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1. Introduction

The descent algebra Σk(W ) of a finite Coxeter group W is a highly exceptional subalgebra of the
group algebra of W . First introduced by Louis Solomon in 1976 [Sol76], it has enjoyed much attention
because of several connections with various areas of mathematics, including the representation theory
of Coxeter groups, free Lie algebras and higher Lie modules, Hochschild homology, and probability.
These connections are described in a survey article by Manfred Schocker [Sch04].

In this article we study the quiver of the descent algebra. Our approach is to use a result of
T.P. Bidigare that identities the descent algebra with the W -invariant subalgebra (kF )W of a semi-
group algebra kF associated to the reflection arrangement of W [Bid97]. Then using results about kF
we deduce some general properties about the quiver of the descent algebra and determine the quiver
of the descent algebras of type A and B . The quiver of the descent algebra of type A has already been
computed [Sch04], but the quiver of the descent algebra of type B was not previously known.

We briefly outline the contents and structure of the article. Section 2 defines finite Coxeter groups
and reflection arrangements, and explains the connection between the descent algebra Σk(W ) and the
W -invariant subalgebra (kF )W . Section 3 recalls definitions and results about quivers of split basic
algebras. In Section 4 we provide a proof that kF and (kF )W are split basic algebras, so there are
(canonical) quivers associated to each. Section 5 constructs a complete system of primitive orthogonal
idempotents for kF that leads to a complete system of primitive orthogonal idempotents for (kF )W .
This allows us to define, in Section 6, a W -equivariant surjection ϕ : kQ � kF , where Q is the quiver
of kF . We use this surjection in Section 7 to prove some general properties of the quiver of the
descent algebra and in Sections 8 and 9 to determine the quiver of the descent algebras of types A
and B , respectively. Finally, Section 10 discusses some future directions for this project.

The interested reader may also decide to consult recent work of Götz Pfeiffer who is taking a
different approach to the problem of determining the quiver of the descent algebras [Pfe07].

2. The geometric approach to the descent algebra

For an introduction to the theory of Coxeter groups, see the books [Bro89,Hum90,Kan01,BB05]. The
reader may wish to read Section 2.1 and Section 2.3 alongside Section 2.4 since the latter presents
these ideas for the symmetric group Sn . Also see Section 9.1, which describes some of these ideas for
the hyperoctahedral group Bn .

2.1. Coxeter systems and reflection arrangements

Let V be a finite-dimensional real vector space. A finite Coxeter group W is a finite group gen-
erated by a set of reflections of V . The reflection arrangement of W is the hyperplane arrangement
A consisting of the hyperplanes of V fixed by some reflection in W . The connected components of
the complement of

⋃
H∈A H in V are called chambers. A wall of a chamber c is a hyperplane H ∈ A

such that H ∩ c spans H , where c denotes the closure of the set c.
Fix a chamber c and let S ⊆ W denote the set of reflections in the walls of c. Then S is a gener-

ating set of W [Bro89, §I.5A]. The pair (W , S) is called a Coxeter system, and c is the fundamental
chamber of (W , S).

2.2. The descent algebra

Fix a Coxeter system (W , S). For J ⊆ S , let W J = 〈 J 〉 denote the subgroup of W generated by the
elements in J . Each coset of W J in W contains a unique element of minimal length, where the length
�(w) of an element w of W is the smallest number of generators s1, . . . , si ∈ S such that w = s1 · · · si
[Hum90, Proposition 1.10(c)].

For J ⊆ S , let X J denote the set of minimal length coset representatives of W J and let x J =∑
w∈X J

w denote the sum of the elements of X J in the group algebra kW of W with coefficients in
a field k. Louis Solomon proved that the elements x J form a k-vector space basis of a subalgebra of
kW [Sol76, Theorem 1]. This subalgebra is denoted by Σk(W ) and is called the descent algebra of W .
Throughout k will be a field of characteristic that does not divide the order of W .
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2.3. The geometric approach to the descent algebra

Let (W , S) be a finite Coxeter system with fundamental chamber c, and let A be the reflection
arrangement of W . The reader may want to read this section alongside Section 2.4.

2.3.1. Face semigroup algebra
For each hyperplane H ∈ A, let H+ and H− denote the two open half spaces of V determined

by H . The choice of labels H+ and H− is arbitrary, but fixed throughout. For convenience, let H0 = H .
A face of A is a nonempty intersection of the form

⋂
H∈A HσH , where σH ∈ {+,0,−} for each hy-

perplane H ∈ A. The sequence (σH )H∈A is called the sign sequence of the face. We denote the sign
sequence of a face x by σ(x) = (σH (x))H∈A .

Let F denote the set of all faces of A. Define the product of two faces x, y ∈ F to be the face xy
with sign sequence

σH (xy) =
{

σH (x), if σH (x) �= 0,

σH (y), if σH (x) = 0,

where σ(x) and σ(y) are the sign sequences of x and y. This product has a geometric interpretation:
xy is the face entered by moving a small positive distance along a straight line from a point in x
towards a point in y. In the special case where y is a chamber, the product xy is the chamber that
has x as a face and that is separated from y by the fewest number of hyperplanes in A [BD98, §2C].
It is straightforward to verify that this product gives F the structure of an associative semigroup
with identity, and that x2 = x and xyx = xy for all x, y ∈ F . Semigroups satisfying these identities are
called left regular bands.

The semigroup algebra kF is called the face semigroup algebra of A over the field k. It consists
of finite k-linear combinations of elements of F with multiplication extended k-linearly from the
product of F .

The semigroup F is also a partially ordered set with respect to the relation x � y if and only if
xy = y. Equivalently, x � y if and only it x ⊆ y, where y denotes the closure of the set y. Note that
the chambers of the arrangement are precisely the faces that are maximal with respect to this partial
order. If x � y, then we say that x is a face of y or that y contains x as a face.

2.3.2. Support map and intersection lattice
For each face x ∈ F , the support of x, denoted by supp(x), is the intersection of all hyperplanes

in A that contain x. Equivalently, supp(x) is the subspace of V spanned by the vectors in x. The
dimension of x is the dimension of the subspace supp(x).

The intersection lattice L of A is the image of supp; that is, L = supp(F ). The elements of L are
subspaces of V and are ordered by inclusion. (N.B. Some authors order L by reverse inclusion rather
than inclusion.) With this partial order, L is a finite lattice, where the meet (∨) of two subspaces is
their intersection, and the join (∧) of two subspaces is the smallest subspace that contains both.

It is straightforward to show that supp(x) � supp(y) for all x, y ∈ F with x � y. Therefore, supp
is an order-preserving poset surjection. Moreover, supp(xy) = supp(x) ∨ supp(y) for all x, y ∈ F , so
supp is also a semigroup homomorphism, where L is viewed as a semigroup with product ∨. The
elements of F also satisfy xy = x if supp(x) � supp(y). Proofs of these statements can be found in
[Bro00, Appendix A].

2.3.3. Invariant subalgebra
Since W is a group of orthogonal transformations of the vector space V , there is a natural action

of W on V : the action of w ∈ W on 
v ∈ V is the image of 
v under the transformation w . This action
permutes the set A [Hum90, Proposition 1.2], so it induces an action of W on L and on F . This
induced action preserves the semigroup structure of F and L, so it extends linearly to an action on
kF and kL.

Let (kF )W denote the subalgebra of kF consisting of the elements of kF fixed by all elements
of W :
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(kF )W = {
a ∈ kF : w(a) = a for all w ∈ W

}
.

The following was first proved by T.P. Bidigare [Bid97]. Another proof was given by K.S. Brown [Bro00,
Theorem 7].

Theorem 2.1 (T.P. Bidigare). Let W be a finite reflection group and let kF denote the face semigroup algebra
of the reflection arrangement of W . The W -invariant subalgebra (kF )W is anti-isomorphic to the descent
algebra Σk(W ) of W .

We briefly describe an anti-isomorphism. The faces of the fundamental chamber c are parametrized
by the subsets of S: if J ⊆ S , then there is a unique face c J of c that is fixed by all elements in J
[Bro89, §I.5F]. Furthermore, every face of A is in the W -orbit of a unique face of c [Bro89, §I.5F]. So
if O J denotes the W -orbit of c J , then the elements x J = ∑

y∈O J
y form a basis of (kF )W . The map

defined by sending x J to x J is an anti-isomorphism from (kF )W onto Σk(W ).

2.4. The symmetric group

We describe the above ideas in combinatorial terms for the symmetric group Sn . The results in
this section are not crucial to what follows, and will only be used in the proof of Theorem 8.1 to give
a combinatorial description of the quiver of the descent algebra Σk(Sn).

For n ∈ N, let [n] = {1, . . . ,n}. A set partition of [n] is a collection of nonempty subsets B =
{B1, . . . , Br} of [n] such that

⋃
i Bi = [n] and Bi ∩ B j = ∅ for i �= j. The sets Bi in B are called

the blocks of B . A set composition of [n] is an ordered set partition of [n], which we denote by
(B1, . . . , Br). An integer partition of n ∈ N is a collection of positive integers that sum to n.

2.4.1. Braid arrangement
Fix n ∈ N. The braid arrangement is the hyperplane arrangement A in V = Rn consisting of the

hyperplanes Hi, j = {
v ∈ V : vi = v j} for 1 � i < j � n. The group of transformations generated by the
reflections in the hyperplanes in A is identified with the symmetric group acting on V by permut-
ing coordinates: ω(v1, . . . , vn) = (vω−1(1), . . . , vω−1(n)) for ω ∈ Sn and 
v ∈ V . The reflections in the
hyperplanes Hi, j correspond to the transpositions (i, j) ∈ Sn .

2.4.2. Faces
Let 
v = (v1, v2, . . . , vn) ∈ Rn be a vector in a chamber c of the braid arrangement A. Then 
v is

not on any of the hyperplanes Hi, j , so all the coordinates of 
v are distinct. Therefore, there exists
ω ∈ Sn such that vω(1) < · · · < vω(n) . All vectors in c satisfy this identity, so c can be identified with
the permutation ω. The faces of c are obtained by changing some of the inequalities to equalities,
so the faces of A can be identified with set compositions of [n]. For example, the set composition
({5}, {1,3,4}, {2,6}) is identified with the face {
v ∈ R5: v5 < v1 = v3 = v4 < v2 = v6} = H−

1,5 ∩ H1,3 ∩
H3,4 ∩ H−

2,4 ∩ H2,6, where H−
i, j = {
v: vi > v j, i < j}.

The partial order is given by (B1, . . . , Bm) � (C1, . . . , Cl) if and only if (C1, . . . , Cl) consists of a
set composition of B1, followed by a set composition of B2, and so forth. The action of Sn on set
compositions is given by permuting the underlying set: ω(B1, . . . , Br) = (ω(B1), . . . ,ω(Br)). And if
(B1, . . . , Bl) and (C1, . . . , Cm) are set compositions of [n], their product is the set composition of [n]
given by the formula

(B1, . . . , Bl)(C1, . . . , Cm) = (B1 ∩ C1, . . . , B1 ∩ Cm, . . . , Bl ∩ C1, . . . , Bl ∩ Cm)
∧
,

where ∧ means “delete empty intersections.”

2.4.3. Intersection lattice
The elements of the intersection lattice L of A are identified with set partitions of [n] via the

following bijection,



3870 F.V. Saliola / Journal of Algebra 320 (2008) 3866–3894
{B1, . . . , Br} ↔ {
v ∈ V : vi = v j if i, j ∈ Bh for some h ∈ [r]} =
r⋂

h=1

( ⋂
i, j∈Bh

Hij

)
,

where {B1, . . . , Br} is a set partition of [n].
Under this identification, if B and C are set partitions of [n], then B � C if and only if B is ob-

tained from C by merging two blocks of C . The action of Sn on L is given by ω({B1, . . . , Br}) =
{ω(B1), . . . ,ω(Br)}. The support map sends a set composition (B1, . . . , Bm) to the underlying set par-
tition {B1, . . . , Bm}.

The Sn-orbit of a set partition {B1, . . . , Bm} of [n] depends only on the sizes of the blocks Bi , so
L/Sn can be identified with the poset of integer partitions of n. Under this identification, for any two
integer partitions p and q of n, we have p � q if and only if p is obtained from q by adding two
elements of q.

3. The quiver of a split basic algebra

This section recalls definitions and results from the theory of finite-dimensional algebras. Our main
references are [ARS95,Ben98,ASS06].

Let k be a field and A a finite-dimensional k-algebra. An element a ∈ A is an idempotent if e2 = e.
Two idempotents e, f ∈ A are orthogonal if ef = 0 = f e. An idempotent e ∈ A is primitive if it cannot
be written as e = f + g with f and g nonzero orthogonal idempotents of A. A complete system of
primitive orthogonal idempotents of A is a set {e1, e2, . . . , en} of primitive idempotents of A that are
pairwise orthogonal and that sum to 1 ∈ A.

The Jacobson radical of A is the smallest ideal rad(A) of A such that A/rad(A) is semisimple.
If A/rad(A) is isomorphic, as a k-algebra, to a direct product of copies of k, then A is said to be a
split basic algebra. Equivalently, A is a split basic algebra if and only if all the simple A-modules are
one-dimensional.

The quiver of a split basic k-algebra A is the directed graph Q constructed as follows. Let {ev : v ∈
V } be a complete system of primitive orthogonal idempotents of A, where V is some index set.
There is one vertex v in Q for each idempotent ev in {ev : v ∈ V }. If x, y ∈ V , then the number of
arrows in Q from x to y is dimk e y(rad(A)/rad2(A))ex . This construction does not depend on the
complete system of primitive orthogonal idempotents (see [Ben98, Definition 4.1.6] or [ASS06, Lem-
ma II.3.2]).

If α is an arrow in a quiver (directed graph) beginning at a vertex x and ending at a vertex y,
then we write x α−→ y. If there is exactly one arrow from x to y, then we drop the label and write
x → y. The path algebra kQ of a quiver Q is the k-algebra with basis the set of paths in Q and with
multiplication defined on paths by

(w0
α1−−→ · · · αs−−→ ws) · (v0

β1−−→ · · · βr−−→ vr)

=
{

(v0
β1−−→ · · · βr−−→ vr

α1−−→ w1
α2−−→ · · · αs−−→ ws), if w0 = vr ,

0, if w0 �= vr ,

where (w0
α1−−→ · · · αs−−→ ws) and (v0

β1−−→ · · · βr−−→ vr) are paths in Q .
Let F denote the ideal in kQ generated by the arrows of Q . An ideal I ⊆ kQ is said to be

admissible if there exists an integer m � 2 such that F m ⊆ I ⊆ F 2. This notion is useful for iden-
tifying the quiver of a split basic k-algebra as the following result demonstrates [ARS95, Theo-
rem III.1.9(d)].

Theorem 3.1. Q is the quiver of a finite-dimensional split basic k-algebra A if and only if A ∼= kQ /I , where
I is an admissible ideal of kQ . In particular, if ϕ : kQ � A is a surjection of k-algebras with an admissible
kernel, then Q is the quiver of A.
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The following result will be helpful to define k-algebra morphisms. A proof can be found in [ASS06,
Theorem II.1.8].

Theorem 3.2. Let Q be a finite quiver and A a finite-dimensional k-algebra. If f is a function from the set of
vertices and arrows of Q into A such that

(1)
∑

v f (v) = 1, f (v)2 = f (v) and f (u) f (v) = 0 for all vertices u, v, and
(2) f (u → v) = f (v) f (u → v) f (u) for every arrow u → v,

then there exists a unique k-algebra homomorphism ϕ : kQ → A such that ϕ(v) = f (v) and ϕ(u → v) =
f (u → v) for all vertices v and all arrows u → v of Q .

4. kF and (kF)W are split basic algebras

This section establishes that kF and (kF )W are split basic algebras. That (kF )W is a split basic
algebra follows from various sources since the irreducible representations of the descent algebra are
known to be one-dimensional (see, for example, [Sol76, Theorem 3]). We give a proof based on [Bid97,
Bro00].

Proposition 4.1. kF and (kF )W are split basic algebras.

Proof. We begin by showing that kF is a split basic algebra. As mentioned in Section 2.3.2, the
support map supp : F → L is a surjective semigroup homomorphism. Therefore, it extends linearly to
a surjective k-algebra homomorphism supp : kF → kL. The algebra kL is isomorphic to the k-algebra∏

X∈L k. Indeed, the elements defined recursively by the formula E X = X − ∑
Y >X EY , one for each

X ∈ L, form a basis and a complete system of primitive orthogonal idempotents for kL [Sol67]. Since
the kernel of supp is nilpotent, standard ring theory implies that ker(supp) = rad(kF ). It follows that
kF is a split basic algebra.

Since supp : kF � kL is a surjective W -equivariant algebra homomorphism, it restricts to an al-
gebra surjection (kF )W � (kL)W , where (kL)W is the W -invariant subalgebra of kL. Let E X be
the elements defined above. Since w(E X ) = E w(X) for all w ∈ W and X ∈ L, it follows that the el-
ements

∑
X∈O E X , one for each W -orbit O of elements of L, form a basis and a complete system

of primitive orthogonal idempotents for (kL)W . Thus, (kL)W ∼= ∏
O∈L/W k. Since (kL)W is semisim-

ple and ker(supp |(kF )W ) is nilpotent (because ker(supp) is), it follows that the radical of (kF )W is
ker(supp |(kF )W ). Thus, (kF )W is a split basic algebra. �
5. Complete systems of primitive orthogonal idempotents

In this section we construct a complete system of primitive orthogonal idempotents for kF that is
permuted by the elements of W . This allows us to construct a complete system of primitive orthog-
onal idempotents for (kF )W . A complete system of primitive orthogonal idempotents for Σk(W ) was
constructed previously [BBHT92], but the construction presented here is new and better suited to our
needs because of the close relationship between the two systems.

For each X ∈ L let O X = {w(X): w ∈ W } denote the W -orbit of X . These orbits form a poset
L/W = {O X : X ∈ L} with partial order given by O X � OY if and only if there exists w ∈ W with
w(X) � Y .

Remark 5.1. The poset L/W is isomorphic to a poset of equivalence classes of subsets of S . Indeed,
define a relation on subsets J , K ⊆ S by setting J ∼ K if and only if supp(c J ) and supp(cK ) belong
to the same W -orbit, where c J and cK are the largest faces of the fundamental chamber c that are
fixed by J and K , respectively. Equivalently, J ∼ K if and only if W J and W K are conjugate subgroups
of W . The poset S/∼, with partial order induced by reverse inclusion of subsets of S , is isomorphic
to L/W .
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Theorem 5.2. For each X ∈ L, fix a linear combination �X of faces of support X whose coefficients sum to 1
and suppose that they satisfy the identity

w(�X ) = �w(X) for all w ∈ W , X ∈ L. (5.1)

Then the elements defined recursively using the equation

e X = �X −
∑
Y >X

�X eY (5.2)

one for each X ∈ L, form a complete system of primitive orthogonal idempotents for kF , and they satisfy
w(e X ) = ew(X) for every w ∈ W and X ∈ L. The elements

εO =
∑
X∈O

e X , (5.3)

one for each O ∈ L/W , form a complete system of primitive orthogonal idempotents for (kF )W .

Examples of elements �X satisfying the above hypotheses will be presented below.

Proof. In [Sal07, Theorem 4.2] and [Sal08a, Theorem 5.2] it was shown that the elements e X form
a complete system of primitive orthogonal idempotents for kF . (This is proved by first establishing
Lemma 5.3 below and inducting on the codimension of X in V .) Induction on the codimension of
X ∈ L establishes that w(e X ) = ew(X) for all w ∈ W and all X ∈ L. Therefore, the elements

∑
Y ∈O eY

are invariant under the action of W , so they belong to (kF )W . They are orthogonal idempotents since
sums of orthogonal idempotents are again orthogonal idempotents. They sum to 1 since

∑
X∈L e X = 1.

Finally, they are primitive because there are enough of them: the number of elements in a complete
system of primitive orthogonal idempotents for a split basic algebra A is the dimension of A/ rad(A)

(this follows from [Ben98, Corollary 1.7.4]), which in this case is |L/W | by the proof of Proposi-
tion 4.1. �

The idempotents e X satisfy the following remarkable property that we will use on occasion.
A proof can be found in [Sal07, Lemma 4.1] and [Sal08a, Lemma 5.1].

Lemma 5.3. (See [Sal07,Sal08a].) Let y ∈ F and X ∈ L. If supp(y) �� X, then ye X = 0.

Next we present some examples of elements �X satisfying the above hypotheses.

5.1. First complete system

For each X ∈ L, let �X denote the normalized sum of all faces of support X :

�X = 1
#{x ∈ F : supp(x) = X}

( ∑
supp(x)=X

x

)
.

Then w(�X ) = �w(X) for all w ∈ W and X ∈ L.
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5.2. Second complete system

For every orbit O ∈ L/W , fix a face f O ∈ F such that supp( f O) ∈ O. For each X ∈ L, let f X = f O X

and define

�X = 1

L X

( ∑
z∈O f X

supp(z)=X

z

)
, where L X = ∣∣{z ∈ O f X : supp(z) = X

}∣∣. (5.4)

Note that L X is the index of the stabilizer subgroup W x of x, where x is any face of support X , in the
stabilizer subgroup W X of X . It follows that every w ∈ W induces a bijection between

T X = {
z ∈ O f X : supp(z) = X

}
and T w(X) = {

z ∈ O f w(X)
: supp(z) = w(X)

}
,

so w(�X ) = �w(X) for all X ∈ L and all w ∈ W .

5.3. Third complete system

If (W , S) is a Coxeter system with fundamental chamber c, then the faces of c are parametrized by
the subsets of S: if J ⊆ S , then there is a unique largest face c J of the fundamental chamber c that is
fixed by all elements of J [Bro89, §I.5F]. For J ⊆ S , let x J denote the sum of the faces in the W -orbit
of c J (see also Section 2.3.3). For each orbit O ∈ L/W , fix a subset J O ⊆ S such that supp(c J O ) ∈ O
and define numbers

LO = ∣∣{z ∈ Ox J O
: supp(z) = supp(x J O )

}∣∣.
Proposition 5.4. The elements εO , one for each O ∈ L/W , defined recursively by the formula

εO = 1

LO
x J O −

∑
O′>O

(
1

LO
x J O

)
εO′ ,

form a complete system of primitive orthogonal idempotents for (kF )W .

Proof. For each O ∈ L/W , let f O = x J O , and let f X = f O X for each X ∈ L. Define �X using Eq. (5.4).
Then an induction on the corank of O establishes that the elements defined by Eq. (5.3) are equal to
the elements εO defined above. �
Remark 5.5. Proposition 5.4 leads to a construction of a complete system of primitive orthogonal
idempotents directly within the descent algebra Σk(W ). Let S/∼ denote the poset defined in Re-
mark 5.1. For each O ∈ S/∼, fix a subset J O ⊆ S with J O ∈ O and define elements εO , one for each
O ∈ S/∼, recursively by the formula

εO = 1

LO
x J O −

∑
O′>O

εO′
(

1

LO
x J O

)
,

where x J O are the basis elements of Σk(W ) as defined in Section 2.2 and where LO is the index of
W J in the normalizer of W J .
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Remark 5.6. The construction of the idempotents εO in Remark 5.5 is very similar to the construction
of the idempotents e X in Theorem 5.2. In both cases we start with an algebra A and a function s from
a basis of A to a poset P . Using s and P , a complete system of primitive orthogonal idempotents is
constructed for A using Eq. (5.2). It would be interesting to determine conditions on A, P , and s to
ensure that this construction provides a complete system of primitive orthogonal idempotents for A.

6. A W -equivariant surjection

In this section we define a quiver Q and a W -equivariant surjection ϕ : kQ → kF of k-algebras.
We use this homomorphism in later sections to deduce properties of the quiver of (kF )W . Recall that
we write Y � X if and only if Y < X and there exists no Z such that Y < Z < X .

Definition 6.1. Let Q be the directed graph on the vertex set L and with exactly one arrow X → Y if
and only if Y � X .

In [Sal08a, Corollary 8.4] it is shown that Q is the quiver of kF , which will also follow from the
theorem below (see Corollary 6.8). In that article it is also shown that kF is a Koszul algebra, but this
fact will not be necessary here.

Theorem 6.2. Let {e X }X∈L denote a complete system of primitive orthogonal idempotents for kF as defined
in Theorem 5.2. Fix an orientation εX on each subspace X ∈ L and define numbers [x : y] for pairs of faces
satisfying x � y by

[x : y] = εsupp(x)(
x1, . . . , 
xd)εsupp(y)(
x1, . . . , 
xd, 
y1), (6.1)

where 
x1, . . . , 
xd is a basis of supp(x) and 
y1 is a vector in y.
Let ϕ be the function defined on the vertices and arrows of Q by

ϕ(X) = e X and ϕ(X → Y ) = �Y
([y : x]x + [y : x′]x′)e X ,

where y is any face of support Y and where x and x′ are the two faces of support X having y as a face. Then ϕ
extends uniquely to a surjection of k-algebras ϕ : kQ � kF , the kernel of ϕ is generated as an ideal by the sum
of all the paths of length two in Q, and ϕ is W -equivariant with respect to the following action of W on kQ:

w(X0 → ·· · → Xt) = σX0(w)σXt (w)
(

w(X0) → ·· · → w(Xt)
)
,

where σX (w), for X ∈ L and w ∈ W , is defined by the equation

σX (w) = εX (
x1, . . . , 
xd)εw(X)

(
w(
x1), . . . , w(
xd)

)
, (6.2)

where 
x1, . . . , 
xd is a basis of X .

We will prove this by a sequence of lemmas. But before we do, let us record a few properties of
the numbers defined in Eqs. (6.1) and (6.2).

It is straightforward to prove that the incidence numbers defined in Eq. (6.1) satisfy the identity

[x : y] = [x′ : x′ y], if x, x′ ∈ F and supp(x′) = supp(x). (6.3)

They also satisfy the following identity,

[z : y][y : x] + [z : u][u : x] = 0, (6.4)
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where y and u are the two faces in the interval { f ∈ F : z � f � x}. A proof of this can be found in
[BD98, Lemma 2 in §5C],

Remark 6.3. The incidence numbers were defined by Kenneth S. Brown and Persi Diaconis who used
them to compute the multiplicities of the eigenvalues of random walks on the chambers of a hyper-
plane arrangement. The numbers get their name from the fact that they form a system of “incidence
numbers” in the sense of homology theory of regular cell complexes. See [BD98, §5] for details.

The number σX (w) defined in Eq. (6.2) measures whether w maps a positively oriented basis
of X to a positively or negatively oriented basis of w(X). Note that if w(X) = X , then σX (w) is 1
if and only if the restriction of w to X is orientation-preserving, and is −1 otherwise. In particular,
if w(X) = X , then the number σX (w) does not depend on the choice of εX . And since w is an
orthogonal transformation of V : if w(X) = X , w(Y ) = Y and Y � X , then σX (w)σY (w) = −1 if and
only if w interchanges the two halfspaces of X determined by Y .

6.1. Proof of Theorem 6.2

We begin by showing that ϕ is well defined.

Lemma 6.4. ϕ : kQ → kF is a well-defined homomorphism of k-algebras.

Proof. There are a three issues that need to be addressed with the definition of ϕ . First is the fact
that there are exactly two faces of support X having y as a face, which is a well-known result [Bro89,
§I.4E Proposition 3]. The second issue is the claim that ϕ(X → Y ) does not depend on the choice
of y. Indeed, since �Y is a linear combination of faces of support Y , we have �Y y′ = �Y for any face
y′ with supp(y′) = Y (this is because yy′ = y if supp(y) � supp(y′); see Section 2.3.2). So if y′ is
another face with supp(y′) = Y , then

�Y
([y : x]x + [y : x′]x′)e X = �Y

([y : x]y′x + [y : x′]y′x′)e X

= �Y
([y′ : y′x]y′x + [y′ : y′x′]y′x′)e X ,

where we used Eq. (6.3) to obtain the last equality. Since y′x and y′x′ are the two faces of support X
having y′ as a face, the claim follows.

The third issue is that ϕ extends uniquely to a homomorphism of k-algebras. Since the images
of the vertices form a complete system of primitive orthogonal idempotents, it suffices to show that
ϕ(Y )ϕ(X → Y )ϕ(X) = ϕ(X → Y ) for all arrows X → Y in Q (Theorem 3.2). Since ϕ(X) = e X is an
idempotent for each vertex X ∈ L, it follows immediately that ϕ(X → Y )ϕ(X) = ϕ(X → Y ). It remains
to show that ϕ(Y )ϕ(X → Y ) = ϕ(X → Y ). Using Eq. (5.2) we write,

ϕ(Y )ϕ(X → Y ) =
(

�Y −
∑
U>Y

�Y eU

)
�Y

([y : x]x + [y : x′]x′)e X

= ϕ(X → Y ) −
∑
U>Y

�Y eU
([y : x]x + [y : x′]x′)e X .

We will show this is ϕ(X → Y ) by showing each term in the summation is zero.
Suppose U > Y . Since Y � X , either U = X or U �� X . If U = X , then let u be a face of support U

and note that ux = u = ux′ because supp(u) � supp(x) (Section 2.3.2). Since eU is a linear combination
of elements of support at least U = X , we have eU u = eU . Thus,

eU
([y : x]x + [y : x′]x′) = eU

([y : x]u + [y : x′]u) = 0
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since [y : x] = −[y : x′]. If U �� X , then the fact that (eU a)u = eU a for any a ∈ kF and any u ∈ F with
supp(u) = U implies

eU
([y : x]x + [y : x′]x′)e X = eU

([y : x]x + [y : x′]x′)(ue X ) = 0,

where the last equality follows from Lemma 5.3. �
Lemma 6.5. ϕ : kQ → kF is surjective.

Proof. Since the elements e X are orthogonal idempotents, to show that ϕ is surjective it suffices to
show that kF e X is in the image of ϕ for all X ∈ L. It follows from Lemma 5.3 and Eq. (5.2) that the
following is a basis of kF e X :

{
xe X : x ∈ F , supp(x) = X

}
.

A proof of this can be found in [Sal07, Lemma 5.1] and [Sal08a, Lemma 6.1].
We proceed by induction on the rank of X in L. If the rank is zero, then X is the intersection

of all the hyperplanes in A. There is only one face that has this support, the identity element of F .
Thus, kF e X ⊆ im(ϕ) since e X = ϕ(X).

Suppose kF eY ⊆ im(ϕ) for all Y satisfying rank(Y ) < r. Let X ∈ L with rank(X) = r. Let x and x′
be two faces of support X that are separated by exactly one subspace Y of X having codimension
one. We will prove that (x − x′)e X ∈ im(ϕ). Let y denote the face of support Y that is common to
both x and x′ . Then x = yx and x′ = yx′ . Thus, up to a sign (x − x′)e X is equal to

±(x − x′)e X = ([y : x]x + [y : x′]x′)e X

= y
([y : x]x + [y : x′]x′)e X

= y�Y
([y : x]x + [y : x′]x′)e X

= yϕ(X → Y )

= yϕ(Y )ϕ(X → Y )

= (yeY )ϕ(X → Y ).

Here we used the identity y�Y = y. Since Y is a proper subspace of X , rank(Y ) < rank(X) = r. By the
induction hypothesis, yeY ∈ im(ϕ). Hence, xe X − x′e X ∈ im(ϕ) for every pair x, x′ of faces of support
X sharing a common codimension one face.

For every pair of faces x and x′ of support X , there exists a sequence of faces x0 = x, x1, . . . , xd = x′
of support X such that xi−1 and xi share a common codimension one face for each 1 � i � d [Bro89,
Proposition 3 of §I.4E]. It follows that xe X − x′e X ∈ im(ϕ) for any pair of faces x, x′ of support X .
Since the sum of the coefficients of �X is nonzero, the elements xe X − x′e X , where x, x′ ∈ F and
supp(x) = supp(x′) = X , together with �X e X = e X span the subspace kF e X . Since e X = ϕ(X), it follows
that kF e X ⊆ im(ϕ). Thus, ϕ is surjective. �
Lemma 6.6. The kernel of ϕ : kQ → kF is generated as an ideal by the sum of all the paths of length two in Q.

Proof. Let ρ be the sum of all the paths of length two in Q and let I denote the ideal generated
by ρ . If X and Y are two vertices of Q with Y � X and dim(X) = dim(Y ) + 2, then Yρ X is the sum
of all the paths of length two that begin at X and end at Y . We begin by showing that these elements
are in ker(ϕ).
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Suppose (X → Y → Z) is a path of length two in Q. Let z be a face of support Z and y a face of
support Y . Since supp(zy) = supp(z) ∨ supp(Y ), it follows that zy has support Y . By replacing y with
zy, we can suppose that z � y. Thus,

ϕ(Y → Z)ϕ(X → Y ) = �Z
([z : y]y + [z : y′]y′)�Y

([y : x]x + [y : x′]x′)e X ,

where y and y′ are the two faces of support Y having z as a face, and x and x′ are the two faces of
support X having y as a face. Since y and y′ have support Y , y�Y = y and y′�Y = y′ . Thus,

ϕ(Y → Z)ϕ(X → Y ) = �Z
([z : y]y + [z : y′]y′)([y : x]x + [y : x′]x′)e X . (6.5)

So ϕ(X → Y → Z) is a linear combination of elements of the form x̃e X with x̃ having support X ,
having a codimension one face of support Y , and having a codimension two face occurring in �Z with
a nonzero coefficient.

Let z be a face occurring in �Z with a nonzero coefficient. There are exactly two codimension one
faces of x̃ that contain z as a face [BD98, Lemma 2 of §5C]; call them y and u. So x̃ can only appear
in ϕ(X → Y → Z) and ϕ(X → U → Z), where Y = supp(y) and U = supp(u). Moreover, in Eq. (6.5)
exactly one of yx or yx′ can be x̃; we can suppose that yx = x̃. So, x̃e X appears in ϕ(X → Y → Z)

with coefficient [z : y][y : x̃]. Similarly, x̃e X appears in ϕ(X → U → Z) with coefficient [z : u][u : x̃]. It
follows from Eq. (6.4) that the coefficient of x̃e X in the sum

∑
ϕ(X → Y → Z) is [z : y][y : x̃] + [z :

u][u : x̃] = 0.
The above shows that I ⊆ ker(ϕ). Let X and Y be two vertices in Q, and let M X,Y be the subspace

of the path algebra kQ spanned by elements of the form

∑
{Z∈L: Ui+1�Z�Ui−1}

(U0 → U1 → ·· · → Ui−1 → Z → Ui+1 → ·· · → Ul−1 → Ul),

where 0 < i < l, U0 = X and Ul = Y . Note that M X,Y is a subspace of Y ker(ϕ)X since

∑
{Z : Ui+1�Z�Ui−1}

(Ui−1 → Z → Ui+1) ∈ ker(ϕ).

Thus, dim(M X,Y ) � dim(Y ker(ϕ)X). We show below that this is an equality, which implies that
Y I X = Y (kerϕ)X , from which it follows that kerϕ = I .

We compute the dimension of the quotient space Y (kQ)X/M X,Y using results from poset co-
homology [Wac07]. The poset obtained by reversing the order on L is a geometric lattice and so
the dual of the poset P = {Z ∈ L: Y � Z � X} is also a geometric lattice [Sta07, Proposition 3.8].
The poset cohomology of P is isomorphic to the vector space Y (kQ)X/M X,Y and its dimension
is known to be |μ(Y , X)|, where μ is the Möbius function of L [Fol66,Bjö92]. This is also the
dimension of eY kF e X because

∑
Y �X dim(eY kF e X ) = dim(kF e X ) counts the number of faces of

support X (this follows from Lemma 5.3; for a proof see [Sal07, §12] or [Sal08a, Proposition 6.4])
and so does

∑
Y �X |μ(Y , X)| [Zas75]. Therefore, dim(Y (kQ)X/M X,Y ) � dim(eY kF e X ). In particular,

dim(M X,Y ) � dim(Y (kQ)X) − dim(eY kF e X ) = dim(Y (kerϕ)X). �
Lemma 6.7. ϕ is W -equivariant.

Proof. We need only show that w(ϕ(P )) = ϕ(w(P )) for every path P in Q and every w ∈ W .
If P is a path of length 0, then P is a vertex. Thus, w(ϕ(P )) = w(eP ) = ew(P ) = ϕ(w(P )) for all

w ∈ W .
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If P = (X → Y ) is an arrow in Q, then for all w ∈ W ,

w
(
ϕ(X → Y )

) = w
(
�Y

([y : x]x + [y : x′]x′)e X
)

= �w(Y )

([y : x]w(x) + [y : x′]w(x′)
)
ew(X).

It follows directly from Eq. (6.1) and Eq. (6.2) that [x : y] is equal to σsupp(x)(w)σsupp(y)(w)[w(x) :
w(y)], so

([y : x]w(x) + [y : x′]w(x′)
)

= σY (w)σX (w)
([

w(y) : w(x)
]

w(x) + [
w(y) : w(x′)

]
w(x′)

)
.

Hence, w(ϕ(X → Y )) = ϕ(w(X → Y )).
Since w(X0 → ·· · → X p) = w(X p−1 → X p) · · · w(X0 → X1), the result follows. �
This establishes Theorem 6.2. As an immediate corollary, we get that Q is the quiver of kF .

Corollary 6.8. Q is the quiver of kF .

Proof. From Theorem 6.2, ϕ : kQ → kF is a surjective k-algebra homomorphism that satisfies 0 =
F n+1 ⊆ ker(ϕ) ⊆ F 2, where F is the ideal in kQ generated by the arrows and n = dim(V ). Therefore,
by Theorem 3.1, Q is the quiver of kF . �
7. On the quiver of (kF)W

Let Γ denote the quiver of (kF )W . This section explores some implications of Theorems 5.2
and 6.2 for the structure of Γ . Since Σk(W ) is anti-isomorphic to (kF )W , the quiver of Σk(W )

is Γ ∗ , the quiver obtained from Γ by reversing its arrows. So the results below also apply to Σk(W )

and Γ ∗ . In the next two sections we use Theorem 6.2 to compute the quiver of (kF )Sn and the quiver
of (kF )Bn .

Our first result deals with the vertices of Γ . Since they correspond to idempotents in a complete
system of primitive orthogonal idempotents for (kF )W , Theorem 5.2 implies that Γ has one vertex
for each orbit O ∈ L/W .

Proposition 7.1. Γ has exactly one vertex for each W -orbit of elements in L, where L is the intersection lattice
of the reflection arrangement of W .

Combined with Remark 5.1, this implies that the quiver of Σk(W ) has exactly one vertex for each
equivalence class of subsets of S .

The next observation will be the main tool in the remainder of this section. It gives a sufficient
condition for there to be no arrow between 2 given vertices in Γ .

Lemma 7.2. Let O, O′ ∈ L/W be vertices of Γ . If for every path P in Q that begins at a vertex in O′ and ends
at a vertex in O there exists w ∈ W such that w(P ) = −P , then there is no arrow from O′ to O in Γ .

Proof. It follows from the definition of the quiver of an algebra (Section 3) that if the vector space
εO(kF )W εO′ is the zero vector space, then there is no arrow O′ → O. We will show that this vector
space is zero if the hypothesis holds.

It follows from Theorem 6.2 that ϕ restricts to a surjection νO(kQ)W νO′ � εO(kF )W εO′ , where
νO = ∑

X∈O X for each O ∈ L/W . We will show νO(kQ)W νO′ = 0. This subspace is spanned by
elements of the form

∑
u∈W u(P ), where P is a path of Q that begins at a vertex in O′ and ends at
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a vertex in O. The hypothesis states that w(P ) = −P for some w ∈ W , so

∑
u∈W

u(P ) =
∑
u∈W

u
(

w(P )
) = −

( ∑
u∈W

u(P )

)
.

Therefore,
∑

u∈W u(P ) = 0. So νO(kQ)W νO′ = 0. �
Our first consequence of this lemma is that Γ contains no oriented cycles.

Proposition 7.3. If O′ → O is an arrow in Γ , then O < O′ in L/W . In particular, Γ does not contain any
oriented cycles.

Proof. If (X0 → ·· · → Xl) is a path in Q, then Xl � X0. In particular, O Xl � O X0 . So if O �< O′ , then
the condition of Lemma 7.2 is vacuously satisfied since there are no paths in Q from a vertex in O′
to a vertex in O. Therefore, there is no arrow from O′ to O in Γ . It follows that Γ cannot contain
an oriented cycle. �
Corollary 7.4. The algebra (kF )W is a quasi-hereditary algebra.

This result follows from the definition of a quasi-hereditary algebra since Γ contains no oriented
cycles (for an introduction to quasi-hereditary algebras, see Vlastimil Dlab’s appendix to [DK94]).
Associated to every quasi-hereditary algebra A is a distinguished module T , called the characteristic
tilting module of A, and the Ringel dual of A is the algebra EndA(T ); it develops that the Ringel dual
of A is Morita equivalent to A [Rin91]. It would be interesting to identify the characteristic tilting
module and the Ringel dual of (kF )W and Σk(W ).

Our next result shows that Γ contains at least one isolated vertex.

Proposition 7.5. There are no arrows in Γ beginning at the vertex OV , where OV = {V } is the W -orbit of the
ambient vector space V of the reflection arrangement of W .

Proof. Let (X0 → ·· · → Xl) be a path in Q with X0 = V . Let w ∈ W denote the reflection in the
hyperplane X1. Then

w(X0 → ·· · → Xl) = σX0(w)σXl (w)
(

w(X0) → ··· → w(Xl)
)

= −(X0 → ·· · → Xl)

since w fixes pointwise all the subspaces X1, X2, . . . , Xl and changes the orientation of X0. By
Lemma 7.2, there is no arrow in Γ beginning at OV = {V }. �

The poset L/W is a ranked poset, with the rank of an element O ∈ L/W equal to the rank of any
X ∈ O as an element of L (which is dim(X) − dim(

⋂
H∈A H)). As we will see in Theorem 8.1, if W

is the symmetric group Sn , n � 2, then the existence of an arrow O′ → O in the quiver of Σk(W )

implies that O � O′ in L/W . The next result shows that this is not necessarily true for other W .

Proposition 7.6. If W is a finite Coxeter group of type A1 , Bn, D2n, E7 , E8 , F4 , I2(2n), H3 or H4 , then there is
no arrow in Γ from O′ to O if the difference between their ranks in L/W is odd. In particular, if O � O′ , then
there is no arrow from O′ to O in Γ .

Proof. If the type of W is one of those listed above, then W contains the transformation w(
v) = −
v
for 
v ∈ V [Kan01, Lemma 27.2]. Since σX (w) = (−1)dim(X) , we have σY (w)σX (w) = −1 if and only if
dim(X) + dim(Y ) is even.



3880 F.V. Saliola / Journal of Algebra 320 (2008) 3866–3894
If (X0 → ·· · → Xl) is a path from X0 ∈ O′ to Xl ∈ O, then the hypothesis on the difference be-
tween the ranks of O′ and O in L/W implies that dim(X0) + dim(Xl) is odd. Therefore,

w(X0 → ·· · → Xl) = σX0(w)σXl (w)(X0 → ·· · → Xl) = −(X0 → ·· · → Xl).

The result now follows from Lemma 7.2. �
Combined with Proposition 7.5 the above result implies the following.

Corollary 7.7. If the type of W is one of those listed in Proposition 7.6, then Γ contains at least three connected
components.

Recall that the Loewy length of an algebra A is the smallest integer � such that rad�(A) = 0. If W
belongs to one of the types listed in Proposition 7.6, then that result can be used to give an upper
bound on the Loewy length of (kF )W .

Proposition 7.8. Let (W , S) be a Coxeter system and let n = |S|. If W is of type A1 , Bm, D2m, E7 , E8 , F4 ,
I2(2m), H3 or H4 , then the Loewy length of Σk(W ) is at most n+1

2 .

Proof. Since Γ contains no oriented cycles, one plus the length of the longest path in Γ is an upper
bound on the Loewy length of (kF )W . So we bound the length of the longest path in Γ . Suppose
O0 → O1 → ·· · → Ol is a path in Γ with l � 1. Since n = |S| is the rank of the poset L, Proposi-
tion 7.5 implies that rank(O0) � n − 1. Combined with Proposition 7.6, we obtain that

n − 1 �
(
rank(O0) − rank(Ol)

)
�

l∑
i=1

(
rank(Oi−1) − rank(Oi)

)
� 2l.

Thus, l � n−1
2 , and so the Loewy length of Σk(W ) is at most n+1

2 . �
These upper bounds are in fact equalities [BP08]. This approach of bounding the length of the

longest path in the quiver was also used in [Sal08b] to determine the Loewy length of the descent
algebra of type D2m+1, the only case not covered by earlier results [BP08].

We have seen that the surjection ϕ : (kQ)W � (kF )W plays an important role in deducing infor-
mation about Γ . The next result, in conjunction with Theorem 3.1, explains why this is the case.

Theorem 7.9. Suppose ψ : kΓ � (kF )W is a surjection of k-algebras with an admissible kernel and let ϕ :
kQ � kF denote the k-algebra surjection of Theorem 6.2. Then ψ factors through ϕ .

Proof. For each O ∈ L/W , let νO = ∑
X∈O X ∈ kQ. The elements εO = ϕ(νO) form a complete

system of primitive orthogonal idempotents for (kF )W (Theorem 5.2), and so do the elements
f O = ψ(O). Since εO and f O lift the same idempotent in (kF )W / rad(kF )W ∼= (kL)W , there ex-
ists uO ∈ (kF )W such that εO = uO f O u−1

O [Ben98, Theorem 1.7.3]. Let u = ∑
O εO uO f O . Then

u−1 = ∑
O f O u−1

O εO and ψ(O) = f O = u−1εO u = u−1ϕ(νO)u for all O ∈ L/W .
If O′ → O is an arrow in Γ , then ψ(O′ → O) is a nonzero element of the subspace

f O(kF )W f O′ = u−1(εO(kF )W εO′ )u. Since ϕ is surjective, there exists an element ρ(O′→O) in
νO kQνO′ such that ψ(O′ → O) = u−1ϕ(ρ(O′→O))u, and there exists U ∈ kQ such that ϕ(U ) = u.
Since Q contains no oriented cycles, ϕ(U ) is invertible if and only if U is invertible. Thus, U
is invertible. Let ξ : kΓ → kQ be the homomorphism defined on the vertices and arrows of Γ

by ξ(O) = U−1νO U and ξ(O′ → O) = U−1ρ(O′→O)U . It follows that ψ(P ) = (ϕ ◦ ξ)(P ) for all
P ∈ kΓ . �
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Fig. 1. The quiver of (kF )S7 .

8. The quiver of (kF)Sn

In this section we determine the quiver of (kF )Sn . We begin by fixing notation. Throughout, let
A be the reflection arrangement of the symmetric group Sn , let kF and L be the face semigroup
algebra and the intersection lattice of A, respectively, and let ϕ : kQ → kF be the map defined in
Theorem 6.2. Recall from Section 2.4 that an integer partition of n ∈ N is a collection of positive
integers that sum to n.

Theorem 8.1. The quiver of (kF )Sn is the directed graph with one vertex νp for each integer partition p of n
and exactly one arrow νp → νq if and only if q is obtained from p by adding two distinct elements of p.

The quiver of (kF )S7 is illustrated in Fig. 1.

Proof. Let Γ be the quiver defined in the statement of the theorem. We define a homomorphism of
k-algebras ψ : kΓ → (kF )Sn with an admissible kernel. It then follows from Theorem 3.1 that Γ is
the quiver of (kF )Sn . See Section 2.4 for definitions.

Definition of ψ . For X ∈ L, write π(X) = {B1, . . . , Br}, where |B1| � · · · � |Br |, for the set partition
associated to X , and let ρ(X) = (|B1|, |B2|, . . . , |Br |). Note that two elements X and X ′ in L are in
the same Sn-orbit if and only if ρ(X) = ρ(X ′).

Define ψ on the vertices νp of Γ by

ψ(νp) =
∑
X∈L

ρ(X)=p

ϕ(X).

If νp → νq is an arrow in Γ , then fix an arrow X → Y in Q with ρ(X) = p and ρ(Y ) = q, and define

ψ(νp → νq) =
∑

w∈Sn

ϕ
(

w(X → Y )
)
.

We argue that ψ extends to a unique k-algebra homomorphism ψ : Γ → (kF )W . By Theorem 3.2, we
need to show that ψ(νp → νq) = ψ(νq)ψ(νp → νq)ψ(νp) for all arrows νp → νq in Γ . Well,

ψ(νp → νq)ψ(νp) =
∑

w∈Sn

ϕ

(
w(X → Y )

∑
ρ(Z)=p

Z

)

=
∑

w∈Sn

ϕ

(
w(X → Y )

∑
ρ(Z)=p

w(Z)

)

=
∑

w∈S
(ϕ ◦ w)

(
(X → Y )

∑
ρ(Z)=p

Z

)

n
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=
∑

w∈Sn

(ϕ ◦ w)
(
(X → Y )X

)

=
∑

w∈Sn

ϕ
(

w(X → Y )
) = ψ(νp → νq).

Similarly, ψ(νq)ψ(νp → νq) = ψ(νp → νq).

The kernel of ψ is admissible. We next argue that the kernel of ψ is an admissible ideal of kΓ . Recall
that an ideal of the path algebra is admissible if every element in the ideal is a linear combination
of paths of length at least two. Suppose a ∈ ker(ψ). By multiplying a on the left and right by vertices
of Γ , we can suppose that a is a linear combination of paths that begin at νp and end at νq . If
νp = νq , then a is a scalar multiple of a vertex. This cannot happen as ψ(νq) is nonzero because it
is part of a complete system of primitive orthogonal idempotents (Theorem 5.2). If νp → νq is an
arrow, then ψ(νp → νq) = ∑

w w(X → Y ). This is zero if and only if there exists w ∈ Sn such that
w(X → Y ) = −(X → Y ). We show this happens if and only if q = ρ(Y ) is obtained from p = ρ(X)

by adding two equal parts of p. Then we are done, since if such a w exists, then νp → νq is not an
arrow of Γ .

Let π(X) = {B1, . . . , Br} and suppose |Bi | = pi for all 1 � i � r. Since Y � X , the set partition
π(Y ) is obtained from π(X) by merging two blocks Bi and B j . By re-indexing we can suppose i = 1
and j = 2. If p1 = p2, then any permutation ω ∈ Sn that maps B1 to B2 and B2 to B1 while fix-
ing the other blocks of π(X) will satisfy ω(X → Y ) = −(X → Y ). Suppose instead that p1 �= p2.
If ω ∈ Sn with ω(X) = X and ω(Y ) = Y , then ω permutes the blocks of π(X) and the blocks of
π(Y ). It follows that ω(B1) = B1 and ω(B2) = B2 since p1 �= p2. Let x and y be the set compositions
(B1, B2, B3, . . . , Bm) and (B1 ∪ B2, B3, . . . , Bm), respectively. Then, yω(x) = x. So ω(x) and x corre-
spond to faces of support X that lie on the same side of Y . Since ω does not swap the two half
spaces of X determined by Y , the discussion following Theorem 6.2 implies ω(X → Y ) = (X → Y ).

Thus, a is a linear combination of paths of length at least two, so ker(ψ) is an admissible ideal
of kΓ .

ψ is surjective. We show that ψ(kΓ ) + rad2(kF )Sn = (kF )Sn ; the result then follows from standard
ring theory: if A is a k-algebra and A′ is a k-subalgebra of A such that A′ + rad2(A) = A, then A′ = A
[Ben98, Proposition 1.2.8]. To do this we will use the following result of Manfred Schocker [Sch06,
Theorem 9.10]: rad2(kF )Sn = rad2(kF ) ∩ (kF )Sn . (This can be proved using results of this paper;
such a proof is outlined in Theorem 8.2.)

Since ϕ : kQ → kF is surjective (Theorem 6.2), it follows that the elements
∑

w∈Sn
w(ϕ(P )),

where P is a path in Q, span (kF )Sn . Furthermore, rad2(kF ) is spanned by the elements ϕ(P ),
where P is of length at least two. Thus, if P has length at least two, then

∑
w w(ϕ(P )) is in

rad2(kF ) ∩ (kF )Sn = rad2(kF )Sn . If P has length zero, then P = X is a vertex and

∑
w∈Sn

w
(
ϕ(X)

) = ϕ

( ∑
w∈Sn

w(X)

)
= λϕ

( ∑
Y ∈L

ρ(Y )=ρ(X)

Y

)
= λψ(νρ(X)),

where λ = |{w ∈ W : w(X) = X}|.
It remains to show that

∑
w ϕ(w(P )) ∈ im(ψ) if P is an arrow. We first show that if X → Y and

X ′ → Y ′ are two arrows with X and X ′ in the same Sn-orbit and Y and Y ′ in the same Sn-orbit,
then there exists a permutation u such that u(X ′ → Y ′) = ±(X → Y ). Let π(X) = {B1, B2, . . . , Br} and
π(X ′) = {B ′

1, B ′
2, . . . , B ′

r}. Since X and X ′ are in the same orbit, there exists a permutation w mapping
X ′ to X . So we can assume that X ′ = X . Up to a re-indexing of the blocks, B1 ∪ B2 is a block of π(Y )

and B3 ∪ B4 is a block of π(Y ′). Since Y and Y ′ are in the same orbit, it follows that |B1| = |B3| and
|B2| = |B4|. Therefore, any permutation that swaps B1 with B3 and B2 with B4 will map X to X and
Y ′ to Y .
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Let X → Y be an arrow in Q. If there is a w ∈ Sn such that w(X → Y ) = −(X → Y ), then∑
w w(X → Y ) = 0. Otherwise,

∑
w ϕ(w(X → Y )) = ±ψ(O X → OY ) by the above. �

Since the descent algebra Σk(Sn) is isomorphic to the opposite algebra of (kF )Sn (Theorem 2.1),
its quiver is obtained by reversing the arrows in Theorem 8.1. This quiver, as a directed graph, appears
in the work of Adriano Garsia and Christophe Reutenauer [GR89]; see especially Section 5 of [GR89]
and the figures contained therein. Manfred Schocker [Sch04, Theorem 5.1] was the first to show that
this is the quiver of Σk(Sn) by using results of Dieter Blessenohl and Hartmut Laue [BL96,BL02].

We also remark that the argument presented above can be used to find the quiver of (kF )W for
arbitrary finite Coxeter groups W once the relationship between rad2((kF )W ) and radp(kF )∩ (kF )W

is understood. We do this in Section 9 for the finite Coxeter group of type B .

8.1. Descending Loewy series of (kF )Sn

The proof of Theorem 8.1 relied on the case m = 2 of the following result of Manfred Schocker.

Theorem 8.2. (See Theorem 9.10 of [Sch06].) Let kF be the face semigroup algebra of the reflection arrange-
ment of the symmetric group Sn. For all m ∈ N,

radm(kF )Sn = radm(kF ) ∩ (kF )Sn .

Manfred Schocker proved this by constructing a basis of radm(kF ) ∩ (kF )Sn and noting that the
basis coincides, under an anti-isomorphism (kF )Sn ∼= Σk(Sn), to a basis of radm Σk(Sn) constructed
by Dieter Blessenohl and Hartmut Laue [BL96].

This result can also be proved using just the theory developed in this paper. In fact, in Theorem 9.2,
we prove the corresponding result for the hyperoctahedral group, which is new. That proof can be
adapted to prove the above. We provide a very rough outline of the argument and leave the details
to the interested reader.

Outline of a proof of Theorem 8.2. To prove this, a lemma corresponding to Lemma 9.3—and proved
by arguing in the same way—is needed:

αN (X0 → ·· · → Xm) = N (X1 → ·· · → Xm)N (X0 → X1)

−
∑

t∈Sn, t(X1)=X1,
t(A∪B)�=A∪B

σX1(t)σXm (t)N
(

X0 → t(X1) → ·· · → t(Xm)
)
,

where (X0 → ·· · → Xm) is a path in Q of length m � 2, the set partition π(X1) is obtained by merg-
ing two blocks A and B of π(X0), and α is the number of permutations that fix X1 and A ∪ B .

Begin by reducing to the case m = 2 by mimicking the proof of Theorem 9.2. To prove the case
m = 2, first establish the containment rad2(kF )Sn ⊆ rad2(kF ) ∩ (kF )Sn . For the reverse containment,
argue by contradiction: suppose that there exists a path P = (X0 → ·· · → Xm) in Q of length at least
two such that ϕ(N (P )) /∈ rad2(kF )Sn ; and of all such paths (that begin at X0), pick P such that
|A| + |B| is maximal, where A and B are the blocks of π(X0) that are merged to get π(X1). Then
argue as in Step 3 of the proof of Theorem 9.2 that A ∪ B is not a block of π(Xm). This means that
A ∪ B is merged with some other block at some point. Argue as in Step 2 of the proof to show
(using the relations in the partition lattice) that we can suppose that π(X2) is obtained by merging
two blocks C and D , where |C | = |A| + |B|. Then derive a contradiction as in Step 4 of the proof, by
examining the three cases: C, D �= A ∪ B; D = A ∪ B �= C ; C = A ∪ B �= D . �
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9. The quiver of (kF)Bn

In this section we determine the quiver of (kF )Bn . Throughout, let A be the reflection arrange-
ment of the hyperoctahedral group Bn (defined below), let kF and L be the face semigroup algebra
and the intersection lattice of A, respectively, and let ϕ : kQ → kF be the map defined in Theo-
rem 6.2.

9.1. The Coxeter group of type B

Let n ∈ N. The Coxeter group of type B and rank n, denoted by Bn , is the finite group of orthogonal
transformations of Rn generated by reflections in the hyperplanes

{
v ∈ Rn: vi = 0
}
,

{
v ∈ Rn: vi = v j
}
,

{
v ∈ Rn: vi = −v j
}
,

where i, j ∈ {1,2, . . . ,n} and i �= j. This set of hyperplanes is the reflection arrangement of Bn . We
identify Bn with the group of signed permutations as follows. For n ∈ N, let [n] = {1,2, . . . ,n} and
let [±n] = [n] ∪ (−[n]). A signed permutation of [±n] is a permutation w of the set [±n] satisfying
w(−i) = −w(i) for all i ∈ [n]. Every signed permutation w induces an orthogonal transformation of
Rn by permuting and negating coordinates. Moreover, any transformation in Bn arises in this fashion.

For any A ⊆ [±n] let A = {−i: i ∈ A}. Under the above identification the intersection lattice of
the type B arrangement is identified with the sublattice Π B

n of set partitions of [±n] of the form
{B1, . . . , Br, Z , Br, . . . , B1}, and where Z can be empty and satisfies Z = Z [BI99, Theorem 4.1].

To simplify notation, we let π(X) denote the set partition of [±n] induced by X ∈ L, and we let
{B1, . . . , Br; Z} denote the set partition {B1, . . . , Br, Z , Br, . . . , B1}. The set Z is called the zero block
and the other sets are called nonzero blocks. Under this isomorphism the action of Bn on X ∈ L is
given by permuting the elements of π(X). That is, π(w(X)) = w(π(X)) for all w ∈ Bn and X ∈ L.

The intervals of length two in Π B
n play an important role in what follows. So we quickly describe

them. If P ′ � P is a cover relation in Π B
n , then either P ′ is obtained from P by merging two distinct

nonzero blocks of P , or P ′ is obtained from P by merging a nonzero block B with B and the zero
block of P . It follows that there are four types of intervals of length two in Π B

n , which are illustrated
in Fig. 2.

9.2. The quiver of (kF )Bn

We now describe the quiver of (kF )Bn .

Theorem 9.1. The quiver of (kF )Bn contains one vertex νp for each integer partition p of 0,1, . . . ,n, and mp,q

arrows from νp to νq, where

mp,q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2, if q is obtained by adding 3 distinct parts of p,

1, if q is obtained by adding 3 parts of p, 2 of which are distinct,

1, if q is obtained by deleting 2 distinct parts of p,

0, otherwise.

The quiver of (kF )B6 is illustrated in Fig. 3.

Proof. Let Γ be the quiver with one vertex νp for each integer partition p of 0,1, . . . ,n, and mp,q

arrows from the vertex νp to νq . We will use Theorem 3.1 to show that Γ is the quiver of (kF )Bn by
constructing a surjective k-algebra morphism ψ : kΓ � (kF )Bn that has an admissible kernel.

For each X ∈ L, let π(X) = {A1, . . . , Ar; Z} with |A1| � · · · � |Ar |, and let ρ(X) be the integer
partition (|A1|, |A2|, . . . , |Ar |). It follows that X and Y are in the same Bn-orbit if and only if ρ(X) =
ρ(Y ).
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Fig. 2. The four types of intervals of length two in the lattice Π B
n of set partitions of type B.

Fig. 3. The quiver of (kF )B6 .

Definition of ψ on vertices. Let ϕ : kQ → kF denote the k-algebra homomorphism of Theorem 6.2.
Define a function ψ on the vertices of Γ by

ψ(νp) =
∑

ρ(X)=p

ϕ(X),

where p is an integer partition of some m ∈ {0,1, . . . ,n}.

Definition of ψ on arrows. We define ψ on the three types of arrows of Γ individually. See Fig. 2 for
the different types of intervals of length two in Π B

n .
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Suppose q is obtained by adding three distinct parts p1, p2 and p3 of p, where p1 > p2 > p3, and
let α

p,q
1 and α

p,q
2 be the two arrows in Γ from νp to νq . Let X ∈ L with ρ(X) = p, and let A, B

and C be three distinct blocks of π(X) with |A| = p1, |B| = p2 and |C | = p3. Let π(Y1) be the set
partition obtained from π(X) by merging A and B , let π(Y2) be the set partition obtained from π(X)

by merging A with C and let π(Z) be the set partition obtained from π(X) by merging A, B and C .
For i ∈ {1,2}, define

ψ
(
α

p,q
i

) =
∑

w∈Bn

ϕ
(

w(X → Yi → Z)
)
.

Suppose q is obtained by adding three parts p1, p2 and p3 of p with p1 �= p2 = p3, and let βp,q

be the arrow in Γ from νp to νq . Let X , Y1, Y2 and Z be as above. Define

ψ(βp,q) =
∑

w∈Bn

ϕ
(

w(X → Y1 → Z)
)
.

Finally, suppose that q is obtained by deleting two distinct parts p1 and p2 of p, and let γp,q be
the arrow in Γ from νp to νq . Let X ∈ L with ρ(X) = p, and let A and B be two distinct blocks of
π(X) with |A| = p1 and |B| = p2. Let π(Y1) be the set partition obtained from π(X) by merging A
and B , and let π(Z) be the set partition obtained from π(X) by merging A, B , A, B and the zero
block of π(X). Define

ψ(γp,q) =
∑

w∈Bn

ϕ
(

w(X → Y1 → Z)
)
.

Extension of ψ to an algebra homomorphism. By Theorem 3.2, ψ extends to a unique k-algebra
homomorphism ψ : kΓ → (kF )Bn if the elements ψ(νp) form a complete system of primitive orthog-
onal idempotents and if ψ(νq)ψ(νp → νq)ψ(νp) = ψ(νp → νq) for every arrow νp → νq in Γ . The
first condition follows from Theorem 6.2. Write ψ(νp → νq) = ∑

w w(X → Y → Z) and note that

ψ(νp → νq)ψ(νp) =
∑

w∈Bn

ϕ

(
w(X → Y → Z)

∑
ρ(X ′)=p

X ′
)

=
∑

w∈Bn

ϕ

(
w(X → Y → Z)

∑
ρ(X ′)=p

w(X ′)
)

=
∑

w∈Bn

ϕ

(
w

( ∑
ρ(X ′)=p

(X → Y → Z)X ′
))

=
∑

w∈Bn

ϕ
(

w(X → Y → Z)
) = ψ(νp → νq).

Similarly, ψ(νq)ψ(νp → νq) = ψ(νp → νq).

ψ is surjective. Next we prove that ψ : kΓ → (kF )Bn is surjective. We show that ψ(kΓ ) +
rad2((kF )Bn ) = (kF )Bn ; the result then follows from standard ring theory: if A is a k-algebra and
A′ is a k-subalgebra of A such that A′ + rad2(A) = A, then A′ = A [Ben98, Proposition 1.2.8]. In order
to do this we will use a fact whose proof we defer to later (Theorem 9.2): that rad2((kF )Bn ) =
rad4(kF ) ∩ (kF )Bn .

Since ϕ : kQ → kF is surjective (Theorem 6.2), the images of the paths P of Q span kF . It fol-
lows that the elements ϕ(N (P )), form a spanning set for (kF )Bn (recall that N (P ) = ∑

w∈B w(P )).

n
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Furthermore, rad4(kF ) is spanned by elements ϕ(N (P )), where P is of length at least four. So if P
has length at least 4, then ϕ(N (P )) is in rad4(kF ) ∩ (kF )Bn , so it is in rad2((kF )Bn ) (Theorem 9.2).
It remains to prove that ϕ(N (P )) ∈ im(ψ) if the length of P is less than 4. If the length of P is odd,
then the signed permutation i �→ −i for all i ∈ [±n] maps P to −P , so N (P ) = 0. It remains to prove
this for vertices and for paths of length 2.

Suppose P = X is a vertex of Q. If λ = |{w ∈ Bn: w(X) = X}|, then

ϕ
(

N (X)
) =

∑
w∈Bn

w
(
ϕ(X)

) = λ
∑

ρ(Y )=ρ(X)

ϕ(Y ) = λψ(νρ(X)).

So ϕ(N (X)) ∈ im(ψ).
Suppose that P = (X → Y → Z) is path of length two in Q. Let p = ρ(X) and q = ρ(Z). There are

four cases to consider, corresponding to the four types of intervals illustrated in Fig. 2.

Case 1. Suppose q is obtained from p by adding p1 to p2 and deleting p3 , where p1 , p2 and p3 are three parts
of p. Since ρ(Z) = q, a nonzero block C of π(X) is contained in the zero block of π(Z). The signed
permutation that negates the elements of C maps P to −P , and so ϕ(N (P )) = 0 ∈ im(ψ).

Case 2. Suppose q is obtained from p by deleting p1 and p2 , where p1 and p2 are two parts of p. Then there
are two nonzero blocks A and B of π(X), of sizes p1 and p2, respectively, that are contained in the
zero block of π(Z). We will show that if P ′ = (X ′ → Y ′ → Z ′) is a path with ρ(X ′) = p and ρ(Z ′) = q,
then P ′ is in the Bn-orbit of a path from X to Z . If ρ(X ′) = p, then there exists w ∈ Bn such that
w(P ′) begins at X . Since w(π(Z ′)) is obtained from π(X) by merging two blocks A′ and B ′ of sizes
p1 and p2, respectively, with the zero block of π(X), it follows that the signed permutation u that
swaps A′ with A and B ′ with B maps w(P ′) to a path that begins at X and ends at Z .

There are exactly four paths Pi = (X → Yi → Z), where i ∈ {1,2,3,4}, in Q that begin at X and
end at Z : π(Y1) contains the block A ∪ B; π(Y2) contains the block A ∪ B; the zero block of π(Y3)

contains A; the zero block of π(Y4) contains B . The signed permutation that negates A maps P3 to
−P3, so N (P3) = 0. Similarly, N (P4) = 0. Since P1 + P2 + P3 + P4 ∈ ker(ϕ) (Lemma 6.6), we have
ϕ(N (P1)) = −ϕ(N (P2)).

If ϕ(N (P1)) = 0, then N (P1) ∈ ker(ϕ), so N (P1) is a scalar multiple of P1 + P2 + P3 + P4. Since
P3 is not in the orbit of P1, it follows that N (P1) = 0. So there exists a signed permutation that maps
P1 to −P1. This happens if and only if |A| = |B|. So if p1 = p2, then ϕ(N (P1)) = 0, and if p1 �= p2,
then ϕ(N (P1)) = ±ψ(γp,q). Since P ∈ {P1, P2, P3, P4}, it follows that ϕ(N (P )) ∈ im(ψ).

Case 3. Suppose q is obtained by adding three parts p1 , p2 and p3 of p. Since p and q are partitions of
the same integer, the zero blocks of π(X) and π(Z) are the same. So there are two possibilities for
π(Z): either π(Z) contains the nonzero blocks A ∪ B and C ∪ D , or π(Z) contains the nonzero block
A ∪ B ∪ C , where A, B, C and D are (nonzero) blocks of π(X). In the first case the signed permutation
that negates the elements of A ∪ B maps P to −P , thus N (P ) = 0.

So suppose π(Z) contains the nonzero block A ∪ B ∪ C , and that |A| = p1, |B| = p2 and |C | = p3.
Let P ′ = (X ′ → Y ′ → Z ′) be another path in Q with ρ(X ′) = p and ρ(Z ′) = q. Then either π(Z ′)
contains the nonzero block A′ ∪ B ′ ∪ C ′ , where A′, B ′, C ′ are blocks of π(X ′) with |A′| = |A|, |B ′| = |B|
and |C ′| = |C |, or N (P ′) = 0 (as above). In the former situation we have, by arguing as in Case 2,
that P ′ is in the Bn-orbit of a path that begins at X and ends at Z . This implies that ψ(νp → νq) =
±ϕ(N (P ′)) for some path P ′ beginning at X and ending at Z .

Let Pi = (X → Yi → Z) for i ∈ {1,2,3} be the three paths in Q from X to Z , where A ∪ B is a block
of π(Y1), A ∪ C is a block of π(Y2), and B ∪ C is a block of π(Y3). If p1 > p2 > p3, then the previous
paragraph implies that ψ(α

p,q
i ) = ±ϕ(N (Pi)) for i ∈ {1,2}. Hence, ϕ(N (P1)) and ϕ(N (P2)) are in

im(ψ), and so ϕ(N (P3)) ∈ im(ψ) since P1 + P2 + P3 ∈ ker(ϕ) (Theorem 6.2). Therefore, ϕ(N (P )) ∈
im(ψ) since P ∈ {P1, P2, P3}.

Suppose p1 = p2 �= p3 and suppose π(Y1) contains the block A ∪ B . It follows that ψ(βp,q) =
±ϕ(N (Pi)) for some i ∈ {2,3}. The signed permutation that swaps A and B maps P1 to −P1 and
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so N (P1) = 0. Since P1 + P2 + P3 ∈ ker(ϕ) (Lemma 6.6), it follows that ϕ(N (P2)) = −ϕ(N (P3)) =
±ψ(βp,q). Thus, ϕ(N (P )) ∈ im(ψ).

If p1 = p2 = p3, then the argument in the previous paragraph implies that N (Pi) = 0 for all
i ∈ {1,2,3}. Hence, ϕ(N (P )) ∈ im(ψ).

Case 4. Suppose that q is obtained from p by adding p1 to p2 and by adding p3 to p4 , where p1 , p2 , p3 and
p4 are parts of p. If q can also be obtained from p by merging three parts of p, then we can apply
the argument of the previous case. On the other hand, suppose q is not obtained from p by merging
three parts of p. Then π(Z) contains the nonzero blocks A ∪ B and C ∪ D , where A, B , C , and D are
(nonzero) blocks of π(X) and |A| = p1, |B| = p2, |C | = p3 and |D| = p4. The signed permutation that
negates the elements of A ∪ B maps P to −P , so N (P ) = 0. Hence, ϕ(N (P )) ∈ im(ψ).

The kernel of ψ is admissible. To complete the proof we need to show that ker(ψ) is an admissible
ideal of kΓ . Recall that an ideal of the path algebra is admissible if every element in the ideal is a
linear combination of paths of length at least two. Suppose a ∈ ker(ψ). By multiplying a on the left
and right by vertices of Γ , we can suppose that a is a linear combination of paths that begin at νp

and end at νq . If νp = νq , then a is a scalar multiple of a vertex. This implies a = 0 because ψ(νq)

is nonzero: it belongs to a complete system of primitive orthogonal idempotents (Theorem 6.2). If
a is a linear combination of arrows that begin at νp and end at νq , then there are three cases to
consider depending on the type of the arrows. We will show that ψ(α

p,q
1 ) and ψ(α

p,q
2 ) are linearly

independent—that ψ(βp,q) and ψ(γp,q) are nonzero can be proved using a similar argument.
Suppose q is obtained from p by adding three distinct parts of p. For i ∈ {1,2}, let Pi = (X →

Yi → Z) be the paths used to define ψ(α
p,q
i ) = ϕ(N (Pi)) above. If λ1ψ(α

p,q
1 ) = λ2ψ(α

p,q
2 ), then

λ1 N (P1) − λ2 N (P2) is an element of ker(ϕ). Thus, Z(λ1 N (P1) − λ2 N (P2))X ∈ Z(kerϕ)X . By Theo-
rem 6.2, Z(kerϕ)X is spanned by P1 + P2 + P3, where P3 is the third path from X to Z . Hence, either
P3 is in the orbit of P1 or P2, or N (P3) = 0. The latter happens if and only if |B| = |C |, contradicting
that |B| = p2 �= p3 = |C |. The former happens if and only if |A| = |B| or |A| = |C |. This is again a
contradiction. So λ1ψ(α

p,q
1 ) �= λ2ψ(α

p,q
2 ).

Therefore, if a ∈ ker(ψ), then a is a linear combination of paths of length at least two. So ker(ψ)

is an admissible ideal of kΓ . �
9.3. Descending Loewy Series of (kF )Bn

Here we prove the following result on the square of the radical of (kF )Bn that was used in the
proof of Theorem 9.1. The proof of this result can be adapted to prove the corresponding result in
type A. See Section 8.1 for more details.

Theorem 9.2. Let kF be the face semigroup algebra of the reflection arrangement of Bn. Then for all m ∈ N,

radm(
(kF )Bn

) = rad2m(kF ) ∩ (kF )Bn .

During the course of the proof we will need bases of the subspaces X ∈ L. We use a basis de-
scribed by the set partition π(X) = {B1, . . . , Br; Z}: for i ∈ [r], let

βBi
=

∑
j∈Bi


e j,

where 
e1, . . . , 
en is the standard basis of Rn and 
e− j = −
e j for j ∈ [n]. We call β B1
,βB2

, . . . ,βBr
the

standard basis of X .
We begin with the following lemma, which we will use several times in the proof. Throughout

this section, let N (P ) = ∑
w∈B w(P ) for any path P of Q.
n
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Lemma 9.3. If π(X1) is obtained from π(X0) by merging two nonzero blocks A and B and if π(X2) is obtained
from π(X1) by merging A ∪ B with a nonzero block C , then

λN (X0 → ·· · → Xm) = N (X2 → ·· · → Xm)N (X0 → X1 → X2)

−
∑
t∈Bn

t(X2)=X2
t(A∪B∪C)�=±(A∪B∪C)

σX2(t)σXm (t)N
(

X0 → X1 → t(X2) → ·· · → t(Xm)
)
,

where λ is the cardinality of {t ∈ Bn: t(X2) = X2 and t(A ∪ B ∪ C) = ±(A ∪ B ∪ C)}.

Proof. Note that

N (X2 → ·· · → Xm)N (X0 → X1 → X2) = N
(

N (X2 → ·· · → Xm)(X0 → X1 → X2)
)

=
∑
t∈Bn

t(X2)=X2

σX2 (t)σXm (t)N
(

X0 → X1 → t(X2) → ·· · → t(Xm)
)
.

Therefore, we need only show that if t(X2) = X2 and t(A ∪ B ∪ C) = ±(A ∪ B ∪ C), then the summand
in the above sum is N (X0 → ·· · → Xm).

Suppose t(X2) = X2 and suppose that t(A ∪ B ∪ C) = ε(A ∪ B ∪ C), where ε = ±1. Let s be the
signed permutation defined by

s(i) =
{

εi, if i ∈ A ∪ B ∪ C ∪ A ∪ B ∪ C ,

t(i), otherwise.

Then s(A) = εA, s(B) = εB and s(C) = εC . Hence, s(Xi) = Xi for i ∈ {0,1,2} and s(X j) = t(X j) for all
j ∈ {2, . . . ,m}.

Next we argue that σX2(t)σXm (t) = σX0(s)σXm (s). Let π(X0) = {A, B, C, D1, . . . , Dr} and let
β A,βB ,βC ,β1, . . . ,βr denote the standard basis for X0. Then the standard basis for X2 is β A +
βB +βC ,β1, . . . ,βr . Since both s and t induce the same permutation on the standard basis vectors of
X2 and Xm , it follows that σX2 (s) = σX2 (t) and σXm (s) = σXm (t). And since s either fixes or negates
all three vectors β A,βB ,βC it follows that σX0(s) = σX2(s). Thus,

σX2 (t)σXm (t)N
(

X0 → X1 → t(X2) → ·· · → t(Xm)
)

= σX0(s)σXm (s)N
(
s(X0) → s(X1) → s(X2) → ·· · → s(Xm)

)
= N

(
s(X0 → ·· · → Xm)

) = N (X0 → ·· · → Xm). �
Proof of Theorem 9.2. We first argue that we need only prove the cases m = 1,2.

Reduction to the cases m = 1,2. Let ψ : kΓ → (kF )Bn be the k-algebra homomorphism defined in
the proof of Theorem 9.1. Note that ψ = ϕ ◦ ξ , where ξ maps paths of length l in Γ to paths of
length 2l in Q. The case m = 2 was what was needed to prove that ψ is surjective. Hence, if a ∈
rad2m(kF ) ∩ (kF )Bn for some m ∈ N, then there exists c ∈ kΓ such that ψ(c) = a. We will argue that
c ∈ radm(kΓ ), thus showing that a = ψ(c) ∈ ψ(radm(kΓ )) ⊆ radm(kF )Bn . (The reverse containment is
immediate.)

Since ϕ(radp(kQ)) = radp(kF ) for all p ∈ N (this follows from the fact that Q is the quiver of kF
and contains no oriented cycles [ASS06, Corollary II.2.11]), it follows that ξ(c) is a linear combination
of paths of Q having length at least 2m. Hence, c is a linear combination of paths of Γ having length
at least m, so c ∈ radm(kΓ ).
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The case m = 1. In the proof of Proposition 4.1 we argued that rad((kF )W ) = rad(kF ) ∩ (kF )W for
any finite Coxeter group W . So we need only show that rad(kF ) ∩ (kF )Bn = rad2(kF ) ∩ (kF )Bn .
Let ϕ : kQ → kF denote the surjection of Theorem 6.2. Then radi(kF ) is spanned by the elements
ϕ(P ), where P is a path of length at least i. Since the transformation 
v �→ −
v is an element of
Bn , it follows that

∑
w∈Bn

w(P ) = 0 if P is a path of odd length (see Proposition 7.6 and its proof).

So rad2i(kF ) ∩ (kF )Bn = rad2i−1(kF ) ∩ (kF )Bn for i � 1 since both are spanned by the elements
ϕ(

∑
w∈Bn

w(P )), where P is a path of length at least 2i.

The case m = 2. We first argue that rad2((kF )Bn ) ⊆ rad4(kF ) ∩ (kF )Bn . Let a ∈ rad2((kF )Bn ). Then
a = bc for two elements b, c ∈ rad(kF )Bn = rad2(kF ) ∩ (kF )Bn . Thus, bc is an element of rad4(kF )

and (kF )Bn .
We prove the reverse containment by contradiction. Suppose rad2((kF )Bn ) � rad4(kF ) ∩ (kF )Bn .

Since rad4(kF ) ∩ (kF )Bn is spanned by elements of the form ϕ(N (P )), where P is a path in Q of
length at least m � 4, it follows that there exists a path P = (X0 → ·· · → Xm) such that m � 4 and
ϕ(N (P )) /∈ rad2((kF )Bn ). We first argue that we can assume that P satisfies the following: π(X1)

contains a nonzero block A ∪ B , where A �= B are blocks of π(X0) (Step 1); π(X2) contains the
nonzero block A ∪ B ∪ C , where C is a block of π(X1) (Step 2); π(X3) contains a nonzero block D ∪ E ,
where D and E are blocks of π(X2) and |D| = |A ∪ B ∪ C | (Step 3). Then we derive a contradiction
(Step 4).

Step 1. We argue that π(X1) contains a nonzero block A ∪ B , where A �= B are blocks of π(X0).
If not, then the zero block Z1 of π(X1) is Z1 = B ∪ Z0 ∪ B for some nonzero block B ∈ π(X0),

where Z0 is the zero block of π(X0). Let t be the signed permutation that negates the elements of B
and fixes the other elements. Then N (P ) = N (t(P )) = −N (P ). Hence, N (P ) = 0, contradicting that
ϕ(N (P )) /∈ rad2((kF )Bn ).

Step 2. We argue that π(X2) contains the nonzero block A ∪ B ∪ C , where C is a block of π(X1).
First we show that A ∪ B is not a block of π(Xm). If A ∪ B is a block of π(Xm), then it is a block

of π(X j) for all j ∈ {1, . . . ,m}. Let t be the signed permutation that negates the elements of A ∪ B .
Then t(P ) = −P , so N (P ) = 0, contradicting that ϕ(N (P )) /∈ rad2((kF )Bn ).

This implies that there exists j ∈ [m] such that π(X j) is obtained from π(X j−1) by merging A ∪ B .
We argue that we can assume j = 2. From Theorem 6.2, it follows that

P +
∑

Y �=X j−1
X j−2→Y →X j

(X0 → ·· · → X j−2 → Y → X j → ·· · → Xm) ∈ ker(ϕ).

Since ϕ(N (P )) /∈ rad2((kF )Bn ), there must exist at least one Y �= X j−1 such that ϕ(N (X0 → ·· · →
X j−2 → Y → X j → ·· · → Xm)) /∈ rad2((kF )Bn ). By examining the intervals of length two in Π B

n (see
Fig. 2), we note that π(Y ) is obtained from π(X j−2) by merging A ∪ B with some other block of
π(X j−2). By replacing P with this path, noticing that this new path still begins with X0 → X1, and
repeating this argument until j = 2, we have that π(X2) is obtained from π(X1) by merging A ∪ B .

If the zero block of π(X2) is Z2 = A ∪ B ∪ Z0 ∪ A ∪ B , where Z0 is the zero block of π(X0), then
any t ∈ Bn that fixes X2 also fixes Z2. This implies, by appealing to the argument in the proof of
Lemma 9.3, that N (P ) is a scalar multiple of N (X2 → ·· · → Xm)N (X0 → X1 → X2), contradicting
that ϕ(N (P )) /∈ rad2((kF )Bn ).

Step 3. We argue that we can suppose that π(X3) contains a nonzero block D ∪ E , where D and E
are blocks of π(X2) and |D| = |A ∪ B ∪ C |.

We first argue that not all of the blocks of π(X2) of size λ = |A ∪ B ∪ C | are also blocks of π(Xm).
We do this by showing that we can factor N (P ). By Lemma 9.3, we need only show that if t(X2) = X2,
then
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Fig. 4. In Case 1, D and E are not ±(A ∪ B ∪ C). Note that |D ∪ E| > |A ∪ B|.

σX2 (t)σXm (t)N
(

X0 → X1 → t(X2) → ·· · → t(Xm)
) = N (P ).

Write π(X2) = {B1, . . . , Bk, C1, . . . , Cl; Z0}, where |Ci | = λ, |B j | �= λ, and write π(Xm) = {D1, . . . ,

Dh, C1, . . . , Cl; Zm}. Suppose t ∈ Bn such that t(X2) = X2. Then t permutes the blocks ±B1, . . . ,±Bk ,
as well as the blocks ±C1, . . . ,±Cl . Define s ∈ Bn by s|Bi = t, s|Z0 = t and s|C j = 1. Then s(X0) =
X0, s(X1) = X1 and s(X j) = t(X j) for all j ∈ {2, . . . ,m}. It remains to show that σX0(s)σXm (s) =
σX2(t)σXm (t). This follows by comparing the actions of s and t on the standard basis β B1

, . . . ,βBk
,

βC1
, . . . ,βCl

of X2.
This implies that some nonzero block D of π(X1) of size λ is merged to get π(X j) for some

j ∈ {3, . . . ,m}. If the zero block of π(X j) is Z j = D ∪ Z j−1 ∪ D , where Z j−1 is the zero block of
π(X j−1), then let t be the signed permutation that negates the elements of D and fixes the other
elements of [±n]. Since D is a block of π(X1) and |D| = |A ∪ B ∪ C |, we have either that D is a block
of π(X0) or D = A ∪ B ∪ C . In both cases t negates an odd number of elements of the standard basis
of X0 and no elements of the standard basis of Xm . Thus, σX0(t) = −1 and σXm (t) = 1. It follows that
t(P ) = −P , and so ϕ(N (P )) = 0, a contradiction.

By arguing as in Step 2, using the relations in ker(ϕ), we can assume that j = 3.

Step 4. We are now ready to conclude the proof. Let P = (X0 → ·· · → Xm) be a path of length m � 4
such that ϕ(N (P )) /∈ rad2((kF )Bn ). From Step 1 we have that π(X1) contains a nonzero block A ∪ B ,
where A �= B are blocks of π(X0). Of all such paths, pick P such that |A| + |B| is maximal. That is,
we suppose the following.

(�) If P ′ = (X0 → Y1 → Y2 → ·· · → Ym) with ϕ(N (P ′)) /∈ rad2((kF )Bn ) and if π(Y1) contains the
nonzero block A′ ∪ B ′ , where A′ �= B ′ are blocks of π(X0), then |A′ ∪ B ′| � |A ∪ B|.

In both Steps 2 and 3, we replaced P with other paths P ′ that begin with X0 → X1 and such that
ϕ(N (P ′)) /∈ rad2((kF )Bn ). Therefore, we can assume that π(X2) contains the nonzero block A ∪ B ∪ C ,
where C is a block of π(X1) and that π(X3) contains a nonzero block D ∪ E , where D and E are
blocks of π(X2) and D has cardinality λ = |A ∪ B ∪ C |. Therefore, there are three cases to consider.

Case 1. Suppose D, E �= ±(A ∪ B ∪ C). This case is illustrated in Fig. 4. The open interval (X3, X1) =
{Y ∈ L: X3 < Y < X1} contains exactly two elements: X2 and Y2, where π(Y2) is obtained from
π(X1) by merging D with E . The open interval (Y2, X0) also contains exactly two elements: X1 and
Y1, where π(Y1) is obtained from π(X0) by merging D and E . If P ′ = (X0 → Y1 → Y2 → X3 →
·· · → Xm), then ϕ(N (P ′)) /∈ rad2((kF )Bn ) since P ′ − P ∈ kerϕ (Lemma 6.6), but |D ∪ E| > |A ∪ B|,
contradicting (�).
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Fig. 5. In Case 2, |D| = λ, thus |C ∪ D|, |B ∪ D|, |A ∪ D| > |A ∪ B|.

Fig. 6. In Case 3, |E| �= λ. Note that |t(D) ∪ t(E)| > |A ∪ B|.

Case 2. Suppose D �= E = A ∪ B ∪ C . This situation is illustrated in Fig. 5. Let (X0 → Yi → Zi → X3)

for i ∈ {1,2,3} be the three paths in Fig. 5 from X0 to X3 such that Yi �= X1, and let Pi = (X0 →
Yi → Zi → X3 → ·· · → Xm) for i ∈ {1,2,3}. Since |D| > |A ∪ B|, the assumption (�) implies that
ϕ(N (Pi)) ∈ rad2((kF )Bn ) for i ∈ {1,2,3}. But P − (P1 + P2 + P3) ∈ ker(ϕ) (Lemma 6.6), so this implies
that N (P ) ∈ rad2((kF )Bn ), a contradiction.

Case 3. Suppose D = A ∪ B ∪ C �= E . If |E| = λ, then we can swap the roles of D and E and apply
the argument from Case 2. So suppose that |E| �= λ. By Lemma 9.3, there exists t ∈ Bn such that
t(X2) = X2, t(D) �= ±D and

ϕ
(

N
(

X0 → X1 → X2 → t(X3) → ·· · → t(Xm)
))

/∈ rad2((kF )Bn
)
. (9.1)

We argue that we are in the situation illustrated in Fig. 6. We first establish that t(D), t(E) ∈
π(X0). Since t(X2) = X2, it follows that t permutes the blocks of π(X2). Since t(D) �= ±D , it follows
that t(D) is a block of π(X2) different than ±D = ±(A ∪ B ∪ C). And because all other blocks of
π(X2) are blocks of π(X0), we have that t(D) is a block of π(X0). Considering that |E| �= λ = |D|, we
have t(E) �= ±D , so the same reasoning implies that t(E) is also a block of π(X0).

Since t(X2) = X2 and π(X3) � π(X2), it follows that t(π(X3)) � π(X2). Therefore, t(π(X3)) is
obtained from π(X2) by merging t(D) and t(E) since t(D), t(E) ∈ π(X2) and t(D) ∪ t(E) = t(A ∪ B ∪
C ∪ E) ∈ t(π(X3)). There is exactly one other partition π(Y2) such that t(π(X3))�π(Y2)�π(X1), the
partition obtained from π(X1) by merging t(D) with t(E). There is exactly one other partition π(Y1)

such that π(Y2) � π(Y1) � π(X0), the partition obtained from π(X0) by merging t(D) with t(E). So
we are in the situation illustrated in the figure.
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By Lemma 6.6, the following element is in ker(ϕ):

(
X0 → X1 → X2 → t(X3) → ·· · → t(Xm)

) − (
X0 → Y1 → Y2 → t(X3) → ·· · → t(Xm)

)
.

Together with (9.1), this implies that

ϕ
(

N
(

X0 → Y1 → Y2 → t(X3) → ·· · → t(Xm)
))

/∈ rad2((kF )Bn
)
.

This contradicts our assumption (�) because π(Y1) is obtained from π(X0) by merging the blocks
t(D) and t(E), and |t(D) ∪ t(E)| = |t(A ∪ B ∪ C ∪ E)| > |A ∪ B|. �
10. Future directions

This article is part of an ongoing project to determine the quiver with relations of the descent
algebras. There is still much to do.

The quivers of all the descent algebras have not yet been determined. The main outstanding case is
the quiver of the descent algebra of type D as the exceptional types can be dealt with using computer
algebra software [Pfe07]. It should be possible to adapt the proofs of Theorems 8.1 and 9.1 to this case
as well, but given the similarity between these arguments, a general argument is more desirable. The
main obstacle is to understand the relationship between rad2((kF )W ) and (kF )W ∩ radp(kF ). Indeed,
if these two spaces are equal for some p, then there is no arrow from O′ to O, where O′, O ∈ L/W ,
if O < O′ and rank(O′) − rank(O) � p; so only the intervals in L/W of length p − 1 need to be
studied. This is precisely what we did for types A and B , where p was 2 and 4, respectively.

Another task is to determine relations for some quiver presentation of the descent algebras. Very
little is known here, even for type A.

Other representation theoretic questions also arise. As mentioned following Corollary 7.4, it would
be interesting to determine the characteristic tilting module of each descent algebra as well as its
Ringel dual. Also, the Cartan invariants of the descent algebras are not known in general. Formulas
exist for type A (see [GR89], [BL96, Corollary 2.1], [KLT97, Section 3.6] and [Sch06, Section 9.4]) and
a combinatorial interpretation for type B was given by Nantel Bergeron [Ber92, Theorem 3.3].
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