
THE ROOK MONOID IS LEXICOGRAPHICALLY SHELLABLE

MAHIR BILEN CAN

1. INTRODUCTION.

Let n be a positive integer and let [n] = {1, ...., n}. Let P be a finite graded poset of rank
n with minimum and maximum elements denoted by 0̂ and 1̂, respectively. Let C(P ) be the
set of pairs (x, y) ∈ P ×P such that y covers x. P is called lexicographically shellable (see
Section 2 for a slightly more general definition), if there exists a map f : C(P ) → [n] such
that

(1) in every interval [x, y] of P there is a unique unrefinable chain c : x = x0 < x1 <

· · · < xk+1 = y such that f(xi, xi+1) < f(xi+1, xi+2) for all i = 0, ..., k − 1 ,
(2) the sequence f(c) := (f(x, x1), ..., f(xk, y)) of the unique chain c from (1) is lexi-

cographically first in {f(d)| d is an unrefinable chain in [x, y]}.
The concept of lexicographically shellability is introduced by Björner in [3] and is shown to
imply the weaker property of shellability of ∆(P ), the simplicial complex of all chains of P .
Shellability of a simplicial complex is a combinatorial property with important topological
and algebraic consequences. For more see [5], [17], or [19].

In this paper we are concerned with the question of shellability for Rn, the rook monoid
of 0/1 matrices of size n with at most one 1 in each row and each column. One can view
elements of Rn as non-attacking rook placements on an n×n chess board. This explains the
nomenclature. The partial ordering on Rn that we are interested in comes from the topology
of the “matrix Schubert varieties.” Let us explain.

Let K be an algebraically closed field, and let G = GLn be the general linear group over
K. Denote by B ⊂ G the subgroup of invertible upper triangular matrices. Let Mn be the
set of all n×n matrices over K. Note that Mn is a monoid under matrix multiplication. The
Zariski closure in Mn of an orbit of the action

(1.1) (x, y) · g = xgy−1, g ∈ G, x, y ∈ B

of B ×B on G is called a matrix Schubert variety. It is well known that the matrix Schubert
varieties are parametrized by the symmetric group Sn, and G has the “Bruhat-Chevalley
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decomposition”

(1.2) G =
⊔
w∈Sn

BwB.

Clearly, the action (1.1) on G extends to an action on Mn. In [13], Renner shows that
the orbits of the extended action are parametrized by the rook monoid Rn, furthermore, the
analogue of (1.2) holds:

(1.3) Mn =
⊔
r∈Rn

BrB.

The Bruhat-Chevalley-Renner ordering on Rn is defined by

r ≤ t ⇐⇒ BrB ⊆ BtB.

Here, the bar on the orbit BtB denotes the Zariski closure in Mn.
The main result of this paper is that the rook monoidRn with respect to Bruhat-Chevalley-

Renner ordering is a lexicographically shellable poset. Consequently, we know that for any
interval I in Rn, the simplicial complex ∆(I) has the homotopy type of a wedge of spheres
or balls.

Reductive monoids. The monoid of n× n matrices is an important member of the family
of varieties called algebraic monoids. To place our work appropriately in this general setting
and to help the reader unfamiliar with the theory of algebraic monoids let us briefly recall
the definitions and relevant combinatorial results without detail. See one of [14], [11] or [16]
for more.

Let G be a reductive group. Fix a maximal torus T and a Borel subgroup B such that
T ⊂ B ⊂ G. The Weyl group W associated with (G, T ) is defined to be the quotient group
W = NG(T )/T , where NG(T ) is the normalizer of T in G. In the case of G = GLn the
Weyl group is isomorphic to the symmetric group Sn. The Bruhat-Chevalley order on the
Weyl group W is defined by w ≤ v ⇐⇒ BwB ⊆ BvB. It is shown by different authors
that the Bruhat-Chevalley orders are lexicographically shellable (see [10], [4], and in the
special case of the symmetric group, see [7]).

The generalization of the Bruhat-Chevalley ordering in the realm of algebraic monoids
is due to Renner, [13]. An algebraic monoid is an algebraic variety M together with an
associative binary operation m : M ×M →M which is a morphism of varieties.

An interesting class of algebraic monoids can be described as follows. Let ρ : G0 →
GL(V ) be a rational representation of a semisimple algebraic group G0. By abuse of nota-
tion, letK∗ denote the scalar matrices in the (affine) space End(V ) of linear transformations
on V . Then, the Zariski closure M = K∗ · ρ(G0) in End(V ) is a reductive monoid.

Let G be the (reductive) group of invertible elements of a reductive monoid M , and let
T ⊂ B ⊂ G be a maximal torus and a Borel subgroup. It is shown in [13] that reductive
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monoids have decompositions into double cosets of B

M =
⊔
r∈R

BṙB, ṙ ∈ NG(T )/T,

indexed by a finite monoid R, now called the Renner monoid of M . Here NG(T ) is the
Zariski closure in M of the normalizer in G of T . The Bruhat-Renner ordering on R is
defined as before. In the special case of the defining representation ρ : G0 → GL(Kn) of
G0 = SLn, the Renner monoid R is isomorphic to the rook monoid Rn. The Weyl group W
of (G, T ) forms the group of invertible elements in the Renner monoid R, and the Bruhat-
Chevalley ordering on W extends to the Bruhat-Renner ordering on R.

There is a cross section lattice Λ ⊂ R of idempotents, parametrizing the G×G−orbits in
M

M =
⊔
e∈Λ

GeG.

Furthermore,
R =

⊔
e∈Λ

WeW.

Let e ∈ Λ. In [12], Putcha shows that the subposets WeW ⊆ R of W ×W -orbits in R
are lexicographically shellable posets. It is also known that the cross section lattice Λ ⊆ R

is an (upper) semimodular lattice, hence shellable. However, showing that a Renner monoid
is shellable seems to be a difficult problem.

2. BACKGROUND.

2.0.1. Lexicographic shellability. Let P be a finite poset with a maximum and a minimum
element, denoted by 1̂ and 0̂ respectively. We assume that P is graded of rank n. In other
words, all maximal chains of P have equal length n. Denote by C(P ) the set of covering
relations

C(P ) = {(x, y) ∈ P × P : y covers x}.
An edge-labeling on P is a map of the form f = fP,Γ : C(P ) → Γ for some poset Γ . The
Jordan-Hölder sequence (with respect to f ) of a maximal chain c : x0 < x1 < · · · < xn−1 <

xn of P is the n-tuple

f(c) = (f((x0, x1)), f((x1, x2)), . . . , f((xn−1, xn))) ∈ Γ n.

Fix an edge labeling f , and a maximal chain c : x0 < x1 < · · · < xn. We call both of the
maximal chain c and its image f(c) increasing, if

f((x0, x1)) ≤ f((x1, x2)) ≤ · · · ≤ f((xn−1, xn))

holds in Γ .
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Let k > 0 be a positive integer. We consider the lexicographic (total) ordering on the
k−fold cartesian product Γ k = Γ × · · · × Γ . An edge labeling f : C(P ) → Γ is called an
EL−labeling, if

(1) in every interval [x, y] ⊆ P of rank k > 0 there exists a unique maximal chain c such
that f(c) ∈ Γ k is increasing,

(2) the Jordan-Hölder sequence f(c) ∈ Γ k of the unique chain c from (1) is the smallest
among the Jordan-Hölder sequences of maximal chains x = x0 < x1 < · · · < xk =

y.
A poset P is called EL-shellable, if it has an EL−labeling.

Remark 2.1. There are various lexicographic shellability conditions in the literature and
the EL−shellability defined here is among the stronger ones. A deep relationship between
EL−shellability of a Coxeter groupW and the Kazhdan-Lusztig theory of the Hecke algebra
associated with W is found by Dyer in [6].

2.0.2. The symmetric group. Sn is the set of all permutations of [n]. Let us represent the
elements of Sn in one line notation w = (w1, ..., wn) ∈ Sn so that w(i) = wi. It is well
known that the Sn is a graded poset with respect to Bruhat-Chevalley ordering. Let B be the
invertible upper triangular matrices in SLn. Grading on Sn is given by the length function

(2.1) `(w) = dim(BwB)− dim(B) = inv(w),

where

(2.2) inv(w) = |{(i, j) : 1 ≤ i < j ≤ n, wi > wj}|.

Note that dimB =
(
n+1

2

)
.

The Bruhat-Chevalley ordering on Sn is the smallest partial order generated by the tran-
sitive closure of the following (covering) relations. The permutation x = (a1, ...., an) is
covered by the permutation y = (b1, ..., bn), if `(y) = `(x) + 1 and

(1) ak = bk for k ∈ {1, ..., î, ..., ĵ, ..., n} (hat means omit those numbers),
(2) ai = bj , aj = bi, and ai < aj .

An EL−labeling for Sn is constructed by Edelman [7] as follows. Let Γ = [n]× [n] be the
poset of pairs, ordered lexicographically: (i, j) ≤ (r, s) if i < r, or i = r and j < s. Define
f((x, y)) = (ai, aj), if y = (b1, ..., bn) covers x = (a1, ..., an) such that

(1) ak = bk for k ∈ {1, ..., î, ..., ĵ, ..., n},
(2) ai = bj , aj = bi, and ai < aj .

For n = 3, the EL−labeling of S3 is as depicted in the Figure 1.

Theorem 2.2. ([7]) The symmetric group Sn with Bruhat-Chevalley ordering is lexicograph-
ically shellable.
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(1,2,3)

(3,2,1)

(3,1,2)(2,3,1)

(1,3,2) (2,1,3)

(1,3) (1,3)
(2,3)(1,2)

(1,2)(2,3)

(1,2)(2,3)

FIGURE 1. EL−labeling of S3

2.0.3. The rook monoid. Recall from [13] that the rank function on Rn is given by

(2.3) `(x) = dim(BxB), x ∈ Rn.

There is a combinatorial formula for `(x), x ∈ Rn similar to (2.1). To explain let us represent
the elements of Rn by n-tuples, as we did implicitly for Sn in the previous subsection. Let
x = (xij) ∈ Rn and define the sequence (a1, ..., an) by

(2.4) aj =

{
0 if the j’th column consists of zeros,

i if xij = 1.

By abuse of notation, we denote both the matrix and the sequence (a1, ..., an) by x. For
example, the associated sequence of the partial permutation matrix

x =


0 0 0 0

0 0 0 0

1 0 0 0

0 0 1 0


is x = (3, 0, 4, 0).

Let x = (a1, ...., an) ∈ Rn. A pair (i, j) of indices 1 ≤ i < j ≤ n is called a coinversion
pair for x, if 0 < ai < aj . By abuse of notation, we use coinv for both the set of coinversion
pairs of x, as well as its cardinality.

Example 2.3. Let x = (4, 0, 2, 3). Then, the only coinversion pair for x is (3, 4). Therefore,
coinv(x) = 1.
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In [2], we show that the dimension, `(x) = dim(BxB) of the orbit BxB, x ∈ Rn is given
by

(2.5) `(x) = (
n∑
i=1

a∗i )− coinv(x), where a∗i =

{
ai + n− i, if ai 6= 0

0, if ai = 0

If x = (a1, ..., an) ∈ Sn be a permutation. Then

`(x) = (
n∑
i=1

ai + n− i)− coinv(x)

=

(
n+ 1

2

)
+

(
n

2

)
− coinv(x)

=

(
n+ 1

2

)
+ inv(x),

which agrees with the formula (2.1). In fact, using (2.5) it is easy to see that if x ∈ Rn, then

`(x) =
∑

ai + inv(x),(2.6)

where
inv(x) = |{(i, j) : 1 ≤ i < j ≤ n, ai > aj}|.

In [9], a characterization of the Bruhat-Chevalley ordering on the rook monoidRn is given.

Theorem 2.4. [9] Let x = (a1, ..., an), y = (b1, ..., bn) ∈ Rn. The Bruhat-Chevalley order
on Rn is the smallest partial order on Rn generated by declaring x ≤ y if either

(1) there exists an 1 ≤ i ≤ n such that bi > ai and bj = aj for all j 6= i, or
(2) there exist 1 ≤ i < j ≤ n such that bi = aj, bj = ai with bi > bj , and for all

k /∈ {i, j}, bk = ak.

The following two Lemmas proved in [2] are critical for deciding whether x ≤ y is a
covering relation or not.

Lemma 2.5. Let x = (a1, ..., an) and y = (b1, ..., bn) be elements of Rn. Suppose that
ak = bk for all k = {1, ..., î, ..., n} and ai < bi. Then, `(y) = `(x) + 1 if and only if either

(1) bi = ai + 1, or
(2) there exists a sequence of indices 1 ≤ j1 < · · · < js < i such that the set
{aj1 , ..., ajs} is equal to {ai + 1, ..., ai + s}, and bi = ai + s+ 1.

Example 2.6. Let x = (4, 0, 5, 0, 3, 1), and let y = (4, 0, 5, 0, 6, 1). Then `(x) = 21, and
`(y) = 22. Let z = (6, 0, 5, 0, 3, 1). Then `(z) = 23.
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Lemma 2.7. Let x = (a1, ..., an) and y = (b1, ..., bn) be two elements of Rn. Suppose
that aj = bi, ai = bj and bj < bi where i < j. Furthermore, suppose that for all k ∈
{1, ...̂i, ..., ĵ, ..., n}, ak = bk. Then, `(y) = `(x) + 1 if and only if for s = i + 1, ..., j − 1,
either aj < as, or as < ai.

Example 2.8. Let x = (2, 6, 5, 0, 4, 1, 7), and let y = (4, 6, 5, 0, 2, 1, 7). Then `(x) = 35,
and `(y) = 36. Let z = (7, 6, 5, 0, 4, 1, 2). Then `(z) = 42.

3. AN EL−LABELING OF Rn.

Recall that covering relations of the Bruhat-Renner ordering on Rn are characterized by
the Lemma 2.5, and 2.7. For simplicity, a covering relation is called type 1 if it is as in
Lemma 2.5, and it is called type 2 if it is as in Lemma 2.7.

Using these two lemmas, we define an EL−labeling on Rn

F : C(Rn) −→ Γ,

where Γ is the poset Γ = {0, 1, ..., n} × {0, 1, ..., n} with respect to lexicographic ordering.
Let (x, y) ∈ C(Rn). We define

(3.1) F ((x, y)) =

{
(ai, bi), if y covers x by type 1

(ai, aj), if y covers x by type 2.

For n = 3, the EL−labeling is as depicted in the Figure 2 below.

Remark 3.1. (1) Let F ((x, y)) = (a, b) for some (x, y) ∈ C(Rn). Then, b is never 0.
(2) If y covers x by type 2, then the set of nonzero entries of y is the same as the set of

nonzero entries of x. If y covers x by type 1, then the symmetric difference of the set
of nonzero entries of y and the set of nonzero entries of x has at most 2, and at least
1 elements.

Theorem 3.2. Let Γ = {0, 1, ..., n} × {0, 1, ..., n}, and let F : C(Rn) −→ Γ be the edge-
labeling, defined as in (3.1). Then F is an EL−labeling for Rn.

We prove this theorem in the next Section. The complete labeling ofR3 is shown in Figure
2.

4. PROOFS.

Let Rn be the rook monoid. Let Γ = {0, ..., n} × {0, ..., n}. Then, for any k > 0, Γ k =

Γ×· · ·×Γ is totally ordered with respect to the lexicographic ordering. Let F be the labeling
on Rn, as defined in (3.1). Let [x, y] ⊆ Rn be an interval, and c : x = x0 < · · · < xk = y be
a maximal chain in [x, y]. Let F (c) the Jordan-Hölder sequence of labels of c:

(4.1) F (c) = (F ((x0, x1)), . . . , F ((xk−1, xk))) ∈ Γ k.
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(3,1,2)(2,3,1) (3,2,0)

(3,2,1)

(2,1,3) (2,3,0) (3,0,2)

(2,3)(0,1)
(1,3)

(0,1)(2,3) (1,2)

(0,1)(2,3)
(1,3) (0,2)

(0,1)

(1,2,3) (0,3,2)

(0,1)
(0,2)

(0,3)
(2,3)

(1,2)

(2,1,0)(2,0,3)

(3,1,0)

(0,1)

(0,3)
(0,2)

(2,3)

(1,2) (0,3)(2,3)

(1,2,0)

(1,2)(1,3)

(0,3,1)(0,2,3) (2,0,1) (3,0,0)

(3,0,1)

(1,3) (1,3)
(0,1) (2,3) (0,1) (0,2) (0,2)

(1,2)
(0,1)

(0,1)

(0,1,3) (0,2,1) (0,3,0) (1,0,2) (2,0,0)

(0,0,2)

(0,0,1)

(0,0,0)

(0,1,0)

(1,0,0)(0,2,0)(0,0,3)(0,1,2)

(0,1)(1,2)

(0,1)

(0,2) (2,3)
(0,1)(1,2)(0,2)

(0,2)(0,1)

(1,2)

(0,1) (0,3)
(2,3)

(0,1)
(2,3)

(1,3)
(0,3)

(0,1)

(0,1)

(1,3,0)

(1,0,3)

(1,3,2)
(1,2)

(0,1)
(0,2)

(1,2)(0,3)
(1,3) (1,3)

(2,3)

(0,2)
(1,2)(1,2)

(2,3) (0,2)
(1,2)

(0,1)(0,3) (2,3)(1,2) (0,1)

(2,3)

(0,3)

(1,2)

(2,3)

(0,2)

FIGURE 2. EL−labeling of the rook monoid R3
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Proposition 4.1. Let c : x = x0 < · · · < xk = y be a maximal chain in [x, y] such
that its Jordan-Hölder sequence F (c) is lexicographically smallest among all Jordan-Hölder
sequences (of chains from [x, y]) in Γ k. Then,

(4.2) F ((x0, x1)) ≤ F ((x1, x2)) ≤ · · · ≤ F ((xk−1, xk)).

Before we start our proof, let us give an example in the case of n = 3.

Example 4.2. Let x = (0, 1, 0) and y = (3, 1, 2) in R3. It is easy to check from Figure 2 that
in [x, y] the maximal chain

c : x < (1, 0, 0) < (1, 0, 2) < (1, 2, 0) < (1, 2, 3) < (2, 1, 3) < y

has the (lexicographically) smallest Jordan-Hölder sequence. Obviously,

F (c) = ((0, 1), (0, 2), (0, 2), (0, 3), (1, 2), (2, 3))

is a non-decreasing sequence.

Proof. Assume that (4.2) is not true. Then, there exist three consecutive terms

xt−1 < xt < xt+1

in c, such that

(4.3) F ((xt−1, xt)) > F ((xt, xt+1)).

Obviously, we have the following 4 cases to consider.

Case 1: type(xt, xt+1) = 1, and type(xt−1, xt) = 1.
Case 2: type(xt, xt+1) = 1, and type(xt−1, xt) = 2.
Case 3: type(xt, xt+1) = 2, and type(xt−1, xt) = 1.
Case 4: type(xt, xt+1) = 2, and type(xt−1, xt) = 2.

In each of these cases we construct an element z ∈ [x, y] which covers xt−1, and such
that F ((xt−1, z)) < F ((xt−1, xt)). Since we assume that F (c) is the lexicographically first
Jordan-Hölder sequence, this provides us with the contradictions we seek. To this end, let
xt−1 = (a1, ..., an), xt = (b1, ..., bn) and xt+1 = (c1, ..., cn).

Case 1: Since type(xt−1, xt) = 1, there exists an index 1 ≤ r ≤ n such that bk = ak for
all k 6= r and ar < br. Likewise, there exists 1 ≤ s ≤ n such that ck = bk for all k 6= s,
and bs < cs. Therefore, F ((xt−1, xt)) = (ar, br) and F ((xt, xt+1)) = (bs, cs). Furthermore,
by the assumption, (ar, br) > (bs, cs). Since ar < br, r cannot be equal to s. Otherwise,
F ((xt−1, xt)) = (ar, br) > F ((xt, xt+1)) = (br, cr), which is absurd. Therefore, either
r > s, or r < s. Hence, bs = as.

Suppose first that r > s. Define z = (d1, ..., dn) ∈ Rn by dk = ak for k 6= s, and
ds = cs. It is easy to check that z covers xt−1, and that F ((xt−1, z)) = (as, cs). Since
F ((xt−1, xt)) = (ar, br) > (bs, cs) = (as, cs) = F ((xt−1, z)), we find a contradiction.
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Next, suppose that r < s. Observe that ar = as = 0 is not possible (because, type(xt−1, xt) =

1). Similar to the previous case, define z = (d1, ..., dn) by dk = ak for k 6= s, and
ds = br. It is easy to check that z covers xt−1 and that F ((xt−1, z)) = (as, br) is less
than F ((xt−1, xt)) = (ar, br). This, too, contradicts the hypotheses (on F (c)). Therefore,
Case 1 is finished.

Case 2: Since type(xt, xt+1) = 1, there exists r ∈ [n] such that bk = ck for k 6= r, and
bk < ck, and since type(xt−1, xt) = 2 there exist i < j such that bk = ak for k /∈ {i, j}, and
bi = aj, bj = ai with ai < aj . Then (ai, aj) > (br, cr) by (4.3).

Suppose first that either r < i or r > j is true. Let dk = ak for k 6= r and let dr = cr. Put
z = (d1, ..., dn) ∈ Rn. Then, z covers xt−1 and F ((xt−1, z)) = (ar, cr) < F ((xt−1, xt)) =

(ai, aj). This is a contradiction, as before.
Next, suppose that i ≤ r ≤ j. Then, the first case is i < r < j. Since type(xt−1, xt) = 2,

either ar > aj , or ar < ai. If ar > aj , then ar > ai. This contradicts F ((xt, xt+1)) =

(br, cr) = (ar, cr) < F ((xt−1, xt)) = (ai, aj). Therefore, ar ≤ ai. If ar = ai, then it is
easy to see that ar = ai = 0. But r > i, and type(xt−1, xt) = 2. Therefore, ar = ai = 0

is not possible. So, we conclude that ai > ar. Since type(xt, xt+1) = 2, cr < ai. Note that
ai < aj . Finally, define z = (d1, ..., dn) ∈ Rn by letting dk = ak for k 6= r, and dr = cr. It
is easy to see that z covers xt−1, and that F ((xt−1, z)) = (ar, cr) < F ((xt−1, xt)) = (ai, aj).
This is a contradiction, as before.

The remaining cases are r = i and r = j. If r = j, then F ((xt−1, xt)) = (ai, aj), and
F ((xt, xt+1)) = (ai, cj). Therefore cj < aj . Define z = (d1, ..., dn) ∈ Rn by dk = ak for
k 6= i, and di = cj . It is easy to see that z covers xt−1, and that F ((xt−1, z)) < F ((xt−1, xt)).
This is a contradiction. Finally, if r = i, then F ((xt−1, xt)) = (ai, aj) < F ((xt, xt+1)) =

(aj, ci), contradicting (4.3). This finishes Case 2.
The Case 3 is similar to the Case 2, so we omit the proof.
Case 4: Since type(xt−1, xt) = 2, there exist 1 ≤ i < j ≤ n such that ai < aj , bi = aj ,

bj = ai, and since type(xt, xt+1) = 2, there exist 1 ≤ r < s ≤ n such that br < bs, cr = bs
and cs = br.

If j < r or s < i, define z = (d1, ..., dn) by dk = ak for k 6= {r, s}, and ds = ar, dr = as.
It is easy to check that z covers xt−1, and that F ((xt−1, z)) = (ar, as) < F ((xt−1, xt)) =

(ai, aj). This contradicts the hypotheses. Therefore, one of the following holds:

(a) i ≤ r ≤ j ≤ s, or
(b) r ≤ i ≤ s ≤ j

We proceed with (a). If i < r < j < s, we see that ai > ar. Since type(xt, xt+1) = 2, we
see further that aj > ai > as. Define z = (d1, ..., dn) by dk = ak for k /∈ {r, s} and dr = as,
ds = ar. It is easy to see that z covers xt−1, and that F ((xt−1, z)) = (ar, as) < (ai, aj) =

F ((xt−1, xt))). A contradiction, as before. If i = r < j < s, then F ((xt−1, xt)) = (ai, aj) <

F ((xt, xt+1)) = (aj, as). This contradicts (4.3). The case i < r < j = s is similar, so, we
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omit the proof. If i < r = j < s, then F ((xt−1, xt)) = (ai, ar) > F ((xt, xt+1)) = (ai, as).
Therefore ar > as. Define z = (d1, ..., dn) by dk = ak for k /∈ {i, s}, and di = as, ds = ai.
We claim that z covers xt−1 by the type 2. It is enough to show that for i < l < s, either dl <
ai, or dl > as. Note that, if i < l < r, then dl = al. Since type(xt−1, xt) = 2, either dl < ai,
or dl > as = aj . Similarly, if r < l < s, then, dl = al = bl. Since type(xt, xt+1) = 2, either
al > bs = as, or al < bi = ai. Therefore, either dl < ai, or al > as. In other words, z covers
xt−1. Clearly, F ((xt−1, z)) = (ai, as) < F ((xt−1, xt)) = (ai, ar). This is a contradiction as
before.

We proceed with (b): r ≤ i ≤ s ≤ j.
Suppose first that r < i < s < j. If ai > ar, then as < ai. Define z = (d1, ..., dn) by

dk = ak for k /∈ {r, s} and dr = as, ds = ar. It is easy to check that z covers xt−1, and
F ((xt−1, z)) = (ar, as) < F ((xt−1, xt)) = (ai, aj). Contradiction, as before. Therefore,
by (4.3) we have to have ai = ar = 0. This forces aj > as. Define z = (d1, ..., dn) by
dk = ak for k /∈ {i, s} and di = as, ds = ai. It is easy to check that z covers xt−1, and that
F ((xt−1, z)) = (ai, as) < F ((xt−1, xt)) = (ai, aj). Contradiction.

The remaining possibilities are r = i < s < j, r < i = s < j, or r < i < s = j.
If r = i, it is easy to see that F ((xt−1, xt)) = (ai, aj) < F ((xt, xt+1)) = (aj, as), which

contradicts (4.3).
If i = s, (ai, aj) > (ar, aj) by (4.3). Therefore, ar ≤ ai. Obviously, if ar = ai = 0,

then (ai, aj) > (ar, aj) is not possible. Thus, we have ar < ai. Define z = (d1, ..., dn) by
dk = ak for k /∈ {r, i} and dr = ai, di = ar. It is easy to check that z covers xt−1, and
F ((xt−1, z)) = (ar, ai) < F ((xt−1, xt)) = (ai, aj). Contradiction.

Finally, if r < i < s = j, then ar < ai. Define z = (d1, ..., dn) by dk = ak for k /∈ {r, i},
and dr = ai, di = ar. It is easy to check that z covers xt−1, and that F ((xt−1, z)) =

(ar, ai) < F ((xt−1, xt)) = (ai, aj). Contradiction.
The proof is complete and the chain which is lexicographically first is increasing. �

(4,0,2,3) (4,1,0,3)

(4,2,0,3)

(4,0,1,3)

(0,2) (1,2)

(1,2) (0,1)

FIGURE 3. Two opposite edges have identical labels.
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Proposition 4.3. Let [x, y] be an interval of length 2 in Rn, and let F be as in (3.1). Let

c : x = x0 < x1 < x2 = y

be the chain such that F (c) = (F ((x, x1)), F ((x1, y))) is the lexicographically smallest
Jordan-Hölder sequence. Let x0 < x′1 < x2 be any other chain between x and y. Then
either F ((x0, x

′
1)) = F ((x1, x2)), or F ((x′1, x2)) = F ((x0, x1)).

Proof. There are two cases to consider:

Case A: type(x0, x1) = 1,
Case B: type(x0, x1) = 2.

Let x0 = (a1, ..., an), x1 = (b1, ..., bn), x2 = (c1, ..., cn) and let x′1 = (d1, ..., dn).
Case A: Since type(x0, x1) = 1, there exists i ∈ [n] such that ai < bi, and ak = bk for

k 6= i.
Suppose that type(x1, x2) = 1. Then, there exists j ∈ [n] such that bj < cj , and bk = ck

for k 6= j. We may assume that i 6= j, otherwise, x′1 = x1 is forced and in this case there is
nothing to prove. Therefore, we assume that x′1 6= x1. Thus,

(4.4) {c1, ..., cn} \ {a1, ..., an} = {ci, cj}.

Therefore, by Remark (3.1) neither type(x0, x
′
1) = 2 nor type(x′1, x2) = 2 is possible. The

remaining possibility is type(x0, x
′
1) = type(x′1, x2) = 1. Let r ∈ [n] be such that ar < dr,

and ak = dk for k 6= r. Let s ∈ [n] be such that ds < cs, and dk = ck for k 6= s. Observe
that r = s is not possible. Observe also that {cs, cr} = {ci, cj}.

Since ci, cj, cr, cs 6= 0, unless the subscripts are the same, they can not be equal. Therefore,
either r = i and s = j, or r = j and s = i. The former implies the contradiction that x1 = x′1,
and the latter implies F ((x′1, x2)) = (ai, ci) = F ((x0, x1)). Therefore, if type(x1, x2) = 1,
then we are done.

Next, suppose that type(x1, x2) = 2. Clearly, both type(x0, x
′
1) and type(x′1, x2) can not

be equal to 1 at the same time. Let F ((x0, x
′
1)) = (α, β), for some α ∈ {a1, ..., an}, β ∈

{d1, ..., dn}. Since F (c) is lexicographically smallest, F ((x0, x1)) = (ai, bi) ≤ F ((x0, x
′
1)).

Hence, either ai < α, or ai = α. We proceed with the former. We are going to show that
type(x0, x

′
1) = 2. This, in turn, implies that F ((x0, x1)) = F ((x′1, x2)) = (ai, bi).

Assume to the contrary that type(x0, x
′
1) = 1. Then, β /∈ {a1, ..., an}. Since {b1, ..., bn} \

{a1, ..., an} = {bi}, if β ∈ {b1, ..., bn}, then β = bi, and hence α = ai; a contradiction.
Therefore, β is not an entry of x1. Since type(x′1, x2) 6= 1, β has to be an entry of x2. On
the other hand, by Remark 3.1, β cannot be an entry of x2. This contradiction shows that
type(x0, x

′
1) = 2, and consequently type(x′1, x2) = 1.

Since bi is not an entry of x′1, F ((x′1, x2)) = (γ, bi) for some γ ∈ {d1, ..., dn}. Observe
that, unless ai is zero (and this is not a problem) ai can not appear in x2. However, since
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type(x0, x
′
1) = 2, ai appears in x′1. Therefore, γ = ai. Then, F ((x0, x1)) = F ((x′1, x2)) =

(ai, bi). We are done in this case.
We proceed with the case that ai = α. Suppose α = am for some m ∈ [n]. Suppose

first that m 6= i. Then, α = am = ai = 0. Notice that β cannot be equal to bi (otherwise,
depending on the relative positions of i and m, we would have either x1 < x′1 or x′1 < x1).
We claim that type(x0, x

′
1) = 2. If type(x0, x

′
1) = 1, then β is not an entry of x1, and since

type(x1, x2) = 2, it is not an entry of x2. On the other hand, if type(x0, x
′
1) = 1, then

type(x′1, x2) = 2, hence β has to be an entry of x2, a contradiction. Hence,type(x0, x
′
1) = 2.

Notice that type(x′1, x2) = 2 is not possible (since type(x0, x1) = 1, and type(x1, x2) = 2).
Therefore, type(x′1, x2) = 1, and F ((x′1, x2)) = (γ, bi) for some γ ∈ {d1, ..., dn}. Since,

|{ck : ck = 0 k = 1, ..., n, }| = |{ak : ak = 0, k = 1, ..., n}| − 1,

and since,

|{dk : dk = 0 k = 1, ..., n, }| = |{ak : ak = 0, k = 1, ..., n}|,

γ has to be zero. Therefore, F ((x′1, x2)) = F ((x0, x1)), and we are done in this case.
Next, suppose that m = i. Then, type(x0, x

′
1) = 2. Similar to above, it follows that

type(x′1, x2) = 1, and that F ((x′1, x2)) = (γ, bi) for some γ ∈ {d1, ..., dn}. If ai = 0, then
the exact same argument as above shows that F ((x′1, x2)) = F ((x0, x1)). If ai 6= 0, then
since ai is not an entry of x2, but it appears in x′1, we must have that γ = ai. Hence we are
done in Case A.

Case B: type(x0, x1) = 2. Since F (c) is lexicographically smallest, type(x0, x
′
1) =

type(x′1, x2) = 1 is not possible. Let F ((x0, x1)) = (ai, aj) and let F ((x0, x
′
1)) = (α, β).

Suppose that type(x0, x
′
1) = 1. Then, β is an entry of x2, and α is not (unless α = 0, but

this is not a problem, because, in this case we argue about the number of 0 entries of x0, x
′
1

and of x2, as before). Therefore, F ((x1, x2)) = (α, β). We are done in this case.
Next, suppose that type(x0, x

′
1) = 2. Assume that type(x1, x2) = 1. Then, it is easy to see

that type(x′1, x2) = 1, and that F ((x1, x2)) = F ((x′1, x2)). Then, x1 = x′1. Contradiction.
Therefore, we may assume that type(x1, x2) = 2. It follows also that type(x′1, x2) = 2.

Let F ((x0, x1)) = (ai, aj), and let F ((x0, x
′
1)) = (al, am), for some entries ai < aj, al <

am of x0. Since F (c) is lexicographically smallest, one of the following holds:

(a) ai < al, or
(b) ai = al.

We proceed with (a). Assume that aj /∈ {al, am}. Let F ((x1, x2)) = (bu1 , bu2) for some
1 ≤ u1 < u2 ≤ n. If bu1 or bu2 is not equal to al, then it means that the position of al did not
change in the chain in x0 < x′1 < x2, a contradiction. Therefore, either bu1 = al, or bu2 = al.
Similarly, either bu1 or bu2 has to be equal to am. In other words, {bu1 , bu2} = {al, am}.
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Since bu1 < bu2 and al < am, we have to have that F ((x1, x2)) = (bu1 , bu2) = (al, am) =

F ((x0, x
′
1)). Thus we are done under these assumptions.

Next, we assume that aj ∈ {al, am} with aj = am. Then ai < al < aj = am. This
contradicts type(x0, x1) = 2. Therefore, we may assume that aj = al. If am /∈ {bu1 , bu2},
then cm = am. Contradiction. Therefore, am ∈ {bu1 , bu2}. If aj = al ∈ {bu1 , bu2}, then
we are done. So, we assume that aj = al /∈ {bu1 , bu2}. If ai ∈ {bu1 , bu2}, it follows that
F ((x′1, x2)) = (ai, aj) = F ((x0, x1)), we are done. So, we may assume that ai /∈ {bu1 , bu2}.
Then, there exists an entry ap of x0 such that ap /∈ {ai, aj = al, am} and {ap, am} =

{bu1 , bu2}. Thus, in x2, cp = am, and cm = ap. To get x2 from x′1 by a type 2 covering
relation, the entry dl (= am) is interchanged with dp = ap. Therefore, the index of ap in x2

is j, and this is a contradiction. Hence, ai ∈ {bu1 , bu2}, and hence, F ((x′1, x2)) = (ai, aj) =

F ((x0, x1)).
We proceed with (b); ai = al. Then, aj < am. Notice that, m < j. Let F ((x1, x2)) =

(bu1 , bu2) for some 1 ≤ u1 < u2 ≤ n. It is easy to see that am ∈ {bu1 , bu2}. If ai ∈ {bu1 , bu2},
we are done. So, assume that ai /∈ {bu1 , bu2}. It is easy to check that, aj ∈ {bu1 , bu2} implies
F ((x′1, x2)) = F ((x0, x1)) (draw a picture). Assume that aj /∈ {bu1 , bu2}. Then, there
exists an entry ap of x0 such that ap /∈ {ai, aj = al, am} and {ap, am} = {bu1 , bu2}. Thus,
in x2, cp = am, and cm = ap. Since type(x′1, x2) = 2, di, (= am) is intrechanged with
dp = ap. Then, the index of ap in x2 is i, and this is a contradiction, as before. Therefore,
aj ∈ {bu1 , bu2}, and hence F ((x′1, x2)) = (ai, aj) = F ((x0, x1)). The proof is complete.

�

As a corollary of the proof of the Proposition 4.3, it is easy to see that

Corollary 4.4. Let [x, y] ⊆ Rn be an interval of length 2. Then, [x, y] is either a chain,
or a diamond. In other words, either [x, y] = {x, x1, x

′
1, y} with x < x1 6= x′1 < y, or

[x, y] = {x, x1, y} with x < x1 < y.

Lemma 4.5. We use the notation of Proposition 4.3. Then, lexicographically smallest chain
c : x0 < x1 < x2 is the unique increasing maximal chain in [x, y].

Proof. Assume that there exists another increasing chain x0 < x′1 < x2 between x = x0 and
y = x2. By the Lemma 4.3, either F ((x0, x1)) = F ((x′1, x2)), or F ((x1, x2)) = F ((x0, x

′
1)).

First assume that F ((x0, x1)) = F ((x′1, x2)). Since F ((x0, x1)) is lexicographically smallest
in

{F ((x0, z)) : (x0, z) ∈ C(Rn)},
we have F ((x0, x1)) = F ((x′1, x2)) < F ((x0, x

′
1)); a contradiction. So, we may assume

that F ((x1, x2)) = F ((x0, x
′
1)), Let F ((x1, x2)) = (c, d), and let F ((x0, x1)) = (a, b), so

that (a, b) < (c, d). Let F ((x′1, x2)) = (e, f). If (e, f) > (c, d), then either e > c or
f > max{a, b, c, d}. Then, either e or f has to appear as an entry in x2. This is impossible
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because the difference between the set of entries of x2 and the set of entries of x0 lies in the
set {a, b, c, d}. This contradiction shows that F ((x′1, x2)) < F ((x0, x

′
1)). �

Proposition 4.6. We use the notation of Proposition 4.1. There exists a unique maximal
chain x = x0 < · · · < xk = y with F ((x0, x1)) ≤ · · · ≤ F ((xk−1, xk)).

Proof. We already know that the lexicographically first chain is increasing. Therefore, it is
enough to show that there is no other increasing chain. We prove this by induction on the
length of the interval [x, y]. Clearly, if y covers x, there is nothing to prove. If `(y)−`(x) = 2,
then this is done by the Lemma 4.5. So, we assume that for any interval of length k > 2

there exists a unique increasing maximal chain.
Let [x, y] ⊆ Rn be an interval of length k + 1, and let

c : x = x0 < x1 < · · · < xk < xk+1 = y

be the maximal chain such that F (c) is the lexicographically first Jordan-Hölder sequence in
Γ k+1.

Assume that there exists another increasing chain

c′ : x = x0 < x′1 < · · · < x′k < xk+1 = y.

Since the length of the chain

x′1 < · · · < x′k < xk+1 = y

is k, by the induction hypotheses, it is the lexicographically first chain between x′1 and y.
We are going to find contradictions to each of the following possibilities.

Case 1: type(x0, x1) = 1, and type(x0, x
′
1) = 1,

Case 2: type(x0, x1) = 1, and type(x0, x
′
1) = 2,

Case 3: type(x0, x1) = 2, and type(x0, x
′
1) = 1,

Case 4: type(x0, x1) = 2, and type(x0, x
′
1) = 2.

Let x0 = (a1, ..., an), x1 = (b1, ..., bn), and x′1 = (c1, ..., cn).
Case 3: Suppose that x1 covers x0 by interchanging ai and aj (where i < j), and that x′1

covers x0 by the type 1; replacing ar with cr. Since (ai, aj) = F ((x0, x1)) ≤ F ((x0, x
′
1)) =

(ar, cr), ai ≤ ar < cr. In fact, (ai, aj) < (ar, cr).
Assume first that r < i. Define z = (e1, ..., en) ∈ Rn by ek = ak for k /∈ {r, i, j} and

er = cr, ei = aj and ej = ai. It is easy to check that z covers x′1, and F ((x′1, z)) = ((ai, aj)).
Since the Jordan-Hölder sequence of x′1 < · · · < x′n < xn+1 = y is lexicographically
smallest in [x′1, y], and since F (c′) is increasing,

(ar, cr) = F ((x, x′1)) ≤ F ((x′1, x
′
2)) ≤ F ((x′1, z)) = (ai, aj).

This contradicts (ai, aj) < (ar, cr). Therefore, we may assume that r ≥ i. A similar
argument shows that we may assume r ≤ j.
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Next, assume that r = i. Since type(x0, x
′
1) = 1, any number between ai and ci has to

occur before the i’th position. This contradicts (ai, aj) < (ar, cr) = (ai, cr).
Next, assume that r = j. Since type(x0, x

′
1) = 1, any number between aj and cj

has to occur before the j’th position. If all of them occur before i’th position, we define
z = (e1, ..., en) by ek = ak for k /∈ {i, j} and ei = cj , ej = ai. Then, z covers x′1 and
F ((x′1, z)) = (ai, cj). This contradicts

(aj, cj) = F ((x, x′1)) ≤ F ((x′1, x
′
2)) ≤ F ((x′1, z)) = (ai, cj).

If any of the numbers between aj and cj occur between the i’th and the j’th positions, define
z = (e1, ..., en) as follows. Let i < m < j be the smallest number such that aj < am < cj .
Let ek = ak for k /∈ {i,m, j}, and let ei = am, em = ai, ej = cj . Then, z covers x′1, and
F ((x′1, z)) = (ai, am). Since (aj, cj) = F ((x, x′1)), we find a contradiction, as before.

Finally, assume that i < r < j. Define z = (e1, ..., en) by ek = ak for k /∈ {i, r, j}, and
ei = aj , ej = ai, er = cr. It is easy to check that z covers x′1, and that F ((x′1, z)) = (ai, aj).
Since, (aj, cj) = F ((x0, x

′
1)), we find a contradiction, as before. This finishes Case 3.

Case 4: Suppose that x1 covers x0 by interchanging ai and aj (where i < j), and that x′1
covers x0 by interchanging ar and as (where r < s). In the following situations “r < s <

i < j, i < j < r < s, r < i < j < s, i < r < s < j, i < r < j < s, r < i = s < j,
r < i < s = j,” define z = (e1, ..., en) by ek = ck for k /∈ {i, j}, and ei = aj = bi,
ej = ai = bj . Then, z covers x′1, and F ((x′1, z)) = (ai, aj). This contradicts

(ar, as) = F ((x, x′1)) ≤ F ((x′1, x
′
2)) ≤ F ((x′1, z)) = (ai, aj).

The remaining situations are “r ≤ i ≤ s ≤ j,” and “i ≤ r ≤ j ≤ s.”
If r < i < s < j, define z = (e1, ..., en) by ek = bk for k /∈ {i, s}, and ei = bs = ar,

es = bi = ai. Then, F ((x′1, z)) = (ai, ar). The contradiction is found as usual.
If r = i < s < j, define z = (e1, ..., en) by ek = bk for k /∈ {s, j}, and let es = bj = aj ,

ej = bs = ai. Then, F ((x′1, z)) = (ai, aj). The contradiction is found as usual.
If r = i < j < s, since type(x0, x

′
1) = 2, we see that aj > as. This contradicts

F ((x0, x1)) = (ai, aj) < (ai, as) = F ((x0, x
′
1)).

Next, assume that i < r = j < s. Assume also that there exists an index i < m < j

such that aj < cm = am < as. Let m′ be the smallest such index. Define z = (e1, ..., en)

by ek = ck for k /∈ {i,m′}, and ei = cm′ = am′ , em′ = ci = ai. Then, F ((x′1, z)) =

(ai, am′) < (aj, as) = F ((x0, x
′
1)). This gives a contradiction as before. Therefore, we may

assume that there does not exist any i < m < j such that aj < am < as. Then, for any
i < m < j we have either cm = am < ci = ai, or cm = am > cj = as. In this case, define
z = (e1, ..., en) by ek = ck for k /∈ {i,m′}, and ei = cm′ = am′ , em′ = ci = ai. Then,
F ((x′1, z)) = (ai, am′) < (aj, as) = F ((x0, x

′
1)) provides a contradiction, as before.
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The final case is i < r < j = s. Observe that ar < ai is forced. Thus, F ((x0, x1)) =

(ai, aj) < (ar, as) = F ((x0, x
′
1)) is a contradiction. Notice ai = ar = 0 is impossible, too.

This finishes Case 4.
Case 1: There exists 1 ≤ i ≤ n such that bk = ak for all k 6= i, and bi > ai, and there

exists 1 ≤ r ≤ n such that ck = ak for k 6= r, and cr > ar. Note that r = i is impossible.
Define z = (e1, ..., en) by ek = ck for k 6= i, and ei = bi. Then, F ((x′1, z)) = (ai, bi) <

(ar, cr) = F ((x0, x
′
1)). The contradiction is found as usual.

Case 2: Suppose that x1 covers x0 by replacing ai by bi, and x′1 covers x0 by interchanging
ar and as, where r < s.

If i ≤ r < s, define z = (e1, ..., en) by ek = ck for k 6= i, and ei = bi. Then, F ((x′1, z)) =

(ai, bi) < (ar, as) = F ((x0, x
′
1)). The contradiction is found as usual.

Assume that r < i < s. Observe that ar cannot be equal to ai, otherwise, ar = ai = 0

forcing type(x0, x
′
1) 6= 2. Therefore, we may assume that ai < ar. Then, either bi < ar, or

ai < ar < bi. If ar > bi, define z = (e1, ..., en) by ek = ck for k 6= i, and ei = bi. Then,
F ((x′1, z)) = (ai, bi) < (ar, as) = F ((x0, x

′
1)). This gives a contradiction as before. So, we

assume that ai < ar < bi.
Since type(x0, x1) = 1, any number between ai and bi (hence, any number between ai

and ar) occur before i’th position. Since type(x0, x
′
1) = 2, we know that cs = ar and

ci = ai, and furthermore if i < k < s, then either ck < ar = cs, or ck > as = cr. Define
z = (e1, ..., en) by ek = ck for k /∈ {i, s}, and ei = cs = ar, es = ci = ai. Clearly
x′1 ≤ z. For i < k < s, either ek < ai = ci, or ek > cs = ar. Therefore, z covers x′1 and
F ((x′1, z)) = (ai, ar) < (ar, as) = F ((x0, x

′
1)) gives a contradiction, as before.

If r < s < i, define z = (e1, ..., en) by ek = ck for k 6= i, and ei = bi. Then, F ((x′1, z)) =

(ai, bi) < (ar, as) = F ((x0, x
′
1)) gives a contradiction, as before.

Finally, observe that r < i = s is impossible. Otherwise ar has to be less than ai which
contradicts the assumption that F ((x0, x1)) = (ai, bi) < (ar, ai) = F ((x0, x

′
1)). This fin-

ishes Case 2, and the proof is complete. �

Proof of Theorem 3.2. Let Γ = {0, 1, ..., n} × {0, 1, ..., n}, and let F : C(Rn) −→ Γ be
the edge-labeling, as defined in (3.1). By Propositions 4.1 and 4.6, F : C(Rn) −→ Γ is an
EL−labeling .

5. FINAL REMARKS

Let P be a finite graded poset of rank n. Let P̂ denote P ∪ {0̂, 1̂}. The Möbius function
µ : I(P ) −→ Z is an integer valued function defined on the set of all intervals of P̂ , uniquely
determined by the following conditions

µ([x, y]) =

{
1 if x = y,

−
∑

x≤z<y µ([x, z]) if x < y.
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It is well known that µ(P̂ ) := µ([0̂, 1̂]) is the reduced Euler characteristic of the simplicial
complex ∆(P ) of all chains in P .

Let Rn,k, k = 0, . . . , n denote the subposet of rank k = 0, . . . , n elements in Rn. In [1]
it is shown that the Möbius function on I(Rn,k) takes values in {−1, 0, 1}. When k = n

Rn,k = Sn is the symmetric group and the Möbius function on Sn is well known: [20],
[18], [8]. It seems that, at the time of writing of this article the determination of the Möbius
function on the whole Rn is still open. We wish to tackle this problem in a forthcoming
article.

When P̂ is an EL−shellable poset, ∆(P ) has the homotopy type of a wedge of spheres
or a ball. See Section 4.7 of [15]. As a corollary of our Theorem 3.2 we have

Corollary 5.1. The order complex ∆([x, y]) of an interval [x, y] ⊆ Rn has the homotopy
type of a wedge of spheres or a ball.
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