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Abstract

The structure of a 0-Hecke algebra H of type (W, R) over a field is examined. H has 2" distinct
irreducible representations, where n = \ R |, all of which are one-dimensional, and correspond
in a natural way with subsets of R. H can be written as a direct sum of 2" indecomposable left
ideals, in a similar way to Solomon's (1968) decomposition of the underlying Coxeter group W.

Subject classification (Amer. Math. Soc. (MOS) 1970): 16 A 48.

1. Introduction

NOTATION. {/1; ...,is /„} denotes the set ft, •••,'„}-{'«}» u denotes set union
and n denotes set intersection. (xyx...)n denotes the product of the first n terms of
the sequence x,y,x,y,x,... ACC denotes the ascending chain condition and DCC
denotes the descending chain condition. Let S be a set and A a subset of 5. Then
| A | denotes the number of elements in A, and A denotes the complement of A in S.

Let K be any field, and let (W, R) be a finite Coxeter system, with root system O,
positive system O+ and simple system II. For each J^R, let <f>j, OJ and Uj be
the corresponding root system, positive system and simple system. w^R is the
reflection in the hyperplane perpendicular to rteTl. For each J^R, let

Xj = {we W: w<nj)£O+} and Yj = {we W:

where J = R—J. We shall assume all the standard results on finite Coxeter systems,
as found in Bourbaki (1968), Carter (1972) and Steinberg (1967).
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338 P. N. Norton [2]

1.1 DEFINITION. The O-Hecke algebra H over K of type (W, R) is the associative
algebra over K with identity 1 generated by {a^ w^R} subject to the relations :

(i) a\ = —Of for all wf eR,
(ii) (a^Oi...)^ = ( a ^ a , . . . ) ^ for all w ^ e i ? , wrfwp where n^ = the order

of Wi Wj in W.

For all we W, define aw = afl...ofj, where M> = wit... wi$ is a reduced expression
for w e W in terms of the elements of R. Note that alw = 1, where lw denotes the
identity element of W. It is easy to show that aw is independent of the reduced
expression for w, and that every element of H is a A'-linear combination of elements
aw, for weW.

By Bourbaki (1968) (Exercise 23, p. 55), {aw: we W) are linearly independent
over K and so form a AT-basis of H.

1.2 SOME EXAMPLES, (i) Let G = (/(#) be a Chevalley group over the finite field
F = GF{q) of ^ elements, where q=pm for some prime p and positive integer m.
Then G has a (5, N) pair ((?, 5, AT, R) and Weyl group W such that for each w^R
there is a positive integer ct such that 15: 2?n 2P°'| = gft. If it is a field of character-
istic p, then the Hecke algebra H^G, B) is a O-Hecke algebra,
(ii) Let G be a finite group with a split (5, iV) pair (G, B, N, R, U) of rank n and
characteristic p with Weyl group JF, and let AT be a field of characteristic p. Then
the Hecke algebra H^CB) is a O-Hecke algebra of type (W,R) over K.

1.3 LEMMA. For all wteR and all weW,

awai =
\-aw

PROOF. If /(H^W) = /(w)+l, then aW{W = a^y, by the definition of awflD. Suppose
l(wt w) = l(w) — 1; then there is a reduced expression for w beginning with wt: say
w = w{w' where /(w) = l(w') +1. Then ow = a^a^, and so

Similarly for

1.4 COROLLARY. (1) For all w, WeW,

(a) awaw. = ta^for some w"e W, with /(M>") Js max (/(H>),/()/));
(b) o, , ,^ = <aw if and only ifl(ww') = l(w)+l(w');
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(c) awaw, = (-iyiwriaw if and only if w(rje<!>- for each ^eUj, where
J = {wteR: Wi occurs in some reduced expression for w'}.

(d) awavf = {-Yf^aw if and only if (w')"1^*)6^" for each rieUJ> w^re
J= {WieR: Wi occurs in some reduced expression for w);

(e) a^ay, = ±<v with l(w")>l(w), where l(w)^l(w'), if and only if there exists
r^Gllj such that w(fi)6$+, where J — {WJBR: WJ occurs in some reduced
expression for w'}.

(2) Let w0 be the unique element of maximal length in W. Then for all w e W,

(-l)I(w)a«* and

2. The nilpotent radical of H

Let N be the nilpotent radical of H. Since H is a finite-dimensional algebra over
K, H has the DCC and ACC and so N is also the Jacobson radical of H, and is the
unique maximal nilpotent ideal of H.

There is a natural composition series for H, consisting of (two-sided) ideals of H
such that every factor is a one-dimensional .ff-module. This series arises as follows:
list the basis elements {aw: we W} in order of increasing length of w, and if w,
w'eW have the same length it does not matter in which order aw and a^ occur
on the list. Rename these elements hvh2, ••-,hiWi respectively. Note that hx = 1 and
n\w\ ~ a«v Let Hi be the ideal of H generated by {hm: m^j}. Hj has X-basis
{hm: m^j} and dimension | W\—j+1. Then

2.1 H=H1>Hi>...>Hm = aWBH>0

is the natural composition series of H described above. HJHi+1 is a one-dimensional
//-module, K i < | W\, where HW\+X = 0, with basis ht+Hi+1, where ht = aw for
some we W. Either aj, = ( -1 ) 1 ' " "^ or a*,eHi+1; in the first case, the factor ring
HJHi+1 is generated by an idempotent, and in the second case it is nilpotent.

2.2 LEMMA. The number of factors which are generated by an idempotent is equal
to2n

f where n = \R\.

PROOF. The factors generated by idempotents correspond to elements weW
such that ajj, = {-Xfmaw. Let weJVbe such an element. Write w = wil...wit,
where l(w) = s, and l e t / = {wif: 1 < ; ^ s}. Then weWj, and by 1.4{lc), n<nj)£a>-.
Hence w = w0J, the unique element of maximal length in Wj. Conversely, for
each subset / of R, a*^ = ( - iyiWtj)aiBaJ- Hence the number of factors which are
generated by an idempotent is equal to the number of subsets of R, that is, 2n,
where n = \R\.
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By Schreier's theorem, any series of ideals of H can be refined to a composition
series, and all so obtained have the same number of terms in them as the natural
series, and with the factors in one-one correspondence with those of the natural
series. In particular, consider H>N>0. This can be refined to a composition series
H = H'1>...>H'm>H'm+1 = 0, where N = H'r, 2<r^\W\ + l. Now each
factor H'JH'i+1, i^r, is nilpotent as H'^N, and each factor H'JH^, i+l^r,
must be generated by an idempotent as H'JN^H/N, a semi-simple ring. Hence the
number of factors which are nilpotent is equal to the dimension of N. Thus,
dimiV= | W\-2n, where n = \R\.

We can, however, give a precise basis of N.

2.3 THEOREM. Let weW, and suppose w ̂  w0Jfor any / £ R. Write w = wil... wu,
l(w) = s, and let J(w) = {wif: 1 ^j^s}. Then E(w) = aw+(- l)I(1c<k"-))+I<""+laWw(ii,, is
nilpotent, and {E(w): weW, w^ w0J for any / £ R} is a basis of N.

PROOF. Show E(w) is nilpotent by induction on l(wOJiw)) — l(w). Note that if
w = wQJ for some / £ / ? then E(w) = 0. Suppose l(wOJ(w))—l(w) = 1. Then since a
reduced expression for w involves all WieJ(w), w^w0J{v)), there exists r^e
such that u</v)e<D+ So al, = ( - lyw-1 a^(w). Thus

= ^ where b = ( -1)"""-1+2( -

Now suppose KwOJ{w))—l(w)>l. Consider the product awaw. Since
there exists r,en^(u,) such that w(r})eQ>+. As any reduced expression for w
involves all wtej(w), we have awaw = (-l)a(wM(w')aw,, with w'eWJ(w) and
l(w')>l(w). Further, J(w')=J(w). Then

E(wf = a

= ( -

As /(u'')>/(w), either w' = w0J(w) and thus ^w)2 = 0 or w'^w0J(u>) and then by
induction E(w') is nilpotent. Thus E(w) is nilpotent.

Finally, note that we get a nilpotent element for each weW, w^w0J for any
/ £ Z?. The set of all E{w), w^ w0J for any / s if, is obviously linearly independent,
and there are | W|—2" elements in all, where n = \R\. Hence they are a A-basis
foriV.
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2.4 COROLLARY. H/N is commutative.

PROOF. We show that ax at—a3- a{ e N for all wit Wj e R. If a< aj = a,- ai( the result is
obvious. So suppose a^^ajU^ Then we can form £(wiwj) and E{wtw^) and

as each of £(win',) and E(wfw^ is in iV.

3. The irreducible representations of H

Consider the one-dimensional //-modules which arise from the natural compo-
sition series of//. Let the factor HjJHi+1 be generated as left //-module by aw+Hi+1.
The action of H on this element is determined as follows: for each wt e R,

[ -(aw+Hi+i) if w-K
ai(aw+Hi+1) =

I 0 if w-1(ri)e<l>+.

For any iceW, let/(H>) = {w^: 1 ^ j < s } where w = wit... wif is a reduced expression
for w. Then for w' e W,

( - iy<u/)(aw+Ht+1) if w-Hn^^OsO)-
auAaw+Hi+i) = \ 0 if there exists rfellj^) such

that w-\r^e<l>+.

Hence the action of H on aw+Hi+1 depends on w1.

3.1 DEFINITION. For each / £ / ? , let A^ be the one-dimensional representation of
Hdenned by

0 if WfE/,

For all weff, let w = wil...wit with /(w) = s. Then Aj(aw) = Aj(afl)... A j ^ ) .
Extend Ay to H by linearity.

For each J^R, let Hi(J)/HUj)+1 be the factor of the natural series which is
generated by aw^+Hi{J)+1. Then the left //-module HiU)/HilJ)+1 affords the
representation \j of H.

Since each composition factor of H is one-dimensional, it follows that all
irreducible representations of H are one-dimensional. Let ju. be an irreducible
representation of H. Then (x is completely determined by the values .̂(a^) for all
w f eR. Since fi is an algebra homomorphism, ^{a^f = —yi{a^ for all w^eR. Let
/ i ^ ) = uieK for all v^e/?. Then «? = -M^ in A: implies that Mi = 0 or i^ = - 1 .
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Thus each irreducible representation of H can be described by an n-tuple (uXt..., un),
where n = | R\, with ut = 0 or — 1 for all i. In particular, Xj corresponds to the
«-tuple (u1,...,un) where «{ = 0 if wteJ and ut = - 1 if w^eJ. There are 2" such
irreducible representations, and they all occur in the natural series of H.

2n maximal ideals of H are determined as follows: for each JzR, form the
n-tuple (uv...,un), where ut = 0 if wteJ and ut = - 1 otherwise. Let Mj be the
left ideal of H generated by {Of-i^l: w^el?}. Then M, = kerA^, and as each
Xj is irreducible, Mj is a maximal left ideal of H.

Now H/N is semi-simple Artinian. So by extending A' to its algebraic closure R
and considering H as an algebra over R, we deduce that

zR@R.®...®R, a direct sum of 2n fields.

(Actually, we will show that

H/Nz K®K®...®K, 2" copies of K,

regardless of which field K is.)

4. Some decompositions of H

For each J^R, let Hj be the subalgebra of H generated by {a^. wteJ}.

4.1 DEFINITION. For each J^R, let

4.2 LEMMA. For a// H^ eJ,

aieJ = 0 = eja{ and a^j = -Oj =

PROOF. Use 1.3.

4.3 LEMMA. Let w0J = wix... wit, l(w0J) = s. Then

and is independent of the reduced expression for w0J.

NOTATION. For all weW, if w = wil...wit with l(w) = t, write

By the following proof it follows that [l+aw] is independent of the reduced
expression for w.
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PROOF. Firstly, we show that [1 +0,^,] is independent of the reduced expression
for woJ. Since we can pass from one reduced expression for w0J to another by
substitutions of the form (wiwiwi...)1.=(wiwiwi...)-, i^j, where ny is the
order of wi wt in W, we need to show that

To do this, we use induction on n, n^/iy, to show that

n n—1

This is clearly true for n = 1. Suppose it is true for all integers < k, and suppose
that k is odd. Then

( k
1+ !!

/ k fc-1

= 1 1 + 2 «(«,,«,«>,...),»+ 2

t(fc-l) i(fc-l)
S a{wiwiw,...)im+1

a}+ S
m=0 m=l

Hk-1) Hk-1)

Now,

and

where a ( u M C 4 W i . . . , 0 = l . T h e n

fc fci
= 1 + 2 a<u><wiu>,...),,+ 2 ,

n t l t n l

>t_i ai

fc+1 A;
= 1 + 2 Oiwtwiwi...)m+ S

Similarly, we get the above result if we assume A: is even.
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Similarly, for all

n—1

Then, for all

When « = rtip this difference is zero, and so

and thus [1 +aw<)J] is independent of the reduced expression for w0J chosen.
Finally, [1 +0^] is a linear combination of certain aw with weWj. We show by

induction on l(w) for all we Wj that aw occurs in the expansion of [1 +au w] with
coefficient 1. If /(w) = 0, then w = 1 and obviously 1 occurs with coefficient 1.
Suppose /(w) > 0. Let w = w'Wj, w' e Wj, w} eJ, where /(w) = /(w')+1. By induction
a^f occurs in [1 +0^] with coefficient 1. Choose an expression for w0J ending in
Wj, and then [1+0,^] = [1 + av>ojWl](l + at). Since l(w'wi)>I(w'), the only contri-
bution to a^ from the last bracket is from the 1. If instead we take at from the
last bracket, we get aw, with coefficient 1. Now suppose aw occurs in [l+oWojWj]
with coefficient m. Then

maj\ + at) = maw+maw as = maw - maw = 0 as w{r}) e O~.

Thus aw occurs in the expansion of [l+a^] with coefficient 1, and hence

4.4 COROIXARY. (1) ifJ, L^R, JnL^0, then OjeL = 0 and ejOL = 0.
(2) 7/"Ls/£R, then eLej = ej = ejeL andoLOj = Oj = OjOL.

PROOF. Use 4.2 and 4.3.

4.5 LEMMA. Let y e Yjfor some / £ R. Then au 03 = ay and av 03 ej = SW6JT/ avv»
with l(yw) = l(y)+l(w)for allweWj, that is, avojej is equal to av plus a sum of
certain aw with l(w) > I(y).

PROOF. If yeYj, then y = wwoj for some we Wwith l(y) = l(w)+Kwoj)- Hence
av°J = (~ Wv>o})awaiPoja«>o3>and s o av°J = av Now for all we W
we have l(yw) = l(y)+l(w). So for all weWJ} ayaw = ayvr Thus

oyojej = avej= 2
weWj

and l(yw) > /O) if w# 1,
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4.6 LEMMA. For yeYj, ay occurs in the expansion ofayejoj with coefficient 1,
and if, for any weW,aw occurs in the expansion ofay ej oj with non-zero coefficient,
then w = y or l(w) > l(y).

PROOF. By 4.5, avej = 2»s»p><W with l(yw) = l(y)+l(w) for all weWj. So

From the proof of 4.5, ayoj = ay, and for all we WJy w^ 1,

for some w ' e l f with l(w')>/Cvw)>l(y).

4.7 THEOREM, (i) The elements {ayojej = ayej: yeYj,JS:R} are linearly
independent and form a basis ofH.

(ii) The elements {ay ejOj: ye Yj, J s R} are linearly independent and form a basis
ofH.

PROOF, (i) Suppose that for each y e Yj and each 7 s R there is an element ky e K

such that YljSR'LyeYJ
kvaveJ = °-

We show that if Sn = 0, then ky = 0 whenever /(JO = « and hence 5 n + 1 = 0.
Letylt ...,y, be those elements of Wfot which Ky^ = n. Then by 4.5, i

for some/(j)S-R,

av,eJM = a » ,+( a linear combination of certain aw where l(w)>l(yj).

Hence,

•S* = Tikytayi+(& linear combination of certain aw with /(w)>«).
<—I

If Sn = 0, then as {aw: we W) are a basis of //, we must have A:Vj = 0 for all i,
Ki<t. Then Sn+1 = 0.

Since So = 0, ky = 0 for all y whenever l(y) = 0, and then Ŝ  = 0. By induction,
all ky are zero, and so {ay ey.ye Yj, / s R} is a set of linearly independent elements.
As there are | W\ of them, they must form a basis of H.

(ii) This is proved using similar arguments.
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4.8 COROLLARY, (i) For any L^R, the elements of the set

{av°JeJoL-

are linearly independent.
(ii) For any L^R, the elements of the set {avej0jeL: yeYj,J^L} are linearly

independent.

PROOF, (i) ayejO£ = Ytxe^w^ywOt. As JsL, I s / a n d so a^oi = a^. Then

avejoi = ayoi+ 2 aVv>°L

= av+ 2 avwoi asyeYj

= ay+(a linear combination of certain aw with l(w)>l(y)).

The result now follows by using an argument similar to that used in the proof
of 4.7.

(ii) For any yeYj, ayejoj = av+(XWeWkwa^), where kweK and kw = 0 if
)l(). Then

ayejojeL = ayeL+( 2 kwaj)eL, kveKgiven as above,
iBeW

= ay+( 2 K,aw) for certain k'weK, with k'w = 0 if l(w)<l(y).
weW

Once again the result is given using an argument similar to that given in the proof
of 47of 4.7.

4.9 THEOREM, (i) For each aeH and for any J^R, there exist elements kyeK
such that

2 kvayej = ( 2 kyayojej).
VeTj VeTj

(ii) For each aeH and for any / £ R, there exist elements kyeK such that

= 2 KaveJ°j-
VT

PROOF, (i) As {aw: we W} is a basis of H, we may write a — Yiv>eWuv>aw with
uweKfor all we W. It is thus sufficient to express a^ojej as a linear combination
of the elements {ayej\ yeYj} for all we W. Use induction on l(w) to prove this.

If l(w) = 0, then w = 1 and lojej = ( - ty^a^ej. The result is true for
w= 1 as
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Suppose /(H>)>0. Let w = wiw' for some w^R, w'elV, l(w) = l(w') +1. By
induction,

av/°jej~ 2 uyayej for some uv6K.
VeYj

Then

VeYj

Hence for each y e Yj we have to express at av ej as a combination of {av ej: v e Y }̂.
Now for any y e Yj,

' - av ej, if ^""Vi) 6 $~,

0, if ^"Vt) = ri for some ry e II Jt

(4.10) af avej=\ as then ^atf = avay,

3
The result follows.

(ii) Since {ayeLoi: yeYL,L^R} is a basis of i/, there exist elements ut

such that

aejoj= 2 2 "„<*„<?£»£•

Choose any Af£/? with M n / # 0 . Then aejOjeM = 0; so

S S uyayeLoLeM = 0.

But Oi«jf = 0 if £n Af#0. So the only non-zero terms in the above equation
involve those L s J? for which £ n ¥ = 0 . Thus

"vayeLoieM = 0.

By 4.8(ii), «v = 0 for all . y e ^ , M^L^R. Hence we have that «„ = 0 for all
y e Yi, with L n / # 0. Thus

aejoj= 2 2 uy
LSJ Y

Let S,r = {M'6W:«tt#0, weYj, for some L<=/}. Suppose Sj^0. Choose an
element yoeSj of minimal length, and suppose yoeYJt for some J0«=J. Consider

a^ojOj0= 2 2
LSJyZY

As Joaj, ejojoj, = ejOj0 = 0. Then

(•) 2 2
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Now if L^J and y e YL,

kwaw

where kw e K, and ay oj0 = ± aw, for some w e W with /(w)
Since y0 is of minimal length in Sj, the coefficient of aVo on the left side of (*) is

uVg. As {aw: we W} is a basis of H, so «Vo = 0, which is a contradiction. Hence
S, = 0 and

REMARK. Let z eZ. Then z can be regarded as an element of K in a natural way
—it is the element z\K — \K +... + lK (z times), where \K is the identity of K.

4.11 COROLLARY. (1) For each weW, there exist rational integers uv = uy{w)
such that awojej = YIVeTJ

uvav°jeJ-
(2) For each wefV, there exist rational integers uy = uv{w) such that

PROOF. (1) Follows from the proof of 4.9(i).
(2) List the elements yx,.,.,ym of Yj in order of increasing length; if i<j then

l(yj). Let ci} be the coefficient of aVi in aVjej0j. Clearly ctj is an integer as
av,eJ°3 *s a n integral combination of certain elements a^, w'eW. Also, cu = 1
for all i, 1 < i < m, and ci} = 0 if i <j by 4.6. Let ht be the coefficient of aV( in a^ ej oj.
Clearly ht is an integer, and

m m

h^^k] Cij where aw ej oj = 2 kt aV( ea oj

for some kteK. Hence, ht = SylJAryCy+A .̂ Let i = 1. Then hx - klt an integer.
Now use increasing induction on i to show kt is an integer for all i, 1

4.12 THEOREM. (1) Hoj ej is a left ideal of H with K-basis {ay oj ej = ay ey. y e Yj).
Hence dim Ho jej = \Yj\. Let YJ = {y1,...,ys}, with Kyd^Kjj) if i<j, and let

); then

Hojej = HJA>Hj2>...>HJ>g>0

is a composition series of Hojej of left H-modules, and HJtiIHji+1 affords the
representation A^ ofH, whereyjxeYM, andHJtS+1 = 0. Finally, H = 2$£RHojej,
a direct sum of2n left ideals, where n = | R\.

(2) HejOj is a left ideal of H with K-basis {ayejoy. ysYj). Hence
= | Y,|. Let Yj = {ylt...,yj, with l(yd*l(yj) ifi<j, and let

Hj,i = I'tkiaVjeJoy. kjSK)



[13] O-Hecke algebras 349

then

Hejoj = Hjtl>Hj2>...>HJiS>0

is a composition series of Hej oj of left H-modules, and HjJHJi+1 affords the
representation XM ofH, where y^lsYM, andHJiS+1 = 0. Finally, H = ^JSRHCJOJ,

a direct sum ofln left ideals, where n = \R\.

PROOF. The results follow by 4.7, 4.8, 4.10 and the fact that

dimff = | F r | = S \Yj\.
JSR

4.13 COROLLARY. Hojej and HejOj are indecomposable left ideals of H, for
all / £ R, and they are isomorphic as left ideals of H.

PROOF. From the theory of Artinian rings and the fact that H/N is a direct
sum of 2n irreducible components (see remarks at the end of Section 3), it follows
that H can be expressed as the direct sum of 2n indecomposable left ideals. Hence
Hoj ej and Hej oj must be indecomposable left ideals of H for all / £ R.

To show they are isomorphic, first note that Hejoj = HojejOj. Then define
the homomorphism fy. Hojej->HejOj by fjiaojej) = aojejOj, for all
aojejeHojej. As/ j is given by right multiplication by oj, it is well defined and
is a homomorphism of left ideals of H. fj is onto, since Hej oj = Hoj ej oj and
an element aoj ej oj e Hej oj is the image under fj of aoj ej. fj is one-one as
dim Ho jej = dim Hej oj. Hence fj is an isomorphism of left ideals of H.

4.14 COROLLARY. (1) For any L^R,

Yfijjt, anddim#0£= S|
JSL JSL

(2) For any L^R,

HeL= 2® Hej oj eL, and dim HeL = 2 | Yj | = | XL |.
JSL JSL

PROOF. Use 4.12 and 4.8.

4.15 THEOREM. For anyJc.R,

: aai = Ofor all

= {aeH: a(l +at) = a for all



350 P. N. Norton " [14]

Further, Hej = ^jsLHoieL, and ^eJ has basis {awej\ weXj) and dimension
\Xj\. Finally,

= {aeH: aOi = Ofor all w^J, aeL = Ofor

where ker eL = {aeH: aeL = 0}.

PROOF. Clearly, Hej^{aeH: aat = 0 for all wteJ}. Conversely, take aeH and
suppose aai = 0 for all wteJ. Then a{\ +at) = a for all w^J, and so aej = a,
and so aeHej. Thus the first part is proved.

Now HoieL^Hej for all L 2 / , and so £®2 J//o feL^Hej. By 4.14,
dimHej = |Jfj|, and as dimHozeL = | YL\, we have Hej = H,®sjH°LeL-

Let a = ^WeW
uwaweHej, where uweK. Let M^e/. Then 0^ = 0, and so

That is,

Since {aw: w e PF} form a basis of /f, we have uWWi = uw for all w e W with w(rt) e <1>~.
Hence «„, = uWW( for all weW, with w(ri)e0+. Now if we W, w can be expressed
uniquely in the form w = ywj, where yeXj, WjeWj and /(w) = l(y)+l(wj).
Write Wj = wtl... w ,̂ w^eJ, l(wj) — t. By the above, we have

Hence a = ljVexJ
uvaveJ- Conversely, for each yeXj, ayejeHej, and as

{ayej: yeXj} is linearly independent and dim Hej = | Xj |, {avej.- yeA^} is a
basis of / /e j .

Finally, Hojej^{aeH: a^ = 0 for all w ^ / , a<?£ = 0 for all L=>/}. Let
a = 2£SveFiMi/av°£e£» "y e^> satisfy oaf = 0 for all wf 6 / and ae^ = 0 for all
L=>J. Since aeHeJt uv = 0 for all yeYL if J$L. Soa = Y>L^j'ZyeT1.

uvay0LeL-
Set Sj = {weW:uw^0, weYL, L^J}. Suppose 5 y # 0 . Then there exists an
element y0 of minimal length in Sj; suppose yoeYM, M^J. Then aeM = 0. Also
°jeJeM = 0 as M=>J. For other !-=>/, if yeYL,

ay°LeLeM = aveLeM = a y+( a combination of certain aw,

WGW, with /(w) >l{y)).
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ThenaeM = Ogives 2 i = j l L V s r h
u v a v ° l e L e M = °- As ;>0 is of minimal length in S j ,

the coefficient of aVt in the left-hand side of the last equation is uVo. By the linear
independence of {aw: we W), we have uVo = 0, which is a contradiction. Hence
Sj = 0 and a = YlyeTJ

uyay°jeJeHojeJ-

{aeHey. aeL = 0 for all

4.16 THEOREM. For any / c R,

= Ofor all

HOJ has basis {aw: weYfrL^J}, dimension \Xj\ and Hoj =
Finally, HejOj = {aeHoj: aoL = Ofor

PROOF. Similar to the proof of 4.15.

4.17 LEMMA. Let ifij be the character of the representation ofHon Hojej. Then
ipj takes values as follows: for each weW,letw = wil... w^ be a reduced expression
for w, and set J(w) = {wij: 1 ^j^t}. Then tffj(aw) = (-l)"w )Nj(w), where Nj(w)
= the number of elements yeYj such that y'HJlj^z^'.

PROOF. Use 4.10.

4.18 LEMMA. Let <f>j be the character of the representation of H on Hej. Then
<f>j takes values as follows: for weW let w = w^.-.w^be a reduced expression for w.
SetJ(w) = {wif: 1 ^j < f}. Then <j>j(aw) = ( - \yiw) Mj(w), where Mj(w) = the number
of elements xeXj such that X~1(U.JIV)))^O~. Also, Mj(w) = ^z,3jNL(w).

PROOF. Hej has basis {awej: weXj}. For any wteR,

' ~av>eJ

av>(u> eJ> where wt w e Xj if w~\r^) > 0, and

for any /yel l ,

if w-Vi) = ri f°r s o m e rie n j , for then

aiaw = awai and ajeJ = 0.

The result now follows.

4.19 LEMMA. Let \LJ be the character of the representation of H on Hoj. Then \tj
takes values as follows: for each weW, let w = wij... w^ be a reduced expression for
w, and set J(w) = {w^: 1 ^j<t}. Then (ijia^) = ( - \fw)Lj(w), where Lj{w) = the
number of elements zeZj such that z-1(nJiw))^O-,andZJ = {we W:
Note that ZJ = ZL£JYL.
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PROOF. HOJ has basis {aw: weZj}. For all

If weZj, wteR and H'~1(ri)>0, then w^eZj, for if r ^ e l l j , w ^ ) = -s for some
j e O + and H'i(j)<0 if and only if s = r^ But if s = rt, te 'Vi) — ~r$—impossible.
The result now follows.

4.20 COROLLARY. (1) fa = ^j^Lfor allJ^R.
(2) PJ =

A direct sum decomposition of H into indecomposable left ideals is equivalent
to expressing the identity of H as a sum of mutually orthogonal primitive
idempotents. Let 1 = S J S K ^ J and 1 = S J S R P J be the decompositions of 1
corresponding to the decompositions H =\£feRHojej and H =2$SRHej0j
respectively, where Hqj = Hojej and Hpj = HejOj. (There does not appear to
be a specific expression for the qj or the pj in terms of {av0jej: yeYj} or
{avejOj.yeYj} respectively).

4.21 THEOREM. Let {qj-.jQR} be a set of mutually orthogonal primitive idem-
potents with qjeHojejfor all J^R such that 1 = ^jSRqj. Then Hojej = HqJt

and if N is the nilpotent radical of H, Nojej = Nqj is the unique maximal left
ideal of HqJt and Hqj/Nqj^K. Hqj/Nqj affords the representation \j of H
defined in 3.1. Finally,

H/Nz 2eHqj\Nqj%K@K@...@K, 2nsummands, wheren= R.

PROOF. By the theory of Artinian rings, Nqj is the unique maximal left ideal of
Hqj, and HIN^^,%RHqjlNqj. Since qjeHojej, Hqj^Hojej. As

JSR JSR

we must have Hqj = Hoy ej for all / £ R. Then Nqj = NHqj = NHoj ej = Noj ej
is the unique maximal left ideal of Hqj. But

: uyeK}

is a maximal left ideal of Hojej (see 4.10), and so

2 uyavo3ej\ uyeK}.
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Then Hqj/Nqj is a one-dimensional //-module generated by aWg}ojej+Nqj which
affords the representation A^ of H, and since every element of Hqj/Nqj is of the
form kaWo} oj ej+Nqj for some k e K, Hqj/Nqj s •£ for all / £ /?. Hence the result.

4.22 THEOREM. Let {pj: / S R} be a set of mutually orthogonal primitive idem-
potents with pjeHejOj for allJ^R such that 1 = TUZRPJ- Then HejOj = Hpj,
and ifN is the nilpotent radical of H, NejOj = Npj is the unique maximal left ideal
of Hpj, and Hpj/Npj^K. HpjjNpj affords the representation \j of H defined in
3.1.Finally,H/Nz~£%RHpj/NpjZK@K@...@K,2nsummands, wheren = \R\.

4.23 LEMMA. {kaWoW(jJojej: keK} and {kaWl)WttJej0^: keK} are minimal sub-
modules of Hojej and HejOj respectively, where w^w^j is the unique element of
maximal length in Yj. These minimal left ideals both afford the representation Xj
of H, where 7 = {u^e/?: there exists w^eJ with waWj = M^W,,}, or, alternatively,
U7 is defined by w^Ylj) = - I I 7 .

4.24 NOTE. By the same methods, H= ^®cRej0jH and H =
both being direct sum decompositions of H into 2n right ideals, where n = | R |.
Further, ejOjH has A-basis {ejojay: y^eYj}, and ojejH has ^T-basis
{oj ej ay: y

1 e Yj}. All the results for the left ideals Hej, Hoj, Hej oj and Hoj ej
have analogues for the right ideals ej H, Oj H, oj ej H and ej oj H respectively.

Let G be a finite group with a split (B, N) pair of rank n and characteristic p
with Weyl group W, and let K be a field of characteristic p. Then the above
decomposition of H = HgiG,!}) gives a decomposition of l£, where \B is the
principal character of the subgroup B of G, which will be discussed in a later paper.

5. The Cartan matrix of H

We have that H = 2®SR UJ> where Uj = Hoj ej is an indecomposable left
//-module. Thus {UjiJ^R} are the principal indecomposable //-modules.
{Uj/mdUj-.J^R}, where radl/, is the unique maximal submodule of Uj, are
irreducible //-modules, such that Mj = [/,/rad Uj affords the representation Xj
of//.

DEFINITION. The Cartan matrix C of H, where H is of type (W, R), with | R | = n,
is a 2" x 2* matrix with rows and columns indexed by the subsets of R, and if we
write C = (cJL), then

cJL = the number of times ML is a composition factor of Uj.
13



354 P. N. Norton [18]

5.1 THEOREM. For allJ, L^R,

CJL = \Yjn (YL)~l \ = \YLn (Yj)-1 | = cLJ.

Hence C is a symmetric matrix.

PROOF. UJ has AT-basis {av ojej = ayej\ ye Yj}. Let ylt...,yt be all the elements
of Yj written in order of increasing length; if i>j then l{y^l{yj). Then set
Uj(0— {Tij5,ikVjaVjej: kyeK}. Uj(i) is a left ideal of H for all /, and
Uj<S) > Uj(i+1) for all i, 1 < i^ s-1. Then Uj = Uj(l) > 17,(2) >... > Uj(s) > 0 is
a composition series of Uj, with Uj(i)/Uj(i+1) being an irreducible //-module
with basis aVtej + Uj{i+l) and affording the irreducible representation XL,
defined in 3.1, where L is determined as follows: recall 4.10; let Wj eR and yt e Yj.
Then

-ay,ej

it y~r\rj) = rk lor some ,

where Wj yt = yt for some yt e Yj with i<l, if

yf1(ri)>0 but yj\rj)^rk for any

Hence

.0

That is, yj1 e YL.
Hence cJL = the number of elements y e Yj such that y-1 e YL

since if ye Yjn(F^-i, then y-1 eYLn(Yj)-\

5.2 THEOREM. Let H be the 0-Hecke algebra over the field K of type (W,R),
where Wis indecomposable. Then if\R\> 1, Hhas three blocks. If\R\ = 1, then H
has two blocks.

PROOF. If | J t | = l, then W=W(AJ and H= H(l + aj®H(-a^), where
R = {wi}. Both (1+flx) and (—aj) are primitive idempotents as well as being
central. Hence H has only two blocks.

Now suppose that | / ? | > 1 . eR = [l+aWo] and (-iy(Wo)aWo are primitive and
centrally primitive idempotents in H and so correspond to two distinct blocks.
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The other primitive idempotents in H, that is, {qj-. / # 0 , R} as in 4.21, determine
at least one other block. We will show that provided W is indecomposable the
Cartan matrix C corresponding to the indecomposables Uj for J^ 0 , R and the

irreducibles ML for L # 0 , R cannot be expressed in the form C = *
L 0 C2 J

(see Dornhoff (1972), Theorem 46.3).
Suppose that C can be put in the form above. Let

Sx = {Jc R: Uj and Mj index the rows and columns of CJ,

S2 = {/c R: Uj and Mj index the rows and columns of CJ.
Suppose for some /<=/?, | / | = n— 1 (where n = \R\), that / eS^ . Then we show

(1) for allL<=R with \L\ = n-\,LeS1,
(2) by decreasing induction on \J\ for all / # 0, /? that Je Sv

(a) Suppose / = {wlt..., wit..., wn} and £ = {wlf..., wj+1,..., wj, where the
nodes corresponding to Wj and wi+1 in the graph of W are joined. Then the order
of Wj wj+1 is greater than 2. Now woj = Wj e Yj and wO£ = Wy+1 e y^. Since the
order of wtwi+1 is greater than 2, w^+1w^6yj and w}wi+1eYL; that is,
w3+i wi eYjn (Yi)'1' Hence 7 e Sx if and only if L e Sv

Hence if there is some/e51, with | / | = n— 1, then all L<=-R with \L\ = n—\ are
in 5X by the above.

(b) Suppose that for all /<=/? with | / | > / M that JeSv Choose L<=:R with
\L\ = m. We show LeSv Suppose L = {wi±, •••,wij with I^i1<...<im^n.
Since PFis indecomposable and Li=&,R, then | Yi;| > 1. Choose some w€ eL and
wkeL such that vv̂ Wj. has order r, where r>3 . Then wt,woieYL (as Wo
for any rf e 11^, for woi(rit) = r̂  for some rf G I l i imph'es that ri} = rf and
is a product of reflections corresponding to roots orthogonal to ri}, and so for all
wk eL, wif wk = wk wi, which is a contradiction). Now consider (wi. Wot^1 ~ WOL wis-
Then suppose wifeL, wi(^ wi}. Then woLwij(ri)eQ>+. Also wo£ w^r^eO" . Suppose
vv^ef,. Then

woz, W4rk) = ôiĈ fc + ^ ) with w ̂  0

If u = 0, that is, if wijwk = WftW ,̂ then wO£Vi> (̂/-fc)£<&-". If M > 0 , as Wo^rj.) =

for some riGll^, and woi(ri])eQ>+, WoL^ri)^ri, ^or a n y rt,e^L^ w e

) G $ + - Hence woiwiteYM, where

Af = {L-{w^}}u{wkeL: wit wk has order >2}

= {L—{{wi]}u{wkeL: the node corresponding to wk in the graph of

W is joined to that corresponding to w^}.
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Now |A/|>|L| if the node corresponding to wi} is joined to at least two nodes
corresponding to elements of L, and then LeS^ by induction.

Let Pi be the node of the graph of W which corresponds to wteR, 1 </<«.
Then suppose Pif is joined to only one Pk for all wkeL. Then the above argument
shows thatL = {wti,..., w{j and M = {w^,..., wijy..., wim, wk) belong to the same Sit

where / = 1 or i = 2. Since |L |<« -2 , |Z|>2. Let wkl and wkt be any two elements
of L, such that there exists a sequence Pkl = PfoPjt, ...,Pir = Pki of nodes such that
Pi( and Pj are joined for all i, 0</<r— 1, and Pi( corresponds to an element of
L for all i, U i < r - 1 . If r = 1, then Pkl and P^ are joined. Without loss of
generality, we may suppose there exists wigeL such that Pit is joined to Pki. Then
let M = {L-{\Vj}}L>{wk^. M and L belong to the same Sit and by the above, as
M has an element wkl such that wki wit and wki wka both have order > 2, where
wi,> wka

 e ^» w i ,^ w'fcj' then M e Sx. If r = 2, then L and M are in the same 5 ,̂ where
M = {!--{{H',1}}u{M'A.x,H'fciS}, and by induction MeSv If r>2, define

Then LQ,^, ...,Lr_% are all in the same S^ and by the above, Lr_ae51.
Hence L e ^ j . Then S2 = 0, and so i / has precisely three blocks.

5.3 THEOREM. Let H be a 0-Hecke algebra of type (IV,R). Suppose W is
decomposable, and let W=W1xW2x...xWr, where each Ŵ  is an indecomposable
Coxeter group, and the corresponding Coxeter system is (W^Ri). Let Hi be the
0-Hecke algebra of type (Wt, Rj), and let mt be the number of blocks of HP Then H
has mxm%...mr blocks.

PROOF. Suppose that 1 = S'i=1et where the et are mutually orthogonal centrally
primitive idempotents in H. Then the number of blocks of H is equal to t.

Now for all we Wit w'e Wjt where 1 < i j ^ r and / ^ j , we have that

and so it follows that if/f is a centrally primitive idempotent of Hit then/j ...fr

is a centrally primitive idempotent of H. Suppose lH{ — SJ'ii/i^ where for a fixed /,
{fij\ Kj<(( ' )} is a set of mutually orthogonal central primitive idempotents in
H^ Then lH = £&-i-•• S ^ i ^ . . - ^ , . a sum of mutually orthogonal central
primitive idempotents in H, and so H has t{\)t(2)... t{r) blocks, where t(i) = m^
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