $w_{i} \in J$, and so $a e_{J}=a$, and so $a \in H e_{J}$. Thus the first part is proved.

Now $H o_{\hat{L}} e_{L} \leqslant H e_{J}$ for all $L \supseteq J$, and so $\Sigma_{L \supseteq J}^{\oplus} H o_{\hat{L}} e_{L} \leqslant H e_{J}$. By 4.14, $\operatorname{dim} H e_{J}=\left|X_{J}\right|$, and as $\operatorname{dim} H o_{\hat{L}} e_{L}=\left|Y_{L}\right|$, we have $H e_{J}=\Sigma_{L \ni J}^{\oplus} H o_{\hat{L}} e_{L}$.

Let $a=\sum_{w \in W} u_{w} a_{w} \in H e_{J}$, where $u_{w} \in K$. Let $w_{i} \in J$. Then $a a_{i}=0$, and so $\Sigma_{w \in W} u_{w} a_{w} a_{i}=0$. Now

$$
\sum_{w \in W} u_{w} a_{w} a_{i}=\sum_{w \in W, w(r) \in \Phi^{+}} u_{w} a_{w w_{i}-} \sum_{w \in W, w(r i) \in \Phi^{-}} u_{w} a_{w}=0
$$

That is,

$$
\sum_{w \in W, w\left(r_{i}\right) \in \Phi^{-}} u_{w w_{1}} a_{w}-\sum_{w \in W, w\left(r_{i}\right) \in \Phi^{-}} u_{w} a_{w}=0 .
$$

Since $\left\{a_{w}: w \in W\right\}$ form a basis of H, we have $u_{w w_{i}}=u_{w}$ for all $w \in W$ with $w\left(r_{i}\right) \in \Phi^{-}$. Hence $u_{w}=u_{w v_{i}}$ for all $w \in W$, with $w\left(r_{i}\right) \in \Phi^{+}$. Now if $w \in W$, w can be expressed uniquely in the form $w=y w_{J}$, where $y \in X_{J}, w_{J} \in W_{J}$ and $l(w)=l(y)+l\left(w_{J}\right)$. Write $w_{J}=w_{i_{1}} \ldots w_{i_{i}}, w_{i_{j}} \in J, l\left(w_{J}\right)=t$. By the above, we have

$$
u_{y}=u_{y w_{i_{1}}}=\ldots=u_{y w_{J}}=u_{w}
$$

Hence $a=\Sigma_{y_{\in} X_{J}} u_{y} a_{y} e_{J}$. Conversely, for each $y \in X_{J}, a_{y} e_{J} \in H e_{J}$, and as $\left\{a_{y} e_{J}: y \in X_{J}\right\}$ is linearly independent and $\operatorname{dim} H e_{J}=\left|X_{J}\right|,\left\{a_{\nu} e_{J}: y \in X_{J}\right\}$ is a basis of $H e_{J}$.

Finally, $H o_{\hat{J}} e_{J} \leqslant\left\{a \in H: a a_{i}=0\right.$ for all $w_{i} \in J, a e_{L}=0$ for all $\left.L \supset J\right\}$. Let $a=\Sigma_{L} \Sigma_{y_{\in} Y_{L}} u_{y} a_{y} o_{\hat{L}} e_{L}, u_{y} \in K$, satisfy $a a_{i}=0$ for all $w_{i} \in J$ and $a e_{L}=0$ for all $L \supset J$. Since $a \in H e_{J}, u_{y}=0$ for all $y \in Y_{L}$ if $J \neq L$. So $a=\sum_{L \supseteq J} \Sigma_{y_{\in} Y_{L}} u_{y} a_{y} o_{\hat{L}} e_{L}$. Set $S_{J}=\left\{w \in W: u_{w} \neq 0, w \in Y_{L}, L \supset J\right\}$. Suppose $S_{J} \neq \varnothing$. Then there exists an element y_{0} of minimal length in S_{J}; suppose $y_{0} \in Y_{M}, M \supset J$. Then $a e_{M}=0$. Also $o_{\hat{J}} e_{J} e_{M}=0$ as $M \supset J$. For other $L \supset J$, if $y \in Y_{L}$,

$$
a_{y} o_{\hat{L}} e_{L} e_{M}=a_{y} e_{L} e_{M}=a_{y}+\left(\text { a combination of certain } a_{w}\right.
$$

Then $a e_{M}=0$ gives $\Sigma_{L_{亏} J} \Sigma_{y_{E} Y_{L}} u_{\nu} a_{y} o_{\hat{L}} e_{L} e_{M}=0$. As y_{0} is of minimal length in S_{J}, the coefficient of $a_{y_{0}}$ in the left-hand side of the last equation is $u_{v_{0}}$. By the linear independence of $\left\{a_{w}: w \in W\right\}$, we have $u_{\nu_{0}}=0$, which is a contradiction. Hence $S_{J}=\varnothing$ and $a=\Sigma_{y \in Y,} u_{y} a_{y} o_{\hat{J}} e_{J} \in H o_{\hat{J}} e_{J}$. Thus

$$
H o_{\hat{J}} e_{J}=\left\{a \in H e_{J}: a e_{L}=0 \text { for all } L \supset J\right\}
$$

4.16 Theorem. For any $J \subseteq R$,

$$
H o_{J}=\left\{a \in H: a\left(1+a_{i}\right)=0 \text { for all } w_{i} \in J\right\} .
$$

$H o_{J}$ has basis $\left\{a_{w}: w \in Y_{\hat{L}}, \mathcal{L} \subseteq \hat{J}\right\}$, dimension $\left|X_{J}\right|$ and $H o_{J}=\Sigma_{\hat{L} \supseteq J}^{\oplus} H e_{\hat{L}} o_{L}$. Finally, $H e_{\hat{J}} o_{J}=\left\{a \in H o_{J}: a o_{L}=0\right.$ for all $\left.L \supset J\right\}$.

Proof. Similar to the proof of 4.15.
4.17 Lemma. Let ψ_{J} be the character of the representation of H on $H o_{\hat{j}} e_{J}$. Then ψ_{J} takes values as follows: for each $w \in W$, let $w=w_{i_{1}} \ldots w_{i_{t}}$ be a reduced expression for w, and set $J(w)=\left\{w_{i_{j}}: 1 \leqslant j \leqslant t\right\}$. Then $\psi_{J}\left(a_{w}\right)=(-1)^{1(w)} N_{J}(w)$, where $N_{J}(w)$ $=$ the number of elements $y \in Y_{J}$ such that $y^{-1}\left(\Pi_{J(w)}\right) \subseteq \Phi^{-}$.

Proof. Use 4.10.
4.18 Lemma. Let ϕ_{J} be the character of the representation of H on He_{J}. Then ϕ_{J} takes values as follows: for $w \in W$ let $w=w_{i_{1}} \ldots w_{i_{t}}$ be a reduced expression for w. Set $J(w)=\left\{w_{i,}: 1 \leqslant j \leqslant t\right\}$. Then $\phi_{J}\left(a_{w}\right)=(-1)^{(w)} M_{J}(w)$, where $M_{J}(w)=$ the number of elements $x \in X_{J}$ such that $x^{-1}\left(\Pi_{J(w)}\right) \subseteq \Phi^{-}$. Also, $M_{J}(w)=\sum_{L \supseteq J} N_{L}(w)$.

Proof. $H e_{J}$ has basis $\left\{a_{w} e_{J}: w \in X_{J}\right\}$. For any $w_{i} \in R$,

$$
a_{i} a_{w} e_{J}= \begin{cases}-a_{w} e_{J} & \text { if } w^{-1}\left(r_{i}\right)<0, \\ a_{w_{i} w} e_{J}, & \text { where } w_{i} w \in X_{J} \text { if } w^{-1}\left(r_{i}\right)>0, \text { and } \\ & w^{-1}\left(r_{i}\right) \neq r_{j} \text { for any } r_{j} \in \Pi, \\ 0 & \text { if } w^{-1}\left(r_{i}\right)=r_{j} \text { for some } r_{j} \in \Pi_{J}, \text { for then } \\ a_{i} a_{w}=a_{w} a_{j} \text { and } a_{j} e_{J}=0 .\end{cases}
$$

The result now follows.
4.19 Lemma. Let μ_{J} be the character of the representation of H on $H o_{J}$. Then μ_{J} takes values as follows: for each $w \in W$, let $w=w_{i_{1}} \ldots w_{i_{t}}$ be a reduced expression for w, and set $J(w)=\left\{w_{i,}: 1 \leqslant j \leqslant t\right\}$. Then $\mu_{J}\left(a_{w}\right)=(-1)^{2(w)} L_{J}(w)$, where $L_{J}(w)=$ the number of elements $z \in Z_{J}$ such that $z^{-1}\left(\Pi_{J(w)}\right) \subseteq \Phi^{-}$, and $Z_{J}=\left\{w \in W: w\left(\Pi_{J}\right) \subseteq \Phi^{-}\right\}$. Note that $Z_{J}=\Sigma_{L \subseteq \mathcal{J}} Y_{L}$.

Proof. $H o_{J}$ has basis $\left\{a_{w}: w \in Z_{J}\right\}$. For all $w_{i} \in R$,

$$
a_{i} a_{w}= \begin{cases}-a_{w} & \text { if } w^{-1}\left(r_{i}\right)<0 \\ a_{w_{i} w} & \text { if } w^{-1}\left(r_{i}\right)>0\end{cases}
$$

If $w \in Z_{J}, w_{i} \in R$ and $w^{-1}\left(r_{i}\right)>0$, then $w_{i} w \in Z_{J}$, for if $r_{j} \in \Pi_{J}, w\left(r_{j}\right)=-s$ for some $s \in \Phi^{+}$, and $w_{i}(s)<0$ if and only if $s=r_{i}$. But if $s=r_{i}, w^{-1}\left(r_{i}\right)=-r_{j}$-impossible. The result now follows.
4.20 Corollary. (1) $\phi_{J}=\Sigma_{J \supseteq L} \psi_{L}$ for all $J \subseteq R$.
(2) $\mu_{J}=\Sigma_{J \supseteq L} \psi_{\hat{L}}$ for all $J \subseteq R$.

A direct sum decomposition of H into indecomposable left ideals is equivalent to expressing the identity of H as a sum of mutually orthogonal primitive idempotents. Let $1=\Sigma_{J \subseteq R} q_{J}$ and $1=\Sigma_{J \subseteq R} p_{J}$ be the decompositions of 1 corresponding to the decompositions $H=\left[\Sigma_{J \subseteq R}^{\oplus_{s}} H o_{\hat{J}} e_{J}\right.$ and $H=\Sigma_{J \subseteq R}^{\oplus} H e_{J} o_{\hat{J}}$ respectively, where $H q_{J}=H o_{\hat{J}} e_{J}$ and $H p_{J}=H e_{J} o_{\hat{J}}$. (There does not appear to be a specific expression for the q_{J} or the p_{J} in terms of $\left\{a_{v} o_{\hat{J}} e_{J}: y \in Y_{J}\right\}$ or $\left\{a_{y} e_{J} o_{\hat{J}}: y \in Y_{J}\right\}$ respectively).
4.21 Theorem. Let $\left\{q_{J}: J \subseteq R\right\}$ be a set of mutually orthogonal primitive idempotents with $q_{J} \in H o_{\hat{J}} e_{J}$ for all $J \subseteq R$ such that $1=\Sigma_{J \subseteq R} q_{J}$. Then $H o_{\hat{J}} e_{J}=H q_{J}$, and if N is the nilpotent radical of $H, N o_{\hat{J}} e_{J}=N q_{J}$ is the unique maximal left ideal of $H q_{J}$, and $H q_{J} / N q_{J} \cong K . H q_{J} / N q_{J}$ affords the representation λ_{J} of H defined in 3.1. Finally,

$$
H / N \cong \sum_{J \subseteq R}^{\oplus} H q_{J} / N q_{J} \cong K \oplus K \oplus \ldots \oplus K, \quad 2^{n} \text { summands, where } n=R
$$

Proof. By the theory of Artinian rings, $N q_{J}$ is the unique maximal left ideal of $H q_{J}$, and $H / N \cong \Sigma_{J \subseteq R}^{\oplus_{S}} H q_{J} / N q_{J}$. Since $q_{J} \in H o_{\hat{J}} e_{J}, H q_{J} \leqslant H o_{\hat{J}} e_{J}$. As

$$
H=\sum_{J \leq R}^{\oplus} H q_{J}=\Sigma_{J \subseteq}^{\oplus} H o_{\hat{J}} e_{J}
$$

we must have $H q_{J}=H o_{\hat{J}} e_{J}$ for all $J \subseteq R$. Then $N q_{J}=N H q_{J}=N H o_{\hat{J}} e_{J}=N o_{\hat{J}} e_{J}$ is the unique maximal left ideal of $H q_{J}$. But

$$
\left\{\sum_{y \in Y, y \neq w_{a} j} u_{y} a_{\nu} o_{\hat{J}} e_{J}: u_{y} \in K\right\}
$$

is a maximal left ideal of $H o_{\hat{J}} e_{J}$ (see 4.10), and so

$$
N q_{J}=\left\{\sum_{y \in Y J, V \neq v_{00}} u_{\nu} a_{y} o_{\vec{J}} e_{J}: u_{\nu} \in K\right\}
$$

Then $H q_{J} / N q_{J}$ is a one-dimensional H-module generated by $a_{w_{0} \hat{\jmath}} o_{\hat{J}} e_{J}+N q_{J}$ which affords the representation λ_{J} of H, and since every element of $H q_{J} / N q_{J}$ is of the form $k a_{w_{0} \hat{j}} 0 \hat{J} e_{J}+N q_{J}$ for some $k \in K, H q_{J} / N q_{J} \cong K$ for all $J \subseteq R$. Hence the result.
4.22 ThEOREM. Let $\left\{p_{J}: J \subseteq R\right\}$ be a set of mutually orthogonal primitive idempotents with $p_{J} \in H e_{J} o_{\hat{J}}$ for all $J \subseteq R$ such that $1=\Sigma_{J \subseteq R} p_{J}$. Then $H e_{J} o_{\hat{J}}=H p_{J}$, and if N is the nilpotent radical of $H, N e_{J} o_{\hat{J}}=N p_{J}$ is the unique maximal left ideal of $H p_{J}$, and $H p_{J} / N p_{J} \cong K . H p_{J} / N p_{J}$ affords the representation λ_{J} of H defined in 3.1. Finally, $H / N \cong \Sigma_{J \subseteq R}^{\oplus} H p_{J} / N p_{J} \cong K \oplus K \oplus \ldots \oplus K, 2^{n}$ summands, where $n=|R|$.
4.23 Lemma. $\left\{k a_{w_{0} w_{0}} o_{\hat{\jmath}} e_{J}: k \in K\right\}$ and $\left\{k a_{w_{0} v_{0},} e_{J} o_{\hat{J}}: k \in K\right\}$ are minimal submodules of $H o_{\hat{J}} e_{J}$ and $H e_{J} o_{\hat{J}}$ respectively, where $w_{0} w_{0 J}$ is the unique element of maximal length in Y_{J}. These minimal left ideals both afford the representation $\lambda_{\bar{J}}$ of H, where $J=\left\{w_{i} \in R\right.$: there exists $w_{j} \in J$ with $\left.w_{0} w_{j}=w_{i} w_{0}\right\}$, or, alternatively, $\Pi_{\bar{J}}$ is defined by $w_{0}\left(\Pi_{J}\right)=-\Pi_{\bar{J}}$.
4.24 Note. By the same methods, $H=\Sigma_{\hat{J} \subseteq R}^{\oplus} e_{J} o_{\hat{J}} H$ and $H=\sum_{J=R}^{\oplus} o_{\hat{J}} e_{J} H$, both being direct sum decompositions of H into 2^{n} right ideals, where $n=|R|$. Further, $e_{J} o_{\hat{J}} H$ has K-basis $\left\{e_{J} o_{\hat{J}} a_{y}: y^{-1} \in Y_{J}\right\}$, and $o_{\hat{J}} e_{J} H$ has K-basis $\left\{o_{\hat{J}} e_{J} a_{\nu}: y^{-1} \in Y_{J}\right\}$. All the results for the left ideals $H e_{J}, H o_{J}, H e_{J} o_{\hat{J}}$ and $H o_{\hat{J}} e_{J}$ have analogues for the right ideals $e_{J} H, o_{J} H, o_{\hat{J}} e_{J} H$ and $e_{J} o_{\hat{J}} H$ respectively.

Let G be a finite group with a split (B, N) pair of rank n and characteristic p with Weyl group W, and let K be a field of characteristic p. Then the above decomposition of $H=H_{K}(G, B)$ gives a decomposition of 1_{B}^{G}, where 1_{B} is the principal character of the subgroup B of G, which will be discussed in a later paper.

5. The Cartan matrix of H

We have that $H=\Sigma_{\vec{J} \subseteq R}^{\oplus} U_{J}$, where $U_{J}=H o_{\hat{J}} e_{J}$ is an indecomposable left H-module. Thus $\left\{U_{J}: J \subseteq R\right\}$ are the principal indecomposable H-modules. $\left\{U_{J} / \operatorname{rad} U_{J}: J \subseteq R\right\}$, where $\operatorname{rad} U_{J}$ is the unique maximal submodule of U_{J}, are irreducible H-modules, such that $M_{J}=U_{J} / \mathrm{rad} U_{J}$ affords the representation λ_{J} of H.

Definition. The Cartan matrix C of H, where H is of type (W, R), with $|R|=n$, is a $2^{n} \times 2^{n}$ matrix with rows and columns indexed by the subsets of R, and if we write $C=\left(c_{J L}\right)$, then

$$
c_{J L}=\text { the number of times } M_{L} \text { is a composition factor of } U_{J}
$$

5.1 Theorem. For all $J, L \subseteq R$,

$$
c_{J L}=\left|Y_{J} \cap\left(Y_{L}\right)^{-1}\right|=\left|Y_{L} \cap\left(Y_{J}\right)^{-1}\right|=c_{L J}
$$

Hence C is a symmetric matrix.

Proof. U_{J} has K-basis $\left\{a_{y} o_{\hat{J}} e_{J}=a_{y} e_{J}: y \in Y_{J}\right\}$. Let y_{1}, \ldots, y_{s} be all the elements of Y_{J} written in order of increasing length; if $i>j$ then $l\left(y_{i}\right) \geqslant l\left(y_{j}\right)$. Then set $U_{J}(i)=\left\{\Sigma_{j \geqslant i} k_{y_{j}} a_{y_{j}} e_{J}: k_{\nu_{j}} \in K\right\} . \quad U_{J}(i)$ is a left ideal of H for all i, and $U_{J}(i)>U_{J}(i+1)$ for all $i, 1 \leqslant i \leqslant s-1$. Then $U_{J}=U_{J}(1)>U_{J}(2)>\ldots>U_{J}(s)>0$ is a composition series of U_{J}, with $U_{J}(i) / U_{J}(i+1)$ being an irreducible H-module with basis $a_{\nu_{i}} e_{J}+U_{J}(i+1)$ and affording the irreducible representation λ_{L}, defined in 3.1, where L is determined as follows: recall 4.10; let $w_{j} \in R$ and $y_{i} \in Y_{J}$. Then

$$
a_{j} a_{y_{i}} e_{J}= \begin{cases}-a_{y_{i}} e_{J} & \text { if } y_{i}^{-1}\left(r_{j}\right)<0, \\ 0 & \text { if } y_{i}^{-1}\left(r_{j}\right)=r_{k} \text { for some } r_{k} \in \Pi, \\ a_{v_{j} y_{i}} e_{J} & \text { where } w_{j} y_{i}=y_{l} \text { for some } y_{l} \in Y_{J} \text { with } i<l, \text { if } \\ & y_{i}^{-1}\left(r_{j}\right)>0 \text { but } y_{i}^{-1}\left(r_{j}\right) \neq r_{k} \text { for any } r_{k} \in \Pi\end{cases}
$$

Hence

$$
\lambda_{L}: a_{j} \rightarrow \begin{cases}-1 & \text { if } y_{i}^{-1}\left(r_{j}\right)<0 \\ 0 & \text { if } y_{i}^{-1}\left(r_{j}\right)>0\end{cases}
$$

That is, $y_{i}^{-1} \in Y_{L}$.
Hence $c_{J L}=$ the number of elements $y \in Y_{J}$ such that $y^{-1} \in Y_{L}$

$$
=\left|Y_{J} \cap\left(Y_{L}\right)^{-1}\right|=\left|Y_{L} \cap\left(Y_{J}\right)^{-1}\right|
$$

since if $y \in Y_{J} \cap\left(Y_{L}\right)^{-1}$, then $y^{-1} \in Y_{L} \cap\left(Y_{J}\right)^{-1}$.
5.2 Theorem. Let H be the 0-Hecke algebra over the field K of type (W, R), where W is indecomposable. Then if $|R|>1, H$ has three blocks. If $|R|=1$, then H has two blocks.

Proof. If $|R|=1$, then $W=W\left(A_{1}\right)$ and $H=H\left(1+a_{1}\right) \oplus H\left(-a_{1}\right)$, where $R=\left\{w_{1}\right\}$. Both $\left(1+a_{1}\right)$ and $\left(-a_{1}\right)$ are primitive idempotents as well as being central. Hence H has only two blocks.

Now suppose that $|R|>1$. $e_{R}=\left[1+a_{w_{0}}\right]$ and $(-1)^{1\left(w_{0}\right)} a_{w_{0}}$ are primitive and centrally primitive idempotents in H and so correspond to two distinct blocks.

The other primitive idempotents in H, that is, $\left\{q_{J}: J \neq \varnothing, R\right\}$ as in 4.21, determine at least one other block. We will show that provided W is indecomposable the Cartan matrix C^{\prime} corresponding to the indecomposables U_{J} for $J \neq \varnothing, R$ and the irreducibles M_{L} for $L \neq \varnothing, R$ cannot be expressed in the form $C^{\prime}=\left[\begin{array}{cc}C_{1} & 0 \\ 0 & C_{2}\end{array}\right]$ (see Dornhoff (1972), Theorem 46.3).
Suppose that C^{\prime} can be put in the form above. Let

$$
\begin{aligned}
& S_{1}=\left\{J \subset R: U_{J} \text { and } M_{J} \text { index the rows and columns of } C_{1}\right\}, \\
& S_{2}=\left\{J \subset R: U_{J} \text { and } M_{J} \text { index the rows and columns of } C_{2}\right\} .
\end{aligned}
$$

Suppose for some $J \subset R,|J|=n-1$ (where $n=|R|$), that $J \in S_{1}$. Then we show
(1) for all $L \subset R$ with $|L|=n-1, L \in S_{1}$,
(2) by decreasing induction on $|J|$ for all $J \neq \emptyset, R$ that $J \in S_{1}$.
(a) Suppose $J=\left\{w_{1}, \ldots, \hat{w}_{j}, \ldots, w_{n}\right\}$ and $L=\left\{w_{1}, \ldots, \hat{w}_{j+1}, \ldots, w_{n}\right\}$, where the nodes corresponding to w_{j} and w_{j+1} in the graph of W are joined. Then the order of $w_{j} w_{j+1}$ is greater than 2. Now $w_{0, \hat{J}}=w_{j} \in Y_{J}$ and $w_{0 \hat{L}}=w_{j+1} \in Y_{L}$. Since the order of $w_{j} w_{j+1}$ is greater than $2, w_{j+1} w_{j} \in Y_{J}$ and $w_{j} w_{j+1} \in Y_{L}$; that is, $w_{j+1} w_{j} \in Y_{J} \cap\left(Y_{L}\right)^{-1}$. Hence $J \in S_{1}$ if and only if $L \in S_{1}$.
Hence if there is some $J \in S_{1}$, with $|J|=n-1$, then all $L \subset R$ with $|L|=n-1$ are in S_{1} by the above.
(b) Suppose that for all $J \subset R$ with $|J|>m$ that $J \in S_{1}$. Choose $L \subset R$ with $|L|=m$. We show $L \in S_{1}$. Suppose $L=\left\{w_{i_{1}}, \ldots, w_{i_{m}}\right\}$ with $1 \leqslant i_{1}<\ldots<i_{m} \leqslant n$. Since W is indecomposable and $L \neq \varnothing, R$, then $\left|Y_{L}\right|>1$. Choose some $w_{i_{j}} \in L$ and $w_{k} \in \mathcal{L}$ such that $w_{i,} w_{k}$ has order r, where $r \geqslant 3$. Then $w_{i,} w_{0 \hat{L}} \in Y_{L}$ (as $w_{0 \hat{L}}\left(r_{i j}\right) \neq r_{i}$ for any $r_{i} \in \Pi_{L}$, for $w_{0 \hat{L}}\left(r_{i_{j}}\right)=r_{i}$ for some $r_{i} \in \Pi_{L}$ implies that $r_{i j}=r_{i}$ and $w_{0 \hat{L}}$ is a product of reflections corresponding to roots orthogonal to $r_{i,}$, and so for all $w_{k} \in \mathcal{L}, w_{i,} w_{k}=w_{k} w_{i,}$, which is a contradiction). Now consider $\left(w_{i,} w_{0 \hat{L}}\right)^{-1}=w_{0 \hat{L}} w_{i,}$. Then suppose $w_{i_{l}} \in L, w_{i_{1}} \neq w_{i,}$. Then $w_{0 \hat{L}} w_{i_{j}}\left(r_{i}\right) \in \Phi^{+}$. Also $w_{0 \hat{L}} w_{i_{j}}\left(r_{i_{j}}\right) \in \Phi^{-}$. Suppose $\boldsymbol{w}_{k} \in \mathcal{L}$. Then

$$
\begin{aligned}
w_{0 \hat{L}} w_{i_{j}}\left(r_{k}\right) & =w_{0 \hat{L}}\left(r_{k}+u r_{i_{j}}\right) \quad \text { with } u \geqslant 0 \\
& =w_{0 \hat{L}}\left(r_{k}\right)+u w_{0 \hat{L}}\left(r_{i_{j}}\right) .
\end{aligned}
$$

If $u=0$, that is, if $w_{i,} w_{k}=w_{k} w_{i,}$, then $w_{0 \hat{L}^{2}} w_{i}\left(r_{k}\right) \in \Phi^{-}$. If $u>0$, as $w_{0 \hat{L}}\left(r_{k}\right)=-r_{i}$ for some $r_{i} \in \Pi_{\hat{L}}$, and $w_{0 \hat{L}}\left(r_{i j}\right) \in \Phi^{+}, w_{0 \hat{L}}\left(r_{i}\right) \neq r_{i_{0}}$ for any $r_{i_{t}} \in \Pi_{L}$, we have $w_{0 \hat{L}} w_{i_{j}}\left(r_{k}\right) \in \Phi^{+}$. Hence $w_{0} \hat{L}_{i_{j}} \in Y_{M}$, where

$$
\begin{aligned}
M= & \left\{L-\left\{w_{i j}\right\}\right\} \cup\left\{w_{k} \in \mathcal{L}: w_{i,} w_{k} \text { has order }>2\right\} \\
= & \left\{L-\left\{\left\{w_{i j}\right\}\right\} \cup\left\{w_{k} \in \hat{L}: \text { the node corresponding to } w_{k}\right. \text { in the graph of }\right. \\
& \left.W \text { is joined to that corresponding to } w_{i}\right\} .
\end{aligned}
$$

Now $|M|>|L|$ if the node corresponding to $w_{i_{j}}$ is joined to at least two nodes corresponding to elements of \mathcal{L}, and then $L \in S_{1}$ by induction.

Let P_{i} be the node of the graph of W which corresponds to $w_{i} \in R, 1 \leqslant i \leqslant n$. Then suppose $P_{i_{j}}$ is joined to only one P_{k} for all $w_{k} \in \hat{L}$. Then the above argument shows that $L=\left\{w_{i_{1}}, \ldots, w_{i_{m}}\right\}$ and $M=\left\{w_{i_{1}}, \ldots, \hat{w}_{i_{j}}, \ldots, w_{i_{m}}, w_{k}\right\}$ belong to the same S_{i}, where $i=1$ or $i=2$. Since $|L| \leqslant n-2,|L| \geqslant 2$. Let $w_{k_{1}}$ and $w_{k_{2}}$ be any two elements of \mathcal{L}, such that there exists a sequence $P_{k_{1}}=P_{j_{0}}, P_{j_{1}}, \ldots, P_{j_{r}}=P_{k_{2}}$ of nodes such that $P_{j_{i}}$ and $P_{j_{i+1}}$ are joined for all $i, 0 \leqslant i \leqslant r-1$, and $P_{j_{s}}$ corresponds to an element of L for all $i, 1 \leqslant i \leqslant r-1$. If $r=1$, then $P_{k_{1}}$ and $P_{k_{2}}$ are joined. Without loss of generality, we may suppose there exists $w_{i_{s}} \in L$ such that $P_{i_{\mathbf{g}}}$ is joined to $P_{k_{\mathbf{i}}}$. Then let $M=\left\{L-\left\{w_{i_{s}}\right\}\right\} \cup\left\{w_{k_{1}}\right\} . M$ and L belong to the same S_{i}, and by the above, as M has an element $w_{k_{1}}$ such that $w_{k_{1}} w_{i_{4}}$ and $w_{k_{1}} w_{k_{2}}$ both have order >2, where $w_{i_{s}}, w_{k_{2}} \in \hat{M}, w_{i_{g}} \neq w_{k_{g}}$, then $M \in S_{1}$. If $r=2$, then L and M are in the same S_{i}, where $M=\left\{L-\left\{\left\{w_{j_{1}}\right\}\right\} \cup\left\{w_{k_{1}}, w_{k_{2}}\right\}\right.$, and by induction $M \in S_{1}$. If $r>2$, define

$$
\begin{aligned}
& L_{0}=L \\
& L_{1}=\left\{L-\left\{w_{j_{1}}\right\}\right\} \cup\left\{w_{j_{0}}\right\} \\
& \ldots
\end{aligned} \quad \begin{aligned}
& L_{r-2}=\left\{L_{r-3}-\left\{w_{j_{r-2}}\right\}\right\} \cup\left\{w_{j_{r-3}}\right\} .
\end{aligned}
$$

Then $L_{0}, L_{1}, \ldots, L_{r-2}$ are all in the same S_{i}, and by the above, $L_{r-2} \in S_{1}$.
Hence $L \in S_{1}$. Then $S_{2}=\varnothing$, and so H has precisely three blocks.
5.3 Theorem. Let H be a 0-Hecke algebra of type (W, R). Suppose W is decomposable, and let $W=W_{1} \times W_{2} \times \ldots \times W_{r}$, where each W_{i} is an indecomposable Coxeter group, and the corresponding Coxeter system is $\left(W_{i}, R_{i}\right)$. Let H_{i} be the 0 -Hecke algebra of type $\left(W_{i}, R_{i}\right)$, and let m_{i} be the number of blocks of H_{i}. Then H has $m_{1} m_{2} \ldots m_{r}$ blocks.

Proof. Suppose that $1=\Sigma_{i=1}^{t} e_{i}$ where the e_{i} are mutually orthogonal centrally primitive idempotents in H. Then the number of blocks of H is equal to t.

Now for all $w \in W_{i}, w^{\prime} \in W_{j}$, where $1 \leqslant i, j \leqslant r$ and $i \neq j$, we have that

$$
a_{w} a_{w^{\prime}}=a_{w w^{\prime}}=a_{w^{\prime} w}=a_{w^{\prime}} a_{w}
$$

and so it follows that if f_{i} is a centrally primitive idempotent of H_{i}, then $f_{1} \ldots f_{r}$ is a centrally primitive idempotent of H. Suppose $1_{H_{i}}=\sum_{j=1}^{t(i)} f_{i j}$ where for a fixed i, $\left\{f_{i j}: 1 \leqslant j \leqslant t(i)\right\}$ is a set of mutually orthogonal central primitive idempotents in H_{i}. Then $1_{H}=\sum_{j_{1}=1}^{t(1)} \ldots \sum_{j_{r}=1}^{t r)} f_{1 j_{1}} \ldots f_{r j_{r}}$, a sum of mutually orthogonal central primitive idempotents in H, and so H has $t(1) t(2) \ldots t(r)$ blocks, where $t(i)=m_{i}$.

Acknowledgement

This work was carried out while the author was at the Mathematics Institute, University of Warwick, Coventry, England, supported by a scholarship from the Association of Commonwealth Universities.

References

N. Bourbaki (1968), Groupes et algèbres de Lie, Chapitres 4, 5 et 6 (Hermann, Paris).
R. W. Carter (1972), Simple groups of Lie type (John Wiley and Sons, New York).
C. W. Curtis and I. Reiner (1962), Representation theory of finite groups and associative algebras (Interscience Publishers, New York).
L. Dornhoff (1972), Group representation theory, Part B. Marcel Decker, Inc., New York).
L. Solomon (1968), 'A decomposition of the group algebra of a finite Coxeter group', J. Algebra, 9, 220-239.
R. Steinberg (1967), Lectures on Chevalley groups (Yale University).

Technical Education Division
Education Department of W.A.
36 Parliament Place
West Perth, Western Australia, 6005,
Australia

