HYPERPLANE ARRANGEMENTS AND DESCENT ALGEBRAS

FRANCO V SALIOLA

Abstract

We will define an algebra on the faces of a hyperplane arrangement and explain how the descent algebra embeds in this algebra when the hyperplane arrangement is the reflection arrangement of a finite Coxeter group. We will use the structure of the former algebra to prove results about the latter algebra.

1. The Face Semigroup Algebra of a Hyperplane Arrangement

1.1. The Braid Arrangement. The main reference for the theory of hyperplane arrangements is the book [Orlik and Terao, 1992]. An introductory treatment is the lecture notes by Richard Stanley posted on his website.

A hyperplane arrangement \mathcal{A} in \mathbb{R}^{d} is a finite set of hyperplanes in \mathbb{R}^{d}. We will restrict our attention to central hyperplane arrangements where all the hyperplanes contain the origin.

Through these notes we will be interested specifically in the braid arrangement \mathcal{B}. It consists of the hyperplanes $H_{i j}=\left\{v \in \mathbb{R}^{d}: v_{i}=\right.$ $\left.v_{j}\right\}$ where $1 \leq i<j \leq d$. Since all the hyperplanes intersect in the one dimensional subspace $v_{1}=v_{2}=\cdots=v_{n}$, the braid arrangement gives a hyperplane arrangement in a $n-1$ dimensional vector space by intersecting the hyperplanes in the arrangement by the hyperplane $v_{1}+v_{2}+v_{3}=0$. The arrangement for $n=3$ can be pictured as in Figure 1. Figure 2 shows the resulting arrangement for $n=4$ intersected with one hemisphere of the unit sphere of \mathbb{R}^{3}. A few notes about the image: the image shows only one hemisphere of the sphere; the equator does not correspond to a hyperplane in the arrangement so it is denoted by

Figure 1. The Braid Arrangement for $n=3$.
a dotted line; the great circle corresponding to the hyperplane $H_{i j}$ is labelled $i-j$; I stole the image from Ken Brown's paper [Brown, 2000] and modified it.

The symmetric group S_{n} on n elements acts on the vector space \mathbb{R}^{n} by permuting coordinates: for $\omega \in S_{n}$ and $v \in \mathbb{R}^{n}$, let

$$
\omega(v)=\omega\left(\left(v_{1}, \ldots, v_{n}\right)\right)=\left(v_{\omega^{-1}(1)}, \ldots, v_{\omega^{-1}(n)}\right) .
$$

Then the transpositions (i, j) where $1 \leq i<j \leq n$, which generate S_{n}, act on \mathbb{R}^{n} by reflecting about the hyperplanes $H_{i j}$. Any finite group isomorphic to a finite group generated by a set of reflections of \mathbb{R}^{n} is called a finite reflection group or a finite Coxeter group. The results presented here generalize to all finite Coxeter groups mutatis mutandis.
1.2. The Faces of an Arrangement. Let \mathcal{A} denote a hyperplane arrangement. Each hyperplane $H \in \mathcal{A}$ determines two open half-spaces of \mathbb{R}^{n} denoted H^{+}and H^{-}. The choice of which half-space to label + or - is arbitrary, but fixed.

A face of \mathcal{A} is a nonempty intersection of the form

$$
x=\bigcap_{H \in \mathcal{A}} H^{\sigma_{H}(x)},
$$

Figure 2. The Braid Arrangement for $n=4$.
where $\sigma_{H}(x) \in\{+,-, 0\}$ and $H^{0}=H$. Note that x is a relatively open subset of \mathbb{R}^{n}. If x is a face, then the vector $\sigma(x)=\left(\sigma_{H}(x)\right)_{H \in \mathcal{A}}$ is the sign vector of x. In Figure 3 the faces of the braid arrangement for $n=3$ are labelled by their sign vectors.

A chamber is a face that is the nonempty intersections of the open half spaces determined by the hyperplanes $H \in \mathcal{A}$. Equivalently, the chambers are the faces c such that $\sigma_{H}(c) \neq 0$ for all $H \in \mathcal{A}$. Note that the chambers are the connected components of the complement $\mathbb{R}^{n}-\cup_{H \in \mathcal{A}} H$.

Partially order the faces \mathcal{F} by $x \leq y$ iff for each $H \in \mathcal{A}$ either $\sigma_{H}(x)=0$ or $\sigma_{H}(x)=\sigma_{H}(y)$. Equivalently, $x \leq y$ iff $x \subset \bar{y}$. This

Figure 3. Sign vectors on the faces of the braid arrangement for $n=3$.
partial order is called the face relation, and if $x \leq y$, then we say x is a face of y. This terminology comes from the fact that the closure of a chamber c is a polyhedron and that the closure of the faces (in the above sense) of c are the polyhedral faces of the polyhedron. Note that the chambers are the maximal elements in this partial order.
1.2.1. The Faces of the Braid Arrangement. Let \mathcal{A} denote the braid arrangement. Let $v \in \mathbb{R}^{n}$ be a vector in a chamber of \mathcal{A}. Then v is not on any of the hyperplanes $H_{i j}$, so all the coordinates of v are distinct. Therefore, there exists $\omega \in S_{n}$ such that

$$
v_{\omega(1)}<\cdots<v_{\omega(n)} .
$$

All vectors in the chamber satisfy this identity, so the chamber can be identified with the permutation ω of the set $[n]=\{1, \ldots, n\}$. (This is true for any finite reflection group: the chambers of the reflection arrangement are in bijective correspondence with the elements of the group.) The faces of the chamber are obtained by changing some of the inequalities above to equalities. So the faces \mathcal{F} of \mathcal{A} can be identified
with set compositions (ordered set partitions) of $[n]$. For example,

$$
(23,4,1) \leftrightarrow\left\{v \in V: v_{2}=v_{3}<v_{4}<v_{1}\right\} .
$$

Here we have concatenated the elements of each block to simplify notation: $(23,4,1)$ denotes the set composition $(\{2,3\},\{4\},\{1\})$. In Figure 4 the faces of the braid arrangement for $n=4$ are labelled by the corresponding set compositions.

It is straightforward to verify that the partial order (the face relation) on set compositions is given by $\left(B_{1}, \ldots, B_{m}\right) \leq\left(C_{1}, \ldots, C_{l}\right)$ iff $\left(C_{1}, \ldots, C_{l}\right)$ consists of a set composition of B_{1}, followed by a set composition of B_{2}, and so forth. The action of S_{n} on \mathcal{F} is given by $\omega\left(\left(B_{1}, \ldots, B_{r}\right)\right)=\left(\omega\left(B_{1}\right), \ldots, \omega\left(B_{r}\right)\right)$. The poset of faces for the braid arrangement for $n=3$ is depicted in Figure 5 .
1.3. The Support Map and the Intersection Lattice. The support $\operatorname{supp}(x)$ of a face $x \in \mathcal{F}$ is the the intersection of the hyperplanes in \mathcal{A} containing x.

$$
\operatorname{supp}(x)=\bigcap_{\substack{H \in \mathcal{A} \\ \sigma_{H}(x)=0}} H
$$

The set $\mathcal{L}=\operatorname{supp}(\mathcal{F})$ of supports of faces of \mathcal{A} is a graded lattice ordered by inclusion, called the intersection lattice of \mathcal{A}. (Some authors order the intersection lattice by reverse inclusion, so some care is needed while reading the literature.) For $X, Y \in \mathcal{L}$ the meet $X \wedge Y$ of X and Y is the intersection $X \cap Y$ and the join $X \vee Y$ of X and Y is $X+Y$, the smallest subspace of \mathbb{R}^{d} containing both X and Y. The top element $\hat{1}$ of \mathcal{L} is the ambient vector space \mathbb{R}^{d} and the bottom element $\hat{0}$ is the intersection of all hyperplanes in the arrangement $\bigcap_{H \in \mathcal{A}} H$. The rank of $X \in \mathcal{L}$ is the dimension of the subspace $X \subset \mathbb{R}^{d}$.

The chambers are the faces of $\operatorname{support} \hat{1}$. Since $\operatorname{supp}(x) \leq \operatorname{supp}(y)$ if $x \leq y$, the support map supp : $\mathcal{F} \rightarrow \mathcal{L}$ is an order-preserving poset surjection.

Figure 4. Set compositions on the braid arrangement when $n=4$.
1.3.1. The Support Map and the Intersection Lattice of the Braid Arrangement. As we saw above, the faces of the braid arrangement correspond to set compositions of $[n]$. Under this identification, the support map just forgets the order of the set composition, giving a set partition of $[n]$.

$$
\operatorname{supp}\left(\left(B_{1}, \ldots, B_{r}\right)\right)=\left\{B_{1}, \ldots, B_{r}\right\}
$$

where $\left\{B_{1}, \ldots, B_{r}\right\}$ is a set partition of $[n]$. Explicitly, this identification between set partitions of $[n]$ and the intersection lattice of the braid

Figure 5. The poset of faces (set compositions) of the braid arrangement for $n=3$.
arrangement is given by the following.

$$
\begin{aligned}
& \left\{B_{1}, \ldots, B_{r}\right\} \leftrightarrow \\
& \qquad\left\{v \in V: v_{i}=v_{j} \text { if } \exists h \text { such that } i, j \in B_{h}\right\}=\bigcap_{h=1}^{r}\left(\bigcap_{i, j \in B_{h}} H_{i j}\right),
\end{aligned}
$$

where $\left\{B_{1}, \ldots, B_{r}\right\}$ is a set partition of $[n]$. If B and C are set partitions of $[n]$, then $B \lessdot C$ iff B is obtained from C by merging two blocks of C. The action of S_{n} on \mathcal{L} is given by $\omega\left(\left\{B_{1}, \ldots, B_{r}\right\}\right)=$ $\left\{\omega\left(B_{1}\right), \ldots, \omega\left(B_{r}\right)\right\}$.
1.4. The Face Semigroup. For $x, y \in \mathcal{F}$ the product $x y$ is the face of \mathcal{A} with sign vector

$$
\sigma_{H}(x y)= \begin{cases}\sigma_{H}(x), & \text { if } \sigma_{H}(x) \neq 0 \\ \sigma_{H}(y), & \text { if } \sigma_{H}(x)=0\end{cases}
$$

Proposition 1.1. The product $x y$ of two faces x and y is a face of \mathcal{A}.
Proof. We need to show that the intersection determined by the sign vector $\sigma(x y)$ is nonempty. Let

$$
A=\bigcap_{\sigma_{H}(x) \neq 0} H^{\sigma_{H}(x)}, \quad B=\bigcap_{\sigma_{H}(x)=0} H^{\sigma_{H}(y)} .
$$

Then $x y=A \cap B$. If $v \in x$, then v is contained in A and in the closure of B. Since A is open, it follows that $A \cap B$ is nonempty because any open set containing v intersects B.

It is straightforward to check that this product is associative, noncommutative and that the identity element is the intersection of all the hyperplanes in the arrangement $1=\bigcap_{H \in \mathcal{A}} H$. Note that the support of the identity element 1 is $\hat{0}$ (and not $\hat{1}$).

The support $\operatorname{supp}: \mathcal{F} \rightarrow \mathcal{L}$ satisfies $\operatorname{supp}(x y)=\operatorname{supp}(x) \vee \operatorname{supp}(y)$ for all $x, y \in \mathcal{F}$. Therefore, supp is a semigroup surjection, where \mathcal{L} is considered a semigroup with product given by the join \vee, as well as an ordering-preserving poset surjection.

Exercise 1. Let $x, y \in \mathcal{F}$. Prove that if v_{x} and v_{y} are two points in x and y, respectively, then $x y$ is the face that contains $v_{x}+\left(v_{y}-v_{x}\right) \epsilon$ for all sufficiently small $\epsilon>0$. (Hint: If $\sigma_{H}(x) \neq 0$, then $H^{\sigma_{H}(x)}$ is an open set containing v_{x}. Thus there exists an $\epsilon_{H}>0$ such that $v_{x}+\left(v_{y}-v_{x}\right) \epsilon \in H^{\sigma_{H}(x)}$ for all $0 \leq \epsilon<\epsilon_{H}$. Let $\epsilon^{\prime}=\min _{\sigma_{H}(x) \neq 0}\left(\epsilon_{H}\right)$. Show that for $v_{x}+\left(v_{y}-v_{x}\right) \epsilon \in H^{\sigma_{H}(x y)}$ for all $H \in \mathcal{A}$ and all $0<\epsilon<\epsilon^{\prime}$.)

Exercise 2. For all $x, y \in \mathcal{F}$,
(1) $x^{2}=x$,
(2) $x y x=x y$,
(3) $x y=y$ iff $x \leq y$,
(4) If $x \leq y$, then $\operatorname{supp}(x) \leq \operatorname{supp}(y)$.
(5) $x y=x$ iff $\operatorname{supp}(y) \leq \operatorname{supp}(x)$,
(6) $\operatorname{supp}(x y)=\operatorname{supp}(x) \vee \operatorname{supp}(y)$.

Remark 1.2. Conditions (1) and (2) of the proposition say that \mathcal{F} belongs to a class of semigroups known as left regular bands.

Exercise 3. Let \mathcal{C} denote the set of chambers of a hyperplane arrangement \mathcal{A}. Define $d: \mathcal{C} \times \mathcal{C} \rightarrow \mathbb{N}$ for $c, c^{\prime} \in \mathcal{C}$ by setting $d\left(c, c^{\prime}\right)$ equal to the number of hyperplanes that separate c from c^{\prime}.
(1) Prove that d is a metric.
(2) If x is a face of the arrangement \mathcal{A} and $c \in \mathcal{C}$ is a chamber, then show that there is a unique face c^{\prime} with $x \leq c^{\prime}$ minimizing $d\left(c, c^{\prime}\right)$. Prove that $c^{\prime}=x c$.
1.4.1. The Product of Faces in the Braid Arrangement. Recall that the faces of the braid arrangement correspond to set compositions of $[n]$. Let $B=\left(B_{1}, \ldots, B_{l}\right)$ and $C=\left(C_{1}, \ldots, C_{m}\right)$ denote two set compositions of $[n]$. Let $B(i)$ denote the block of B that contains i, and let $B(i)<B(j)$ denote that the block $B(i)$ appears before the block $B(j)$ in B. For each $1 \leq i<j \leq n$ define $H_{i j}^{+}=\left\{v \in \mathbb{R}^{n}: v_{i}<v_{j}\right\}$ and $H_{i j}^{-}=\left\{v \in \mathbb{R}^{n}: v_{i}>v_{j}\right\}$. Then the sign vector of B is given by

$$
\sigma_{H_{i j}}(B)=\left\{\begin{array}{ll}
0, & B(i)=B(j), \\
+, & B(i)<B(j), \\
-, & B(i)>B(j)
\end{array} \quad \sigma_{H_{i j}}(C)= \begin{cases}0, & C(i)=C(j) \\
+, & C(i)<C(j) \\
-, & C(i)>C(j)\end{cases}\right.
$$

Therefore, the sign vector of the product $B C$ is given by

$$
\sigma_{H_{i j}}(B C)= \begin{cases}0, & B(i)=B(j) \text { and } C(i)=C(j) \\ +, & B(i)<B(j), \text { or } B(i)=B(j) \text { and } C(i)<C(j) \\ -, & B(i)>B(j), \text { or } B(i)=B(j) \text { and } C(j)<C(i)\end{cases}
$$

From this it follows that the product of set compositions B and C is

$$
\begin{aligned}
& \left(B_{1}, \ldots, B_{l}\right)\left(C_{1}, \ldots, C_{m}\right) \\
& \quad=\left(B_{1} \cap C_{1}, \ldots, B_{1} \cap C_{m}, \cdots, B_{l} \cap C_{1}, \ldots, B_{l} \cap C_{m}\right)^{28},
\end{aligned}
$$

where ${ }^{\circ}$ means "delete empty intersections".
Here are some examples.
Example 1. $(2467,931,58)(34,1256,789)=(4,26,7,3,1,9,5,8)$. Try it at home; it's fun.

Example 2. $(5,1234678)(2,4,6,7,3,1,5,8)=(5,2,4,6,7,3,1,8)$. In this example, a chamber c is multiplied on the left by a set composition of the form $(i,[n]-i)$. This has the effect of moving i to the beginning
(the top) of the set composition c. This process is known as the random-to-top shuffle.

Example 3. $(137,24568)(2,4,6,7,3,1,5,8)=(7,3,1,2,4,6,5,8)$. In this example a chamber c is multiplied on the left by a set composition of the form $(S,[n]-S)$ where $S \subset[n]$. This has the effect of moving the elements of S, in the order they appeared in the composition c, to the beginning of the composition. This is precisely the inverse of riffle shuffling a deck of cards. When you riffle shuffle a deck of cards, you divide the set in half and shuffle the cards together. Here we pull out a subset of the cards and place the cards on top.

Example 4. (137, 245, 8, 6) (1, 2, 3, 4, 5, 6, 7, 8) $=(1,3,7,2,4,5,8,6)$. Here a face set composition $B=\left(B_{1}, \ldots, B_{m}\right)$ of $[n]$ is multiplied on the right by the chamber $(1,2, \ldots, n)$. The resulting set composition has singleton blocks, and is obtained by listing the elements of B_{1} in numerical order, followed by the elements of B_{2} in numerical order, and so forth. Let $\omega \in S_{n}$ be the permutation corresponding to this composition. In this example $\omega=(1,3,7,2,4,5,8,6)$. Then the set of indices i for which $\omega(i)>\omega(i+1)$ is a subset of the $\left\{\left|B_{1}\right|,\left|B_{1}\right|+\left|B_{2}\right|, \ldots,\left|B_{1}\right|+\cdots+\left|B_{m-1}\right|\right\}$ since $\omega(i)<\omega(i+1)$ if the i-th element and the $i+1$-th element appear in the same block B_{j}.

Proposition 1.3. Let $\left(B_{1}, \ldots, B_{m}\right)$ be a set composition of $[n]$. Then the product $\left(B_{1}, \ldots, B_{m}\right)(1,2, \ldots, n)$ is the set composition formed by listing the elements of B_{1} in (numerical) order, then listing the elements of B_{2} in order, and so forth. Explicitly, $\left(B_{1}, \ldots, B_{m}\right)(1,2, \ldots, n)$ is

$$
\left(b_{1}^{(1)}, b_{2}^{(1)}, \ldots, b_{\left|B_{1}\right|}^{(1)}, \cdots, b_{1}^{(m)}, b_{2}^{(m)}, \ldots, b_{\left|B_{m}\right|}^{(m)}\right) .
$$

where $b_{1}^{(i)}<b_{2}^{(i)}<\ldots<b_{\left|B_{i}\right|}^{(i)}$ are the elements of the block B_{i}. Moreover,

$$
\{i: \omega(i)>\omega(i+1)\} \subseteq\left\{\left|B_{1}\right|,\left|B_{1}\right|+\left|B_{2}\right|, \ldots,\left|B_{1}\right|+\cdots+\left|B_{m-1}\right|\right\} .
$$

1.5. The Face Semigroup Algebra. Let \mathcal{A} denote a hyperplane arrangement in \mathbb{R}^{n} and let k denote an arbitrary field. The face semigroup
algebra of \mathcal{A} with coefficients in the field k is the semigroup algebra $k \mathcal{F}$ of the face semigroup \mathcal{F} of \mathcal{A}. It consists of linear combinations of elements of \mathcal{F} with multiplication induced by the product of \mathcal{F}. The face semigroup algebra $k \mathcal{F}$ is a finite dimensional associative algebra with identity $1=\bigcap_{H \in \mathcal{A}} H$. Unless explicitly stated otherwise, no assumptions will be made on the characteristic of the field k.
1.6. Random Walks on the Chambers of a Hyperplane Arrangement. Let \mathcal{A} denote a hyperplane arrangement. It follows from the definition that the product of a face with a chamber, in either order, is a chamber. Therefore, the set \mathcal{C} of chambers is an ideal of the semigroup \mathcal{F}. We can therefore run a random walk on this ideal using the product of \mathcal{F}.

Let $p=\left\{p_{x}\right\}_{x \in \mathcal{F}}$ denote a probability distribution on the faces \mathcal{F}. Therefore, the p_{x} are nonnegative real numbers satisfying $\sum_{x} p_{x}=1$. If at the i-th stage of the random walk we are at a chamber c, then pick a face x with probability p_{x} and move to the chamber $x c$. To be explicit, $x c$ is the product of the faces x and c.

As noted in the previous section, if \mathcal{A} is the braid arrangement and if p_{x} is nonzero only on the faces of the form $(i,[n]-i)$, where $1 \leq i \leq n$, and zero otherwise, then the resulting random walk is the random-totop card shuffling process. Similarly, one obtains the inverse riffle shuffle by assigning weights $1 / 2^{n}$ to the faces $(S,[n]-S)$ with $\emptyset \subsetneq S \subsetneq[n]$ and $2 / 2^{n}$ to the one block partition ([n]).

The main tool for studying a random walk is the transition matrix T of the random walk. It is the matrix indexed by the "states" of the random walk and with (s, t)-entry the probability of moving to the state s from the state t. For the random walks on the chambers of a hyperplane arrangement, the states are the chambers and the probability of moving from chamber c to chamber d is the sum of the probabilities p_{x} on the faces x satisfying $d=x c$. Therefore, the (c, d)-entry of T is $T(c, d)=\sum_{x c=d} p_{x}$. We can now state a remarkable theorem that describes the eigenvalues of the transition matrix.

Theorem 1.4 ([Brown and Diaconis, 1998]). Let \mathcal{A} be a hyperplane arrangement in $V=\mathbb{R}^{n}$, let \mathcal{F} be the set of faces, left \mathcal{L} be the intersection lattice and let p be a probability measure on \mathcal{F}. Then the transition matrix T of the random walk defined above is diagonalizable. For each $X \in \mathcal{L}$ there is one eigenvalue

$$
\lambda_{X}=\sum_{\substack{x \notin \mathcal{F} \\ \operatorname{supp}(x) \leq X}} p_{x},
$$

with multiplicity

$$
m_{X}=|\mu(X, V)|=(-1)^{\operatorname{codim}(X)} \mu(X, V),
$$

where μ is the Möbius function of \mathcal{L}.
This result was extended in [Brown, 2000] to the entire class of semigroups known as left regular bands, and later partly generalized to semigroups known as bands [Brown, 2004]. These papers are based on the following observation. Let $\left\{p_{x}\right\}_{x \in \mathcal{F}}$ denote a probability measure on the faces \mathcal{F}, and let $p=\sum_{x \in \mathcal{F}} p_{x} x$ denote the element of the semigroup algebra $\mathbb{R} \mathcal{F}$ of \mathcal{F} with the coefficient of x given by p_{x}. (The semigroup algebra is defined in the next section.) Then for any element $a=\sum_{c \in \mathcal{F}} a_{c} c$ of $\mathbb{R C}$,

$$
p a=\sum_{x} p_{x} x \sum_{c} a_{c} c=\sum_{d}\left(\sum_{\substack{x, c \\ x c=d}} a_{c} p_{x}\right) d=\sum_{d}\left(\sum_{c} a_{c} T(c, d)\right) d,
$$

where T is the transition matrix of the random walk. Therefore, left multiplication by p corresponds to right multiplication by T on row vectors $\left(a_{c}\right)_{c \in \mathcal{C}}$. This allows one to study the random walk by using algebraic techniques. For example, Brown shows that the subalgebra $\mathbb{R}[p]$ of $\mathbb{R} \mathcal{F}$ generated by $p=\sum_{x} p_{x} x$, where $p_{x} \geq 0$, is split semisimple, which implies that the action of p on any $\mathbb{R}[p]$-module is diagonalizable. Since $k \mathcal{C}$ is a $\mathbb{R}[p]$-module, the diagonalizability result follows. The eigenvalues with their multiplicities are obtained using the irreducible representations of the semigroup algebra $\mathbb{R} \mathcal{F}$.

2. The Descent Algebra in the Face Semigroup Algebra of a Reflection Arrangement

In this section we will prove that the descent algebra of S_{n} is antiisomorphic to a subalgebra of the face semigroup algebra $k \mathcal{F}$ of the braid arrangement. We begin by defining the descent algebra of S_{n}.
2.1. The Descent Algebra of S_{n}. Let $\omega \in S_{n}$. The descent set $\operatorname{des}(\omega)$ of ω is the set of indices i for which $\omega(i)>\omega(i+1)$.

$$
\operatorname{des}(\omega)=\{i \in[n-1]: \omega(i)>\omega(i+1)\} .
$$

For $J \subset[n-1]$ let x_{J} denote the element of the group algebra $k S_{n}$ of S_{n} that is the sum of all elements of S_{n} with descent set contained in J.

$$
x_{J}=\sum_{\operatorname{des}(\omega) \subseteq J} \omega .
$$

Solomon proved that the elements x_{J} for $J \subset[n-1]$ form a basis of a subalgebra $\mathcal{D}\left(S_{n}\right)$ of $k S_{n}$, called the descent algebra [Solomon, 1976]. He showed that such an algebra can be constructed for each finite Coxeter group.
2.2. An Action of S_{n} on Set Compositions. Suppose A is an algebra. Let G be a group. The group G is said to act on A if there is a homomorphism of G into the group of endomorphisms of A (recall that an endomorphism of A is an algebra isomorphism $A \xlongequal{\cong} A$). We denote the action of $g \in G$ on $a \in A$ by writing $g(a)$. Let A^{G} denote the set of elements $a \in A$ such that $g(a)=a$ for all $g \in G$. Then A^{G} is a subalgebra of A : if $a, a^{\prime} \in A$, then $g(a)=a$ and $g\left(a^{\prime}\right)=a^{\prime}$ for all $g \in G$; hence $g\left(a a^{\prime}\right)=g(a) g\left(a^{\prime}\right)=a a^{\prime}$ for all $g \in G$. The algebra A^{G} is called the G-invariant subalgebra of A.

We now show that there is an action of S_{n} on the algebra $k \mathcal{F}$. Recall that a face of an arrangement is a nonempty intersection of the form $\bigcap_{H} H^{\sigma_{H}}$, where σ_{H} is either $0,+$ or - . Since the action of S_{n} on \mathbb{R}^{n} permutes the set of hyperplanes in the braid arrangement, it follows
that this action of S_{n} on \mathbb{R}^{n} permutes the set of faces \mathcal{F} of the braid arrangement. By identifying the faces with set compositions this action of S_{n} is given by: for $\omega \in S_{n}$ and a set composition $\left(B_{1}, \ldots, B_{m}\right)$,

$$
\omega\left(\left(B_{1}, \ldots, B_{m}\right)\right)=\left(\omega\left(B_{1}\right), \ldots, \omega\left(B_{m}\right)\right) .
$$

Exercise 4. Show that this action of S_{n} on set compositions of $[n]$ agrees with the action of S_{n} on \mathbb{R}^{n} after identifying the faces of the braid arrangement with set compositions of $[n]$.

2.3. The Descent Algebra as a Subalgebra of the Face Semigroup Algebra of the Braid Arrangement.

Theorem 2.1 ([Bidigare, 1997]). The descent algebra $\mathcal{D}\left(S_{n}\right)$ of S_{n} is anti-isomorphic to the subalgebra $(k \mathcal{F})^{S_{n}}$.

Proof. Let \mathcal{C} denote the set of chambers in the braid arrangement and let $k \mathcal{C}$ denote the k-vector space spanned by the chambers \mathcal{C}. Since the product of a face with a chamber is always a chamber, it follows that $k \mathcal{C}$ is a two-sided ideal of the face semigroup algebra $k \mathcal{F}$. This allows us to view $k \mathcal{C}$ as a (left) $k \mathcal{F}$-module. The action of $a \in k \mathcal{F}$ on any element $b \in k \mathcal{C}$ is given by multiplying b by a on the left: $a \cdot b=a b$.

Since $k \mathcal{C}$ is a $k \mathcal{F}$-module and $(k \mathcal{F})^{S_{n}}$ is a subalgebra of $k \mathcal{F}$, it follows that $k \mathcal{C}$ is also a $(k \mathcal{F})^{S_{n}}$-module. Therefore, each element $a \in(k \mathcal{F})^{S_{n}}$ gives an endomorphism f_{a} of $k \mathcal{C}$ via the multiplication in $k \mathcal{F}$:

$$
\begin{gathered}
f_{a}: k \mathcal{C} \rightarrow k \mathcal{C} \\
f_{a}(b)=a b .
\end{gathered}
$$

Note that f_{a} commutes with the action of S_{n} : if $\omega \in S_{n}$, then

$$
\omega\left(f_{a}(b)\right)=\omega(a b)=\omega(a) \omega(b)=a \omega(b)=f_{a}(\omega(b)),
$$

by using the fact that $w(a)=a$ for all $\omega \in S_{n}$. This gives an algebra homomorphism $(k \mathcal{F})^{S_{n}} \rightarrow \operatorname{End}_{k S_{n}}(k \mathcal{C})$, where $\operatorname{End}_{k S_{n}}(k \mathcal{C})$ denotes the k-algebra of $k S_{n}$-endomorphisms of $k \mathcal{C}$.

Recall that \mathcal{C} is the set of set compositions of $[n]$ into singleton blocks. This gives an isomorphism $\psi: k S_{n} \rightarrow k \mathcal{C}$ of S_{n}-modules by mapping
the permutation $\omega \in S_{n}$ to the chamber $(\omega(1), \ldots, \omega(n))$. This in turn gives a k-algebra isomorphism $\operatorname{End}_{k S_{n}}(k \mathcal{C}) \cong \operatorname{End}_{k S_{n}}\left(k S_{n}\right)$:

$$
\begin{gathered}
\operatorname{End}_{S_{n}}(k \mathcal{C}) \rightarrow \operatorname{End}_{S_{n}}\left(k S_{n}\right) \\
f \mapsto \psi \circ f \circ \psi^{-1} .
\end{gathered}
$$

Recall that $\operatorname{End}_{k S_{n}}\left(k S_{n}\right)$ is the algebra of homomorphisms $g: k S_{n} \rightarrow$ $k S_{n}$ that commute with the action of S_{n}. Therefore, for any $\omega \in S_{n}$, we have

$$
g(\omega)=g(\omega 1)=\omega(g(1)) .
$$

That is, any endomorphism g of $k S_{n}$ that commutes with the action of S_{n} is given by right multiplication by an element of $k S_{n}$ (multiplication by $g(1))$. This gives an isomorphism

$$
\begin{gathered}
\operatorname{End}_{k S_{n}}\left(k S_{n}\right) \rightarrow\left(k S_{n}\right)^{o p} \\
g \mapsto g(1),
\end{gathered}
$$

with inverse that sends an element $d \in k S_{n}$ to the endomorphism $g(a)=a d$. Here $\left(k S_{n}\right)^{o p}$ denotes the algebra obtained from $k S_{n}$ by reversing its multiplication since the above map is a product reversing isomorphism.

Combining all these maps gives the homomorphism

$$
\begin{gathered}
\xi:(k \mathcal{F})^{S_{n}} \rightarrow\left(k S_{n}\right)^{o p} \\
\xi(a)=\left(\psi \circ f_{a} \circ \psi^{-1}\right)(1) .
\end{gathered}
$$

Next we apply ξ to elements of $(k \mathcal{F})^{S_{n}}$. Let $B=\left(B_{1}, \ldots, B_{m}\right)$ denote a set composition of $[n]$ and let a_{B} denote the sum of all compositions in the S_{n}-orbit of B. Then $a_{B} \in(k \mathcal{F})^{S_{n}}$. Moreover, any element of $(k \mathcal{F})^{S_{n}}$ is a linear combination of elements of this form. We have,

$$
\begin{aligned}
\xi\left(a_{B}\right) & =\left(\psi \circ f_{a_{B}} \circ \psi^{-1}\right)(1) \\
& =\left(\psi \circ f_{a_{B}}\right)((1,2, \ldots, n)) \\
& =\psi\left(a_{B}(1,2, \ldots, n)\right) .
\end{aligned}
$$

But $a_{B}(1,2, \ldots, n)$ is the sum of all the set compositions into singleton blocks where the corresponding permutation has descent set contained in $J:=\left\{\left|B_{1}\right|,\left|B_{1}\right|+\left|B_{2}\right|, \ldots,\left|B_{1}\right|+\cdots+\left|B_{m-1}\right|\right\}$ (this follows from Proposition 1.3). Therefore, $\xi\left(a_{B}\right)$ is the sum of all the permutations in S_{n} with descent set contained in J. That is, $\xi\left(a_{B}\right)=x_{J}$.

Since the elements a_{B} span $(k \mathcal{F})^{S_{n}}$, it follows that the image of ξ is the descent algebra. This proves that $\mathcal{D}\left(S_{n}\right)$ is indeed an algebra, being the homomorphic image of an algebra morphism. To show that we have an isomorphism it is enough to count dimensions. The descent algebra is of dimension 2^{n-1} since the elements x_{J} are linearly independent and there are 2^{n-1} of them (one for each $J \subset[n-1]$). On the other hand, there are 2^{n-1} faces of the chamber $(1,2, \ldots, n)$, and the sum of the elements in the orbits of each of these faces form a basis of $(k \mathcal{F})^{S_{n}}$.
2.4. Generalization to all finite Coxeter Groups. This section outlines how to adapt the above proof to any finite Coxeter group.

A finite Coxeter group W (or a finite reflection group) is a finite group generated by a set of reflections in a real vector space V. The reflection arrangement $\mathcal{A}(W)$ of W is the hyperplane arrangement consisting of the hyperplanes fixed by some reflection in W. The Coxeter group W permutes the hyperplanes in $\mathcal{A}(W)$, so W acts on the intersection lattice $\mathcal{L}(W)$ of $\mathcal{A}(W)$ and on the faces $\mathcal{F}(W)$ of $\mathcal{A}(W)$. The action of W on $\mathcal{F}(W)$ extends linearly to an action of W on the semigroup algebra $k \mathcal{F}(W)$. When the Coxeter group W is clear from the context we will write \mathcal{F}, \mathcal{L} and \mathcal{A} for $\mathcal{F}(W), \mathcal{L}(W)$ and $\mathcal{A}(W)$, respectively.

Let c denote a chamber in the reflection arrangement \mathcal{A} of W. If $x \leq c$ is a codimension one face of c, then the hyperplane $\operatorname{supp}(x)$ is called a wall of c. Let $S \subset W$ denote the set of reflections in the walls of c. Then S is a generating set of W [Brown, 1989, $\S \mathrm{I} .5 \mathrm{~A}]$ and there is a well-defined notion of the length of an element in W when expressed as a word in the generators S.

For $J \subset S$ let $W_{J}=\langle J\rangle$ denote the subgroup of W generated by the elements in J. Each coset of W_{J} in W contains a unique element of minimal length [Humphreys, 1990, Proposition 1.10(c)]. Let W^{J} denote the set of these minimal length coset representatives. Let $w_{J}=\sum_{w \in W^{J}} w \in k W$ denote the sum of the minimal length coset representatives of W_{J}, where $k W$ is the group algebra $k W$ of W with coefficients in some field k. The k-vector space $\mathcal{D}(W)$ spanned by the elements w_{J} for $J \subset S$ is a subalgebra of the group algebra $k W$ called the descent algebra of W. It was introduced by Solomon [Solomon, 1976]. The last statement of the following theorem was first noticed by [Bidigare, 1997].

Theorem 2.2 ([Brown, 2000]). Let W be any finite Coxeter group. The following composition is injective with image the descent algebra $\mathcal{D}(W)$ of W.

$$
(k \mathcal{F}(W))^{W} \hookrightarrow \operatorname{End}_{k W}(k \mathcal{C}) \cong \operatorname{End}_{k W}(k W) \cong(k W)^{o p} .
$$

Therefore, $(k \mathcal{F}(W))^{W}$ is anti-isomorphic to $\mathcal{D}(W)$.
Proof. Let \mathcal{C} denote the set of chambers in the reflection arrangement \mathcal{A}. The k-vector space $k \mathcal{C}$ spanned by the chambers \mathcal{C} is a two-sided ideal of the face semigroup algebra $k \mathcal{F}$ of \mathcal{A}. Therefore, it is a $k \mathcal{F}$ module and hence a $(k \mathcal{F})^{W}$-module, where $(k \mathcal{F})^{W}$ denotes the subalgebra of $k \mathcal{F}$ consisting of elements invariant under the action of W. The action of W on $k \mathcal{C}$ commutes with the action of $(k \mathcal{F})^{W}$ on $k \mathcal{C}$, so there is an algebra morphism $(k \mathcal{F})^{W} \rightarrow \operatorname{End}_{k W}(k \mathcal{C})$, where $\operatorname{End}_{k W}(k \mathcal{C})$ denotes the k-algebra of $k W$-endomorphisms of $k \mathcal{C}$. There is an isomorphism $k \mathcal{C} \cong k W$ of $k W$-modules given by identifying $w(c)$ with w for all $w \in W$ (for some fixed chamber c). This gives a k-algebra isomorphism $\operatorname{End}_{k W}(k \mathcal{C}) \cong \operatorname{End}_{k W}(k W)$. Since any $k W$-endomorphism commuting with the action of W is given by right multiplication by an element of $k W$, there is an isomorphism $\operatorname{End}_{k W}(k W) \cong(k W)^{o p}$, where $(k W)^{o p}$ is the k-algebra obtained from $k W$ be reversing the multiplication in $k W$.

Recall that any face $x \in \mathcal{F}$ of the reflection arrangement is in the W orbit of a unique face y of c [Humphreys, 1990, Theorem 1.12]; and that the stabilizer of $y \leq c$ is W_{J}, where J is the set of reflections in the walls of c containing y [Humphreys, 1990, Theorem 1.15]. Therefore, the elements $\sum_{w \in W^{J}} w(y)$ for $y \leq c$ form a basis of $(k \mathcal{F})^{W}$. The above anti-isomorphism sends $\sum_{w \in W^{J}} w(y)$ to $\sum_{w \in W^{J}} w$.
2.5. Coefficients. This section discusses how to expand a product of basis elements in the basis recovering a well-known formula of Garsia and Remmel [Garsia and Remmel, 1985].

Let $B=\left(B_{1}, \ldots, B_{m}\right)$ be a set composition of $[n]$. The shape $\lambda(B)$ of B is the integer composition of n given by the sizes of the blocks of $B: \lambda(B)=\left(\left|B_{1}\right|, \ldots,\left|B_{m}\right|\right)$. Each integer composition λ of n gives an element $x_{\lambda}=\sum_{\lambda(B)=\lambda} B$ in $(k \mathcal{F})^{S_{n}}$. Moreover, these elements are linearly independent, giving a basis of $(k \mathcal{F})^{S_{n}}$. This result describes how to multiply basis elements.

Proposition 2.3. Let α, β and γ denote integer compositions of n. Define elements $c_{\alpha \beta \gamma}$ by

$$
x_{\alpha} x_{\beta}=\sum_{\gamma} c_{\alpha \beta \gamma} x_{\gamma} .
$$

Then $c_{\alpha \beta \gamma}$ is the number of ways that some fixed set composition C of shape γ can be written as the product $A B$ where A and B have shapes α and β, respectively.

Proof. Suppose C is a set composition of shape $\lambda(C)=\gamma$. Then the coefficient of C in the right hand side of the above equation is precisely $c_{\alpha \beta \gamma}$ since all set compositions of shape γ have the same coefficient. The coefficient of C is exactly the number of ways that it can be written as the product $A B$ where A and B are set compositions of shapes α and β, respectively.

As a corollary we obtain a method to determine the coefficients $c_{\alpha \beta \gamma}$ due to Garsia and Remmel.

Corollary 2.4 ([Garsia and Remmel, 1985]). The coefficients $c_{\alpha \beta \gamma}$ in the previous proposition count the number of matrices with row sums equal α, column sums equal to β and whose nonzero entries, read from left to right, top to bottom, is the composition γ.

Proof. Suppose $\gamma=\left(\gamma_{1}, \ldots, \gamma_{k}\right)$ is an integer composition of n. Then the set composition $C=\left(\left\{1, \ldots, \gamma_{1}\right\}, \cdots,\left\{\sum_{i=1}^{k-1} \gamma_{i}, \ldots, \sum_{i=1}^{k} \gamma_{i}\right\}\right)$ has shape γ. From the previous result $c_{\alpha \beta \gamma}$ is the number of different ways of writing C as the product $A B$ of set compositions A and B of shapes α and β, respectively.

The product of $A=\left(A_{1}, \ldots, A_{m}\right)$ and $B=\left(B_{1}, \ldots, B_{l}\right)$ is obtained by reading the entries of the following matrix from left to right, top to bottom, discarding any empty sets.

$$
\left[\begin{array}{cccc}
A_{1} \cap B_{1} & A_{1} \cap B_{2} & \cdots & A_{1} \cap B_{l} \\
A_{2} \cap B_{1} & A_{2} \cap B_{2} & \cdots & A_{2} \cap B_{l} \\
\vdots & \vdots & & \vdots \\
A_{m} \cap B_{1} & A_{m} \cap B_{2} & \cdots & A_{m} \cap B_{l}
\end{array}\right] .
$$

Replacing each set in the matrix by its cardinality gives a matrix whose i-th row sums to α_{i}, whose j-th column sums to β_{j} and whose nonzero entries, read from left to right, top to bottom, give the integer composition γ.

Conversely, given such a matrix, replace the zero entries by an empty set, and replace the i-th nonzero entry, read from left to right, top to bottom, by $\left\{1+\gamma_{1}+\cdots+\gamma_{i-1}, \ldots, \gamma_{1}+\cdots+\gamma_{i}\right\}$. Let A denote the set composition with i-th block equal to the union of the sets in the i-th row of the matrix, and let B denote the set composition with j-th block equal to the union of the sets in the j-th column of the matrix. Note that size of the i-th block of A is α_{i}, so A has shape α. Similarly, B has shape β. And the product $A B=C$, where C is defined above.

Exercise 5. Recover Solomon's original formula for the coefficients. For $J \subset[n-1]$, let $\lambda(J)=\left(j_{1}, j_{2}-j_{1}, j_{3}-j_{2}, \ldots, n-j_{i}\right)$, where $j_{1}<\cdots<j_{i}$ are the elements of J. Then $\lambda(J)$ is an integer composition
on n. Also, let X_{J} denote the set of elements $\omega \in S_{n}$ with $\operatorname{des}(\omega) \subset J$. Prove that $c_{\lambda(K), \lambda(J), \lambda(L)}=\left|\left\{\omega \in X_{J}^{-1} \cap X_{K}: L=K \cap \omega^{-1}(J)\right\}\right|$.

3. Idempotents

This section demonstrates how to use the structure of the face semigroup algebra $k \mathcal{F}$ to determine properties of the descent algebra. In particular, we will construct a complete system of primitive orthogonal idempotents in $k \mathcal{F}$ and use these to construct a complete system of primitive orthogonal idempotents in $(k \mathcal{F})^{S_{n}}$. Then we briefly outline how these determine the projective indecomposable modules, the radical and the quiver of the descent algebra.

3.1. A Complete System of Primitive Orthogonal Idempotents

in $k \mathcal{F}$. Let A be a k-algebra. An element $e \in A$ is idempotent if $e^{2}=e$. It is a primitive idempotent if e is idempotent and we cannot write $e=e_{1}+e_{2}$ where e_{1} and e_{2} are nonzero idempotents in A with $e_{1} e_{2}=$ $0=e_{2} e_{1}$. Equivalently, e is primitive iff $A e$ is an indecomposable A module. A set of elements $\left\{e_{i}\right\}_{i \in I} \subset A$ is a complete system of primitive orthogonal idempotents for A if e_{i} is a primitive idempotent for every i, if $e_{i} e_{j}=0$ for $i \neq j$ and if $\sum_{i} e_{i}=1$.

A complete system of primitive orthogonal idempotents $\left\{e_{i}\right\}_{i \in I}$ provides a lot of information about the structure of the algebra A. Up to isomorphism, the indecomposable projective A-modules are given by the A-modules $A e_{i}$ for $i \in I$ and the simple modules are isomorphic to $A e_{i} / \operatorname{rad}\left(A e_{i}\right)$ for some $i \in I$. Moreover, if M is any A-module, then there is an A-module decomposition of M given by the idempotents: $M \cong \bigoplus_{i \in I} M e_{i}$.

We now turn to constructing a complete system of primitive orthogonal idempotents for $k \mathcal{F}$. For each $X \in \mathcal{L}$, fix an $x \in \mathcal{F}$ with $\operatorname{supp}(x)=X$ and define elements in $k \mathcal{F}$ recursively by the formula,

$$
\begin{equation*}
e_{X}=x-\sum_{Y>X} x e_{Y} . \tag{3.1}
\end{equation*}
$$

Note that $e_{\hat{1}}$ is an arbitrarily chosen chamber.

Example 5. Let us construct these elements for the braid arrangement for $n=3$. The intersection lattice \mathcal{L} consists of five elements.

$$
\mathcal{L}=\{\{1,2,3\},\{12,3\},\{13,2\},\{1,23\},\{123\}\} .
$$

For each of the elements of \mathcal{L} we fix a set composition of that support.

$$
(1,2,3),(12,3),(13,2),(1,23),(123) .
$$

Using Equation (3.1) we construct elements e_{X} for $X \in \mathcal{L}$ recursively.

$$
\begin{aligned}
e_{\{1,2,3\}} & =(1,2,3) . \\
e_{\{12,3\}} & =(12,3)-(12,3) e_{\{1,2,3\}}=(12,3)-(1,2,3) . \\
e_{\{13,2\}} & =(13,2)-(13,2) e_{\{1,2,3\}}=(13,2)-(1,3,2) . \\
e_{\{1,23\}} & =(1,23)-(1,23) e_{\{1,2,3\}}=(1,23)-(1,2,3) . \\
e_{\{123\}} & =(123)-e_{\{12,3\}}-e_{\{13,2\}}-e_{\{1,23\}}-e_{\{1,2,3\}} \\
& =(123)-(12,3)-(13,2)-(1,23)+(1,3,2)+(1,2,3) .
\end{aligned}
$$

It is easy to see that the sum of these elements is (123), the identity element of $k \mathcal{F}$.

Note that $e_{\{1,2,3\}} e_{X}=0$ for all $X \neq\{1,2,3\}$ since the coefficients in e_{X} sum to zero. Next we'll compute $e_{\{13,2\}} e_{\{1,2,3\}}$.

$$
e_{\{13,2\}} e_{\{1,2,3\}}=((13,2)-(1,3,2))(1,2,3)=(1,3,2)-(1,3,2)=0 .
$$

It is straightforward to verify that $e_{X} e_{Y}=0$ if $X \neq Y$ for all $X, Y \in \mathcal{L}$.
Next we'll compute $\left(e_{\{13,2\}}\right)^{2}$.

$$
\begin{aligned}
\left(e_{\{13,2\}}\right)^{2} & =((13,2)-(1,3,2))^{2} \\
& =(13,2)^{2}-(13,2)(1,3,2)-(1,3,2)(13,2)-(1,3,2)^{2} \\
& =(13,2)-(1,3,2)-(1,3,2)-(1,3,2) \\
& =e_{\{13,2\}} .
\end{aligned}
$$

It is straightforward to verify $\left(e_{X}\right)^{2}=e_{X}$ for all $X \in \mathcal{L}$.
To prove that the elements e_{X} give a complete system of primitive orthogonal idempotents in $k \mathcal{F}$ we'll need the following lemma.

Lemma 3.1. Let $w \in \mathcal{F}$ and $X \in \mathcal{L}$. If $\operatorname{supp}(w) \not 又 X$, then $w e_{X}=0$.
Proof. We proceed by induction on X. This is vacuously true if $X=\hat{1}$. Suppose the result holds for all $Y \in \mathcal{L}$ with $Y>X$. Suppose $w \in \mathcal{F}$ and $W=\operatorname{supp}(w) \nsubseteq X$. Using the definition of e_{X} and the identity $w x w=w x$ (Proposition 2 (2)),

$$
w e_{X}=w x-\sum_{Y>X} w x e_{Y}=w x-\sum_{Y>X} w x\left(w e_{Y}\right) .
$$

By induction, $w e_{Y}=0$ if $W \not \leq Y$. Therefore, the summation runs over Y with $W \leq Y$. But $Y>X$ and $Y \geq W$ iff $Y \geq W \vee X$, so the summation runs over Y with $Y \geq W \vee X$.

$$
w e_{X}=w x-\sum_{Y>X} w x\left(w e_{Y}\right)=w x-\sum_{Y \geq X \vee W} w x e_{Y} .
$$

Now let z be the element of support $X \vee W$ chosen in defining $e_{X \vee W}$. So $e_{X \vee W}=z-\sum_{Y>X \vee W} z e_{Y}$. Note that $z e_{X \vee W}=e_{X \vee W}$ since $z=z^{2}$. Therefore, $z=\sum_{Y \geq X \vee W} z e_{Y}$. Since $\operatorname{supp}(w x)=W \vee X=\operatorname{supp}(z)$, it follows from Proposition 2 (5) that $w x=w x z$. Combining the last two statements,

$$
w e_{X}=w x-\sum_{Y \geq X \vee W} w x e_{Y}=w x\left(z-\sum_{Y \geq X \vee W} z e_{Y}\right)=0 .
$$

Theorem 3.2. The elements $\left\{e_{X}\right\}_{X \in \mathcal{L}}$ form a complete system of primitive orthogonal idempotents in $k \mathcal{F}$.

Proof. Complete. $1=\bigcap_{H \in \mathcal{A}} H$ is the only element of support $\hat{0}$. Hence, $e_{\hat{0}}=1-\sum_{Y>\hat{0}} e_{Y}$. Therefore,

$$
\sum_{X} e_{X}=e_{\hat{0}}+\sum_{X \neq \hat{0}} e_{X}=\left(1-\sum_{X>\hat{0}} e_{X}\right)+\sum_{X \neq \hat{0}} e_{X}=1 .
$$

Idempotent. Since e_{Y} is a linear combination of elements of support at least $Y, e_{Y} z=e_{Y}$ for any z with $\operatorname{supp}(z) \leq Y$ (Proposition 2 (5)). Using the definition of e_{X}, the facts $e_{X}=x e_{X}$ and $e_{Y}=e_{Y} y$, and

Lemma 3.1,

$$
e_{X}^{2}=\left(x-\sum_{Y>X} x e_{Y}\right) e_{X}=x e_{X}-\sum_{Y>X} x e_{Y}\left(y e_{X}\right)=x e_{X}=e_{X}
$$

Orthogonal. We show that for every $X \in \mathcal{L}, e_{X} e_{Y}=0$ for $Y \neq X$. If $X=\hat{1}$, then $e_{X} e_{Y}=e_{X} x e_{Y}=0$ for every $Y \neq X$ by Lemma 3.1 since $X=\hat{1}$ implies $X \not \leq Y$. Now suppose the result holds for $Z>X$. That is, $e_{Z} e_{Y}=0$ for all $Y \neq Z$. If $X \not 又 Y$, then $e_{X} e_{Y}=0$ by Lemma 3.1. If $X<Y$, then $e_{X} e_{Y}=x e_{Y}-\sum_{Z>X} x\left(e_{Z} e_{Y}\right)=x e_{Y}-x e_{Y}^{2}=0$.

Primitive. Let $E_{X}=\sum_{Y \geq X} \mu(X, Y) Y$ for all $X \in \mathcal{L}$. Then the above arguments show that the elements E_{X} are orthogonal idempotents in $k \mathcal{L}$ summing to 1 . The number of these elements is the number of elements of \mathcal{L}, so the elements E_{X} form a basis of $k \mathcal{L}$. Moreover, $(k \mathcal{L}) E_{X}=\operatorname{span}_{k}\left(E_{X}\right) \cong k$, which is an indecomposable $k \mathcal{L}$-module. So these elements form a complete system of primitive orthognal idempotents in $k \mathcal{L}$.

We now prove that the elements e_{X} lift the primitive idempotents E_{X} for all $X \in \mathcal{L}$. Indeed, if $X=\hat{1}$, then $\operatorname{supp}\left(e_{\hat{1}}\right)=\hat{1}=E_{\hat{1}}$. Suppose the result holds for $Y>X$. Then $\operatorname{supp}\left(e_{X}\right)=\operatorname{supp}(x-$ $\left.\sum_{Y>X} x e_{Y}\right)=X-\sum_{Y>X}\left(X \vee E_{Y}\right)$. Since E_{Y} is a linear combination of elements $Z \geq Y$, it follows that $X \vee E_{Y}=E_{Y}$ if $Y>X$. Therefore, $\operatorname{supp}\left(e_{X}\right)=X-\sum_{Y>X} E_{Y}$. The Möbius inversion formula applied to $E_{X}=\sum_{Y \geq X} \mu(X, Y) Y$ gives $X=\sum_{Y \geq X} E_{X}$. Hence, $\operatorname{supp}\left(e_{X}\right)=X-\sum_{Y>X} E_{Y}=E_{Y}$.

To see that this is sufficient, suppose E is a primitive idempotent in $k \mathcal{L}$ and that e is an idempotent lifting E. Suppose $e=e_{1}+e_{2}$ with e_{i} orthogonal idempotents. Then $E=\operatorname{supp}(e)=\operatorname{supp}\left(e_{1}\right)+\operatorname{supp}\left(e_{2}\right)$. Since E is primitive and $\operatorname{supp}\left(e_{1}\right)$ and $\operatorname{supp}\left(e_{2}\right)$ are orthogonal idempotents, $\operatorname{supp}\left(e_{1}\right)=0$ or $\operatorname{supp}\left(e_{2}\right)=0$. Say $\operatorname{supp}\left(e_{1}\right)=0$. Then e_{1} is in the kernel of supp. This kernel is nilpotent so $e_{1}^{n}=0$ for some $n \geq 0$. Hence $e_{1}=e_{1}^{n}=0$. Therefore, e is a primitive idempotent.

Remark 3.3. We can replace $x \in \mathcal{F}$ in (3.1) with any linear combination $\tilde{x}=\sum_{\operatorname{supp}(x)=X} \lambda_{x} x$ of elements of support X whose coefficients λ_{x} sum to 1 . The proofs still hold since the element \tilde{x} is idempotent and satisfies $\operatorname{supp}(\tilde{x})=X$ and $\tilde{x} y=\tilde{x}$ if $\operatorname{supp}(y) \leq X$. We will use this observation in the next section to construct a complete system of primitive orthogonal idempotents in for the descent algebra.

Remark 3.4. It can be shown that the above generalizes to give a complete system of primitive orthogonal idempotents in the semigroup algebra of a left regular band. A left regular band is a semigroup S satisfying $x^{2}=x$ and $x y x=x y$ for all $x, y \in S$. It follows from this definition that there exists a lattice L and a surjection supp : $S \rightarrow L$ such that $\operatorname{supp}(x y)=\operatorname{supp}(x) \vee \operatorname{supp}(y)$, and $x y=x$ iff $\operatorname{supp}(y) \leq$ $\operatorname{supp}(x)$ for all $x, y \in S$. These are precisely the properties of \mathcal{F} that we used to prove the above theorem.

Corollary 3.5. The set $\left\{x e_{\operatorname{supp}(x)} \mid x \in \mathcal{F}\right\}$ is a basis of $k \mathcal{F}$ of primitive idempotents.

Proof. Let $y \in \mathcal{F}$. Then by Theorem 3.2 and Lemma 3.1,

$$
y=y 1=y \sum_{X} e_{X}=\sum_{X \geq \operatorname{supp}(y)} y e_{X}=\sum_{X \geq \operatorname{supp}(y)}(y x) e_{X} .
$$

Since $\operatorname{supp}(y x)=\operatorname{supp}(y) \vee \operatorname{supp}(x)=X$, the face y is a linear combination of the elements of the form $x e_{\operatorname{supp}(x)}$. So these elements span $k \mathcal{F}$. Since the number of these elements is the cardinality of \mathcal{F}, which is the dimension of $k \mathcal{F}$, the set forms a basis of $k \mathcal{F}$. The elements are idempotent since $\left(x e_{X}\right)^{2}=\left(x e_{X}\right)\left(x e_{X}\right)=x e_{X}^{2}=x e_{X}$ (since $x y x=x y$ for all $x, y \in \mathcal{F})$. Since $x e_{X}$ also lifts the primitive idempotent $E_{X}=\sum_{Y \geq X} \mu(X, Y) Y \in k \mathcal{L}$, it is also a primitive idempotent (see the end of the proof of Corollary 3.2).
3.2. Idempotents in the Descent Algebra. In this section we will use the above to construct idempotents in the invariant subalgebra $(k \mathcal{F})^{S_{n}}$. In the following let $W=S_{n}$, let \mathcal{F} denote the set of faces of
the braid arrangement in \mathbb{R}^{n}, and let \mathcal{L} be the lattice of set partitions of $[n]$.

For each $X \in \mathcal{L}$, let \widehat{X} denote the normalized sum of all elements of support X.

$$
\widehat{X}=\frac{1}{\#\{x \in \mathcal{F}: \operatorname{supp}(x)=X\}}\left(\sum_{\operatorname{supp}(x)=X} x\right)
$$

Then $w(\widehat{X})=\widehat{w(X)}$ for all $w \in W$. Then the elements $\left\{e_{X}\right\}_{X \in \mathcal{L}}$ in $k \mathcal{F}$ constructed using the formula $e_{X}=\widehat{X}-\sum_{Y>X} \widehat{X} e_{Y}$ is a complete system of primitive orthogonal idempotents for $k \mathcal{F}$ (see Remark 3.3).

Lemma 3.6. For each $w \in W$ and $X \in \mathcal{L}$, we have $w\left(e_{X}\right)=e_{w(X)}$.
Proof. We proceed by induction on $X \in \mathcal{L}$. If $w \in W$, and $X=\hat{1}$, then $w\left(e_{\hat{1}}\right)=w(\widehat{1})=\widehat{1}=e_{\hat{1}}=e_{w(\hat{1})}$. Now suppose that $w\left(e_{Y}\right)=e_{w(Y)}$ for all $Y>X$. Then

$$
\begin{aligned}
w\left(e_{X}\right) & =w \widehat{X}-\sum_{Y>X} w\left(\widehat{X} e_{Y}\right) \\
& =w \widehat{X}-\sum_{Y>X} w(\widehat{X}) w\left(e_{Y}\right) \\
& =\widehat{w X}-\sum_{Y>X} \widehat{w X} e_{w Y} \\
& =\widehat{w X}-\sum_{Y>w X} \widehat{w X} e_{Y} \\
& =e_{w X}
\end{aligned}
$$

We now get a complete system of primitive orthogonal idempotents in $(k \mathcal{F})^{W}$ by summing all the idempotents e_{Y} for Y in the orbit of X. If $[X]$ denotes the W-orbit of $X \in \mathcal{L}$, then let

$$
\varepsilon_{X}=\varepsilon_{[X]}=\sum_{Y \in[X]} e_{Y} .
$$

Since the elements e_{Y} are orthogonal, it follows that the elements ε_{X} are orthogonal idempotents, and it is not difficult to show that these are also primitive. Since $\sum_{Y} e_{Y}=1$, it follows immediately that the
elements ε_{X} sum to 1 . Therefore, we get a complete system of primitive orthogonal idempotents in $(k \mathcal{F})^{W}$. We summarize this in the following.

Proposition 3.7. For each $X \in \mathcal{L}$ let \widehat{X} denote a linear combination of elements of support X whose coefficients sum to 1. Suppose that $w(\widehat{X})=\widehat{w(X)}$ for all $w \in W$ and $X \in \mathcal{L}$. Define e_{X} for $X \in \mathcal{L}$ recursively by $e_{X}=\widehat{X}-\sum_{Y>X} \widehat{X} e_{Y}$. Then the elements $\sum_{Y \in[X]} e_{Y}$, one for each orbit $[X] \in \mathcal{L} / W$, form a complete system of primitive orthogonal idempotents in $(k \mathcal{F})^{W}$.

Using these idempotents we also obtain a basis of $(k \mathcal{F})^{W}$ by idempotents, similar to Corollary 3.5.

Corollary 3.8. The elements

$$
\sum_{w \in W} w\left(x e_{\operatorname{supp}(x)}\right)=\left(\sum_{w \in W} w(x)\right) \varepsilon_{[\operatorname{supp}(x)]}
$$

where $x \in \mathcal{F}$, is a basis of $(k \mathcal{F})^{W}$ of primitive idempotents.
Exercise 6. This exercise will construct a complete system of primitive orthogonal idempotents in the descent algebra using a construction analogous to that used to construct the elements e_{X} in $k \mathcal{F}$.

Let (W, S) denote a finite Coxeter system. Let L denote the poset of subgroups $W_{J}=\langle J\rangle$ generated by subsets J of S. Show that this poset is a lattice isomorphic to the lattice of subsets of S

Define an equivalence class on these subgroups as follows.

$$
W_{J} \sim W_{K} \text { iff there exists } w \in W \text { such that } w W_{J} w^{-1}=W_{K} .
$$

Show that the partial order in L induces a partial order on the equivalence classes as follows. If $\left[W_{J}\right]$ denotes the equivalence class containing W_{J}, then

$$
\left[W_{J}\right] \leq\left[W_{K}\right] \text { iff } W_{J} \text { is conjugate to a subgroup of } W_{K} \text {. }
$$

For each equivalence class $\left[W_{J}\right]$ fix an element x_{J} (the elements used to define the descent algebra of W). Define elements $\varepsilon_{\left[W_{J}\right]}$ as recursively
using the formula

$$
\varepsilon_{\left[W_{J}\right]}=x_{J}-\sum_{\left[W_{K}\right]>\left[W_{J}\right]} x_{J} \varepsilon_{\left[W_{K}\right]} .
$$

Show that the elements $\varepsilon_{\left[W_{J}\right]}$ form a complete system of primitive orthogonal idempotents in the descent algebra.

Exercise 7. Generalize the result in the previous exercise. Find conditions on an k-algebra A so that the above gives a complete system of primitive orthogonal idempotents for A. Let me know if you do.
3.3. A Sampling of Other Results. Here is a sampling of the some of the results about the face semigroup algebra of a hyperplane arrangement and the descent algebras.

Theorem 3.9. There are nice descriptions of the simple modules and the indecomposable projective modules of $k \mathcal{F}$. We can determine the quiver with relations of $k \mathcal{F}$. The quiver is the directed graph obtained from the Hasse diagram of the intersection lattice \mathcal{L} by orienting all edges away from the top vertex (corresponding to \mathbb{R}^{n}). There is one relation for each interval of length two, obtained by summing the paths of length two in that interval.

Corollary 3.10. The algebra $k \mathcal{F}$ depends only on \mathcal{L}. That is, starting from \mathcal{L} there is a construction that will recover $k \mathcal{F}$. (Note that there are arrangements with isomorphic intersection lattices, but non-isomorphic face semigroups, so this is saying something nontrivial.)

Corollary 3.11. $k \mathcal{F}$ is a Koszul algebra. Its Koszul dual is the incidence algebra of the lattice obtained from \mathcal{L} by reversing the order.

Theorem 3.12. Using the above results it is possible to determine information about the simple modules, the indecomposable projective modules, the radical and the quiver of $(k \mathcal{F})^{W}$, hence of the descent algebra of W.

References

[Bidigare, 1997] Bidigare, T. P. (1997). Hyperplane Arrangement Face Algebras and Their Associated Markov Chains. PhD thesis, University of Michigan.
[Brown, 1989] Brown, K. S. (1989). Buildings. Springer-Verlag, New York.
[Brown, 2000] Brown, K. S. (2000). Semigroups, rings, and Markov chains. J. Theoret. Probab., 13(3):871-938.
[Brown, 2004] Brown, K. S. (2004). Semigroup and ring theoretical methods in probability. In Representations of finite dimensional algebras and related topics in Lie theory and geometry, volume 40 of Fields Inst. Commun., pages 3-26. Amer. Math. Soc., Providence, RI.
[Brown and Diaconis, 1998] Brown, K. S. and Diaconis, P. (1998). Random walks and hyperplane arrangements. Ann. Probab., 26(4):1813-1854.
[Garsia and Remmel, 1985] Garsia, A. M. and Remmel, J. (1985). Shuffles of permutations and the Kronecker product. Graphs Combin., 1(3):217-263.
[Humphreys, 1990] Humphreys, J. E. (1990). Reflection groups and Coxeter groups, volume 29 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge.
[Orlik and Terao, 1992] Orlik, P. and Terao, H. (1992). Arrangements of hyperplanes, volume 300 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin.
[Solomon, 1976] Solomon, L. (1976). A Mackey formula in the group ring of a Coxeter group. J. Algebra, 41(2):255-264.

E-mail address: saliola@gmail.com

