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Abstract. We will define an algebra on the faces of a hyper-

plane arrangement and explain how the descent algebra embeds

in this algebra when the hyperplane arrangement is the reflection

arrangement of a finite Coxeter group. We will use the structure

of the former algebra to prove results about the latter algebra.

1. The Face Semigroup Algebra of a Hyperplane

Arrangement

1.1. The Braid Arrangement. The main reference for the theory

of hyperplane arrangements is the book [Orlik and Terao, 1992]. An

introductory treatment is the lecture notes by Richard Stanley posted

on his website.

A hyperplane arrangement A in Rd is a finite set of hyperplanes in

Rd. We will restrict our attention to central hyperplane arrangements

where all the hyperplanes contain the origin.

Through these notes we will be interested specifically in the braid

arrangement B. It consists of the hyperplanes Hij = {v ∈ Rd : vi =

vj} where 1 ≤ i < j ≤ d. Since all the hyperplanes intersect in the

one dimensional subspace v1 = v2 = · · · = vn, the braid arrangement

gives a hyperplane arrangement in a n − 1 dimensional vector space

by intersecting the hyperplanes in the arrangement by the hyperplane

v1+v2+v3 = 0. The arrangement for n = 3 can be pictured as in Figure

1. Figure 2 shows the resulting arrangement for n = 4 intersected with

one hemisphere of the unit sphere of R3. A few notes about the image:

the image shows only one hemisphere of the sphere; the equator does

not correspond to a hyperplane in the arrangement so it is denoted by
1
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Figure 1. The Braid Arrangement for n = 3.

a dotted line; the great circle corresponding to the hyperplane Hij is

labelled i-j; I stole the image from Ken Brown’s paper [Brown, 2000]

and modified it.

The symmetric group Sn on n elements acts on the vector space Rn

by permuting coordinates: for ω ∈ Sn and v ∈ Rn, let

ω(v) = ω((v1, . . . , vn)) = (vω−1(1), . . . , vω−1(n)).

Then the transpositions (i, j) where 1 ≤ i < j ≤ n, which generate Sn,

act on Rn by reflecting about the hyperplanes Hij. Any finite group

isomorphic to a finite group generated by a set of reflections of Rn

is called a finite reflection group or a finite Coxeter group. The results

presented here generalize to all finite Coxeter groups mutatis mutandis.

1.2. The Faces of an Arrangement. Let A denote a hyperplane

arrangement. Each hyperplane H ∈ A determines two open half-spaces

of Rn denoted H+ and H−. The choice of which half-space to label +

or − is arbitrary, but fixed.

A face of A is a nonempty intersection of the form

x =
⋂

H∈A
HσH(x),
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Figure 2. The Braid Arrangement for n = 4.

where σH(x) ∈ {+,−, 0} and H0 = H. Note that x is a relatively open

subset of Rn. If x is a face, then the vector σ(x) = (σH(x))H∈A is the

sign vector of x. In Figure 3 the faces of the braid arrangement for

n = 3 are labelled by their sign vectors.

A chamber is a face that is the nonempty intersections of the open

half spaces determined by the hyperplanes H ∈ A. Equivalently, the

chambers are the faces c such that σH(c) 6= 0 for all H ∈ A. Note

that the chambers are the connected components of the complement

Rn − ∪H∈AH.

Partially order the faces F by x ≤ y iff for each H ∈ A either

σH(x) = 0 or σH(x) = σH(y). Equivalently, x ≤ y iff x ⊂ ȳ. This
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Figure 3. Sign vectors on the faces of the braid ar-

rangement for n = 3.

partial order is called the face relation, and if x ≤ y, then we say x is

a face of y. This terminology comes from the fact that the closure of

a chamber c is a polyhedron and that the closure of the faces (in the

above sense) of c are the polyhedral faces of the polyhedron. Note that

the chambers are the maximal elements in this partial order.

1.2.1. The Faces of the Braid Arrangement. Let A denote the braid

arrangement. Let v ∈ Rn be a vector in a chamber of A. Then v is not

on any of the hyperplanes Hij, so all the coordinates of v are distinct.

Therefore, there exists ω ∈ Sn such that

vω(1) < · · · < vω(n).

All vectors in the chamber satisfy this identity, so the chamber can be

identified with the permutation ω of the set [n] = {1, . . . , n}. (This

is true for any finite reflection group: the chambers of the reflection

arrangement are in bijective correspondence with the elements of the

group.) The faces of the chamber are obtained by changing some of the

inequalities above to equalities. So the faces F of A can be identified
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with set compositions (ordered set partitions) of [n]. For example,

(23, 4, 1) ↔ {v ∈ V : v2 = v3 < v4 < v1}.

Here we have concatenated the elements of each block to simplify no-

tation: (23, 4, 1) denotes the set composition ({2, 3}, {4}, {1}). In Fig-

ure 4 the faces of the braid arrangement for n = 4 are labelled by the

corresponding set compositions.

It is straightforward to verify that the partial order (the face re-

lation) on set compositions is given by (B1, . . . , Bm) ≤ (C1, . . . , Cl)

iff (C1, . . . , Cl) consists of a set composition of B1, followed by a set

composition of B2, and so forth. The action of Sn on F is given by

ω((B1, . . . , Br)) = (ω(B1), . . . , ω(Br)). The poset of faces for the braid

arrangement for n = 3 is depicted in Figure 5.

1.3. The Support Map and the Intersection Lattice. The sup-

port supp(x) of a face x ∈ F is the the intersection of the hyperplanes

in A containing x.

supp(x) =
⋂

H∈A
σH (x)=0

H.

The set L = supp(F) of supports of faces of A is a graded lattice

ordered by inclusion, called the intersection lattice of A. (Some au-

thors order the intersection lattice by reverse inclusion, so some care is

needed while reading the literature.) For X, Y ∈ L the meet X ∧ Y of

X and Y is the intersection X ∩ Y and the join X ∨ Y of X and Y is

X+Y , the smallest subspace of Rd containing both X and Y . The top

element 1̂ of L is the ambient vector space Rd and the bottom element

0̂ is the intersection of all hyperplanes in the arrangement
⋂

H∈AH.

The rank of X ∈ L is the dimension of the subspace X ⊂ Rd.

The chambers are the faces of support 1̂. Since supp(x) ≤ supp(y)

if x ≤ y, the support map supp : F → L is an order-preserving poset

surjection.
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Figure 4. Set compositions on the braid arrangement

when n = 4.

1.3.1. The Support Map and the Intersection Lattice of the Braid Ar-

rangement. As we saw above, the faces of the braid arrangement corre-

spond to set compositions of [n]. Under this identification, the support

map just forgets the order of the set composition, giving a set partition

of [n].

supp
(
(B1, . . . , Br)

)
= {B1, . . . , Br},

where {B1, . . . , Br} is a set partition of [n]. Explicitly, this identification

between set partitions of [n] and the intersection lattice of the braid
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Figure 5. The poset of faces (set compositions) of the

braid arrangement for n = 3.

arrangement is given by the following.

{B1, . . . , Br} ↔
{
v ∈ V : vi = vj if ∃h such that i, j ∈ Bh

}
=

r⋂

h=1

( ⋂
i,j∈Bh

Hij

)
,

where {B1, . . . , Br} is a set partition of [n]. If B and C are set par-

titions of [n], then B l C iff B is obtained from C by merging two

blocks of C. The action of Sn on L is given by ω({B1, . . . , Br}) =

{ω(B1), . . . , ω(Br)}.
1.4. The Face Semigroup. For x, y ∈ F the product xy is the face

of A with sign vector

σH(xy) =




σH(x), if σH(x) 6= 0,

σH(y), if σH(x) = 0.

Proposition 1.1. The product xy of two faces x and y is a face of A.

Proof. We need to show that the intersection determined by the sign

vector σ(xy) is nonempty. Let

A =
⋂

σH(x) 6=0

HσH(x), B =
⋂

σH(x)=0

HσH(y).
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Then xy = A∩B. If v ∈ x, then v is contained in A and in the closure

of B. Since A is open, it follows that A ∩ B is nonempty because any

open set containing v intersects B. ¤

It is straightforward to check that this product is associative, non-

commutative and that the identity element is the intersection of all the

hyperplanes in the arrangement 1 =
⋂

H∈AH. Note that the support

of the identity element 1 is 0̂ (and not 1̂).

The support supp : F → L satisfies supp(xy) = supp(x) ∨ supp(y)

for all x, y ∈ F . Therefore, supp is a semigroup surjection, where L is

considered a semigroup with product given by the join ∨, as well as an

ordering-preserving poset surjection.

Exercise 1. Let x, y ∈ F . Prove that if vx and vy are two points in

x and y, respectively, then xy is the face that contains vx + (vy − vx)ε

for all sufficiently small ε > 0. (Hint : If σH(x) 6= 0, then HσH(x) is

an open set containing vx. Thus there exists an εH > 0 such that

vx + (vy − vx)ε ∈ HσH(x) for all 0 ≤ ε < εH . Let ε′ = minσH(x)6=0(εH).

Show that for vx+(vy−vx)ε ∈ HσH(xy) for all H ∈ A and all 0 < ε < ε′.)

Exercise 2. For all x, y ∈ F ,

(1) x2 = x,

(2) xyx = xy,

(3) xy = y iff x ≤ y,

(4) If x ≤ y, then supp(x) ≤ supp(y).

(5) xy = x iff supp(y) ≤ supp(x),

(6) supp(xy) = supp(x) ∨ supp(y).

Remark 1.2. Conditions (1) and (2) of the proposition say that F
belongs to a class of semigroups known as left regular bands.

Exercise 3. Let C denote the set of chambers of a hyperplane arrange-

ment A. Define d : C × C → N for c, c′ ∈ C by setting d(c, c′) equal to

the number of hyperplanes that separate c from c′.

(1) Prove that d is a metric.
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(2) If x is a face of the arrangement A and c ∈ C is a chamber,

then show that there is a unique face c′ with x ≤ c′ minimizing

d(c, c′). Prove that c′ = xc.

1.4.1. The Product of Faces in the Braid Arrangement. Recall that the

faces of the braid arrangement correspond to set compositions of [n].

Let B = (B1, . . . , Bl) and C = (C1, . . . , Cm) denote two set composi-

tions of [n]. Let B(i) denote the block of B that contains i, and let

B(i) < B(j) denote that the block B(i) appears before the block B(j)

in B. For each 1 ≤ i < j ≤ n define H+
ij = {v ∈ Rn : vi < vj} and

H−
ij = {v ∈ Rn : vi > vj}. Then the sign vector of B is given by

σHij
(B) =





0, B(i) = B(j),

+, B(i) < B(j),

−, B(i) > B(j).

σHij
(C) =





0, C(i) = C(j),

+, C(i) < C(j),

−, C(i) > C(j).

Therefore, the sign vector of the product BC is given by

σHij
(BC) =





0, B(i) = B(j) and C(i) = C(j),

+, B(i) < B(j), or B(i) = B(j) and C(i) < C(j),

−, B(i) > B(j), or B(i) = B(j) and C(j) < C(i).

From this it follows that the product of set compositions B and C is

(B1, . . . , Bl) (C1, . . . , Cm)

= (B1 ∩ C1, . . . , B1 ∩ Cm, · · · , Bl ∩ C1, . . . , Bl ∩ Cm)$,

where $ means “delete empty intersections”.

Here are some examples.

Example 1. (2467, 931, 58)(34, 1256, 789) = (4, 26, 7, 3, 1, 9, 5, 8). Try

it at home; it’s fun.

Example 2. (5, 1234678)(2, 4, 6, 7, 3, 1, 5, 8) = (5, 2, 4, 6, 7, 3, 1, 8). In

this example, a chamber c is multiplied on the left by a set composition

of the form (i, [n]− i). This has the effect of moving i to the beginning
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(the top) of the set composition c. This process is known as the random-

to-top shuffle.

Example 3. (137, 24568)(2, 4, 6, 7, 3, 1, 5, 8) = (7, 3, 1, 2, 4, 6, 5, 8). In

this example a chamber c is multiplied on the left by a set composition

of the form (S, [n] − S) where S ⊂ [n]. This has the effect of moving

the elements of S, in the order they appeared in the composition c, to

the beginning of the composition. This is precisely the inverse of riffle

shuffling a deck of cards. When you riffle shuffle a deck of cards, you

divide the set in half and shuffle the cards together. Here we pull out

a subset of the cards and place the cards on top.

Example 4. (137, 245, 8, 6)(1, 2, 3, 4, 5, 6, 7, 8) = (1, 3, 7, 2, 4, 5, 8, 6).

Here a face set composition B = (B1, . . . , Bm) of [n] is multiplied

on the right by the chamber (1, 2, . . . , n). The resulting set compo-

sition has singleton blocks, and is obtained by listing the elements of

B1 in numerical order, followed by the elements of B2 in numerical

order, and so forth. Let ω ∈ Sn be the permutation corresponding

to this composition. In this example ω = (1, 3, 7, 2, 4, 5, 8, 6). Then

the set of indices i for which ω(i) > ω(i + 1) is a subset of the

{|B1|, |B1| + |B2|, . . . , |B1| + · · · + |Bm−1|} since ω(i) < ω(i + 1) if

the i-th element and the i+1-th element appear in the same block Bj.

Proposition 1.3. Let (B1, . . . , Bm) be a set composition of [n]. Then

the product (B1, . . . , Bm)(1, 2, . . . , n) is the set composition formed by

listing the elements of B1 in (numerical) order, then listing the elements

of B2 in order, and so forth. Explicitly, (B1, . . . , Bm)(1, 2, . . . , n) is
(
b
(1)
1 , b

(1)
2 , . . . , b

(1)
|B1|, · · · , b

(m)
1 , b

(m)
2 , . . . , b

(m)
|Bm|

)
.

where b
(i)
1 < b

(i)
2 < . . . < b

(i)
|Bi| are the elements of the block Bi. Moreover,

{i : ω(i) > ω(i+ 1)} ⊆ {|B1|, |B1|+ |B2|, . . . , |B1|+ · · ·+ |Bm−1|}.

1.5. The Face Semigroup Algebra. Let A denote a hyperplane ar-

rangement in Rn and let k denote an arbitrary field. The face semigroup
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algebra of A with coefficients in the field k is the semigroup algebra

kF of the face semigroup F of A. It consists of linear combinations of

elements of F with multiplication induced by the product of F . The

face semigroup algebra kF is a finite dimensional associative algebra

with identity 1 =
⋂

H∈AH. Unless explicitly stated otherwise, no as-

sumptions will be made on the characteristic of the field k.

1.6. Random Walks on the Chambers of a Hyperplane Ar-

rangement. Let A denote a hyperplane arrangement. It follows from

the definition that the product of a face with a chamber, in either or-

der, is a chamber. Therefore, the set C of chambers is an ideal of the

semigroup F . We can therefore run a random walk on this ideal using

the product of F .

Let p = {px}x∈F denote a probability distribution on the faces F .

Therefore, the px are nonnegative real numbers satisfying
∑

x px = 1.

If at the i-th stage of the random walk we are at a chamber c, then

pick a face x with probability px and move to the chamber xc. To be

explicit, xc is the product of the faces x and c.

As noted in the previous section, if A is the braid arrangement and if

px is nonzero only on the faces of the form (i, [n]− i), where 1 ≤ i ≤ n,

and zero otherwise, then the resulting random walk is the random-to-

top card shuffling process. Similarly, one obtains the inverse riffle shuffle

by assigning weights 1/2n to the faces (S, [n] − S) with ∅ ( S ( [n]

and 2/2n to the one block partition ([n]).

The main tool for studying a random walk is the transition matrix T

of the random walk. It is the matrix indexed by the “states” of the ran-

dom walk and with (s, t)-entry the probability of moving to the state

s from the state t. For the random walks on the chambers of a hyper-

plane arrangement, the states are the chambers and the probability of

moving from chamber c to chamber d is the sum of the probabilities

px on the faces x satisfying d = xc. Therefore, the (c, d)-entry of T

is T (c, d) =
∑

xc=d px. We can now state a remarkable theorem that

describes the eigenvalues of the transition matrix.
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Theorem 1.4 ([Brown and Diaconis, 1998]). Let A be a hyperplane

arrangement in V = Rn, let F be the set of faces, left L be the in-

tersection lattice and let p be a probability measure on F . Then the

transition matrix T of the random walk defined above is diagonalizable.

For each X ∈ L there is one eigenvalue

λX =
∑
x∈F

supp(x)≤X

px,

with multiplicity

mX = |µ(X, V )| = (−1)codim(X)µ(X, V ),

where µ is the Möbius function of L.

This result was extended in [Brown, 2000] to the entire class of semi-

groups known as left regular bands, and later partly generalized to

semigroups known as bands [Brown, 2004]. These papers are based on

the following observation. Let {px}x∈F denote a probability measure

on the faces F , and let p =
∑

x∈F pxx denote the element of the semi-

group algebra RF of F with the coefficient of x given by px. (The

semigroup algebra is defined in the next section.) Then for any ele-

ment a =
∑

c∈F acc of RC,

pa =
∑

x

pxx
∑

c

acc =
∑

d


∑

x,c
xc=d

acpx


 d =

∑

d

(∑
c

acT (c, d)

)
d,

where T is the transition matrix of the random walk. Therefore, left

multiplication by p corresponds to right multiplication by T on row

vectors (ac)c∈C. This allows one to study the random walk by using

algebraic techniques. For example, Brown shows that the subalgebra

R[p] of RF generated by p =
∑

x pxx, where px ≥ 0, is split semisimple,

which implies that the action of p on any R[p]-module is diagonalizable.

Since kC is a R[p]-module, the diagonalizability result follows. The

eigenvalues with their multiplicities are obtained using the irreducible

representations of the semigroup algebra RF .
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2. The Descent Algebra in the Face Semigroup Algebra

of a Reflection Arrangement

In this section we will prove that the descent algebra of Sn is anti-

isomorphic to a subalgebra of the face semigroup algebra kF of the

braid arrangement. We begin by defining the descent algebra of Sn.

2.1. The Descent Algebra of Sn. Let ω ∈ Sn. The descent set

des(ω) of ω is the set of indices i for which ω(i) > ω(i+ 1).

des(ω) = {i ∈ [n− 1] : ω(i) > ω(i+ 1)}.

For J ⊂ [n− 1] let xJ denote the element of the group algebra kSn of

Sn that is the sum of all elements of Sn with descent set contained in

J .

xJ =
∑

des(ω)⊆J

ω.

Solomon proved that the elements xJ for J ⊂ [n − 1] form a basis of

a subalgebra D(Sn) of kSn, called the descent algebra [Solomon, 1976].

He showed that such an algebra can be constructed for each finite

Coxeter group.

2.2. An Action of Sn on Set Compositions. Suppose A is an al-

gebra. Let G be a group. The group G is said to act on A if there is

a homomorphism of G into the group of endomorphisms of A (recall

that an endomorphism of A is an algebra isomorphism A
∼=→ A). We

denote the action of g ∈ G on a ∈ A by writing g(a). Let AG denote

the set of elements a ∈ A such that g(a) = a for all g ∈ G. Then AG

is a subalgebra of A: if a, a′ ∈ A, then g(a) = a and g(a′) = a′ for all

g ∈ G; hence g(aa′) = g(a)g(a′) = aa′ for all g ∈ G. The algebra AG is

called the G-invariant subalgebra of A.

We now show that there is an action of Sn on the algebra kF . Recall

that a face of an arrangement is a nonempty intersection of the form⋂
H H

σH , where σH is either 0, + or −. Since the action of Sn on Rn

permutes the set of hyperplanes in the braid arrangement, it follows
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that this action of Sn on Rn permutes the set of faces F of the braid

arrangement. By identifying the faces with set compositions this action

of Sn is given by: for ω ∈ Sn and a set composition (B1, . . . , Bm),

ω
(
(B1, . . . , Bm)

)
=

(
ω(B1), . . . , ω(Bm)

)
.

Exercise 4. Show that this action of Sn on set compositions of [n]

agrees with the action of Sn on Rn after identifying the faces of the

braid arrangement with set compositions of [n].

2.3. The Descent Algebra as a Subalgebra of the Face Semi-

group Algebra of the Braid Arrangement.

Theorem 2.1 ([Bidigare, 1997]). The descent algebra D(Sn) of Sn is

anti-isomorphic to the subalgebra (kF)Sn.

Proof. Let C denote the set of chambers in the braid arrangement and

let kC denote the k-vector space spanned by the chambers C. Since the

product of a face with a chamber is always a chamber, it follows that

kC is a two-sided ideal of the face semigroup algebra kF . This allows

us to view kC as a (left) kF -module. The action of a ∈ kF on any

element b ∈ kC is given by multiplying b by a on the left: a · b = ab.

Since kC is a kF -module and (kF)Sn is a subalgebra of kF , it follows

that kC is also a (kF)Sn-module. Therefore, each element a ∈ (kF)Sn

gives an endomorphism fa of kC via the multiplication in kF :

fa : kC → kC
fa(b) = ab.

Note that fa commutes with the action of Sn: if ω ∈ Sn, then

ω(fa(b)) = ω(ab) = ω(a)ω(b) = aω(b) = fa(ω(b)),

by using the fact that w(a) = a for all ω ∈ Sn. This gives an algebra

homomorphism (kF)Sn → EndkSn(kC), where EndkSn(kC) denotes the

k-algebra of kSn-endomorphisms of kC.

Recall that C is the set of set compositions of [n] into singleton blocks.

This gives an isomorphism ψ : kSn → kC of Sn-modules by mapping
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the permutation ω ∈ Sn to the chamber (ω(1), . . . , ω(n)). This in turn

gives a k-algebra isomorphism EndkSn(kC) ∼= EndkSn(kSn):

EndSn(kC) → EndSn(kSn)

f 7→ ψ ◦ f ◦ ψ−1.

Recall that EndkSn(kSn) is the algebra of homomorphisms g : kSn →
kSn that commute with the action of Sn. Therefore, for any ω ∈ Sn,

we have

g(ω) = g(ω1) = ω(g(1)).

That is, any endomorphism g of kSn that commutes with the action of

Sn is given by right multiplication by an element of kSn (multiplication

by g(1)). This gives an isomorphism

EndkSn(kSn) → (kSn)op

g 7→ g(1),

with inverse that sends an element d ∈ kSn to the endomorphism

g(a) = ad. Here (kSn)op denotes the algebra obtained from kSn by

reversing its multiplication since the above map is a product reversing

isomorphism.

Combining all these maps gives the homomorphism

ξ : (kF)Sn → (kSn)op

ξ(a) =
(
ψ ◦ fa ◦ ψ−1

)
(1).

Next we apply ξ to elements of (kF)Sn . Let B = (B1, . . . , Bm) denote

a set composition of [n] and let aB denote the sum of all compositions

in the Sn-orbit of B. Then aB ∈ (kF)Sn . Moreover, any element of

(kF)Sn is a linear combination of elements of this form. We have,

ξ(aB) =
(
ψ ◦ faB

◦ ψ−1
)
(1)

=
(
ψ ◦ faB

)
((1, 2, . . . , n))

= ψ
(
aB(1, 2, . . . , n)

)
.
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But aB(1, 2, . . . , n) is the sum of all the set compositions into singleton

blocks where the corresponding permutation has descent set contained

in J := {|B1|, |B1| + |B2|, . . . , |B1| + · · · + |Bm−1|} (this follows from

Proposition 1.3). Therefore, ξ(aB) is the sum of all the permutations

in Sn with descent set contained in J . That is, ξ(aB) = xJ .

Since the elements aB span (kF)Sn , it follows that the image of ξ is

the descent algebra. This proves that D(Sn) is indeed an algebra, being

the homomorphic image of an algebra morphism. To show that we have

an isomorphism it is enough to count dimensions. The descent algebra

is of dimension 2n−1 since the elements xJ are linearly independent and

there are 2n−1 of them (one for each J ⊂ [n− 1]). On the other hand,

there are 2n−1 faces of the chamber (1, 2, . . . , n), and the sum of the

elements in the orbits of each of these faces form a basis of (kF)Sn . ¤

2.4. Generalization to all finite Coxeter Groups. This section

outlines how to adapt the above proof to any finite Coxeter group.

A finite Coxeter group W (or a finite reflection group) is a finite group

generated by a set of reflections in a real vector space V . The reflection

arrangement A(W ) of W is the hyperplane arrangement consisting

of the hyperplanes fixed by some reflection in W . The Coxeter group

W permutes the hyperplanes in A(W ), so W acts on the intersection

lattice L(W ) of A(W ) and on the faces F(W ) of A(W ). The action

of W on F(W ) extends linearly to an action of W on the semigroup

algebra kF(W ). When the Coxeter group W is clear from the context

we will write F , L and A for F(W ), L(W ) and A(W ), respectively.

Let c denote a chamber in the reflection arrangement A of W . If

x ≤ c is a codimension one face of c, then the hyperplane supp(x) is

called a wall of c. Let S ⊂ W denote the set of reflections in the walls

of c. Then S is a generating set of W [Brown, 1989, §I.5A] and there is

a well-defined notion of the length of an element in W when expressed

as a word in the generators S.
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For J ⊂ S let WJ = 〈J〉 denote the subgroup of W generated

by the elements in J . Each coset of WJ in W contains a unique el-

ement of minimal length [Humphreys, 1990, Proposition 1.10(c)]. Let

W J denote the set of these minimal length coset representatives. Let

wJ =
∑

w∈W J w ∈ kW denote the sum of the minimal length coset

representatives of WJ , where kW is the group algebra kW of W with

coefficients in some field k. The k-vector space D(W ) spanned by

the elements wJ for J ⊂ S is a subalgebra of the group algebra

kW called the descent algebra of W . It was introduced by Solomon

[Solomon, 1976]. The last statement of the following theorem was first

noticed by [Bidigare, 1997].

Theorem 2.2 ([Brown, 2000]). Let W be any finite Coxeter group.

The following composition is injective with image the descent algebra

D(W ) of W .

(kF(W ))W ↪→ EndkW (kC) ∼= EndkW (kW ) ∼= (kW )op.

Therefore, (kF(W ))W is anti-isomorphic to D(W ).

Proof. Let C denote the set of chambers in the reflection arrangement

A. The k-vector space kC spanned by the chambers C is a two-sided

ideal of the face semigroup algebra kF of A. Therefore, it is a kF -

module and hence a (kF)W -module, where (kF)W denotes the subal-

gebra of kF consisting of elements invariant under the action of W .

The action of W on kC commutes with the action of (kF)W on kC, so

there is an algebra morphism (kF)W → EndkW (kC), where EndkW (kC)

denotes the k-algebra of kW -endomorphisms of kC. There is an isomor-

phism kC ∼= kW of kW -modules given by identifying w(c) with w for all

w ∈ W (for some fixed chamber c). This gives a k-algebra isomorphism

EndkW (kC) ∼= EndkW (kW ). Since any kW -endomorphism commuting

with the action of W is given by right multiplication by an element of

kW , there is an isomorphism EndkW (kW ) ∼= (kW )op, where (kW )op

is the k-algebra obtained from kW be reversing the multiplication in

kW .
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Recall that any face x ∈ F of the reflection arrangement is in the W -

orbit of a unique face y of c [Humphreys, 1990, Theorem 1.12]; and that

the stabilizer of y ≤ c is WJ , where J is the set of reflections in the

walls of c containing y [Humphreys, 1990, Theorem 1.15]. Therefore,

the elements
∑

w∈W J w(y) for y ≤ c form a basis of (kF)W . The above

anti-isomorphism sends
∑

w∈W J w(y) to
∑

w∈W J w. ¤

2.5. Coefficients. This section discusses how to expand a product of

basis elements in the basis recovering a well-known formula of Garsia

and Remmel [Garsia and Remmel, 1985].

Let B = (B1, . . . , Bm) be a set composition of [n]. The shape λ(B)

of B is the integer composition of n given by the sizes of the blocks

of B: λ(B) = (|B1|, . . . , |Bm|). Each integer composition λ of n gives

an element xλ =
∑

λ(B)=λB in (kF)Sn . Moreover, these elements are

linearly independent, giving a basis of (kF)Sn . This result describes

how to multiply basis elements.

Proposition 2.3. Let α, β and γ denote integer compositions of n.

Define elements cαβγ by

xαxβ =
∑

γ

cαβγ xγ.

Then cαβγ is the number of ways that some fixed set composition C of

shape γ can be written as the product AB where A and B have shapes

α and β, respectively.

Proof. Suppose C is a set composition of shape λ(C) = γ. Then the

coefficient of C in the right hand side of the above equation is precisely

cαβγ since all set compositions of shape γ have the same coefficient. The

coefficient of C is exactly the number of ways that it can be written as

the product AB where A and B are set compositions of shapes α and

β, respectively. ¤

As a corollary we obtain a method to determine the coefficients cαβγ

due to Garsia and Remmel.
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Corollary 2.4 ([Garsia and Remmel, 1985]). The coefficients cαβγ in

the previous proposition count the number of matrices with row sums

equal α, column sums equal to β and whose nonzero entries, read from

left to right, top to bottom, is the composition γ.

Proof. Suppose γ = (γ1, . . . , γk) is an integer composition of n. Then

the set composition C =
(
{1, . . . , γ1}, · · · , {

∑k−1
i=1 γi, . . . ,

∑k
i=1 γi}

)
has

shape γ. From the previous result cαβγ is the number of different ways

of writing C as the product AB of set compositions A and B of shapes

α and β, respectively.

The product of A = (A1, . . . , Am) and B = (B1, . . . , Bl) is obtained

by reading the entries of the following matrix from left to right, top to

bottom, discarding any empty sets.



A1 ∩B1 A1 ∩B2 · · · A1 ∩Bl

A2 ∩B1 A2 ∩B2 · · · A2 ∩Bl

...
...

...

Am ∩B1 Am ∩B2 · · · Am ∩Bl



.

Replacing each set in the matrix by its cardinality gives a matrix whose

i-th row sums to αi, whose j-th column sums to βj and whose nonzero

entries, read from left to right, top to bottom, give the integer compo-

sition γ.

Conversely, given such a matrix, replace the zero entries by an empty

set, and replace the i-th nonzero entry, read from left to right, top to

bottom, by {1+ γ1 + · · ·+ γi−1, . . . , γ1 + · · ·+ γi}. Let A denote the set

composition with i-th block equal to the union of the sets in the i-th

row of the matrix, and let B denote the set composition with j-th block

equal to the union of the sets in the j-th column of the matrix. Note

that size of the i-th block of A is αi, so A has shape α. Similarly, B

has shape β. And the product AB = C, where C is defined above. ¤

Exercise 5. Recover Solomon’s original formula for the coefficients.

For J ⊂ [n − 1], let λ(J) = (j1, j2 − j1, j3 − j2, . . . , n − ji), where

j1 < · · · < ji are the elements of J . Then λ(J) is an integer composition
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on n. Also, let XJ denote the set of elements ω ∈ Sn with des(ω) ⊂ J .

Prove that cλ(K),λ(J),λ(L) = |{ω ∈ X−1
J ∩XK : L = K ∩ ω−1(J)}|.

3. Idempotents

This section demonstrates how to use the structure of the face semi-

group algebra kF to determine properties of the descent algebra. In

particular, we will construct a complete system of primitive orthogo-

nal idempotents in kF and use these to construct a complete system

of primitive orthogonal idempotents in (kF)Sn . Then we briefly out-

line how these determine the projective indecomposable modules, the

radical and the quiver of the descent algebra.

3.1. A Complete System of Primitive Orthogonal Idempotents

in kF . Let A be a k-algebra. An element e ∈ A is idempotent if e2 = e.

It is a primitive idempotent if e is idempotent and we cannot write

e = e1 + e2 where e1 and e2 are nonzero idempotents in A with e1e2 =

0 = e2e1. Equivalently, e is primitive iff Ae is an indecomposable A-

module. A set of elements {ei}i∈I ⊂ A is a complete system of primitive

orthogonal idempotents for A if ei is a primitive idempotent for every

i, if eiej = 0 for i 6= j and if
∑

i ei = 1.

A complete system of primitive orthogonal idempotents {ei}i∈I pro-

vides a lot of information about the structure of the algebra A. Up to

isomorphism, the indecomposable projective A-modules are given by

the A-modules Aei for i ∈ I and the simple modules are isomorphic to

Aei/ rad(Aei) for some i ∈ I. Moreover, if M is any A-module, then

there is an A-module decomposition of M given by the idempotents:

M ∼= ⊕
i∈I Mei.

We now turn to constructing a complete system of primitive or-

thogonal idempotents for kF . For each X ∈ L, fix an x ∈ F with

supp(x) = X and define elements in kF recursively by the formula,

eX = x−
∑
Y >X

xeY .(3.1)

Note that e1̂ is an arbitrarily chosen chamber.
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Example 5. Let us construct these elements for the braid arrangement

for n = 3. The intersection lattice L consists of five elements.

L =
{
{1, 2, 3}, {12, 3}, {13, 2}, {1, 23}, {123}

}
.

For each of the elements of L we fix a set composition of that support.

(1, 2, 3), (12, 3), (13, 2), (1, 23), (123).

Using Equation (3.1) we construct elements eX for X ∈ L recursively.

e{1,2,3} = (1, 2, 3).

e{12,3} = (12, 3)− (12, 3)e{1,2,3} = (12, 3)− (1, 2, 3).

e{13,2} = (13, 2)− (13, 2)e{1,2,3} = (13, 2)− (1, 3, 2).

e{1,23} = (1, 23)− (1, 23)e{1,2,3} = (1, 23)− (1, 2, 3).

e{123} = (123)− e{12,3} − e{13,2} − e{1,23} − e{1,2,3}

= (123)− (12, 3)− (13, 2)− (1, 23) + (1, 3, 2) + (1, 2, 3).

It is easy to see that the sum of these elements is (123), the identity

element of kF .

Note that e{1,2,3}eX = 0 for all X 6= {1, 2, 3} since the coefficients in

eX sum to zero. Next we’ll compute e{13,2}e{1,2,3}.

e{13,2}e{1,2,3} =
(
(13, 2)− (1, 3, 2)

)
(1, 2, 3) = (1, 3, 2)− (1, 3, 2) = 0.

It is straightforward to verify that eXeY = 0 if X 6= Y for all X, Y ∈ L.

Next we’ll compute (e{13,2})2.

(e{13,2})
2 =

(
(13, 2)− (1, 3, 2)

)2

= (13, 2)2 − (13, 2)(1, 3, 2)− (1, 3, 2)(13, 2)− (1, 3, 2)2

= (13, 2)− (1, 3, 2)− (1, 3, 2)− (1, 3, 2)

= e{13,2}.

It is straightforward to verify (eX)2 = eX for all X ∈ L.

To prove that the elements eX give a complete system of primitive

orthogonal idempotents in kF we’ll need the following lemma.
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Lemma 3.1. Let w ∈ F and X ∈ L. If supp(w) 6≤ X, then weX = 0.

Proof. We proceed by induction on X. This is vacuously true if X = 1̂.

Suppose the result holds for all Y ∈ L with Y > X. Suppose w ∈ F
and W = supp(w) 6≤ X. Using the definition of eX and the identity

wxw = wx (Proposition 2 (2)),

weX = wx−
∑
Y >X

wxeY = wx−
∑
Y >X

wx(weY ).

By induction, weY = 0 if W 6≤ Y . Therefore, the summation runs over

Y with W ≤ Y . But Y > X and Y ≥ W iff Y ≥ W ∨ X, so the

summation runs over Y with Y ≥ W ∨X.

weX = wx−
∑
Y >X

wx(weY ) = wx−
∑

Y≥X∨W

wxeY .

Now let z be the element of support X ∨W chosen in defining eX∨W .

So eX∨W = z −∑
Y >X∨W zeY . Note that zeX∨W = eX∨W since z = z2.

Therefore, z =
∑

Y≥X∨W zeY . Since supp(wx) = W ∨X = supp(z), it

follows from Proposition 2 (5) that wx = wxz. Combining the last two

statements,

weX = wx−
∑

Y≥X∨W

wxeY = wx

(
z −

∑
Y≥X∨W

zeY

)
= 0. ¤

Theorem 3.2. The elements {eX}X∈L form a complete system of prim-

itive orthogonal idempotents in kF .

Proof. Complete. 1 =
⋂

H∈AH is the only element of support 0̂. Hence,

e0̂ = 1−∑
Y >0̂ eY . Therefore,

∑
X

eX = e0̂ +
∑

X 6=0̂

eX =


1−

∑

X>0̂

eX


 +

∑

X 6=0̂

eX = 1.

Idempotent. Since eY is a linear combination of elements of support

at least Y , eY z = eY for any z with supp(z) ≤ Y (Proposition 2 (5)).

Using the definition of eX , the facts eX = xeX and eY = eY y, and
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Lemma 3.1,

e2X =

(
x−

∑
Y >X

xeY

)
eX = xeX −

∑
Y >X

xeY (yeX) = xeX = eX .

Orthogonal. We show that for every X ∈ L, eXeY = 0 for Y 6= X. If

X = 1̂, then eXeY = eXxeY = 0 for every Y 6= X by Lemma 3.1 since

X = 1̂ implies X 6≤ Y . Now suppose the result holds for Z > X. That

is, eZeY = 0 for all Y 6= Z. If X 6≤ Y , then eXeY = 0 by Lemma 3.1. If

X < Y , then eXeY = xeY −
∑

Z>X x(eZeY ) = xeY − xe2Y = 0.

Primitive. Let EX =
∑

Y≥X µ(X, Y )Y for all X ∈ L. Then the

above arguments show that the elements EX are orthogonal idempo-

tents in kL summing to 1. The number of these elements is the number

of elements of L, so the elements EX form a basis of kL. Moreover,

(kL)EX = spank(EX) ∼= k, which is an indecomposable kL-module. So

these elements form a complete system of primitive orthognal idempo-

tents in kL.

We now prove that the elements eX lift the primitive idempotents

EX for all X ∈ L. Indeed, if X = 1̂, then supp(e1̂) = 1̂ = E1̂.

Suppose the result holds for Y > X. Then supp(eX) = supp(x −∑
Y >X xeY ) = X − ∑

Y >X(X ∨ EY ). Since EY is a linear combina-

tion of elements Z ≥ Y , it follows that X ∨ EY = EY if Y > X.

Therefore, supp(eX) = X − ∑
Y >X EY . The Möbius inversion for-

mula applied to EX =
∑

Y≥X µ(X, Y )Y gives X =
∑

Y≥X EX . Hence,

supp(eX) = X −∑
Y >X EY = EY .

To see that this is sufficient, suppose E is a primitive idempotent in

kL and that e is an idempotent lifting E. Suppose e = e1 + e2 with

ei orthogonal idempotents. Then E = supp(e) = supp(e1) + supp(e2).

Since E is primitive and supp(e1) and supp(e2) are orthogonal idem-

potents, supp(e1) = 0 or supp(e2) = 0. Say supp(e1) = 0. Then e1 is in

the kernel of supp. This kernel is nilpotent so en
1 = 0 for some n ≥ 0.

Hence e1 = en
1 = 0. Therefore, e is a primitive idempotent. ¤
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Remark 3.3. We can replace x ∈ F in (3.1) with any linear combi-

nation x̃ =
∑

supp(x)=X λxx of elements of support X whose coefficients

λx sum to 1. The proofs still hold since the element x̃ is idempotent

and satisfies supp(x̃) = X and x̃y = x̃ if supp(y) ≤ X. We will use

this observation in the next section to construct a complete system of

primitive orthogonal idempotents in for the descent algebra.

Remark 3.4. It can be shown that the above generalizes to give a

complete system of primitive orthogonal idempotents in the semigroup

algebra of a left regular band. A left regular band is a semigroup S

satisfying x2 = x and xyx = xy for all x, y ∈ S. It follows from this

definition that there exists a lattice L and a surjection supp : S → L

such that supp(xy) = supp(x) ∨ supp(y), and xy = x iff supp(y) ≤
supp(x) for all x, y ∈ S. These are precisely the properties of F that

we used to prove the above theorem.

Corollary 3.5. The set {xesupp(x) | x ∈ F} is a basis of kF of primitive

idempotents.

Proof. Let y ∈ F . Then by Theorem 3.2 and Lemma 3.1,

y = y1 = y
∑
X

eX =
∑

X≥supp(y)

yeX =
∑

X≥supp(y)

(yx)eX .

Since supp(yx) = supp(y) ∨ supp(x) = X, the face y is a linear

combination of the elements of the form xesupp(x). So these elements

span kF . Since the number of these elements is the cardinality of F ,

which is the dimension of kF , the set forms a basis of kF . The ele-

ments are idempotent since (xeX)2 = (xeX)(xeX) = xe2
X = xeX (since

xyx = xy for all x, y ∈ F). Since xeX also lifts the primitive idempo-

tent EX =
∑

Y≥X µ(X, Y )Y ∈ kL, it is also a primitive idempotent

(see the end of the proof of Corollary 3.2). ¤

3.2. Idempotents in the Descent Algebra. In this section we will

use the above to construct idempotents in the invariant subalgebra

(kF)Sn . In the following let W = Sn, let F denote the set of faces of
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the braid arrangement in Rn, and let L be the lattice of set partitions

of [n].

For each X ∈ L, let X̂ denote the normalized sum of all elements of

support X.

X̂ =
1

#{x ∈ F : supp(x) = X}


 ∑

supp(x)=X

x


 .

Then w(X̂) = ŵ(X) for all w ∈ W . Then the elements {eX}X∈L in

kF constructed using the formula eX = X̂ −∑
Y >X X̂eY is a complete

system of primitive orthogonal idempotents for kF (see Remark 3.3).

Lemma 3.6. For each w ∈ W and X ∈ L, we have w(eX) = ew(X).

Proof. We proceed by induction on X ∈ L. If w ∈ W , and X = 1̂, then

w(e1̂) = w(1̂) = 1̂ = e1̂ = ew(1̂). Now suppose that w(eY ) = ew(Y ) for

all Y > X. Then

w(eX) = wX̂ −
∑
Y >X

w
(
X̂eY

)

= wX̂ −
∑
Y >X

w
(
X̂

)
w(eY )

= ŵX −
∑
Y >X

ŵXewY

= ŵX −
∑

Y >wX

ŵXeY

= ewX . ¤

We now get a complete system of primitive orthogonal idempotents

in (kF)W by summing all the idempotents eY for Y in the orbit of X.

If [X] denotes the W -orbit of X ∈ L, then let

εX = ε[X] =
∑

Y ∈[X]

eY .

Since the elements eY are orthogonal, it follows that the elements εX

are orthogonal idempotents, and it is not difficult to show that these

are also primitive. Since
∑

Y eY = 1, it follows immediately that the
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elements εX sum to 1. Therefore, we get a complete system of primitive

orthogonal idempotents in (kF)W . We summarize this in the following.

Proposition 3.7. For each X ∈ L let X̂ denote a linear combination

of elements of support X whose coefficients sum to 1. Suppose that

w(X̂) = ŵ(X) for all w ∈ W and X ∈ L. Define eX for X ∈ L
recursively by eX = X̂ − ∑

Y >X X̂eY . Then the elements
∑

Y ∈[X] eY ,

one for each orbit [X] ∈ L/W , form a complete system of primitive

orthogonal idempotents in (kF)W .

Using these idempotents we also obtain a basis of (kF)W by idem-

potents, similar to Corollary 3.5.

Corollary 3.8. The elements

∑
w∈W

w
(
xesupp(x)

)
=

(∑
w∈W

w(x)

)
ε[supp(x)],

where x ∈ F , is a basis of (kF)W of primitive idempotents.

Exercise 6. This exercise will construct a complete system of primitive

orthogonal idempotents in the descent algebra using a construction

analogous to that used to construct the elements eX in kF .

Let (W,S) denote a finite Coxeter system. Let L denote the poset

of subgroups WJ = 〈J〉 generated by subsets J of S. Show that this

poset is a lattice isomorphic to the lattice of subsets of S.

Define an equivalence class on these subgroups as follows.

WJ ∼ WK iff there exists w ∈ W such that wWJw
−1 = WK .

Show that the partial order in L induces a partial order on the equiva-

lence classes as follows. If [WJ ] denotes the equivalence class containing

WJ , then

[WJ ] ≤ [WK ] iff WJ is conjugate to a subgroup of WK .

For each equivalence class [WJ ] fix an element xJ (the elements used

to define the descent algebra of W ). Define elements ε[WJ ] as recursively
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using the formula

ε[WJ ] = xJ −
∑

[WK ]>[WJ ]

xJε[WK ].

Show that the elements ε[WJ ] form a complete system of primitive or-

thogonal idempotents in the descent algebra.

Exercise 7. Generalize the result in the previous exercise. Find con-

ditions on an k-algebra A so that the above gives a complete system of

primitive orthogonal idempotents for A. Let me know if you do.

3.3. A Sampling of Other Results. Here is a sampling of the some

of the results about the face semigroup algebra of a hyperplane ar-

rangement and the descent algebras.

Theorem 3.9. There are nice descriptions of the simple modules and

the indecomposable projective modules of kF . We can determine the

quiver with relations of kF . The quiver is the directed graph obtained

from the Hasse diagram of the intersection lattice L by orienting all

edges away from the top vertex (corresponding to Rn). There is one

relation for each interval of length two, obtained by summing the paths

of length two in that interval.

Corollary 3.10. The algebra kF depends only on L. That is, starting

from L there is a construction that will recover kF . (Note that there are

arrangements with isomorphic intersection lattices, but non-isomorphic

face semigroups, so this is saying something nontrivial.)

Corollary 3.11. kF is a Koszul algebra. Its Koszul dual is the inci-

dence algebra of the lattice obtained from L by reversing the order.

Theorem 3.12. Using the above results it is possible to determine

information about the simple modules, the indecomposable projective

modules, the radical and the quiver of (kF)W , hence of the descent

algebra of W .
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