A nalogue of the Bruhat-Chevalley Order for R eductive M onoids

Edwin A. Pennell
Department of Mathematics, Bluefield College, Bluefield, Virginia 24605
and
M ohan S. Putcha
Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695

and
Lex E. Renner

Department of Mathematics, The University of Western Ontario, London, Ontario, N6A 5B7, Canada

Communicated by Georgia Benkart
R eceived September 26, 1995

INTRODUCTION

The purpose of this paper is to describe the Adherence Order of $B \times B$-orbits on a reductive algebraic monoid. By the results of [10] there is already a perfect analogue of the Bruhat decomposition for reductive monoids. Indeed, by [10, Corollary 5.8], if M is reductive with unit group G and maximal torus $T \subseteq G$ with Borel subgroup $B \supseteq T$, then the set of two sided B-orbits, $B \backslash M / B$ is canonically identified with a certain finite inverse monoid R . In fact, $\mathrm{R}=N_{G}(T) / T$, the orbit monoid of the Z ariski closure of $N_{G}(T)$ in M. By definition, for $\sigma, \tau \in \mathrm{R}$ we define the Adherence Order by

$$
\sigma \leq \tau \quad \text { if } B \sigma B \subseteq \overline{B \tau B},
$$

where $\overline{B \tau B}$ denotes the Z ariski closure in M of $B \tau B$.

In the case of reductive groups, a similar order relation was first studied by Chevalley. Since then Tits [13] developed the notion of a "BN pair" or "Tits system" which provided the abstract framework for much subsequent work in group theory (including complete homogeneous spaces and Schubert varieties [2]). Furthermore, the much studied KL-polynomials are quantified in terms of the Bruhat-Chevalley order on W [3].

For reductive monoids one would like to describe the A dherence Order on R in terms of the Bruhat order on W along with some other necessary invariant. This other invariant turns out to be the l-order. For $n \times n$ matrices, $A \geq B$ in the I-order, if $\operatorname{rank}(A) \geq \operatorname{rank}(B)$. Furthermore, each element σ of R can be expressed uniquely in standard form $\sigma=$ xey $^{-1}$, where $e \in \Lambda$ the cross section lattice, and $x, y \in W$ are appropriately restricted (see Corollary 1.5 for details). Our main result is the following:
Theorem. Let $\sigma=$ xey $^{-1}$ and $\tau=s f t^{-1}$ be in standard form. Then the following are equivalent:
(a) $\sigma \leq \tau$
(b) $e \leq f$ and there exists $w \in W(f) W_{e}$ such that $x \leq s w$ and $t w \leq y$.

H ere $e \leq f$ means simply that $e f=f e=e$. This is the I -order condition mentioned above. As usual, $W(f)=\{w \in W \mid w f=f w\}$ and $W_{e}=\{w \in$ $W \mid w e=e w=e\}$.

In Section 2 we analyze further the A dherence Order. To do this, we introduce the j order on R.Indeed, we define

$$
\sigma \leq_{j} \tau \quad \text { if } B \sigma B \leq \bar{B} \tau \bar{B} .
$$

Clearly, $\sigma \leq_{j} \tau$ implies $\sigma \leq \tau$. The main result of Section 2 is essentially the following theorem.

Theorem. Suppose $\sigma \leq \tau$. Then there exists $\theta_{0}, \theta_{1}, \ldots, \theta_{m} \in R$ such that $\sigma=\theta_{0} \leq \theta_{1} \leq \theta_{2} \leq \cdots \leq \theta_{m}=\tau$, and for all $i \leq m$ either
(a) $\theta_{i} \leq_{j} \theta_{i+1}$ or else
(b) θ_{i} and θ_{i+1} differ by a Bruhat interchange (see Definition 2.9).

This determines the Adherence Order in terms of the two simpler relations. The relation of (a) is not encountered in group theory but is easily analysed via Theorem 2.7. The relation of (b) is described in more detail in Definition 2.9 and Theorem 2.11. (For $M_{n}(k)$ it implies that θ_{i} and θ_{i+1} have the same nonzero rows and columns.) It is similar to the situation encountered in the study of the Bruhat-Chevalley order on a Coxeter group [4, Chap. 5].

In Section 3 we apply the general results of Sections 1 and 2 to the monoid $M_{n}(k)$ of $n \times n$ matrices. In this example, $\mathrm{R}=\mathrm{R}_{n}$ can be identified with the finite monoid of zero-one matrices with at most one
nonzero entry in each row or column. These are sometimes referred to as partial permutation matrices. We use the results of Section 1 or 2 to find a purely combinatorial description of the Adherence Order on R_{n}.
In Section 4 we discuss a natural length function on R. Here we continue our policy of determining all "monoid quantities" in terms of " Λ-quantities" and " W-quantities." For example, if $\sigma=x^{-1} y^{-1} \in R$ is in standard form we define the length of σ by

$$
l(\sigma)=l(x)+l(e)-l(y)
$$

where $l(x), l(y)$ are the lengths of x and y as elements of the Coxeter group (W, S) ($l(e)$ is defined in Section 4). We show in Section 2 that length is subadditive, namely

$$
l(\sigma \tau) \leq l(\sigma)+l(\tau) .
$$

In the final section of the paper we pursue some further properties of the A dherence Order. While the results of this section could benefit from some further refinements, we include them for future reference.

1. THE ADHERENCE ORDER

Let M be a reductive algebraic monoid with maximal torus T and Borel subgroup $B \supseteq T$. $E(\bar{T})=\left\{e \in \bar{T} \mid e^{2}=e\right\}$. Let $\Lambda=\{e \in E(\bar{T}) \mid B e \subseteq e B\}$ be a cross section lattice, and let $\mathrm{R}=\overline{N_{G}(T)} / T$. R ecall from [10, Corollary 5.8] that R can be canonically identified with the set of two sided B-orbits on M. For $\sigma, \tau \in \mathrm{R}$ we define

$$
\begin{equation*}
\sigma \leq \tau \tag{1}
\end{equation*}
$$

if $B \sigma B \subseteq \overline{B \tau B}$ (Zariski closure in M). It is easy to verify that \leq determines a partial order on R.The main result of this section describes this order relation in terms of
(i) the I-order on M
(ii) the A dherence Order on W.

The I-order (on M) has been determined explicitly in much detail by the second and third named authors for a large class of reductive monoids [8]. The Adherence Order on W is the much studied Bruhat-Chevalley order.

Before stating our main result we recall some relevant background information. Let G be a reductive group with $T \subseteq B \subseteq G$ as usual. Let W be the W eyl group of T. By definition, if $x, y \in W$, then $x \leq y$ if and only if $B x B \subseteq \overline{B y B}$.
1.1. Lemma. $x \leq y$ if and only if $B^{-} y B \subseteq \overline{B^{-} x B}$ where B^{-}is the Borel subgroup opposite to B.

Proof. Let $w \in W$ be the longest element. Then by [4, Sect. 5.9], $x \leq y$ iff wy $\leq w x$ iff $B w y B \subseteq \overline{B w x B}$ iff $w B w y B \subseteq \overline{w B w x B}$ iff $B^{-} y B \subseteq \overline{B^{-} x B}$, since $B^{-}=w B w$.
1.2. Lemma. $\quad x \leq y$ iff $x B y^{-1} \cap B^{-} B \neq \varnothing$.

Proof. By [3, Corollary 1.2], $x \leq y$ iff $B^{-} x B \cap B y B \neq \varnothing$. But

$$
\begin{aligned}
B^{-} x B \cap B y B \neq \varnothing & \Leftrightarrow B^{-} x B \cap B y \neq \varnothing \\
& \Leftrightarrow B^{-} x B \cap B^{-} B y \neq \varnothing \\
& \Leftrightarrow B^{-} x B y^{-1} \cap B^{-} B \neq \varnothing \\
& \Leftrightarrow x B y^{-1} \cap B^{-} B \neq \varnothing .
\end{aligned}
$$

1.3. Lemma. For all $x \in W, B^{-} x B \subseteq B^{-} B x \cap x B^{-} B$.

Proof. W rite $x B x^{-1}=U^{-} U T$ where $U^{-} \subseteq B^{-}$and $U \subseteq B$. Then $x B x^{-1}$ $=U^{-}(U T) \subseteq B^{-} B$. So $x B \subseteq B^{-} B x$. Thus, $B^{-} x B \subseteq B^{-} B x$. Similarly, $x^{-1} B^{-} x \subseteq B^{-} B$. Thus, $B^{-} x B \subseteq x B^{-} B$ as well.

For $I \subseteq S$ let L_{I} be the associated Levi factor and $B_{L}=L_{I} \cap B$. Let $x \in W$. Then by [1, Proposition 2.3.3]

$$
\begin{equation*}
x \text { has minimal length } l(x) \text { in } W_{I} x \Leftrightarrow x^{-1} B_{L} x \subseteq B . \tag{2}
\end{equation*}
$$

Now let M be a reductive monoid with unit group G and cross section lattice Λ. For $e \in \Lambda$ let

$$
\begin{aligned}
W(e) & =C_{W}(e) \\
W_{e} & =\{w \in W \mid w e=e\} \triangleleft W(e) \\
D_{e} & =\left\{x \in W \mid x \text { has minimal length in } x W_{e}\right\} \\
D(e) & =\{x \in W \mid l(x) \text { is minimal in } W(e) x\} \\
L(e) & =C_{G}(e), \quad H(e)=e L(e) \\
B(e) & =C_{B}(e) \\
B^{-}(e) & =C_{B^{-}}(e) .
\end{aligned}
$$

If $C_{W}(e)=\langle s \mid s \in I\rangle$ and $x \in D_{e}$ then

$$
\begin{aligned}
B e x & =B(e) x \\
& =e x x^{-1} B(e) x \\
& \subseteq e x B, \quad \text { by }(2) .
\end{aligned}
$$

Hence, $B e x B \subseteq e x B \subseteq B e x B$ and so

$$
\begin{equation*}
\text { Bex } B=e x B \quad \text { for } x \in D_{e} . \tag{3}
\end{equation*}
$$

Now let $e, f \in \Lambda$ with $e \leq f$. Then

$$
\begin{equation*}
W(e)=W_{e}[W(e) \cap W(f)] . \tag{4}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
\mathrm{R}=W \Lambda W=\bigcup_{e \in \Lambda} W e D(e) . \tag{5}
\end{equation*}
$$

Let $x \in W, e \in \Lambda, y \in D(e)$, and assume $x^{\prime} \leq x$. Then by Lemma 1.3 and (3),

$$
\begin{aligned}
&{B x^{\prime} e y B}^{\subseteq} \subseteq \\
& \subseteq \overline{B x^{\prime} B e y B} \\
& \subseteq \overline{B x B} e y B \\
&=\overline{\overline{B x E e y B}} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
x^{\prime} e y \leq x e y \quad \text { if } y \in D(e) \text { and } x^{\prime} \leq x . \tag{6}
\end{equation*}
$$

Finally, let $y \in D(e)$ and assume $x \leq y^{-1}$. Then by (6), xey $\leq y^{-1} e y$. Hence

$$
\begin{equation*}
x e y \in \bar{B} \quad \text { if } y \in D(e) \text { and } x \in W, x \leq y^{-1} . \tag{7}
\end{equation*}
$$

1.4. Theorem. Let $e, f \in \Lambda, x, s \in W, y \in D(e)$, and $t \in D(f)$. Then the following are equivalent:
(a) $\quad x e y \leq s f t$
(b) ef $=e$ and there exist $w \in W(f) W_{e}, z \in W_{e}$ such that $w^{-1} t \leq y$ and $x \leq \operatorname{swz}$ in W.

Proof. Let e, f, s, t, x, and y be as above and assume (b) holds for w and z as indicated. Now by (7), t^{-1} wey $\in \bar{B}$. So sfwey $=s f t^{-1}$ wey $\in s f t \bar{B}$ $\subseteq \overline{B s f t B}$. So sfwey $\leq s f t$. By assumption, $w=w_{1} w_{2}$ with $w_{1} \in w(f)$ and $w_{2} \in W_{e}$. Thus, sfwey $=s f w_{1} w_{2} e y=s f w_{1} e y=s w_{1} e y=s w_{1} w_{2} e y=s w e y$. But by (6), xey \leq swzey \leq swey \leq sfwey $\leq s f t$.

Conversely, suppose $x e y \leq s f t$. Then clearly $e \leq f$ and $x e y \in \overline{B s f t B}$. Hence, $e \in \overline{x^{-1} B s f t B y^{-1}}$. Now, for $w \in W$, let

$$
\begin{equation*}
A_{w}=x^{-1} B s \cap B^{-} w B . \tag{8}
\end{equation*}
$$

So $x^{-1} B s=\bigcup_{w \in W} A_{w}$. Since this is a finite disjoint union of subvarieties, there exists a unique $w \in W$ such that $A_{w} \subseteq x^{-1} B s$ is open and dense. So

$$
e \in \overline{A_{w} f t B y^{-1}} .
$$

Thus, $e \in e \overline{A_{w} f t B y^{-1}} e \subseteq \overline{e A_{w} f t B y^{-1} e} \subseteq \overline{e B^{-} w B f t B y^{-1} e} \subseteq \overline{e B^{-} e w f B f t B y^{-1} e}$. Hence, ewf| e. So $w f w^{-1} \geq e$. But $f \geq e$ by assumption. Thus, there exists $v \in C_{W}(e)$ such that $v f v^{-1}=w f w^{-1}$. But then $v \in W(f) \cap W(e) \neq \varnothing$, say $w=v c$ with $c \in W(f)$. Hence, by (4), $w=v c \in W(e) W(f) \subseteq W_{e}[W(e) \cap$ $W(f)] W(f) \subseteq W_{e} W(f)$. Conclude that

$$
\begin{equation*}
w=w_{1} w_{2} \quad \text { for some } w_{1} \in W_{e}, w_{2} \in W(f) . \tag{9}
\end{equation*}
$$

Since $A_{w} \neq 0$, we see by Lemma 1.3 that $\varnothing \neq x^{-1} B s \cap B^{-} w B \subseteq x^{-1} B s \cap$ $B^{-} B w$. Thus $x^{-1} B s w^{-1} \cap B^{-} B \neq \varnothing$. So by Lemma 1.2 and (9)

$$
\begin{equation*}
x \leq s w^{-1}=s w_{2}^{-1} w_{1}^{-1} \tag{10}
\end{equation*}
$$

By (10)

$$
\begin{aligned}
e & =\overline{B^{-} w_{1} w_{2} B f t B y^{-1}} \\
& =\overline{B^{-} w_{1} w_{2} f t B y^{-1}}, \quad \text { by (3) } \\
& =\overline{B^{-} w_{1} f w_{2} t B y^{-1}} .
\end{aligned}
$$

For $u \in W$, let

$$
C_{u}=w_{2} t B y^{-1} \cap B^{-} u B .
$$

Then

$$
w_{2} t B y^{-1}=\bigcup_{u \in W} C_{u} .
$$

Since this is a finite union we see that for some $u \in W, C_{u} \subseteq w_{2} t B y^{-1}$ is open and dense. Thus,

$$
e \in \overline{B^{-} w_{1} f C_{u}} .
$$

So

$$
\begin{aligned}
e & \in e \overline{B^{-} w_{1} f C_{u}} e \subseteq \overline{e B^{-} w_{1} f C_{u} e} \subseteq \overline{e B^{-}-w_{1} f B^{-} w B e} \subseteq \overline{e B^{-} e w_{1} f B^{-} u B e} \\
& \subseteq \overline{e B^{-} e f B^{-} u B e}=\overline{e B^{-} e B^{-} u B e}=\overline{e B^{-} e u e B e} .
\end{aligned}
$$

Thus, euel e. Hence $u \in W(e)$. So in $H(e), e \in \overline{e B^{-} \text {eueBe }}$. By Lemma 1.1 applied to $H(e), e u \leq e$ in $W(H(e))$. Hence, $e u=e$. So $u \in W_{e}$. Since
$C_{u} \neq \varnothing$, we see from Lemma 1.3 that $\varnothing \neq w_{2} t B y^{-1} \cap B^{-} w B \subseteq w_{2} t B y^{-1}$ $\cap u B^{-} B$. So $u^{-1} w_{2} t B y^{-1} \cap B^{-} B \neq \varnothing$. Thus, by Lemma 1.2,

$$
\begin{equation*}
u^{-1} w_{2} t \leq y . \tag{11}
\end{equation*}
$$

Let $\tilde{w}=w_{2}^{-1} u \in W(f) W_{e}, z=u^{-1} w_{1}^{-1} \in W_{e}$. By (10) and (11)
$x \leq s w_{2}^{-1} w_{1}^{-1}=s w_{2}^{-1} u u^{-1} w_{1}^{-1}=s \tilde{w} z, \quad$ and $\quad \tilde{w}^{-1} t=u^{-1} w_{2} t \leq y$.
O ne can streamline the theorem somewhat as follows.
It is easy to check that each element $\sigma \in W e W$, with $e \in \Lambda$, can be written uniquely as

$$
\sigma=x e y y^{-1}, \quad x \in D_{e}, y \in D(e)
$$

We call this the standard form for σ.
Example. Let $M=M_{3}(k)$, and let T be the group of diagonal invertible matrices, B the group of upper triangular invertible matrices. One checks that

$$
\Lambda=\left\{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right\}
$$

So let

$$
\sigma=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \in \mathrm{R}_{3} .
$$

Then

$$
\sigma=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=(132) e(1)
$$

One easily checks that this is a standard form since $D_{e}=W$ and $D(e)=$ \{1, (23), (123) \}.
1.5. Corollary. Let $\sigma=x^{-1}$ and $\tau=s f t^{-1}$ be in standard form. Then the following are equivalent:
(a) $\sigma \leq \tau$.
(b) e $e \leq f$ and there exists $w \in W(f) W_{e}$ such that $x \leq s w$ and $t w \leq y$.

Proof. This is straightforward.
Remark 1. Let $\sigma=x^{e y} y^{-1}, \tau=s f t^{-1}$ be in standard form. The characterization in Corollary 1.5(b) is "best possible" in the sense that $W(f) W_{e}$ cannot be replaced by $W(f)$. For example, let

$$
\sigma=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad \tau=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

Coincidently, the same example shows that $\sigma \leq \tau \nRightarrow l(\sigma)-l(e) \leq l(\tau)-$ $l(f)$. On the other hand, if $\sigma \leq \tau$ and $\sigma \in W \tau W$ then $l(\sigma) \leq l(\tau)$.

Remark 2. It is interesting to notice that $\{\sigma \in \mathrm{R} \mid \sigma \leq 1\}=\{\sigma \in \mathrm{R} \mid$ $\sigma \in \bar{B}\}$ can be identified with a subset of $\{(x, y) \in W \times W \mid x \leq y\}$. Indeed, write $\sigma=x^{2} y^{-1}$ in standard form. Then by Lemma 2.3 below $x \leq y$. One might hope for an interesting relationship with K azhdan-Lusztig polynomials. Indeed, the KL-polynomials are indexed by ordered pairs in W. There is already some connection between KL-polynomials and the Bruhat decomposition established by the second named author [7].

2. THE j-ORDER ON R

2.1. Definition. Let $r, s \in \mathrm{R}$. We say $r \leq_{j} s$ if $B r B \subseteq \bar{B} s \bar{B}$.

One checks easily that \leq_{j} is a partial order on R.
The major purpose of this section is to find a description of \leq_{j} entirely within R (see Theorem 2.7 below). Along the way, we shall need to establish several other important results about \leq and $\leq{ }_{j}$.
2.2. Definition. Define $\mathrm{R}^{+} \subseteq \mathrm{R}$ as $\mathrm{R}^{+}=\{r \in \mathrm{R} \mid B r B \subseteq \bar{B}\}$.

O ne checks that this is well defined. For $M_{n}(k), \mathrm{R}^{+}$is the set of upper triangular partial permutation matrices.
2.3. Lemma. Let $r=x^{-1}$ be in standard form. Then $r \in \mathrm{R}^{+}$if and only if $x \leq y$.

Proof. If $r \in \mathrm{R}^{+}$then $r \leq 1$. A pplying Corollary 1.5 we find that there exists $w \in W$ such that $x \leq w \leq y$. In particular, $x \leq y$. Conversely, if $x \leq y$, then plainly the criteria of Corollary 1.5(b) are satisfied for $\sigma=r$ and $\tau=1$.

It was established in [10] that if $s \in S$, the simple reflections, and $r \in \mathrm{R}$, then

$$
s B r \subseteq B r B \cup B s r B
$$

and

$$
r B s \subseteq B r B \cup B r s B .
$$

We use this to help prove Theorems 2.4, 2.5, and 2.6 below.
2.4. Theorem. If $r \in \mathrm{R}$ and $x \in W$ then $r B x \subseteq \bigcup_{y \leq x} B r y B$ and $x B r \subseteq$ $\mathrm{U}_{y \leq x}$ ByrB.
Proof. We proceed by induction on the length of x. By the results of [13], we know that both inclusions hold if $l(x)=1$, since $s=\{x \in W \mid l(x)$ $=1\}$. A ssume the results hold if $l(x)<k$, and suppose $l(x)=k$. Then there exists $s_{1}, s_{2}, \ldots, s_{k} \in S$ such that $x=s_{1} s_{2} \cdots s_{k}$. By induction we know that $r B x=\left(r B s_{1} \cdots s_{k-1}\right) s_{k} \subseteq\left(\cup_{y \leq x} B r y B\right) s_{k}$, where $x^{\prime}=s_{1} \cdots$ $s_{k-1}=x s_{k}$. But $B r y B s_{k} \subseteq B r y B \cup B r y s_{k} B$ from [10, Proposition 5.3]. Thus $r B x \subseteq \bigcup_{y \leq x^{\prime}}\left(B r y B \cup B r y s_{k} B\right)$. Hence $r B x \subseteq \bigcup_{y \leq x} B r y B$. The other case is similar.
2.5. Theorem. If $r, r_{1} \in \mathrm{R}$ then $r B r_{1} \subseteq \mathrm{U}_{r_{2} \leq r_{1}} B r r_{2} B$.

Proof. Write $r_{1}=$ xey $^{-1}$ in standard form. Then by Theorem 2.4 we have that $r B r_{1}=r$ Bxey $^{-1} \subseteq \cup_{x_{1} \leq x} B r x_{1} B e y^{-1}$.
Now let $L=\{x \in G \mid x e=e x\}=C_{G}(e), B_{L}=B \cap L=C_{B}(e)$. Then $B e$ $=e B e=C_{B}(e) e$ by [6, Theorem 6.16, Corollary 6.34]. Hence

$$
B r x_{1} B e y^{-1}=B r x_{1} C_{B}(e) e y^{-1}=B r x_{1} e C_{B}(e) y^{-1} .
$$

But, $y \in D(e)$ and so $y C_{B}(e) y^{-1} \subseteq B$. Thus, $B r x_{1} C_{B}(e)=$ $B r x_{1} e y^{-1} y C_{B}(e) y^{-1} \subseteq B r x_{1} e y^{-1} B$. But notice that $x_{1} \leq x$ and $y \in D(e)$, so that $r_{2}=x_{1} e y^{-1} \leq x^{-1} y^{-1}=r_{1}$. Hence, $r B r_{1} \subseteq \cup_{x_{1} \leq x} B r x_{1} B e y^{-1} \subseteq$ $\cup_{x_{1} \leq x} B r x_{1} e y^{-1} B \subseteq \bigcup_{r_{2} \leq r_{1}} B r r_{2} B$.
2.6. Theorem. If $r, r_{1} \in \mathrm{R}$ then $r_{1} B r \subseteq \mathrm{U}_{r_{2} \leq r_{1}} B r_{2} r B$.

Proof. By [9, Theorem 8.2], there exists an involution $\tau: M \rightarrow M$ so that

$$
\begin{gathered}
\tau^{2}(x)=x \quad \text { for all } x \in M, \\
\tau(x y)=\tau(y) \tau(x) \quad \text { for all } x, y \in M, \\
\tau \mid T=i d
\end{gathered}
$$

and

$$
\tau(B)=B^{-} .
$$

N ow let $w \in N_{G}(T)$ represent the longest element of W (so that $w B w^{-1}=$ B^{-}), and define $\theta=\operatorname{int}(w) \circ \tau$. In particular, $\theta(B)=B$ and $\theta(x y)=$ $\theta(y) \theta(x)$ for $x, y \in \mathrm{R}$.

If $r_{1}, r \in \mathrm{R}$, then by Theorem 2.5, $r B r_{1} \subseteq \mathrm{U}_{r_{2} \leq r_{1}} B r r_{2} B$. So also, $\theta\left(r_{1}\right) B \theta(r) \subseteq \bigcup_{r_{2} \leq r} B \theta\left(r_{2}\right) \theta(r) B$. But $r_{2} \leq r_{1}$ if and only if $\theta\left(r_{2}\right) \leq \theta\left(r_{1}\right)$ since $\theta(B)=B$ and θ is a homeomorphism in the Z ariski topology. So our conclusion follows by applying θ directly to the inclusion $\theta(r) B \theta\left(r_{1}\right) \subseteq$ $\mathrm{U}_{r_{2} \leq \theta\left(r_{1}\right)} B \theta(r) \theta\left(r_{2}\right) B$ of Theorem 2.5.
2.7. Theorem. Let $\sigma, \theta \in \mathrm{R}$. Then $\sigma \in \mathrm{R}^{+} \theta \mathrm{R}^{+}$if and only if $B \sigma B \subseteq$ $\bar{B} \theta \bar{B}$.

Proof. If $\sigma \in \mathrm{R}^{+} \theta \mathrm{R}^{+}$then $\sigma=r_{1} \theta r_{2}$ where $r_{1}, r_{2} \in \mathrm{R}^{+}$. Thus,

$$
\begin{aligned}
B \sigma B & =B r_{1} \theta r_{2} B \\
& \subseteq \overline{B r_{1}} \theta \overline{r_{2} B} \\
& \subseteq \bar{B} \theta \bar{B} \quad \text { since } \overline{B r_{1}}, \overline{r_{2} B} \subseteq \bar{B} .
\end{aligned}
$$

Conversely, if $B \sigma B \subseteq \bar{B} \theta \bar{B}$ then there exist $r_{1}, r_{2} \in \mathrm{R}^{+}$such that $B \sigma B \subseteq$ $B r_{1} B \theta B r_{2} B$. On the other hand, by Theorem 2.6, $r_{1} B \theta \subseteq \bigcup_{r_{3} \leq r_{1}} B r_{3} \theta B$, while by Theorem 2.5, $r_{3} \theta B r_{2} \subseteq \bigcup_{r_{4} \leq r_{2}} B r_{3} \theta r_{4} B$. Hence $B \sigma B \subseteq B r_{1} B \theta$ $B r_{2} B \subseteq \mathrm{U}_{r_{3} \leq r_{1}} B r_{3} \theta r_{4} B$, from which it follows that $\sigma=r_{3} \theta r_{4}$ for some $r_{4} \leq r_{2}$
$r_{3} \leq r_{1}$ and $r_{4} \leq r_{2}$. But $r_{1}, r_{2} \in \mathrm{R}^{+}$and so $r_{3}, r_{4} \in \mathrm{R}^{+}$.
Theorem 2.7 above gives us one of the major ingredients in the decomposing the Adherence Order on R. It turns out that any relation $\sigma \leq \tau$ can be obtained as a chain of elementary relations $\sigma=\theta_{0}<\theta_{1}<\theta_{2}$ $<\cdots<\theta_{n}=\tau$, where, for each i, either $\theta_{i} \in \mathrm{R}^{+} \theta_{i+1} \mathrm{R}^{+}$, or else θ_{i+1} is obtained from θ_{i} by a "Bruhat Interchange" (see Definition 2.9 below). The next theorem will get us closer to the major result of this section.
2.8. Theorem. Let $\beta \in \operatorname{Ref}(W)=\bigcup_{w \in W} w S^{-1}$ and $x, y \in W$. Assume that $x<x \beta$. Then the following are equivalent.
(a) $B x e y^{-1} B \subseteq \bar{B} x \beta e y^{-1} \bar{B}$ and $x e y^{-1} \neq x \beta e y^{-1}$
(b) $\beta \notin W(e)=\{x \in W \mid x e=e x\}$.

Proof. Assume (b). So $\beta \in \operatorname{Ref}(w) \backslash W(e)$. Then $x \beta$ can be written in reduced form as $x \beta=s_{1} \cdots s_{r}$ where $s_{i} \in S$ for all $i, s_{1}, \ldots, s_{m} \in D(e)$ and $s_{m+1}, \ldots, s_{r} \in W(e)$. Clearly, $(x \beta) \beta=x$ and $(x \beta) \beta<x \beta$. Thus, by the strong exchange condition, there exists a unique i such that

$$
x=(x \beta) \beta=s_{1} \cdots s_{i-1} s_{i+1} \cdots s_{r} .
$$

Hence $\beta=\left(s_{r} \cdots s_{i+1}\right) s_{i}\left(s_{i+1} \cdots s_{r}\right)$. Also,

$$
x e \beta x^{-1}=s_{1} \cdots s_{i-1} s_{i+1} \cdots s_{r} e s_{r} \cdots s_{1} .
$$

But now $\beta \in \operatorname{Ref}(W) \backslash W(e)$, so we must have $i \leq m$. Expanding further, we obtain

$$
x e \beta x^{-1}=s_{1} \cdots s_{i-1} s_{i+1} \cdots s_{m} e s_{m} \cdots s_{1}
$$

with

$$
s_{1} \cdots s_{i-1} s_{i+1} \cdots s_{m}<s_{1} \cdots s_{m}
$$

and

$$
s_{1} \cdots s_{m} \in D(e) .
$$

But from Lemma 2.3 we obtain that $x e \beta x^{-1} \in \mathrm{R}^{+}$. Hence,

$$
\begin{aligned}
\text { Bxey }^{-1} B & \subseteq \bar{B} x e y^{-1} \bar{B} \\
& =\bar{B}\left(x e \beta x^{-1}\right)\left(x \beta e y^{-1}\right) \bar{B} \\
& \subseteq \bar{B} x \beta e y^{-1} \bar{B} .
\end{aligned}
$$

Finally, if $\beta \notin W(e)$ then $\beta \notin W_{e}$. Hence, $e \neq \beta e$ and it follows that $x e y^{-1} \neq x \beta e y^{-1}$.

Conversely, assume $\beta \in W(e)$. Thus, $x e \beta y^{-1}=x \beta e y^{-1}$. Now if $x e \beta x^{-1}$ $\in \bar{B}$ then $e \beta=e=\beta e$ and so $x e y^{-1}=x \beta e y^{-1}$. Hence, either $x e \beta x^{-1} \notin \bar{B}$ or else $x e y^{-1}=x \beta e y^{-1}$. If $x e \beta x^{-1} \notin \bar{B}$ then $B x e y^{-1} B \nsubseteq \bar{B} x \beta e y^{-1} \bar{B}$. (For if $B x e y^{-1} B \subseteq B x \beta e y^{-1} \bar{B}$ then by Theorem 2.7, there exists $u, v \in \mathrm{R}^{+}$such that $u x \beta e y^{-1} v=x e y^{-1}$. Replacing u and v by $u x e x^{-1}$ and $y^{2} y^{-1} v$, if necessary, we can assume $u \in x e x^{-1} C_{W}\left(\right.$ xex $\left.^{-1}\right)$ and $v \in$ yey $^{-1} C_{W}\left(\right.$ yey $\left.^{-1}\right)$. But also, $u, v \in \mathrm{R}^{+}$and hence $u=x e x^{-1}$ and $v=y_{e y}{ }^{-1}$. But then xey ${ }^{-1}$ $=x e \beta y^{-1}$. But this implies $e=e \beta$ and so $x e \beta x^{-1} \in \bar{B}$, a contradiction.) We conclude that if $\beta \in W(e)$ then either $x^{-1} y^{-1}=x \beta e y^{-1}$ or else $B x e y^{-1} B \nsubseteq \bar{B} x \beta e y^{-1} \bar{B}$. This completes the proof.
2.9. Definition. Let $x e y^{-1}$ and set $^{-1}$ be in standard form, $x e y^{-1} \neq$ set $^{-1}$. A Bruhat Interchange occurs between xey ${ }^{-1}$ and set ${ }^{-1}$ if there exists $\alpha \in \operatorname{Ref}(W) \cap W(e)$ such that $x \leq x \alpha$ and $x \alpha e y^{-1}=\operatorname{set}^{-1}$.

Notice that for $x^{x} y^{-1} \neq x \alpha e y^{-1}, x \leq x \alpha$ if and only if $x e y^{-1} \leq x \alpha e y^{-1}$.
2.10. Example. Consider, in $M_{3}(k)$,

$$
\begin{aligned}
& \sigma=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)=\text { xey }^{-1} \\
& \tau=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
&=\left[\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\right]\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
&=x \alpha e y^{-1} .
\end{aligned}
$$

Here

$$
e=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \in W(e) .
$$

Clearly,

$$
x=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \leq\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)=x \alpha .
$$

2.11. Theorem. Let $\sigma=x^{\text {ey }}{ }^{-1}$ and $\theta=s f t^{-1}$ be in standard form. Then $\sigma \leq \theta$ if and only if there exist $\theta_{0}, \theta_{1}, \ldots, \theta_{r} \in \mathrm{R}$ such that $\sigma=\theta_{0} \leq \theta_{1}$ $\leq \cdots \leq \theta_{r}=\theta$, and for each l, either $\theta_{l-1} \leq \theta_{l}$ or else θ_{l-1} and θ_{l} differ by a Bruhat Interchange.

Proof. Obviously, the condition is sufficient. So assume $\sigma \leq \theta$. Then $B x e y^{-1} B \subseteq \overline{B s f t^{-1} B}$, and there exists $w \in W(f) W_{e}$ such that $x \leq s w$ and $t w \leq y$. Write $w=w_{1} w_{2}$ with $w_{1} \in W(f)$ and $w_{2} \in W_{e}$. using this fact, we obtain

$$
\begin{aligned}
s f w e y^{-1} & =s f w_{1} w_{2} e y^{-1} \\
& =s w_{1} \text { few }_{2} y^{-1} \\
& =s w_{1} e w_{2} y^{-1} \\
& =s w e y^{-1} .
\end{aligned}
$$

U sing this, we also obtain

$$
\begin{aligned}
& \text { Bswey }^{-1} B \subseteq \bar{B} s f t^{-1} \text { twey }^{-1} \bar{B} \\
& \subseteq \bar{B} s f t^{-1} \bar{B}, \quad \text { since twey } \\
& \text { tw }^{-1} \in \mathrm{R}^{+} .
\end{aligned}
$$

But also $B x e y{ }^{-1} B \subseteq \overline{B s w e y}{ }^{-1} B$, since $x \leq s w$. In any case, we obtain

$$
x_{e y}{ }^{-1} \leq s w e y^{-1} \leq_{j} s f t^{-1} .
$$

So we let $\theta_{r}=s t^{-1}$ and $\theta_{r-1}=$ swey $^{-1}$. Then we only need to find the chain of θ^{\prime} s from xey $^{-1}$ to swey $^{-1}$. Since $x \leq s w$ we can find [4, Proposition 5.11] $\gamma_{1}, \ldots, \gamma_{k} \in \operatorname{Ref}(W)$ such that

$$
x<x \gamma_{1}<x \gamma_{1} \gamma_{2}<\cdots<x \gamma_{1} \cdots \gamma_{r}=s w
$$

and for every $i \in\{1,2, \ldots, r\}$ there exists $\delta_{i} \in W_{e}$ such that $x \gamma_{1} \cdots \gamma_{i} \delta_{i} \in$
D_{e}. Since $x \in D(e)$,

$$
x \leq x \gamma_{1} \delta_{1} \leq x \gamma_{1} \gamma_{2} \delta_{1} \leq \cdots<x \gamma_{1} \gamma_{2} \cdots \gamma_{r} \delta_{r} .
$$

If $x \gamma_{1} \gamma_{2} \cdots \gamma_{r} \delta_{r}=x$ then

$$
s w e y^{-1}=s w \delta_{r}^{-1} e y^{-1}=x \gamma_{1} \cdots \gamma_{r} e y^{-1}=x e y^{-1} .
$$

In this case, we can just let $\theta_{0}=s w e y^{-1}$ and $\theta_{1}=s f t^{-1}$ and we are done. If $x \gamma_{1} \gamma_{2} \cdots \gamma_{r} \neq x$ then let

$$
\begin{aligned}
\theta_{i} & =x \gamma_{1} \cdots \gamma_{i} \delta_{i} e y^{-1} \\
& =x\left(\gamma_{1} \cdots \gamma_{i-1}\right) \gamma_{i} e y^{-1} .
\end{aligned}
$$

If $\gamma_{i} \in \operatorname{Ref}(W) \backslash W(e)$ then by Theorem $2.8, B \theta_{i-1} B \subseteq \bar{B} \theta_{i} \bar{B}$, while if $\gamma_{i} \in \operatorname{Ref}(W) \cap W(e)$ then θ_{i-1} and θ_{i} differ by a Bruhat Interchange.
2.12. Example. Let $M=M_{4}(k)$. Then

$$
\sigma=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \leq\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=\theta .
$$

We can illustrate Theorem 2.11 as

$$
\begin{aligned}
& \theta_{0}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \leq \theta_{1}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \leq \theta_{2}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \leq \theta_{3}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

One could invoke Theorem 2.8 to prove $\theta_{0} \leq_{j} \theta_{1} \leq_{j} \theta_{2}$. However, we can see this directly (using Theorem 2.7) by observing

$$
\theta_{0}=\theta_{1}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \text { and } \quad \theta_{1}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \theta_{2} .
$$

Definition 2.9 easily yields that $\theta_{2} \rightarrow \theta_{3}$ is a Bruhat Interchange. (The Bruhat Interchange for $M_{n}(k)$ will be discussed systematically in Section 3.)

3. THE BRUHAT-CHEVALLEY ORDER ON $M_{n}(k)$

In this section we illustrate our theory for the reductive monoid $M_{n}(k)$ of $n \times n$ matrices. In this example, the symmetric inverse semigroup $R=R_{n}$ can be identified with the set of $n \times n$ zero-one monomial matrices. O ur approach in this section is to identify and interpret the main results of Section 2 (especially Theorem 2.11) as they apply to $M_{n}(k)$. To help focus the reader, we consider the following question: Is there a purely combinatorial description for the Adherence Order on R_{n} ?
3.1. Theorem. Let $E_{i j}$ be the $n \times n$ matrix $\left(a_{s t}\right)$ such that

$$
a_{s t}= \begin{cases}1, & (s, t)=(i, j) \\ 0, & (s, t) \neq(i, j) .\end{cases}
$$

Then $E_{i j} \leq_{j} E_{k m}$ if and only if $i \leq k$ and $m \leq j .((i, j)$ is "up" and "to the right" of (k, m).)

Proof. If $E_{i j} \leq_{j} E_{k m}$ then there exists upper triangular matrices X and Y such that $X E_{k m} Y=E_{i j}$. However, this implies that $\left(X E_{k m} Y\right)_{s t}=0$ if $s>k$ or $t<m$. Thus, $i \leq k$ and $m \leq j$.

Conversely, suppose $i \leq k$ and $m \leq j$. Then $X=E_{i k}$ and $Y=E_{m j}$ are both upper triangular. But one calculates $X E_{k l} Y=E_{i j}$.

Remark. It is easy to check that $E_{i j} \leq_{j} E_{k m}$ if and only if $E_{i j} \leq E_{k m}$. This leads to a number of special properties in the case of $M=M_{n}(k)$.

We refer to $E_{i j}$ as an elementary matrix.
3.2. Theorem. Let $A, C \in \mathrm{R}_{n}$ and write

$$
\begin{aligned}
A & =\sum_{l=1}^{s} A_{l} \\
C & =\sum_{l=1}^{t} C_{l},
\end{aligned}
$$

where $\left\{A_{l}\right\}$ and $\left\{C_{l}\right\}$ are elementary matrices. Define $S_{A}=\left\{A_{1}, \ldots, A_{s}\right\}$ and $S_{C}=\left\{C_{1}, \ldots, C_{t}\right\}$. Then the following are equivalent:
(a) $A<{ }_{j} C$
(b) There exists an injection $\theta: S_{A} \rightarrow S_{C}$ such that $A_{l} \leq \theta\left(A_{l}\right)$ for all $l=1,2, \ldots, s$.

Proof. Assume $A \leq_{j} C$. Notice that $s=\operatorname{rank}(A)$ and $t=\operatorname{rank}(C)$. W rite

$$
\begin{aligned}
A & =w_{1}\left(\begin{array}{cc}
I_{s} & 0 \\
0 & 0
\end{array}\right) w_{2} \\
C & =w_{3}\left(\begin{array}{cc}
I_{t} & 0 \\
0 & 0
\end{array}\right) w_{4}
\end{aligned}
$$

where $w_{1}, w_{2}, w_{3}, w_{4} \in S_{n}$, the unit group of R_{n}. Let

$$
\begin{gathered}
X=w_{1} w_{3}^{-1} \\
Y=w_{4}^{-1}\left(\begin{array}{cc}
I_{s} & 0 \\
0 & 0
\end{array}\right) w_{2} .
\end{gathered}
$$

Then we have

$$
X C Y=A
$$

Furthermore, one can check that, for all $k \leq t$,

$$
X C_{k} Y \leq C_{k}
$$

and

$$
\operatorname{rank}\left(X C_{k} Y\right) \leq 1
$$

Hence, for each $k=1,2, \ldots, t$

$$
\begin{array}{ll}
\text { either } & X C_{k} Y \in S_{A} \\
\text { or else } & X C_{k} Y=0 .
\end{array}
$$

But for any $A_{l} \in S_{A}$ there exists C_{k} such that $X C_{k} Y=A_{l}$ (since $X C Y=$ A). So define $\theta\left(A_{l}\right)=C_{k}$, where $X C_{k} Y=A_{l}$.

Conversely, if there exists an injection $\theta: S_{A} \rightarrow S_{C}$ such that $A_{l} \leq_{j}$ $\theta\left(A_{l}\right)$ for all $l=1,2, \ldots, s$, then we can find elementary upper triangular matrices X_{l} and Y_{l} such that $X_{l} \theta\left(A_{l}\right) Y_{l}=A_{l}$. Let

$$
X=\sum_{l=1}^{s} X_{l}
$$

and

$$
Y=\sum_{l=1}^{s} Y_{l}
$$

Then X and Y are both upper triangular and (one checks) $X C Y=A$. Thus $A \leq_{j} C$.

3.3. Example.

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \leq_{j}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=C
$$

since $S_{A}=\left\{E_{11}, E_{23}\right\}, S_{C}=\left\{E_{11}, E_{22}, E_{33}\right\}$, and $\theta: S_{A} \rightarrow S_{C}$ defined by $\theta\left(E_{11}\right)=E_{11}, \theta\left(E_{23}\right)=E_{22}$ satisfies the criterion of Theorem 3.2.
To properly illustrate Theorem 2.11 in the situation of R_{n} it remains to describe concretely the notion of a Bruhat Interchange (Definition 2.9). We begin our description with the rank two case.
3.4. Theorem. Let $A, C \in \mathrm{R}_{n}$ be such that $A=E_{i j}+E_{k l}$ and $C=$ $E_{k j}+E_{i l}$. Then $A<C$ if and only if $i<k, j<l$ or $i>k, j>l$. (Notice that $A<$ if and only if a Bruhat Interchange has occurred (see Definition 2.9).)

Proof. Suppose $i<k$ and $j<l$ (the other case is similar). If $E=$ $E_{11}+E_{22}$ then $A=(i-1 i) \cdots(12)(k-1 k) \cdots(34)(23) E(23) \cdots$ $(l-1 l)(12) \cdots(j-1 j)$ where $(a b)$ is the permutation matrix which interchanges the a th row and the b th row. This is the standard form for A. One checks that

$$
\begin{aligned}
C= & {[(i-1 i) \cdots(12)(k-1 k) \cdots(34)(23)] } \\
& (12) E(23) \cdots(l-1 l)(12) \cdots(j-1 j) .
\end{aligned}
$$

But $[(i-1 i) \cdots(23)]<[(i-1 i) \cdots(23)](12)$. Therefore $A<C$.
Conversely, assume $i<k$ and $j>l$ or $i>k$ and $j<l$. But then the same argument, as above, shows that $C<A$.
3.5. Theorem. Let $A=E_{i_{1} j_{1}}+\cdots+E_{i, j_{s}} \in R$ (where, as usual, $E_{i j}$ is an elementary matrix) and suppose $C=E_{i_{1} j_{1}}+\cdots+E_{i_{k-1} j_{k-1}}+E_{i j_{j_{k}}}+$ $E_{i_{k+1} j_{k+1}}+\cdots+E_{i_{l-1} j_{l-1}}+E_{i_{k} j_{l}}+E_{j_{l+1} j_{l+1}}+\cdots+E_{i_{s} j_{s}}$ (so C is obtained from A by interchanging two nonzero rows). Relabel the two interchanged matrices $E_{i j}$ and $E_{k l}$. Then $A<C$ if and only if $i<k, j<l$ or $i>k, j>l$.

Proof. If $i<k$ and $j<l$, then by Theorem 3.4, $\left(E_{i i}+E_{k k}\right) A<$ $\left(E_{i i}+E_{k k}\right) C$. A little more calculation then shows that $A<C$.

Conversely, if $i>k$ and $j<l$, or $i<k$ and $j>l$ then the above argument shows that $C<A$.

Notice that the situation above describes exactly the case where a Bruhat Interchange occurs between A and C.

Combining Definition 2.9 and Theorems 2.11 and 3.5 we obtain the following description of the Adherence Order on R_{n}.
3.6. Theorem (Theorem 2.11 for R_{n}). Let $\sigma, \tau \in \mathrm{R}_{n}$. Then $\sigma \leq \tau$ if and only if $\sigma=\gamma_{0} \leq \gamma_{1} \leq \cdots \leq \gamma_{r}=\tau$ where, for each l, either
(a) $\gamma_{l-1} \in \mathbb{R}_{n}^{+} \gamma_{l} \mathrm{R}_{n}^{+}$, or else
(b) γ_{l} is obtained from γ_{l-1} via a Bruhat Interchange.

To calculate in case (a), we use Theorem 3.2, and in case (b) we use Theorem 3.5.

Recall that for $\sigma \in \mathrm{R}_{n}$ we write $S_{\sigma}=\left\{E_{1}, \ldots, E_{s}\right\}$ if $\sigma=\sum_{i=1}^{s} E_{i}$ and each E_{i} is an elementary matrix.
3.7. Theorem. Suppose $\sigma \leq \tau$ and $l(\sigma)=l(\tau)-1$. (So $\sigma \leq \gamma \leq \tau$ implies $\sigma=\gamma$ or $\gamma=\tau$.) Then one of the following holds:
(a) $\left|S_{\sigma}\right|=\left|S_{\tau}\right|-1$ and $S_{\sigma} \subseteq S_{\tau}$.
(b) $\left|S_{\sigma}\right|=\left|S_{\tau}\right|$ and $\left|S_{\sigma} \cap S_{\tau}\right|=\left|S_{\sigma}\right|-1$ with $E_{\sigma}<E_{\tau}$ where $S_{\sigma} \backslash\left(S_{\sigma}\right.$ $\left.\cap S_{\tau}\right)=\left\{E_{\sigma}\right\}$ and $S_{\tau} \backslash\left(S_{\sigma} \cap S_{\tau}\right)=\left\{E_{\tau}\right\}$. Furthermore, σ and τ are either row equivalent or column equivalent.
(c) τ is obtained from σ via a Bruhat Interchange.

Proof. Assume (c) is not the case, and $\operatorname{rank}(\sigma)<\operatorname{rank}(\tau)$. By Theorems 3.2 and 3.6 there exists an injection $\theta: S_{\sigma} \rightarrow S_{\tau}$ such that $\sigma_{i} \leq \theta\left(\sigma_{i}\right)$ for each $\sigma_{i} \in S_{\sigma}$. D efine $\theta(\sigma) \in \mathrm{R}_{n}$ by $S_{\theta(\sigma)}=\theta\left(S_{\sigma}\right)$. Then $\sigma \leq \theta(\sigma)<$ τ. Thus $\sigma=\theta(\sigma)$. Therefore, (a) holds.
Now assume (c) is not the case, and $\operatorname{rank}(\sigma)=\operatorname{rank}(\tau)$. By Theorem 3.6 we must have $\sigma=x \tau y$ for some $x, y \in \mathrm{R}^{+}$. Then $\sigma=x \tau y \leq \tau y \leq \tau$. Hence, either $\sigma=\tau y$ or else $\tau y=\tau$. In the first case $\sigma=\tau y$, and in the second case $\sigma=x \tau$. Assume, without loss of generality that $\sigma=\tau y$ (σ and τ have the same nonzero rows). Now by Theorem 3.2, the map θ : $S_{\sigma} \rightarrow S_{\tau}$ has $\sigma_{i} \leq \theta\left(\sigma_{i}\right)$ for all $\sigma_{i} \in S_{\sigma}$. But by Theorem 3.1, this means that if $\sigma_{i}=E_{u v}$ and $\theta\left(\sigma_{i}\right)=E_{r s}$ then $r \geq u$ and $s \leq v$ ($E_{u v}$ is "up" an "to the right" of $E_{r s}$). But σ and τ have the same nonzero rows. Since θ is row increasing it follows easily that θ is row preserving. So write

$$
S_{\sigma}=\left\{E_{i 1}, \ldots, E_{i s}\right\}
$$

and

$$
S_{\tau}=\left\{E_{j 1}, \ldots, E_{j s}\right\}
$$

where $E_{i k}$ and $E_{j k}$ are nonzero in the same row (so that $\theta\left(E_{i k}\right)=E_{j k}$). Now let $E_{i k} \in S_{\sigma}$ be the elementary matrix with the maximum column
value. Define $\tau^{\prime} \in \mathrm{R}_{n}$ via $S_{\tau^{\prime}}=\left(S_{\tau} \backslash\left\{E_{j k^{\prime}}\right\}\right) \cup\left\{E_{i k}\right\}$ where $E_{j k^{\prime}}$, is nonzero in the same row as $E_{i k}$ (so $\theta\left(E_{j k}\right)=E_{j k^{\prime}}$). Then $\tau^{\prime}=\sum_{E \in S_{\tau^{\prime}}} E \in \mathrm{R}_{n}$ since θ is column decreasing. A lso $\sigma \leq_{j} \tau^{\prime} \leq_{j} \tau$ since $E_{i k}$ has larger column value than $E_{i k^{\prime}}$. If $\tau^{\prime} \neq \tau$ then we are done, since we obtain $\sigma=\tau^{\prime}$, and so (b) holds. If $\tau^{\prime}=\tau$ (i.e., $E_{i k}=E_{j k^{\prime}}$) we move on; i.e., define $\tau^{(2)}$ using the $E_{i s} \in S_{\sigma}$ with the next largest column value, thereby substituting it for the corresponding $E_{j_{s}} \in S_{\tau}$. A gain one checks that $\tau^{(2)} \in \mathrm{R}_{n}$, and $\sigma \leq \tau^{(2)}$ $\leq \tau$. If $\tau^{(2)}=\tau$ then define $\tau^{(3)}$, and so on. Eventually, one obtains $\tau^{(r)} \neq \tau$. But then $\sigma=\tau^{(r)}$ since $\sigma \leq \tau^{(r)}<\tau$ and $l(\tau)=l(\sigma)+1$. So τ is obtained from σ by "moving" one elementary matrix of σ "to the left." So (b) holds.

Theorem 3.7 allows us to give a combinatorial description of the A dherence Order on R_{n}. First we represent the elements of R_{n} by sequences of nonnegative integers. Let $\sigma \in \mathrm{R}_{n}$. W e associate to σ a sequence $\left(\epsilon_{1}, \cdots, \epsilon_{n}\right)$ where, for all $i, 1 \leq i \leq n, \epsilon_{i}$ is defined as

$$
\epsilon_{i}= \begin{cases}0, & \text { if } \sigma \text { is zero in the } i \text { th column } \\ k, & \text { if }[\sigma]_{k i}=1\end{cases}
$$

Example.

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \leftrightarrow \text { (3042). }
$$

Notice that a sequence $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ can occur this way for some $r \in \mathrm{R}_{n}$ if and only if $0 \leq \epsilon_{i} \leq n$ for all i; and whenever $\epsilon_{i}=\epsilon_{j}$, either $i=j$ or else $\epsilon_{i}=\epsilon_{j}=0$. For convenience we simply write $\sigma=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in \mathrm{R}_{n}$. We can now interpret Theorem 3.7 combinatorially.
3.8. Theorem. The Adherence Order on R_{n} is the smallest partial order generated by declaring

$$
\sigma=\left(\delta_{1}, \ldots, \delta_{n}\right)<\tau=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)
$$

if either
(a) $\delta_{j}=\epsilon_{j}$ for $j \neq i$ and $\delta_{i}<\epsilon_{i}$ (σ is obtained from τ by replacing some ϵ_{i} by a smaller number)
(b) $\delta_{k}=\epsilon_{k}$ if $k \neq i$ or $j, i<j, \delta_{i}=\epsilon_{i}, \epsilon_{i}=\delta_{j}$ and $\epsilon_{i}>\epsilon_{j}(\sigma$ is obtained from τ by interchanging ϵ_{i} and $\epsilon_{j}(i<j)$ where $\left.\epsilon_{i}>\epsilon_{j}\right)$.

Proof. We simply interpret each case of Theorem 3.7.
Case 3.7(a). This says that σ is obtained from τ by setting some nonzero entry in τ (as a matrix) to zero. This is included in Theorem 3.8(a).

Case 3.7(b). First assume that σ and τ have the same nonzero rows. So, as we saw in the proof of Theorem 3.7, the matrix σ is obtained from the matrix τ by moving a "one" to the right. This is included in Theorem 3.8(b). If σ and τ have the same columns then σ is obtained from τ by moving a "one" upward. This is included in Theorem 3.8(a).

Case 3.7(c). This is easily seen as the special case of Theorem 3.8(b) where both ϵ_{i} and ϵ_{j} are nonzero.
3.9. Example. Let $r=(21403)$ and $s=(35201)$ in R_{5}. Then $r<s$, since

$$
\begin{aligned}
(21403) & <(31402), & & \text { by Theorem 3.8(b) } \\
& <(34102), & & \text { by Theorem 3.8(b) } \\
& <(35102), & & \text { by Theorem 3.8(a) } \\
& <(35201), & & \text { by Theorem 3.8(b) } .
\end{aligned}
$$

4. SUBADDITIVITY OF LENGTH

In this section we consider a natural length on R, extending the much studied length function on W, the W eyl group. In keeping with our point of view in this paper, we shall define this length function in terms of the length function on W and a notion of length for the elements of Λ. This appears to be a natural generalization of length function considered by Solomon [12] for $M=M_{n}\left(\mathbb{F}_{q}\right)$, where R can be identified with the symmetric inverse semigroup on n letters. There is also a topological/geometric definition for this length function. Indeed, one can define

$$
l(x)=\operatorname{dim}(B x B)-\operatorname{dim}(B \nu B),
$$

where $\nu \in W x W$ is the unique element such that $B \nu=\nu B$. This is discussed in some detail by the third named author in [11]. O ur main result in this section proves that the length function is subadditive.

Let $W=\langle S\rangle$ be the W eyl group, where $S \subseteq W$ is the set of simple involutions relative to B and $T \subseteq B$. D efine

$$
\operatorname{Ref}(W)=\bigcup_{x \in W} x S x^{-1} .
$$

For $I \subseteq S$ we have

$$
\operatorname{Ref}\left(W_{I}\right)=W_{I} \cap \operatorname{Ref}(W) .
$$

Let

$$
\begin{gathered}
l(I)=\left|\operatorname{Ref}(W) \backslash \operatorname{Ref}\left(W_{I}\right)\right| \\
D(I)=\left\{x \in W \mid x \text { has minimal length in } x W_{I}\right\} .
\end{gathered}
$$

Thus,

$$
l(I)=\max \left\{l(x) \mid x \in D_{I}\right\} .
$$

For $I, J \subseteq S$ let

$$
l(I, J)=\left|\operatorname{Ref}\left(W_{I}\right) \backslash W_{J}\right| .
$$

So

$$
l(I)=l(S, I)
$$

and

$$
\begin{align*}
l(I, J) & =l(I, I \cap J) \\
& =\max \left\{l(x) \mid x \in W_{I} \cap D_{J}\right\} . \tag{1}
\end{align*}
$$

Now let R be as in section one with unit group W and cross section lattice Λ. For $e \in \Lambda$, recall that

$$
\begin{gathered}
W(e)=\{x \in W \mid x e=e x\} \\
W_{e}=\{x \in W \mid x e=e\} \triangleleft W(e) .
\end{gathered}
$$

Notice that there exists a unique subgroup $\tilde{W}(e)$ of W such that $\tilde{W}(e)$ is generated by a subset of S and

$$
\begin{gather*}
W(e)=W_{e} \times \tilde{W}(e) \tag{2}\\
D(e)=D_{I}, \quad \text { where } W(e)=\langle I\rangle, \\
D_{e}=D_{J}, \quad \text { where } W_{e}=\langle J\rangle,
\end{gather*}
$$

and

$$
l(e)=l(I)
$$

If $e, f \in \Lambda$, let

$$
l(f, e)=l(J, I), \quad \text { where } W(f)=\langle J\rangle \text { and } W(e)=\langle I\rangle .
$$

If $e, f \in \Lambda, x \in W$, then

$$
\begin{array}{ll}
e x f \in W f W & \text { iff } e \geq f \text { and } x \in W(e) W(f) \\
f x e \in W f W & \text { iff } e \geq f \text { and } x \in W(f) W(e) . \tag{3}
\end{array}
$$

If $e, f \in \Lambda$ then

$$
\begin{equation*}
e \geq f \Rightarrow \tilde{W}(f) \subseteq W(e) \tag{4}
\end{equation*}
$$

Thus, by (2) and (4),

$$
\begin{equation*}
e \geq f \Rightarrow W(f)=W(e, f) W_{f} \tag{5}
\end{equation*}
$$

where $W(e, f)=W(e) \cap W(f)$. Recall from the end of Section 1 that if $\sigma \in W e W, e \in \Lambda$, then

$$
\sigma=x e y^{-1} \quad \text { for some } x \in D_{e} \text { and } y \in D(e) .
$$

Furthermore, x and y are unique (by an easy counting argument).
4.1. Definition. Let $\sigma=x^{2} y^{-1}$ be in standard form. Define

$$
l(\sigma)=l(x)+l(e)-l(y)
$$

where $l(x), l(y)$ are the lengths of x and y as elements of W, and $l(e)$ is as above.

It is easy to see that $l(z \sigma) \leq l(z)+l(\sigma)$ for any $z \in W$. However, much more is true. The main result of this section (Theorem 4.5 below) says that for any $\sigma, \tau \in \mathrm{R}, l(\sigma \tau) \leq l(\sigma)+l(\tau)$. F or example, let

$$
\sigma=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad \text { and } \quad \tau=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

so that

$$
\sigma \tau=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Then

$$
\begin{aligned}
\sigma & =\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)=\text { xey }^{-1}, \\
\tau & =\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=u e v^{-1}
\end{aligned}
$$

and

$$
\sigma \tau=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=r f s^{-1}
$$

determine the standard form of σ, τ, and $\sigma \tau$. Thus, by Definition 4.1

$$
\begin{gathered}
l(\sigma)=l(x)+l(e)-l(y)=3+2-2=3 \\
l(\tau)=l(u)+l(e)-l(v)=1+2-0=3 \\
l(\sigma \tau)=l(r)+l(f)-l(s)=2+2-0=4 .
\end{gathered}
$$

So $l(\sigma \tau) \leq l(\sigma)+l(\tau)$ as required.
4.2. Lemma. Let e, $f, h \in \Lambda$ be such that eWf $\cap W h W \neq \varnothing$. Then

$$
l(h) \leq l(e)+l(f)-l(h, e)-l(h, t) .
$$

Proof. Let $x \in W$ be such that $e x f=a h b^{-1}$ is in standard form. Then $e a h \in W h W$. So by (3) and (5) above $a \in W(e) W(h)=W(e) W_{h}$. Since $a \in D_{h}$, we see that $a \in W(e)$. Also, since $h b^{-1} f \in W h W$, we see by (3) that $b^{-1} \in W(h) W(f)$. Finally, since $b \in D(h)$, we see that $b \in W(f)$. We conclude that

$$
e a^{-1} x b f=a^{-1} e x f b=h .
$$

Thus, without loss of generality we may assume that $e x f=h$. So we obtain $h x h=x$ and, by (3), $x=W(h)$. Since x^{-1} exf is an idempotent we obtain that $x^{-1} e x f=h$. Thus, $W\left(x^{-1} e x\right) \cap W(f) \subseteq W(h)$, and it follows that

$$
x^{-1} \operatorname{Ref}(W(e)) x \cap \operatorname{Ref}(W(f)) \subseteq \operatorname{Ref}(W(h)) .
$$

Thus, in $\operatorname{Ref}(W)$,

$$
\operatorname{Ref}(W(h))^{c} \subseteq x^{-1} \operatorname{Ref}(W(e))^{c} x \cup \operatorname{Ref}(W(f))^{c}
$$

and so

$$
\begin{gathered}
\operatorname{Ref}(W(h))^{c} \subseteq\left[x^{-1} \operatorname{Ref}(W(e))^{c} x \backslash \operatorname{Ref}(W(h)) \cap x^{-1} \operatorname{Ref}(W(e))^{c} x\right] \\
\cup\left[\operatorname{Ref}(W(f))^{c} \backslash \operatorname{Ref}(W(h)) \cap \operatorname{Ref}(W(f))^{c}\right] .
\end{gathered}
$$

But

$$
\begin{gathered}
\left|\operatorname{Ref}(W(h))^{c}\right|=l(h) \\
\left|x^{-1} \operatorname{Ref}(W(e))^{c} x\right|=\left|\operatorname{Ref}(W(e))^{c}\right|=l(e)
\end{gathered}
$$

and

$$
\begin{aligned}
\left|\mathrm{Ref}(W(h)) \backslash x^{-1} \mathrm{Ref}(W(e)) x\right| & =\left|x^{-1}[\mathrm{Ref}(W(h)) \backslash \mathrm{Ref}(W(e))] x\right| \\
& =l(h, e)
\end{aligned}
$$

since $x \in W(h)$. F urthermore,

$$
\begin{gathered}
\left|\mathrm{R} \operatorname{ef}(W(f))^{c}\right|=l(f) \\
|\mathrm{Ref}(W(h)) \backslash \mathrm{Ref}(W(f))|=l(h, f)
\end{gathered}
$$

Thus, we conclude that $l(h) \leq[l(e)-l(h, e)]+[l(f)-l(h, f)]$.
4.3. Corollary. Let $e, f, h \in \Lambda$ and $x \in D(e)$ be such that $e x^{-1} f=$ $a h b^{-1}$ is in standard form. Then

$$
l(a)+l(h)-l(b) \leq l(e)+l(f)-l(x)-l(h, f)
$$

Proof. Now $a \in D_{h}, b \in D(h)$, and eah, $h b^{-1} f \in W h W$. Thus (3) and (5), $a \in W(e)$ and $b \in W(f)$. Hence $e a^{-1} x^{-1} b f=a^{-1} e x^{-1} f b=h$. So $h a^{-1} x^{-1} b h=h e a^{-1} x^{-1} b f h=h$. But then by (3), $a^{-1} x^{-1} b \in W(h)$, and so $a^{-1} x^{-1} b h=h$. Hence, $a^{-1} x b \in W_{h}$. Let $\alpha=a^{-1} x^{-1} b \in W_{h}$. So

$$
\begin{equation*}
a^{-1} x^{-1}=\alpha b^{-1} \tag{6}
\end{equation*}
$$

Since $a \in W(e), x \in D(e), \alpha \in W_{h}$, and $b \in D(h)$,

$$
\begin{equation*}
l(a)+l(x)=l\left(a^{-1} x^{-1}\right)=l\left(\alpha b^{-1}\right)=l(\alpha)+l(b) \tag{7}
\end{equation*}
$$

But $\alpha=\alpha_{1} \alpha_{2}$ with $\alpha_{1} \in W_{h} \cap W(e), \alpha_{2} \in W_{h} \cap D(e)^{-1}$, and $l(\alpha)=$ $l\left(\alpha_{1}\right)+l\left(\alpha_{2}\right)$. So by (6), $\alpha^{-1} a^{-1} x^{-1}=\alpha_{2} b^{-1}$. Then

$$
l\left(\alpha_{1}^{-1} a\right)=l\left(\alpha_{1}\right)+l(a) \quad \text { since } \alpha_{1} \in W_{h}, a \in D_{h}
$$

and

$$
\begin{aligned}
& l\left(\alpha_{1}^{-1} a^{-1} x^{-1}=l\left(\alpha_{1}^{-1} a^{-1}\right)+l(x)\right. \\
& =l\left(\alpha_{1}\right)+l(a)+l(x) \text { since } \alpha_{1}^{-1} a^{-1} \in W(e) \text { and } \\
& x \in D(e) .
\end{aligned}
$$

Furthermore,

$$
l\left(\alpha_{2} b^{-1}\right)=l\left(\alpha_{2}\right)+l(b) \quad \text { since } b \in D(h) .
$$

Thus,

$$
l\left(\alpha_{1}\right)+l(a)+l(x)=l\left(\alpha_{2}\right)+l(b) .
$$

But $l(\alpha)=l\left(\alpha_{1}\right)+l\left(\alpha_{2}\right)$, so by (7),

$$
l(a)+l(x)=l\left(\alpha_{1}\right)+l\left(\alpha_{2}\right)+l(b) .
$$

Conclude that $l\left(\alpha_{1}\right)=0$, and so $\alpha=\alpha_{2} \in W_{h} \cap D(e) \subseteq W(h) \cap D(e)$. By (1), $l(\alpha) \leq l(h, e)$. Hence, $l(a)+l(x) \leq l(h, e)+l(b)$. Combining this with the lemma we obtain $l(a)+l(h)-l(b) \leq l(e)+l(f)-l(x)-l(h, f)$.
4.4. Corollary. Let $e, f, h \in \Lambda, x \in D(e), t \in D(f)$. Then $l\left(e x^{-1} f t^{-1}\right) \leq l\left(e x^{-1}\right)+l\left(f t^{-1}\right)$.

Proof. Let $e x^{-1} f=a h b^{-1}, h \in \Lambda$, be in standard form. Then as in Corollary 4.3,

$$
\begin{equation*}
a \in D_{h} \cap W(e), b \in D(h) \cap W(f) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
l(a)+l(h)-l(b) \leq l(e)+l(f)-l(x)-l(h, f) . \tag{9}
\end{equation*}
$$

Let

$$
\begin{equation*}
b^{-1} t^{-1}=\alpha v^{-1}, \quad \alpha \in W(f), v \in D(h) . \tag{10}
\end{equation*}
$$

By (8) and (10)

$$
\begin{equation*}
l(b)+l(t)=l\left(b^{-1} t^{-1}\right)=l\left(\alpha v^{-1}\right)=l(\alpha)+l(v) . \tag{11}
\end{equation*}
$$

But $\alpha=\alpha_{1} \alpha_{2}$ with $\alpha_{1} \cap(f) \cap W(h)$ and $\alpha_{2} \in D(f)^{-1} \cap W(h)$. So $l(\alpha)$ $=l\left(\alpha_{1}\right)+l\left(\alpha_{2}\right)$. By (10), $\alpha_{1}^{-1} b^{-1} t^{-1}=\alpha_{2} v^{-1}$ and (8), $l\left(\alpha_{1}\right)+l(b)=$ $l\left(\alpha_{1}^{-1} b^{-1}\right)$. Since $\alpha_{1}^{-1} b^{-1} \in W(h)$ and $t \in D(h)$, we obtain

$$
\begin{aligned}
l\left(\alpha_{1}\right)+l(b)+l(t) & =l\left(\alpha_{1}^{-1} b^{-1}\right)+l(t) \\
& =l\left(\alpha_{1}^{-1} b^{-1} t^{-1}\right) \\
& =l\left(\alpha_{2} v^{-1}\right) \\
& =l\left(\alpha_{2}\right)+l(v) .
\end{aligned}
$$

But by (11), $l(b)+l(t)=l\left(\alpha_{1}\right)+l\left(\alpha_{2}\right)+l(v)$. Hence $l\left(\alpha_{1}\right)=0$ and so $\alpha=\alpha_{2} \in D(f)^{-1} \cap W(h) . \mathrm{By}(1)$

$$
\begin{equation*}
l(\alpha) \leq l(h, f) \tag{12}
\end{equation*}
$$

Since $f \geq h$ it follows from (5) that

$$
\alpha \in W(h) \cap D(f) \subseteq W_{h} \cap D(f)
$$

Hence, by (10)

$$
\begin{aligned}
e x^{-1} f t^{-1} & =a h b^{-1} t^{-1} \\
& =a h \alpha v^{-1} \\
& =a h v^{-1}
\end{aligned}
$$

Finally, by (9), (11), and (12)

$$
\begin{aligned}
l\left(e x^{-1} f t^{-1}\right)= & l(a)+l(h)-l(b)-l(t)+l(\alpha) \\
\leq & l(e)+l(f)-l(x)-l(h, f)-l(t)+l(\alpha), \\
& \quad \text { by Corollary } 4.3 \\
\leq & l(e)+l(f)-l(x)-l(t) \\
= & l\left(e x^{-1}\right)+l\left(f t^{-1}\right) .
\end{aligned}
$$

4.5. Theorem. Let $\sigma_{1}, \sigma_{2} \in R$. Then

$$
l\left(\sigma_{1} \sigma_{2}\right) \leq l\left(\sigma_{1}\right)+l\left(\sigma_{2}\right)
$$

Proof. W rite $\sigma_{1}=$ xey $^{-1}$ and $\sigma_{2}=v f t^{-1}$ in standard form with $e, f \in \Lambda$. Let $y^{-1} v=w y_{1}^{-1}$ where $w \in W(e)$ and $y_{1} \in D(e)$. Since $y \in D(e)$ and $w \in W(e)$ we obtain that $w^{-1} y^{-1}=y_{1}^{-1} v^{-1}$ and $l\left(w^{-1} y^{-1}\right)=l(w)+l(y)$. Hence,

$$
\begin{equation*}
l(w)+l(y)=l\left(y^{-1} v^{-1}\right) \leq l\left(y_{1}\right)+l(v) . \tag{13}
\end{equation*}
$$

Finally,

$$
\begin{aligned}
& l\left(\sigma_{1} \sigma_{2}\right)+l\left(x e y^{-1} v f t^{-1}\right) \\
& \quad=l\left(x_{\left.e w y_{1}^{-1} f t^{-1}\right)}\right. \\
& \quad=l\left(x w e y_{1}^{-1} f t^{-1}\right) \\
& \\
& \leq l(x w)+l\left(y_{1}^{-1} f t^{-1}\right) \\
& \\
& \leq l(x w)+l(e)-l\left(y_{1}\right)+l(f)-l(t), \quad \text { by Corollary } 4.4 \\
& \\
& \leq l(x)+l(w)+l(e)-l\left(y_{1}\right)+l(f)-l(t) \\
& \\
& \leq l(x)+l(v)-l(y)+l(e)+l(f)-l(t), \quad \text { by }(13) \\
& \\
& \quad=l\left(\sigma_{1}\right)+l\left(\sigma_{2}\right), \quad \text { by definition. }
\end{aligned}
$$

Remark. The question of subadditivity of length was raised by L. Solomon. It turns out that the issue of integral structure constants for monoid Hecke algebras hinges on Theorem 4.5. See the proof of [12, Theorem 4.12] for an illustration of this issue in the special case $M=$ $M_{n}\left(\mathbb{F}_{q}\right)$.

5. RELATED RESULTS

In this section we complete our current study by establishing a number of supplementary results concerning the A dherence Order. We focus on the relationship between the Adherence Order and the H-relation on R. It is clear to the authors that there are an intriguing number of unchartered possibilities that could be pursued here.

Let M be a reductive monoid with maximal torus T. If $\sigma, \tau \in \mathrm{R}$ we say that σ and τ are H -related (in R) if $\sigma \mathrm{R}=\tau \mathrm{R}$ and $\mathrm{R} \sigma=\mathrm{R} \tau$. We write $\sigma \mathrm{H} \tau$. Similarly, elements x and y of M can be H-related. We denote the H-class in M of $x \in M$ by H_{x} and the H-class of $x \in \mathrm{R}$ in R by H_{x}. So $H_{x}=\{y \in M \mid y M=x M$ and $M y=M x\}$. Two elements x and y of M are | -related $(x \mid y)$ is $M x M=M y M$. We write $x \geq_{1} y$ if $M y M \subseteq M x M$. For $n \times n$ matrices, $x \geq_{1} y$ in the I-order if $\operatorname{rank}(x) \geq \operatorname{rank}(y)$.

Let $e, f \in E(\bar{T})$.
5.1. Lemma. Suppose $x \in e M f \cap e G$. Then there exists $e^{\prime} \in E(\bar{T})$ such that $e^{\prime} \in C l_{W}(e), e^{\prime} \leq f$, and $x e^{\prime} \in e G$.

Proof. Write $x=e g$ and let $b_{1}, b_{2} \in B$ be such that $g=b_{1} w b_{2}$. Here B is a Borel subgroup containing T such that $B \subseteq\{h \in G \mid e h=e h e\}$. Thus $e b_{1}=e b_{1} e=c e$ for some $c \in C_{B}(e)$. Hence, $e g=c e w b_{2}=c w e w^{-1} b_{2}=$ $g e^{\prime} b$, where $e^{\prime}=w^{-1} e w$ and $b=b_{2}$. So $x e^{\prime}=e g e^{\prime}=y e^{\prime} b e^{\prime} \in G e^{\prime}$ since $e^{\prime} b e^{\prime} \in B e^{\prime}$. But also $e g=x=x f$. So if ege $e^{\prime} \in G e^{\prime}$ then $f^{\prime} \geq e^{\prime}$. Otherwise, $f \ngtr e^{\prime}$ and so $f e^{\prime}<e^{\prime}$ which implies that $x f e^{\prime}<e^{\prime}$ in the I-order on M. But this is absurd since $x f e^{\prime}=e g e^{\prime} \in G e^{\prime}$.
5.2. Corollary. Suppose eBf $\cap e G \neq \varnothing$. Then there exists $e^{\prime} \in E(\bar{T})$ such that $e^{\prime} \mid e, e^{\prime} \leq f$, and $e B e^{\prime} \cap e G \neq \varnothing$.

Proof. Let $x \in e B f \cap e G$ and choose e^{\prime} as in Lemma 5.1. Then $x e^{\prime} \in$ $e B e^{\prime} \cap e G$ and the conclusion follows.

For $s \in \mathrm{R}$ let H_{s} denote the H -class of s in M.
5.3. Corollary. Let $r, s \in \mathrm{R}$ and let $e, f \in E(\bar{T})$ be such that $e \mathrm{R}=$ $s \mathrm{R}$ and $\mathrm{R} s=\mathrm{R} f$. Suppose eBrBf $\cap H_{s} \neq \varnothing$. Then there exist $e^{\prime}, f^{\prime} \in E(\bar{T})$ with $e^{\prime}\left|f^{\prime}\right| s$ such that eBe'rf' $B f \cap H_{s} \neq \varnothing$. In particular, $e^{\prime} r=r f^{\prime} \mid s$ and if we write $r=e_{0} \sigma=\sigma f_{0}$ with $\sigma \in W$ then $e^{\prime} \leq e_{0}$ and $f^{\prime} \leq f_{0}$.

Proof. Since $e B r B f \cap H_{s} \neq \varnothing$ it follows easily that $e B e_{0} \cap e G \neq \varnothing$ and $f_{0} B f \cap G f \neq \varnothing$. So by Corollary 5.2 and its left-right dual we obtain $e^{\prime} \leq e_{0}$ a nd $f^{\prime} \leq f_{0}$ such that $e B e^{\prime} \cap e G \neq \varnothing$ and $f^{\prime} B f \cap G f \neq \varnothing$.

If we let ${ }_{e_{1}} H_{e_{2}}$ denote the H-class of $e_{1} \sigma$ where $\sigma^{-1} e_{1} \sigma=e_{2}$ then it is easy to see that ${ }_{e_{1}} H_{e_{2} e_{2}} H_{e_{3}} \subseteq_{e_{1}} H_{e_{3}}$. But we have $\varnothing \neq e B e^{\prime} r \cap{ }_{e} H_{f^{\prime}}$ (since $e^{\prime} r=r f^{\prime}$) and $\varnothing \neq f^{\prime} B f \cap_{f^{\prime}} H_{f}$. Thus, recalling that $H_{s}={ }_{e} H_{f}$, we obtain $e B e^{\prime} r f^{\prime} B f \cap H_{s} \neq \varnothing$.
We recall now some results from [11]. Define the set of order preserving elements of R by

$$
0=\left\{r \in \mathrm{R} \mid r B r^{*} \subseteq B r r^{*}\right\} .
$$

Then by [11, Sect. 2]

$$
\begin{gathered}
0 \subseteq R \text { is an inverse subsemigroup, } \\
E(R) \subseteq 0,
\end{gathered}
$$

and

$$
|0 \cap H|=1 \quad \text { for each } H \text {-class of } R .
$$

For each $s \in \mathrm{R}$ we can write uniquely

$$
s=s_{+} s_{0} s_{-},
$$

where $s_{+}, s_{-} \in 0, s_{+} \mathrm{R}=s \mathrm{R}, \mathrm{R} s_{-}=\mathrm{R} s, s_{0} \mathrm{H} \nu$, and $\nu \mathrm{l} s$ is the unique such element that satisfies $B \nu=\nu B$.
To illustrate these notions, consider our familiar example of R_{n}. One can easily calculate that, in this example,

$$
0=0_{n}=\left\{\sigma \in \mathrm{R}_{n} \mid \text { if } \sigma_{i j}, \sigma_{k l} \neq 0 \text { and } i<k \text {, then } j<l\right\} ;
$$

i.e., for nonzero entries, the column value is an increasing function of the row value, e.g.,

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \in 0_{4}, \quad\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \notin 0_{4} .
$$

It is interesting to notice that for each $\sigma \in \mathrm{R}_{n}$, there exists a unique $\bar{\sigma} \in 0_{n}$ so that σ be obtained form $\bar{\sigma}$ via a sequence of Bruhat interchanges. 0_{n} is an inverse semigroup because it is closed under matrix multiplication and transpose.

A nother easy calculation yields that

$$
\begin{aligned}
\left\{\nu \in \mathrm{R}_{n} \mid B \nu=\nu B\right\} & =\left\{\begin{array}{lllll}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 1
\end{array}\right),\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{array}\right), \cdots, \\
& \left.\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0
\end{array}\right),\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0
\end{array}\right)\right\} .
\end{aligned}
$$

The decomposition

$$
s=s_{+} s_{0} s_{-} \quad\left(\text { for any } s \in \mathrm{R}_{n}\right)
$$

can be thought of as follows:
s_{+}indicates the nonzero rows of s.
s_{-}indicates the nonzero columns of s.
s_{0} indicates the nonzero columns as a function of the nonzero rows.
O ne should think of s_{0} as the "order reversing" part of s. For example, $s_{0}=\nu$ if and only if $s \in 0$. A s an illustration, consider the example

$$
\begin{aligned}
s & =\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
& =s_{+} s_{0} s_{-} .
\end{aligned}
$$

As promised, s_{+}says "rows one and three are involved in $s^{\text {," }} s_{-}$says "columns one and two are involved in $s . " s_{0}$ represents the function

$$
\begin{aligned}
R_{1} & \mapsto C_{2} \\
R_{3} & \mapsto C_{1} .
\end{aligned}
$$

See [11, Sect. 3] for more details concerning 0 and the +0 - decomposition.
5.4. Definition. For $s \in R$ let $\bar{s} \in \mathbf{0}$ denote the unique element of $0 \cap H_{s}$. So if $s=s_{+} s_{0} s_{-}$as above then $\bar{s}=s_{+} \nu s_{-}$.

For the elements of R_{n}, it is easy to find \bar{s} from s without finding s_{+}, s_{0}, and $s_{-} . \bar{s}$ is the unique element of 0_{n} with the same nonzero rows and
columns as s. For example, if

$$
s=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \text { then } \bar{s}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

5.5. Corollary. The following are equivalent for $r, s \in \mathrm{R}$ with $e \mathrm{R}=$ $s \mathrm{R}$ and $\mathrm{R} s=\mathrm{R} f$.
(a) $e B r B f \cap H_{s} \neq \varnothing$
(b) $r \geq \bar{s}$
(c) $\bar{r} \geq \bar{s}$.

Proof. By [11, Corollary 4.4], $H_{s} \subseteq \mathrm{U}_{t H s} B t B=B H_{s} B$, yet by continuity of multiplication $e B r B f \subseteq \overline{B r B}$ since $e, f \in \bar{T}$ and $T B r B T \subseteq B r B$. Hence, $e B r B f \cap H_{s} \neq \varnothing$ iff there exists $t \mathrm{H} s$ such that $r \geq t$. On the other hand $\bar{s} \in \mathrm{H}_{s}$ is the unique smallest element in H_{s}. Thus, (a) and (b) are equivalent. But also $r \geq \bar{r}$. So (c) implies (b). So we may assume $r \geq \bar{s}$. By Corollary 5.3 there exist $e^{\prime}, f^{\prime} \in \mathrm{R}, \mathrm{I}$-equivalent to s, such that $r \geq e^{\prime} r f^{\prime}$ and $e^{\prime} r f^{\prime} \geq \bar{s}$. Thus,

$$
\begin{equation*}
\bar{r} \geq e^{\prime} \bar{r} f^{\prime}=\overline{e^{\prime} r f^{\prime}} . \tag{1}
\end{equation*}
$$

The equality here results from the fact that $e^{\prime} \bar{r} f^{\prime} H \overline{e^{\prime} r f^{\prime}}$ and $e^{\prime} \bar{r} f^{\prime}, \overline{e^{\prime} r f^{\prime}} \in \theta$. But also $e^{\prime} r f^{\prime} \mid s$ (and $e^{\prime} r f^{\prime} \geq \bar{s}$). So by [11, Proposition 3.11], $e^{\prime} r f^{\prime} \geq \bar{s}$ implies that $\left(e^{\prime} r f^{\prime}\right)_{ \pm} \geq \bar{s}_{ \pm}$. Thus

$$
\begin{equation*}
\overline{e^{\prime} r f^{\prime}} \geq \bar{s} \tag{2}
\end{equation*}
$$

by [11, Proposition 3.2] since $\left(\overline{e^{\prime} r^{\prime} f^{\prime}}\right)_{0}=\left(\bar{s}_{0}\right)$. Putting things together we obtain

$$
r \geq \bar{s} \Rightarrow r \geq e^{\prime} r f^{\prime} \geq \bar{s} \Rightarrow \bar{r} \geq \overline{e^{\prime} r f^{\prime}}
$$

But $\bar{e}^{\prime} r f^{\prime} \geq \bar{s}$, by (2).
Remarks. (1) From the above proof we see that for $r \in \mathrm{R}, s \in 0$, and $r \geq s$ there exists $t \mid s$ such that

$$
t \geq s, \quad \text { and } \quad t=e^{\prime} r f^{\prime}, \text { where } e^{\prime} \mathrm{R}=t \mathrm{R} \text { and } \mathrm{R} t=\mathrm{R} f^{\prime} .
$$

This should be useful in getting a better picture of the Adherence Order generally.
(2) A ssume $e B r B f \cap H_{s} \neq \varnothing$ where $e \mathrm{R}=s \mathrm{R}$ and $\mathrm{R} s=\mathrm{R} f$. From [11, Corollary 4.4] we know that $H_{s} \subseteq \mathrm{U}_{t H s} B t B$. Thus, there exists a
unique $t \in \mathrm{H}_{s}$ such that $e B r B f \cap B t B \subseteq \overline{e B r B f}$ is dense. It would be nice to describe this t somehow. In any case we obtain the following corollary.
5.6. Corollary. If $r \geq \bar{s}$ then there exists a maximum $t \mathrm{H} s$ such that $r \geq t$.
5.7. Example. We can use Theorem 3.8 to illustrate Corollary 5.6. Recall from Section 3 that the elements of R_{n} can be thought of as sequences of nonnegative integers $r=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$. So let $n=5$, and consider $r=(24105), s=(31020) \in \mathrm{R}_{5}$. Then $\bar{s}=(12030)$ and one can easily check, using Theorem 3.8, that $r \geq \bar{s}$. A gain using 3.8, we see that $r \geq(23010)=t$. Furthermore, t is maximum in the A dherence Order with the properties $t \mathrm{H} s$ and $r \geq t$.

REFERENCES

1. R. Carter, "Finite Groups of Lie Type; Conjugacy Classes and Complex Characters," Wiley, New Y ork, 1985.
2. M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. 7 (1974), 58-88.
3. V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math. 79 (1985), 499-511.
4. J. Humphreys, "Reflection Groups and Coxeter Groups," Cambridge Univ. Press, Cambridge, UK, 1990.
5. E. A. Pennell, "Generalized Bruhat Order on a R eductive M onoid," Ph.D. Thesis, North Carolina State U niversity, R aleigh, 1995.
6. M. S. Putcha, Linear algebraic semigroups, in "London Math. Soc. Lecture Notes," V ol. 133, Cambridge Univ. Press, Cambridge, UK, 1988.
7. M. S. Putcha, Sandwich matrices, Solomon algebras and Kazhdan-Lusztig polynomials, Trans. Amer. Math. Soc. 340 (1993), 415-428.
8. M. S. Putcha and L. E. Renner, The system of idempotents and the lattice of I-classes of reductive algebraic monoids, J. Algebra 116 (1988), 385-399.
9. L. E. Renner, Classification of semisimple algebraic monoids, Trans. Amer. Math. Soc. 292 (1985), 193-223.
10. L. E. Renner, A nalogue of the Bruhat decomposition for reductive algebraic monoids, J. Algebra 101 (1986), 303-338.
11. L. E. Renner, A nalogue of the Bruhat decomposition for reductive algebraic monoids. II. The length function and the trichotomy, J. Algebra 175 (1995), 697-714.
12. L. Solomon, The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field, Geom. Dedicata 36 (1990), 15-49.
13. J. Tits, Buildings of spherical type and finite BN-pairs, in "Lecture N otes in Math.," V ol. 386, Springer-V erlag, Berlin, 1974.
