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INTRODUCTION

The purpose of this paper is to describe the Adherence Order of
w xB = B-orbits on a reductive algebraic monoid. By the results of 10 there

is already a perfect analogue of the Bruhat decomposition for reductive
w xmonoids. Indeed, by 10, Corollary 5.8 , if M is reductive with unit group G

and maximal torus T : G with Borel subgroup B = T , then the set of two
sided B-orbits, B R MrB is canonically identified with a certain finite

Ž .inverse monoid RR. In fact, RR s N T rT , the orbit monoid of the ZariskiG
Ž .closure of N T in M. By definition, for s , t g RR we define the Adher-G

ence Order by
s F t if Bs B : Bt B,

where Bt B denotes the Zariski closure in M of Bt B.
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In the case of reductive groups, a similar order relation was first studied
w xby Chevalley. Since then Tits 13 developed the notion of a ‘‘BN pair’’ or

‘‘Tits system’’ which provided the abstract framework for much subsequent
Žwork in group theory including complete homogeneous spaces and Schu-

w x.bert varieties 2 . Furthermore, the much studied KL-polynomials are
w xquantified in terms of the Bruhat]Chevalley order on W 3 .

For reductive monoids one would like to describe the Adherence Order
on RR in terms of the Bruhat order on W along with some other necessary
invariant. This other invariant turns out to be the II-order. For n = n

Ž . Ž .matrices, A G B in the II-order, if rank A G rank B . Furthermore, each
element s of RR can be expressed uniquely in standard form s s xeyy1,
where e g L the cross section lattice, and x, y g W are appropriately

Ž .restricted see Corollary 1.5 for details . Our main result is the following:

THEOREM. Let s s xeyy1 and t s sfty1 be in standard form. Then the
following are equï alent:

Ž .a s F t

Ž . Ž .b e F f and there exists w g W f W such that x F sw and tw F y.e

Here e F f means simply that ef s fe s e. This is the II-order condition
Ž . � < 4 �mentioned above. As usual, W f s w g W wf s fw and W s w ge

< 4W we s ew s e .
In Section 2 we analyze further the Adherence Order. To do this, we

introduce the j order on RR. Indeed, we define

s F t if Bs B F Bt B.j

Clearly, s F t implies s F t . The main result of Section 2 is essentiallyj
the following theorem.

THEOREM. Suppose s F t . Then there exists u , u , . . . , u g RR such0 1 m
that s s u F u F u F ??? F u s t , and for all i F m either0 1 2 m

Ž .a u F u or elsei j iq1

Ž . Ž .b u and u differ by a Bruhat interchange see Definition 2.9 .i iq1

This determines the Adherence Order in terms of the two simpler
Ž .relations. The relation of a is not encountered in group theory but is

Ž .easily analysed via Theorem 2.7. The relation of b is described in more
Ž Ž .detail in Definition 2.9 and Theorem 2.11. For M k it implies that un i

.and u have the same nonzero rows and columns. It is similar to theiq1
situation encountered in the study of the Bruhat]Chevalley order on a

w xCoxeter group 4, Chap. 5 .
In Section 3 we apply the general results of Sections 1 and 2 to the

Ž .monoid M k of n = n matrices. In this example, RR s RR can ben n
identified with the finite monoid of zero-one matrices with at most one
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nonzero entry in each row or column. These are sometimes referred to as
partial permutation matrices. We use the results of Section 1 or 2 to find a
purely combinatorial description of the Adherence Order on RR .n

In Section 4 we discuss a natural length function on RR. Here we
continue our policy of determining all ‘‘monoid quantities’’ in terms of
‘‘L-quantities’’ and ‘‘W-quantities.’’ For example, if s s xeyy1 g RR is in
standard form we define the length of s by

l s s l x q l e y l y ,Ž . Ž . Ž . Ž .
Ž . Ž .where l x , l y are the lengths of x and y as elements of the Coxeter
Ž . Ž Ž . .group W, S l e is defined in Section 4 . We show in Section 2 that

length is subadditive, namely

l st F l s q l t .Ž . Ž . Ž .

In the final section of the paper we pursue some further properties of
the Adherence Order. While the results of this section could benefit from
some further refinements, we include them for future reference.

1. THE ADHERENCE ORDER

Let M be a reductive algebraic monoid with maximal torus T and Borel
2Ž . � < 4 � Ž . < 4subgroup B = T. E T s e g T e s e . Let L s e g E T Be : eB be

wa cross section lattice, and let RR s N T rT. Recall from 10, CorollaryŽ .G
x5.8 that RR can be canonically identified with the set of two sided B-orbits

on M. For s , t g RR we define

s F t 1Ž .
Ž .if Bs B : Bt B Zariski closure in M . It is easy to verify that F

determines a partial order on RR. The main result of this section describes
this order relation in terms of

Ž .i the II-order on M
Ž .ii the Adherence Order on W.

Ž .The II-order on M has been determined explicitly in much detail by
the second and third named authors for a large class of reductive monoids
w x8 . The Adherence Order on W is the much studied Bruhat]Chevalley
order.

Before stating our main result we recall some relevant background
information. Let G be a reductive group with T : B : G as usual. Let W
be the Weyl group of T. By definition, if x, y g W, then x F y if and only
if BxB : ByB.
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y y y1.1. LEMMA. x F y if and only if B yB : B xB where B is the Borel
subgroup opposite to B.

w xProof. Let w g W be the longest element. Then by 4, Sect. 5.9 , x F y
y yiff wy F wx iff BwyB : BwxB iff wBwyB : wBwxB iff B yB : B xB,

ysince B s wBw.

1.2. LEMMA. x F y iff xByy1 l ByB / B.

w x yProof. By 3, Corollary 1.2 , x F y iff B xB l ByB / B. But

ByxB l ByB / B m ByxB l By / B

m ByxB l ByBy / B

m ByxByy1 l ByB / B

y1 ym xBy l B B / B.

1.3. LEMMA. For all x g W, ByxB : ByBx l xByB.

Proof. Write xBxy1 s UyUT where Uy: By and U : B. Then xBxy1

yŽ . y y y ys U UT : B B. So xB : B Bx. Thus, B xB : B Bx. Similarly,
y1 y y y yx B x : B B. Thus, B xB : xB B as well.

For I : S let L be the associated Levi factor and B s L l B. LetI L I
w xx g W. Then by 1, Proposition 2.3.3

x has minimal length l x in W x m xy1B x : B. 2Ž . Ž .I L

Now let M be a reductive monoid with unit group G and cross section
lattice L. For e g L let

W e s C eŽ . Ž .W

W s w g W we s e eW e� 4 Ž .e

D s x g W x has minimal length in xW� 4e e

D e s x g W l x is minimal in W e x� 4Ž . Ž . Ž .
L e s C e , H e s eL eŽ . Ž . Ž . Ž .G

B e s C eŽ . Ž .B

By e s C y e .Ž . Ž .B

Ž . ² < :If C e s s s g I and x g D thenW e

Bex s B e xŽ .
s exxy1B e xŽ .
: exB, by 2 .Ž .
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Hence, BexB : exB : BexB and so

BexB s exB for x g D . 3Ž .e

Now let e, f g L with e F f. Then

W e s W W e l W f . 4Ž . Ž . Ž . Ž .e

Clearly,

RR s WLW s WeD e . 5Ž . Ž .D
egL

Ž .Let x g W, e g L, y g D e , and assume x9 F x. Then by Lemma 1.3
Ž .and 3 ,

Bx9eyB : Bx9BeyB

: BxBeyB

: BxBeyB

s BxeyB.

Thus

x9ey F xey if y g D e and x9 F x . 6Ž . Ž .

Ž . y1 Ž . y1Finally, let y g D e and assume x F y . Then by 6 , xey F y ey.
Hence

y1xey g B if y g D e and x g W , x F y . 7Ž . Ž .

Ž . Ž .1.4. THEOREM. Let e, f g L, x, s g W, y g D e , and t g D f . Then
the following are equï alent:

Ž .a xey F sft
Ž . Ž . y1b ef s e and there exist w g W f W , z g W such that w t F ye e

and x F swz in W.

Ž .Proof. Let e, f , s, t, x, and y be as above and assume b holds for w
y1 y1Ž .and z as indicated. Now by 7 , t wey g B. So sfwey s sftt wey g sftB

Ž .: BsftB. So sfwey F sft. By assumption, w s w w with w g w f and1 2 1
w g W . Thus, sfwey s sfw w ey s sfw ey s sw ey s sw w ey s swey. But2 e 1 2 1 1 1 2

Ž .by 6 , xey F swzey F swey F sfwey F sft.
Conversely, suppose xey F sft. Then clearly e F f and xey g BsftB.

y1 y1Hence, e g x BsftBy . Now, for w g W, let

A s xy1Bs l BywB . 8Ž .w
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So xy1Bs s D A . Since this is a finite disjoint union of subvarieties,w g W w
there exists a unique w g W such that A : xy1Bs is open and dense. Sow

y1e g A ftBy .w

y1 y1 y y1 y y1Thus, e g eA ftBy e : eA ftBy e: eB wBftBy e: eB ewfBftBy e.w w
Hence, ewf IIe. So wfwy1 G e. But f G e by assumption. Thus, there exists

Ž . y1 y1 Ž . Ž .¨ g C e such that ¨ f̈ s wfw . But then ¨ g W f l W e / B, sayW
Ž . Ž . Ž . Ž . w Ž .w s ¨c with c g W f . Hence, by 4 , w s ¨c g W e W f : W W e le

Ž .x Ž . Ž .W f W f : W W f . Conclude thate

w s w w for some w g W , w g W f . 9Ž . Ž .1 2 1 e 2

Since A / 0, we see by Lemma 1.3 that B / xy1Bs l BywB : xy1Bs lw
y y1 y1 y Ž .B Bw. Thus x Bsw l B B / B. So by Lemma 1.2 and 9

x F swy1 s swy1 wy1 . 10Ž .2 1

Ž .By 10

y y1e g B w w BftBy1 2

y y1s B w w ftBy , by 3Ž .1 2

y y1s B w fw tBy .1 2

For u g W, let

C s w tByy1 l ByuB .u 2

Then

w tByy1 s C .D2 u
ugW

Since this is a finite union we see that for some u g W, C : w tByy1 isu 2
open and dense. Thus,

ye g B w fC .1 u

So

y y y y y ye g eB w fC e : eB w fC e : eB y w fB wBe : eB ew fB uBe1 u 1 u 1 1

y y y y y: eB efB uBe s eB eB uBe s eB eueBe.

yŽ . Ž .Thus, eue IIe. Hence u g W e . So in H e , e g eB eueBe. By Lemma 1.1
Ž . Ž Ž ..applied to H e , eu F e in W H e . Hence, eu s e. So u g W . Sincee
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C / B, we see from Lemma 1.3 that B / w tByy1 l BywB : w tByy1
u 2 2

l uByB. So uy1 w tByy1 l ByB / B. Thus, by Lemma 1.2,2

uy1 w t F y. 11Ž .2

y1 Ž . y1 y1 Ž . Ž .Let w s w u g W f W , z s u w g W . By 10 and 11˜ 2 e 1 e

y1 y1 y1 y1 y1 y1 y1x F sw w s sw uu w s swz , and w t s u w t F y.˜ ˜2 1 2 1 2

One can streamline the theorem somewhat as follows.
It is easy to check that each element s g WeW, with e g L, can be

written uniquely as

s s xeyy1 , x g D , y g D e .Ž .e

We call this the standard form for s .

Ž .EXAMPLE. Let M s M k , and let T be the group of diagonal invert-3
ible matrices, B the group of upper triangular invertible matrices. One
checks that

1 0 0 1 0 0 1 0 0 0 0 0
L s , , , .0 1 0 0 1 0 0 0 0 0 0 0½ 5ž / ž / ž / ž /0 0 1 0 0 0 0 0 0 0 0 0

So let

0 1 0
s s g RR .0 0 0 3ž /1 0 0

Then

0 1 0 1 0 0 1 0 0
s s s 132 e 1 .Ž . Ž .0 0 1 0 1 0 0 1 0ž / ž / ž /1 0 0 0 0 0 0 0 1

Ž .One easily checks that this is a standard form since D s W and D e se
� Ž . Ž .41, 23 , 123 .

1.5. COROLLARY. Let s s xeyy1 and t s sfty1 be in standard form.
Then the following are equï alent:

Ž .a s F t .
Ž . Ž .b e F f and there exists w g W f W such that x F sw and tw F y.e
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Proof. This is straightforward.

Remark 1. Let s s xeyy1, t s sfty1 be in standard form. The charac-
Ž . Ž .terization in Corollary 1.5 b is ‘‘best possible’’ in the sense that W f We
Ž .cannot be replaced by W f . For example, let

1 0 0 1 0 0
s s and t s .0 0 0 0 0 1ž / ž /0 0 0 0 0 0

Ž . Ž . Ž .Coincidently, the same example shows that s F t «u l s y l e F l t y
Ž . Ž . Ž .l f . On the other hand, if s F t and s g Wt W then l s F l t .

� < 4 � <Remark 2. It is interesting to notice that s g RR s F 1 s s g RR

4 �Ž . < 4s g B can be identified with a subset of x, y g W = W x F y . Indeed,
write s s xeyy1 in standard form. Then by Lemma 2.3 below x F y. One
might hope for an interesting relationship with Kazhdan]Lusztig polyno-
mials. Indeed, the KL-polynomials are indexed by ordered pairs in W.
There is already some connection between KL-polynomials and the Bruhat

w xdecomposition established by the second named author 7 .

2. THE j-ORDER ON RR

2.1. DEFINITION. Let r, s g RR. We say r F s if BrB : BsB.j

One checks easily that F is a partial order on RR.j
The major purpose of this section is to find a description of F entirelyj

Ž .within RR see Theorem 2.7 below . Along the way, we shall need to
establish several other important results about F and F .j

q q � < 42.2. DEFINITION. Define RR : RR as RR s r g RR BrB : B .

Ž . qOne checks that this is well defined. For M k , RR is the set of uppern
triangular partial permutation matrices.

2.3. LEMMA. Let r s xeyy1 be in standard form. Then r g RRq if and
only if x F y.

Proof. If r g RRq then r F 1. Applying Corollary 1.5 we find that there
exists w g W such that x F w F y. In particular, x F y. Conversely, if

Ž .x F y, then plainly the criteria of Corollary 1.5 b are satisfied for s s r
and t s 1.

w xIt was established in 10 that if s g S, the simple reflections, and r g RR,
then

sBr : BrB j BsrB
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and

rBs : BrB j BrsB.

We use this to help prove Theorems 2.4, 2.5, and 2.6 below.

2.4. THEOREM. If r g RR and x g W then rBx : D BryB and xBr :y F x
D ByrB.y F x

Proof. We proceed by induction on the length of x. By the results of
w x Ž . � < Ž .13 , we know that both inclusions hold if l x s 1, since s s x g W l x

4 Ž . Ž .s 1 . Assume the results hold if l x - k, and suppose l x s k. Then
there exists s , s , . . . , s g S such that x s s s ??? s . By induction we1 2 k 1 2 k

Ž . Ž .know that rBx s rBs ??? s s : D BryB s , where x9 s s ???1 ky1 k y F x k 1
w xs s xs . But BryBs : BryB j Brys B from 10, Proposition 5.3 . Thusky1 k k k

Ž .rBx : D BryB j Brys B . Hence rBx : D BryB. The other casey F x 9 k y F x
is similar.

2.5. THEOREM. If r, r g RR then rBr : D Brr B.1 1 r F r 22 1

Proof. Write r s xeyy1 in standard form. Then by Theorem 2.4 we1
have that rBr s rBxeyy1 : D Brx Beyy1.1 x F x 11

� < 4 Ž . Ž .Now let L s x g G xe s ex s C e , B s B l L s C e . Then BeG L B
Ž . w xs eBe s C e e by 6, Theorem 6.16, Corollary 6.34 . HenceB

Brx Beyy1 s Brx C e eyy1 s Brx eC e yy1 .Ž . Ž .1 1 B 1 B

Ž . Ž . y 1 Ž .But, y g D e and so yC e y : B. Thus, Brx C e sB 1 B
y1 Ž . y1 y1 Ž .Brx ey yC e y : Brx ey B. But notice that x F x and y g D e , so1 B 1 1

that r s x eyy1 F xeyy1 s r . Hence, rBr : D Brx Beyy1 :2 1 1 1 x F x 11y1D Brx ey B : D Brr B.x F x 1 r F r 21 2 1

2.6. THEOREM. If r, r g RR then r Br : D Br rB.1 1 r F r 22 1

w xProof. By 9, Theorem 8.2 , there exists an involution t : M ª M so
that

t 2 x s x for all x g M ,Ž .
t xy s t y t x for all x , y g M ,Ž . Ž . Ž .

<t T s id

and

t B s By.Ž .

Ž . Ž y1Now let w g N T represent the longest element of W so that wBw sG
y. Ž . Ž . Ž .B , and define u s int w (t . In particular, u B s B and u xy s
Ž . Ž .u y u x for x, y g RR.
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If r , r g RR, then by Theorem 2.5, rBr : D Brr B. So also,1 1 r F r 22 1
Ž . Ž . Ž . Ž . Ž . Ž .u r Bu r : D Bu r u r B. But r F r if and only if u r F u r1 r F r 2 2 1 2 12

Ž .since u B s B and u is a homeomorphism in the Zariski topology. So our
Ž . Ž .conclusion follows by applying u directly to the inclusion u r Bu r :1

Ž . Ž .D Bu r u r B of Theorem 2.5.r F u Ž r . 22 1

2.7. THEOREM. Let s , u g RR. Then s g RRqu RRq if and only if Bs B :
Bu B.

Proof. If s g RRqu RRq then s s r u r where r , r g RRq. Thus,1 2 1 2

Bs B s Br u r B1 2

: Br u r B1 2

: Bu B since Br , r B : B.1 2

qConversely, if Bs B : Bu B then there exist r , r g RR such that Bs B :1 2
Br Bu Br B. On the other hand, by Theorem 2.6, r Bu : D Br u B,1 2 1 r F r 33 1

while by Theorem 2.5, r u Br : D Br u r B. Hence Bs B : Br Bu3 2 r F r 3 4 14 2

Br B : D Br u r B, from which it follows that s s r u r for some2 3 4 3 4r Fr3 1
r Fr4 2

q qr F r and r F r . But r , r g RR and so r , r g RR .3 1 4 2 1 2 3 4

Theorem 2.7 above gives us one of the major ingredients in the decom-
posing the Adherence Order on RR. It turns out that any relation s F t
can be obtained as a chain of elementary relations s s u - u - u0 1 2
- ??? - u s t , where, for each i, either u g RRqu RRq, or else u isn i iq1 iq1

Ž .obtained from u by a ‘‘Bruhat Interchange’’ see Definition 2.9 below .i
The next theorem will get us closer to the major result of this section.

Ž . y12.8. THEOREM. Let b g Ref W s D wSw and x, y g W. As-w g W
sume that x - xb. Then the following are equï alent.

y1 y1 y1 y1Ž .a Bxey B : Bxbey B and xey / xbey
Ž . Ž . � < 4b b f W e s x g W xe s ex .

Ž . Ž . Ž .Proof. Assume b . So b g Ref w RW e . Then xb can be written in
Ž .reduced form as xb s s ??? s where s g S for all i, s , . . . , s g D e1 r i 1 m

Ž . Ž . Ž .and s , . . . , s g W e . Clearly, xb b s x and xb b - xb. Thus, bymq 1 r
the strong exchange condition, there exists a unique i such that

x s xb b s s ??? s s ??? s .Ž . 1 iy1 iq1 r

Ž . Ž .Hence b s s ??? s s s ??? s . Also,r iq1 i iq1 r

xeb xy1 s s ??? s s ??? s es ??? s .1 iy1 iq1 r r 1
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Ž . Ž .But now b g Ref W RW e , so we must have i F m. Expanding further,
we obtain

xeb xy1 s s ??? s s ??? s es ??? s1 iy1 iq1 m m 1

with
s ??? s s ??? s - s ??? s1 iy1 iq1 m 1 m

and
s ??? s g D e .Ž .1 m

But from Lemma 2.3 we obtain that xeb xy1 g RRq. Hence,
y1 y1Bxey B : Bxey B

y1 y1s B xeb x xbey BŽ . Ž .
y1: Bxbey B.

Ž .Finally, if b f W e then b f W . Hence, e / be and it follows thate
xeyy1 / xbeyy1.

Ž . y1 y1 y1Conversely, assume b g W e . Thus, xeb y s xbey . Now if xeb x
y1 y1 y1g B then eb s e s be and so xey s xbey . Hence, either xeb x f B

y1 y1 y1 y1 y1 Žor else xey s xbey . If xeb x f B then Bxey B  Bxbey B. For
y1 y1 qif Bxey B : Bxbey B then by Theorem 2.7, there exists u, ¨ g RR such

that uxbeyy1 ¨ s xeyy1. Replacing u and ¨ by uxexy1 and yeyy1 ¨ , if
y1 Ž y1 . y1 Ž y1 .necessary, we can assume u g x ex C xex and ¨ g yey C yey .W W

But also, u, ¨ g RRq and hence u s xexy1 and ¨ s yeyy1. But then xeyy1

y1 y1 .s xeb y . But this implies e s eb and so xeb x g B, a contradiction.
Ž . y1 y1We conclude that if b g W e then either xey s xbey or else

y1 y1Bxey B  Bxbey B. This completes the proof.

2.9. DEFINITION. Let xeyy1 and sety1 be in standard form, xeyy1 /
sety1. A Bruhat Interchange occurs between xeyy1 and sety1 if there exists

Ž . Ž . y1 y1a g Ref W l W e such that x F xa and xa ey s set .
Notice that for xeyy1 / xa eyy1, x F xa if and only if xeyy1 F xa eyy1.

Ž .2.10. EXAMPLE. Consider, in M k ,3

1 0 0 1 0 0 1 0 0 1 0 0
y1s s s s xey0 0 1 0 1 0 0 1 0 0 0 1ž / ž / ž / ž /0 0 0 0 0 1 0 0 0 0 1 0

0 0 1
t s 1 0 0ž /0 0 0

1 0 0 0 1 0 1 0 0 1 0 0
s 0 1 0 1 0 0 0 1 0 0 0 1ž / ž / ž / ž /0 0 1 0 0 1 0 0 0 0 1 0

s xa eyy1 .
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Here

1 0 0 0 1 0
e s and g W e .Ž .0 1 0 1 0 0ž / ž /0 0 0 0 0 1

Clearly,

1 0 0 0 1 0
x s F s xa .0 1 0 1 0 0ž / ž /0 0 1 0 0 1

2.11. THEOREM. Let s s xeyy1 and u s sfty1 be in standard form. Then
s F u if and only if there exist u , u , . . . , u g RR such that s s u F u0 1 r 0 1
F ??? F u s u , and for each l, either u F u or else u and u differr ly1 j l ly1 l
by a Bruhat Interchange.

Proof. Obviously, the condition is sufficient. So assume s F u . Then
y1 y1 Ž .Bxey B : Bsft B, and there exists w g W f W such that x F sw ande

Ž .tw F y. Write w s w w with w g W f and w g W . using this fact, we1 2 1 2 e
obtain

sfweyy1 s sfw w eyy1
1 2

s sw few yy1
1 2

s sw ew yy1
1 2

s sweyy1 .

Using this, we also obtain

y1 y1 y1Bswey B : Bsft twey B

y1 y1 q: Bsft B , since twey g RR .

y1 y1But also Bxey B : Bswey B, since x F sw. In any case, we obtain

xeyy1 F sweyy1 F sfty1 .j

So we let u s sfty1 and u s sweyy1. Then we only need to find ther ry1
y1 y1 wchain of u ’s from xey to swey . Since x F sw we can find 4, Proposi-

x Ž .tion 5.11 g , . . . , g g Ref W such that1 k

x - xg - xg g - ??? - xg ??? g s sw1 1 2 1 r

� 4and for every i g 1, 2, . . . , r there exists d g W such that xg ??? g d gi e 1 i i
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Ž .D . Since x g D e ,e

x F xg d F xg g d F ??? - xg g ??? g d .1 1 1 2 1 1 2 r r

If xg g ??? g d s x then1 2 r r

sweyy1 s swdy1eyy1 s xg ??? g eyy1 s xeyy1 .r 1 r

In this case, we can just let u s sweyy1 and u s sfty1 and we are done.0 1
If xg g ??? g / x then let1 2 r

u s xg ??? g d eyy1
i 1 i i

s x g ??? g g eyy1 .Ž .1 iy1 i

Ž . Ž .If g g Ref W RW e then by Theorem 2.8, Bu B : Bu B, while ifi iy1 i
Ž . Ž .g g Ref W l W e then u and u differ by a Bruhat Interchange.i iy1 i

Ž .2.12. EXAMPLE. Let M s M k . Then4

0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0

s s F s u .
0 0 0 0 0 1 0 0� 0 � 0
0 0 0 0 0 0 0 0

We can illustrate Theorem 2.11 as

0 0 1 0 0 1 0 0
0 0 0 1 0 0 0 1

u s F u s0 10 0 0 0 0 0 0 0� 0 � 0
0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0F u s F u s .2 30 0 0 1 0 1 0 0� 0 � 0
0 0 0 0 0 0 0 0

One could invoke Theorem 2.8 to prove u F u F u . However, we can0 j 1 j 2
Ž .see this directly using Theorem 2.7 by observing

1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0

u s u and u s u .0 1 1 20 0 0 0 0 0 0 0� 0 � 0
0 0 0 1 0 0 0 1

ŽDefinition 2.9 easily yields that u ¬ u is a Bruhat Interchange. The2 3
Ž .Bruhat Interchange for M k will be discussed systematically inn

.Section 3.
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Ž .3. THE BRUHAT]CHEVALLEY ORDER ON M kn

Ž .In this section we illustrate our theory for the reductive monoid M kn
of n = n matrices. In this example, the symmetric inverse semigroup
RR s RR can be identified with the set of n = n zero-one monomialn
matrices. Our approach in this section is to identify and interpret the main

Ž . Ž .results of Section 2 especially Theorem 2.11 as they apply to M k . Ton
help focus the reader, we consider the following question: Is there a purely
combinatorial description for the Adherence Order on RR ?n

Ž .3.1. THEOREM. Let E be the n = n matrix a such thati j st

1, s, t s i , jŽ . Ž .
a sst ½ 0, s, t / i , j .Ž . Ž .

ŽŽ .Then E F E if and only if i F k and m F j. i, j is ‘‘up’’ and ‘‘to thei j j k m
Ž . .right’’ of k, m .

Proof. If E F E then there exists upper triangular matrices X andi j j k m
Ž .Y such that XE Y s E . However, this implies that XE Y s 0 ifk m i j k m st

s ) k or t - m. Thus, i F k and m F j.
Conversely, suppose i F k and m F j. Then X s E and Y s E arei k m j

both upper triangular. But one calculates XE Y s E .k l i j

Remark. It is easy to check that E F E if and only if E F E .i j j k m i j k m
Ž .This leads to a number of special properties in the case of M s M k .n

We refer to E as an elementary matrix.i j

3.2. THEOREM. Let A, C g RR and writen

s

A s AÝ l
ls1

t

C s C ,Ý l
ls1

� 4 � 4 � 4where A and C are elementary matrices. Define S s A , . . . , A andl l A 1 s
� 4S s C , . . . , C . Then the following are equï alent:C 1 t

Ž .a A - Cj

Ž . Ž .b There exists an injection u : S ª S such that A F u A for allA C l l
l s 1, 2, . . . , s.
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Ž . Ž .Proof. Assume A F C. Notice that s s rank A and t s rank C .j
Write

I 0sA s w w1 2ž /0 0

I 0tC s w w ,3 4ž /0 0

where w , w , w , w g S , the unit group of RR . Let1 2 3 4 n n

X s w wy1
1 3

I 0sy1Y s w w .4 2ž /0 0

Then we have

XCY s A.

Furthermore, one can check that, for all k F t,

XC Y F C ,k k

and

rank XC Y F 1.Ž .k

Hence, for each k s 1, 2, . . . , t

either XC Y g Sk A

or else XC Y s 0.k

ŽBut for any A g S there exists C such that XC Y s A since XCY sl A k k l
. Ž .A . So define u A s C , where XC Y s A .l k k l
Conversely, if there exists an injection u : S ª S such that A FA C l j
Ž .u A for all l s 1, 2, . . . , s, then we can find elementary upper triangularl

Ž .matrices X and Y such that X u A Y s A . Letl l l l l l

s

X s XÝ l
ls1

and
s

Y s Y .Ý l
ls1
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Ž .Then X and Y are both upper triangular and one checks XCY s A.
Thus A F C.j

3.3. EXAMPLE.

1 0 0 1 0 0
A s F s C0 0 1 0 1 0jž / ž /0 0 0 0 0 1

� 4 � 4since S s E , E , S s E , E , E , and u : S ª S defined byA 11 23 C 11 22 33 A C
Ž . Ž .u E s E , u E s E satisfies the criterion of Theorem 3.2.11 11 23 22

To properly illustrate Theorem 2.11 in the situation of RR it remains ton
Ž .describe concretely the notion of a Bruhat Interchange Definition 2.9 .

We begin our description with the rank two case.

3.4. THEOREM. Let A, C g RR be such that A s E q E and C sn i j k l
ŽE q E . Then A - C if and only if i - k, j - l or i ) k, j ) l. Notice thatk j i l

Ž . .A - if and only if a Bruhat Interchange has occurred see Definition 2.9 .

Ž .Proof. Suppose i - k and j - l the other case is similar . If E s
Ž . Ž .Ž . Ž .Ž . Ž .E q E then A s iy1 i ??? 12 ky1 k ??? 34 23 E 23 ???11 22

Ž .Ž . Ž . Ž .ly1l 12 ??? jy1 j where ab is the permutation matrix which inter-
changes the ath row and the bth row. This is the standard form for A.
One checks that

C s iy1i ??? 12 ky1k ??? 34 23Ž . Ž . Ž . Ž . Ž .
12 E 23 ??? ly1l 12 ??? jy1 j .Ž . Ž . Ž . Ž . Ž .

wŽ . Ž .x wŽ . Ž .xŽ .But iy1i ??? 23 - iy1i ??? 23 12 . Therefore A - C.
Conversely, assume i - k and j ) l or i ) k and j - l. But then the

same argument, as above, shows that C - A.

Ž3.5. THEOREM. Let A s E q ??? qE g RR where, as usual, E isi j i j i j1 1 s s
.an elementary matrix and suppose C s E q ??? qE q E qi j i j i j1 1 ky1 ky1 l k

ŽE q ??? qE q E q E q ??? qE so C is obtained fromi j i j i j j j i jkq 1 kq1 ly1 ly1 k l lq1 lq1 s s
.A by interchanging two nonzero rows . Relabel the two interchanged matrices

E and E . Then A - C if and only if i - k, j - l or i ) k, j ) l.i j k l

Ž .Proof. If i - k and j - l, then by Theorem 3.4, E q E A -i i k k
Ž .E q E C. A little more calculation then shows that A - C.i i k k

Conversely, if i ) k and j - l, or i - k and j ) l then the above
argument shows that C - A.

Notice that the situation above describes exactly the case where a
Bruhat Interchange occurs between A and C.
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Combining Definition 2.9 and Theorems 2.11 and 3.5 we obtain the
following description of the Adherence Order on RR .n

Ž .3.6. THEOREM Theorem 2.11 for RR . Let s , t g RR . Then s F t ifn n
and only if s s g F g F ??? F g s t where, for each l, either0 1 r

Ž . q qa g g RR g RR , or elsely1 n l n

Ž .b g is obtained from g ¨ia a Bruhat Interchange.l ly1

Ž . Ž .To calculate in case a , we use Theorem 3.2, and in case b we use
Theorem 3.5.

� 4 sRecall that for s g RR we write S s E , . . . , E if s s Ý E andn s 1 s is1 i
each E is an elementary matrix.i

Ž . Ž . Ž3.7. THEOREM. Suppose s F t and l s s l t y 1. So s F g F t
.implies s s g or g s t . Then one of the following holds:

Ž . < < < <a S s S y 1 and S : S .s t s t

Ž . < < < < < < < < Žb S s S and S l S s S y 1 with E - E where S R Ss t s t s s t s s

. � 4 Ž . � 4l S s E and S R S l S s E . Furthermore, s and t are eithert s t s t t

row equï alent or column equï alent.
Ž .c t is obtained from s ¨ia a Bruhat Interchange.

Ž . Ž . Ž .Proof. Assume c is not the case, and rank s - rank t . By Theo-
Ž .rems 3.2 and 3.6 there exists an injection u : S ª S such that s F u ss t i i

Ž . Ž . Ž .for each s g S . Define u s g RR by S s u S . Then s F u s -i s n u Žs . s

Ž . Ž .t . Thus s s u s . Therefore, a holds.
Ž . Ž . Ž .Now assume c is not the case, and rank s s rank t . By Theorem 3.6

we must have s s xt y for some x, y g RRq. Then s s xt y F t y F t .
Hence, either s s t y or else t y s t . In the first case s s t y, and in the

Žsecond case s s xt . Assume, without loss of generality that s s t y s
.and t have the same nonzero rows . Now by Theorem 3.2, the map u :

Ž .S ª S has s F u s for all s g S . But by Theorem 3.1, this meanss t i i i s

Ž . Žthat if s s E and u s s E then r G u and s F ¨ E is ‘‘up’’ an ‘‘toi u¨ i r s u¨
.the right’’ of E . But s and t have the same nonzero rows. Since u isr s

row increasing it follows easily that u is row preserving. So write

� 4S s E , . . . , Es i1 i s

and

S s E , . . . , E ,� 4t j1 js

Ž Ž . .where E and E are nonzero in the same row so that u E s E .i k jk ik jk
Now let E g S be the elementary matrix with the maximum columni k s
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Ž � 4. � 4value. Define t 9 g RR via S s S R E j E where E is nonzeron t 9 t jk 9 i k jk 9

Ž Ž . .in the same row as E so u E s E . Then t 9 s Ý E g RR sincei k jk jk 9 E g S nt 9

u is column decreasing. Also s F t 9 F t since E has larger columnj j i k
value than E . If t 9 / t then we are done, since we obtain s s t 9, andi k 9

Ž . Ž . Ž2.so b holds. If t 9 s t i.e., E s E we move on; i.e., define t usingi k jk 9

the E g S with the next largest column value, thereby substituting it fori s s

the corresponding E g S . Again one checks that t Ž2. g RR , and s F t Ž2.
j t ns9

F t . If t Ž2. s t then define t Ž3., and so on. Eventually, one obtains
Ž r . Ž r . Ž r . Ž . Ž .t / t . But then s s t since s F t - t and l t s l s q 1. So t

is obtained from s by ‘‘moving’’ one elementary matrix of s ‘‘to the left.’’
Ž .So b holds.

Theorem 3.7 allows us to give a combinatorial description of the Adher-
ence Order on RR . First we represent the elements of RR by sequences ofn n

Ž .nonnegative integers. Let s g RR . We associate to s a sequence e ,???, en 1 n
where, for all i, 1 F i F n, e is defined asi

0, if s is zero in the ith column
e si ½ w xk , if s s 1.k i

EXAMPLE.

0 0 0 0
0 0 0 1 l 3042 .Ž .
1 0 0 0� 0
0 0 1 0

Ž .Notice that a sequence e , . . . , e can occur this way for some r g RR if1 n n
and only if 0 F e F n for all i; and whenever e s e , either i s j or elsei i j

Ž .e s e s 0. For convenience we simply write s s e , . . . , e g RR . Wei j 1 n n
can now interpret Theorem 3.7 combinatorially.

3.8. THEOREM. The Adherence Order on RR is the smallest partial ordern
generated by declaring

s s d , . . . , d - t s e , . . . , eŽ . Ž .1 n 1 n

if either

Ž . Ža d s e for j / i and d - e s is obtained from t by replacingj j i i
.some e by a smaller numberi

Ž . Žb d s e if k / i or j, i - j, d s e , e s d and e ) e s isk k i i i j i j
Ž . .obtained from t by interchanging e and e i - j where e ) e .i j i j
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Proof. We simply interpret each case of Theorem 3.7.

Ž .Case 3.7 a . This says that s is obtained from t by setting some
Ž .nonzero entry in t as a matrix to zero. This is included in Theorem

Ž .3.8 a .

Ž .Case 3.7 b . First assume that s and t have the same nonzero rows.
So, as we saw in the proof of Theorem 3.7, the matrix s is obtained from
the matrix t by moving a ‘‘one’’ to the right. This is included in Theorem

Ž .3.8 b . If s and t have the same columns then s is obtained from t by
Ž .moving a ‘‘one’’ upward. This is included in Theorem 3.8 a .

Ž . Ž .Case 3.7 c . This is easily seen as the special case of Theorem 3.8 b
where both e and e are nonzero.i j

Ž . Ž .3.9. EXAMPLE. Let r s 21403 and s s 35201 in RR . Then r - s,5
since

21403 - 31402 , by Theorem 3.8 bŽ . Ž . Ž .
- 34102 , by Theorem 3.8 bŽ . Ž .
- 35102 , by Theorem 3.8 aŽ . Ž .
- 35201 , by Theorem 3.8 b .Ž . Ž .

4. SUBADDITIVITY OF LENGTH

In this section we consider a natural length on RR, extending the much
studied length function on W, the Weyl group. In keeping with our point of
view in this paper, we shall define this length function in terms of the
length function on W and a notion of length for the elements of L. This
appears to be a natural generalization of length function considered by

w x Ž .Solomon 12 for M s M F , where RR can be identified with the symmet-n q
ric inverse semigroup on n letters. There is also a topologicalrgeometric
definition for this length function. Indeed, one can define

l x s dim BxB y dim Bn B ,Ž . Ž . Ž .

where n g WxW is the unique element such that Bn s n B. This is
w xdiscussed in some detail by the third named author in 11 . Our main result

in this section proves that the length function is subadditive.
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² :Let W s S be the Weyl group, where S : W is the set of simple
involutions relative to B and T : B. Define

Ref W s xSxy1 .Ž . D
xgW

For I : S we have

Ref W s W l Ref W .Ž . Ž .I I

Let

l I s Ref W RRef WŽ . Ž . Ž .I

D I s x g W x has minimal length in xW .� 4Ž . I

Thus,

l I s max l x x g D .Ž . Ž .� 4I
For I, J : S let

l I , J s Ref W RW .Ž . Ž .I J

So

l I s l S, IŽ . Ž .

and

l I , J s l I , I l JŽ . Ž .
s max l x x g W l D . 1Ž . Ž .� 4I J

Now let RR be as in section one with unit group W and cross section lattice
L. For e g L, recall that

W e s x g W xe s ex� 4Ž .
W s x g W xe s e eW e .� 4 Ž .e

˜ ˜Ž . Ž .Notice that there exists a unique subgroup W e of W such that W e is
generated by a subset of S and

˜W e s W = W e 2Ž . Ž . Ž .e

² :D e s D , where W e s I ,Ž . Ž .I

² :D s D , where W s J ,e J e
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and

l e s l I .Ž . Ž .
If e, f g L, let

² : ² :l f , e s l J , I , where W f s J and W e s I .Ž . Ž . Ž . Ž .

If e, f g L, x g W, then

exf g WfW iff e G f and x g W e W fŽ . Ž .
fxe g WfW iff e G f and x g W f W e . 3Ž . Ž . Ž .

If e, f g L then

˜e G f « W f : W e . 4Ž . Ž . Ž .

Ž . Ž .Thus, by 2 and 4 ,

e G f « W f s W e, f W , 5Ž . Ž . Ž .f

Ž . Ž . Ž .where W e, f s W e l W f . Recall from the end of Section 1 that if
s g WeW, e g L, then

s s xeyy1 for some x g D and y g D e .Ž .e

Ž .Furthermore, x and y are unique by an easy counting argument .

4.1. DEFINITION. Let s s xeyy1 be in standard form. Define

l s s l x q l e y l y ,Ž . Ž . Ž . Ž .

Ž . Ž . Ž .where l x , l y are the lengths of x and y as elements of W, and l e is as
above.

Ž . Ž . Ž .It is easy to see that l zs F l z q l s for any z g W. However,
Ž .much more is true. The main result of this section Theorem 4.5 below

Ž . Ž . Ž .says that for any s , t g RR, l st F l s q l t . For example, let

0 0 0 0 1 0
s s and t s ,0 0 1 1 0 0ž / ž /0 1 0 0 0 0

so that

0 0 0
st s .0 0 0ž /1 0 0
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Then

0 0 1 1 0 0 0 1 0
y1s s s xey ,0 1 0 0 1 0 0 0 1ž / ž / ž /1 0 0 0 0 0 1 0 0

0 1 0 1 0 0 1 0 0
y1t s s ue¨1 0 0 0 1 0 0 1 0ž / ž / ž /0 0 1 0 0 0 0 0 1

and

0 1 0 1 0 0 1 0 0
y1st s s rfs0 0 1 0 0 0 0 1 0ž / ž / ž /1 0 0 0 0 0 0 0 1

determine the standard form of s , t , and st . Thus, by Definition 4.1

l s s l x q l e y l y s 3 q 2 y 2 s 3Ž . Ž . Ž . Ž .
l t s l u q l e y l ¨ s 1 q 2 y 0 s 3Ž . Ž . Ž . Ž .

l st s l r q l f y l s s 2 q 2 y 0 s 4.Ž . Ž . Ž . Ž .

Ž . Ž . Ž .So l st F l s q l t as required.

4.2. LEMMA. Let e, f , h g L be such that eWf l WhW / B. Then

l h F l e q l f y l h , e y l h , t .Ž . Ž . Ž . Ž . Ž .

Proof. Let x g W be such that exf s ahby1 is in standard form. Then
Ž . Ž . Ž . Ž . Ž .eah g WhW. So by 3 and 5 above a g W e W h s W e W . Sinceh

Ž . y1 Ž .a g D , we see that a g W e . Also, since hb f g WhW, we see by 3h
y1 Ž . Ž . Ž . Ž .that b g W h W f . Finally, since b g D h , we see that b g W f . We

conclude that

eay1 xbf s ay1exfb s h.

Thus, without loss of generality we may assume that exf s h. So we obtain
Ž . Ž . y1hxh s x and, by 3 , x s W h . Since x exf is an idempotent we obtain

y1 Ž y1 . Ž . Ž .that x exf s h. Thus, W x ex l W f : W h , and it follows that

xy1 Ref W e x l Ref W f : Ref W h .Ž . Ž . Ž .Ž . Ž . Ž .

Ž .Thus, in Ref W ,

c c cy1Ref W h : x Ref W e x j Ref W fŽ . Ž . Ž .Ž . Ž . Ž .
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and so

c c cy1 y1Ref W h : x Ref W e xRRef W h l x Ref W e xŽ . Ž . Ž . Ž .Ž . Ž . Ž . Ž .
c cj Ref W f RRef W h l Ref W f .Ž . Ž . Ž .Ž . Ž . Ž .

But

c
Ref W h s l hŽ . Ž .Ž .

c cy1x Ref W e x s Ref W e s l eŽ . Ž . Ž .Ž . Ž .

and

y1 y1Ref W h Rx Ref W e x s x Ref W h RRef W e xŽ . Ž . Ž . Ž .Ž . Ž . Ž . Ž .
s l h , eŽ .

Ž .since x g W h . Furthermore,

c
Ref W f s l fŽ . Ž .Ž .

Ref W h RRef W f s l h , f .Ž . Ž . Ž .Ž . Ž .

Ž . w Ž . Ž .x w Ž . Ž .xThus, we conclude that l h F l e y l h, e q l f y l h, f .

Ž . y14.3. COROLLARY. Let e, f , h g L and x g D e be such that ex f s
ahby1 is in standard form. Then

l a q l h y l b F l e q l f y l x y l h , f .Ž . Ž . Ž . Ž . Ž . Ž . Ž .

Ž . y1 Ž .Proof. Now a g D , b g D h , and eah, hb f g WhW. Thus 3 andh
Ž . Ž . Ž . y1 y1 y1 y15 , a g W e and b g W f . Hence ea x bf s a ex fb s h. So

y1 y1 y1 y1 Ž . y1 y1 Ž .ha x bh s hea x bfh s h. But then by 3 , a x b g W h , and so
ay1 xy1 bh s h. Hence, ay1 xb g W . Let a s ay1 xy1 b g W . Soh h

ay1 xy1 s a by1 . 6Ž .

Ž . Ž . Ž .Since a g W e , x g D e , a g W , and b g D h ,h

l a q l x s l ay1 xy1 s l a by1 s l a q l b . 7Ž . Ž . Ž . Ž . Ž . Ž . Ž .

Ž . Ž .y1 Ž .But a s a a with a g W l W e , a g W l D e , and l a s1 2 1 h 2 h
Ž . Ž . Ž . y1 y1 y1 y1l a q l a . So by 6 , a a x s a b . Then1 2 2

l ay1a s l a q l a since a g W , a g DŽ . Ž .Ž .1 1 1 h h
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and

l ay1ay1 xy1 s l ay1ay1 q l xŽ .Ž Ž .1 1

s l a q l a q l x since ay1ay1 g W e andŽ . Ž . Ž . Ž .1 1

x g D e .Ž .
Furthermore,

l a by1 s l a q l b since b g D h .Ž . Ž . Ž .Ž .2 2

Thus,

l a q l a q l x s l a q l b .Ž . Ž . Ž . Ž . Ž .1 2

Ž . Ž . Ž . Ž .But l a s l a q l a , so by 7 ,1 2

l a q l x s l a q l a q l b .Ž . Ž . Ž . Ž . Ž .1 2

Ž . Ž . Ž . Ž .Conclude that l a s 0, and so a s a g W l D e : W h l D e . By1 2 h
Ž . Ž . Ž . Ž . Ž . Ž . Ž .1 , l a F l h, e . Hence, l a q l x F l h, e q l b . Combining this with

Ž . Ž . Ž . Ž . Ž . Ž . Ž .the lemma we obtain l a q l h y l b F l e q l f y l x y l h, f .

Ž . Ž .4.4. COROLLARY. Let e, f , h g L , x g D e , t g D f . Then
Ž y1 y1. Ž y1 . Ž y1 .l ex ft F l ex q l ft .

Proof. Let exy1 f s ahby1, h g L, be in standard form. Then as in
Corollary 4.3,

a g D l W e , b g D h l W f 8Ž . Ž . Ž . Ž .h

and

l a q l h y l b F l e q l f y l x y l h , f . 9Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .
Let

by1 ty1 s a ¨y1 , a g W f , ¨ g D h . 10Ž . Ž . Ž .
Ž . Ž .By 8 and 10

l b q l t s l by1 ty1 s l a ¨y1 s l a q l ¨ . 11Ž . Ž . Ž . Ž . Ž . Ž . Ž .
Ž . Ž . Ž .y1 Ž . Ž .But a s a a with a l f l W h and a g D f l W h . So l a1 2 1 2

Ž . Ž . Ž . y1 y1 y1 y1 Ž . Ž . Ž .s l a q l a . By 10 , a b t s a ¨ and 8 , l a q l b s1 2 1 2 1
Ž y1 y1. y1 y1 Ž . Ž .l a b . Since a b g W h and t g D h , we obtain1 1

l a q l b q l t s l ay1 by1 q l tŽ . Ž . Ž . Ž .Ž .1 1

s l ay1 by1 ty1Ž .1

s l a ¨y1Ž .2

s l a q l ¨ .Ž . Ž .2
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Ž . Ž . Ž . Ž . Ž . Ž . Ž .But by 11 , l b q l t s l a q l a q l ¨ . Hence l a s 0 and so1 2 1
Ž .y1 Ž . Ž .a s a g D f l W h . By 12

l a F l h , f . 12Ž . Ž . Ž .
Ž .Since f G h it follows from 5 that

a g W h l D f : W l D f .Ž . Ž . Ž .h

Ž .Hence, by 10
exy1 fty1 s ahby1 ty1

s aha ¨y1

s ah¨y1 .
Ž . Ž . Ž .Finally, by 9 , 11 , and 12

l exy1 fty1 s l a q l h y l b y l t q l aŽ . Ž . Ž . Ž . Ž .Ž .
F l e q l f y l x y l h , f y l t q l a ,Ž . Ž . Ž . Ž . Ž . Ž .

by Corollary 4.3

F l e q l f y l x y l tŽ . Ž . Ž . Ž .
y1 y1s l ex q l ft .Ž . Ž .

4.5. THEOREM. Let s , s g RR. Then1 2

l s s F l s q l s .Ž . Ž . Ž .1 2 1 2

Proof. Write s s xeyy1 and s s ¨fty1 in standard form with e, f g L.1 2
y1 y1 Ž . Ž . Ž .Let y ¨ s wy where w g W e and y g D e . Since y g D e and1 1
Ž . y1 y1 y1 y1 Ž y1 y1. Ž . Ž .w g W e we obtain that w y s y ¨ and l w y s l w q l y .1

Hence,

l w q l y s l yy1 ¨y1 F l y q l ¨ . 13Ž . Ž . Ž . Ž . Ž .Ž . 1

Finally,

l s s q l xeyy1 ¨fty1Ž . Ž .1 2

s l xewyy1 fty1Ž .1

s l xweyy1 fty1Ž .1

F l xw q l eyy1 fty1Ž . Ž .1

F l xw q l e y l y q l f y l t , by Corollary 4.4Ž . Ž . Ž . Ž . Ž .1

F l x q l w q l e y l y q l f y l tŽ . Ž . Ž . Ž . Ž . Ž .1

F l x q l ¨ y l y q l e q l f y l t , by 13Ž . Ž . Ž . Ž . Ž . Ž . Ž .
s l s q l s , by definition.Ž . Ž .1 2
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Remark. The question of subadditivity of length was raised by L.
Solomon. It turns out that the issue of integral structure constants for

wmonoid Hecke algebras hinges on Theorem 4.5. See the proof of 12,
xTheorem 4.12 for an illustration of this issue in the special case M s

Ž .M F .n q

5. RELATED RESULTS

In this section we complete our current study by establishing a number
of supplementary results concerning the Adherence Order. We focus on
the relationship between the Adherence Order and the HH-relation on RR.
It is clear to the authors that there are an intriguing number of unchar-
tered possibilities that could be pursued here.

Let M be a reductive monoid with maximal torus T. If s , t g RR we say
Ž .that s and t are HH-related in RR if s RR s t RR and RRs s RRt . We write

s HHt . Similarly, elements x and y of M can be HH-related. We denote the
HH-class in M of x g M by H and the HH-class of x g RR in RR by HH . Sox x

� < 4H s y g M yM s xM and My s Mx . Two elements x and y of M arex
Ž .II-related x II y is MxM s MyM. We write x G y if MyM : MxM. ForII

Ž . Ž .n = n matrices, x G y in the II-order if rank x G rank y .II

Ž .Let e, f g E T .

Ž .5.1. LEMMA. Suppose x g eMf l eG. Then there exists e9 g E T such
Ž .that e9 g Cl e , e9 F f , and xe9 g eG.W

Proof. Write x s eg and let b , b g B be such that g s b wb . Here1 2 1 2
� < 4B is a Borel subgroup containing T such that B : h g G eh s ehe . Thus

Ž . y1eb s eb e s ce for some c g C e . Hence, eg s cewb s cwew b s1 1 B 2 2
ge9b, where e9 s wy1ew and b s b . So xe9 s ege9 s ye9be9 g Ge9 since2
e9be9 g Be9. But also eg s x s xf. So if ege9 g Ge9 then f 9 G e9. Other-
wise, f h e9 and so fe9 - e9 which implies that xfe9 - e9 in the II-order on
M. But this is absurd since xfe9 s ege9 g Ge9.

Ž .5.2. COROLLARY. Suppose eBf l eG / B. Then there exists e9 g E T
such that e9 IIe, e9 F f , and eBe9 l eG / B.

Proof. Let x g eBf l eG and choose e9 as in Lemma 5.1. Then xe9 g
eBe9 l eG and the conclusion follows.

For s g RR let H denote the HH-class of s in M.s

Ž .5.3. COROLLARY. Let r, s g RR and let e, f g E T be such that e RR s
Ž .s RR and RRs s RRf. Suppose eBrBf l H / B. Then there exist e9, f 9 g E Ts

with e9 II f 9 IIs such that eBe9rf 9Bf l H / B. In particular, e9r s rf 9 IIs ands
if we write r s e s s s f with s g W then e9 F e and f 9 F f .0 0 0 0
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Proof. Since eBrBf l H / B it follows easily that eBe l eG / B ands 0
f Bf l Gf / B. So by Corollary 5.2 and its left-right dual we obtain0
e9 F e a nd f 9 F f such that eBe9 l eG / B and f 9Bf l Gf / B.0 0

If we let H denote the HH-class of e s where sy1e s s e then it ise e 1 1 21 2
Žeasy to see that H H : H . But we have B / eBe9r l H sincee e e e e e e f 91 2 2 3 1 3

.e9r s rf 9 and B / f 9Bf l H . Thus, recalling that H s H , we obtainf 9 f s e f
eBe9rf 9Bf l H / B.s

w xWe recall now some results from 11 . Define the set of order preser̈ ing
elements of RR by

OO s r g RR rBr* : Brr* .� 4

w xThen by 11, Sect. 2

OO : RR is an inverse subsemigroup,

E RR : OO ,Ž .

and

< <OO l H s 1 for each HH-class of RR.

For each s g RR we can write uniquely

s s s s s ,q 0 y

where s , s g OO, s RR s s RR, RRs s RRs, s HHn , and n IIs is the uniqueq y q y 0
such element that satisfies Bn s n B.

To illustrate these notions, consider our familiar example of RR . Onen
can easily calculate that, in this example,

OO s OO s s g RR if s , s / 0 and i - k , then j - l ;� 4n n i j k l

i.e., for nonzero entries, the column value is an increasing function of the
row value, e.g.,

1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0g OO , f OO .4 40 1 0 0 1 0 0 0� 0 � 0
0 0 1 0 0 0 1 0

It is interesting to notice that for each s g RR , there exists a uniquen
s g OO so that s be obtained form s via a sequence of Bruhat inter-n
changes. OO is an inverse semigroup because it is closed under matrixn
multiplication and transpose.
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Another easy calculation yields that

¡ 1 0 0 ??? 0 0 1 0 ??? 0
0 1 0 ??? 0 0 0 1 ??? 0
. . . . . . . . .~ . . . ??? . . . . . .n g RR Bn s n B s , ,???,� 4n . . . . . . . . .
0 0 0 ??? 0 0 0 0 ??? 1� 0 � 0¢
0 0 0 ??? 1 0 0 0 ??? 0

¦0 0 ??? 0 1 0 0 ??? 0 0
0 0 ??? 0 0 0 0 ??? 0 0
. . . . . . . . . . ¥. . . . . . . . . ., .. . . . . . . . . .
0 0 ??? 0 0 0 0 ??? 0 0� 0 � 0§
0 0 ??? 0 0 0 0 ??? 0 0

The decomposition

s s s s s for any s g RRŽ .q 0 y n

can be thought of as follows:

s indicates the nonzero rows of s.q

s indicates the nonzero columns of s.y

s indicates the nonzero columns as a function of the nonzero rows.0

One should think of s as the ‘‘order reversing’’ part of s. For example,0
s s n if and only if s g OO. As an illustration, consider the example0

0 1 0 1 0 0 0 0 1 0 0 0
s s s0 0 0 0 0 0 0 1 0 1 0 0ž / ž / ž / ž /1 0 0 0 1 0 0 0 0 0 1 0

s s s s .q 0 y

As promised, s says ‘‘rows one and three are involved in s,’’ s saysq y
‘‘columns one and two are involved in s.’’ s represents the function0

R ¬ C1 2

R ¬ C .3 1

w xSee 11, Sect. 3 for more details concerning OO and the q0 y decomposi-
tion.

5.4. DEFINITION. For s g RR let s g OO denote the unique element of
OO l H . So if s s s s s as above then s s s n s .s q 0 y q y

For the elements of RR , it is easy to find s from s without finding s ,n q
s , and s . s is the unique element of OO with the same nonzero rows and0 y n
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columns as s. For example, if

0 1 0 0 1 0 0 0
1 0 0 0 0 1 0 0s s then s s .
0 0 0 1 0 0 0 1� 0 � 0
0 0 0 0 0 0 0 0

5.5. COROLLARY. The following are equï alent for r, s g RR with e RR s
s RR and RRs s RRf.

Ž .a eBrBf l H / Bs

Ž .b r G s
Ž .c r G s.

w xProof. By 11, Corollary 4.4 , H : D BtB s BH B, yet by continuitys tHHs s
of multiplication eBrBf : BrB since e, f g T and TBrBT : BrB. Hence,
eBrBf l H / B iff there exists tHHs such that r G t. On the other hands

Ž . Ž .s g HH is the unique smallest element in HH . Thus, a and b are equiva-s s
Ž . Ž .lent. But also r G r. So c implies b . So we may assume r G s. By

Corollary 5.3 there exist e9, f 9 g RR, II-equivalent to s, such that r G e9rf 9
and e9rf 9 G s. Thus,

r G e9rf 9 s e9rf 9. 1Ž .

The equality here results from the fact that e9rf 9HH e9rf 9 and e9rf 9, e9rf 9g u .
Ž . w xBut also e9rf 9 IIs and e9rf 9 G s . So by 11, Proposition 3.11 , e9rf 9 G s

Ž .implies that e9rf 9 G s . Thus" "

e9rf 9 G s 2Ž .

w x Ž . Ž .by 11, Proposition 3.2 since e9r 9 f 9 s s . Putting things together we0 0
obtain

r G s « r G e9rf 9 G s « r G e9rf 9 by 1 .Ž .Ž .

Ž .But e9rf 9G s, by 2 .

Ž .Remarks. 1 From the above proof we see that for r g RR, s g OO, and
r G s there exists t IIs such that

t G s, and t s e9rf 9, where e9 RR s t RR and RRt s RRf 9.

This should be useful in getting a better picture of the Adherence Order
generally.

Ž .2 Assume eBrBf l H / B where e RR s s RR and RRs s RRf. Froms
w x11, Corollary 4.4 we know that H : D BtB. Thus, there exists as tHHs



PENNELL, PUTCHA, AND RENNER368

unique t g HH such that eBrBf l BtB : eBrBf is dense. It would be nice tos
describe this t somehow. In any case we obtain the following corollary.

5.6. COROLLARY. If r G s then there exists a maximum tHHs such that
r G t.

5.7. EXAMPLE. We can use Theorem 3.8 to illustrate Corollary 5.6.
Recall from Section 3 that the elements of RR can be thought of asn

Ž .sequences of nonnegative integers r s e , . . . , e . So let n s 5, and1 n
Ž . Ž . Ž .consider r s 24105 , s s 31020 g RR . Then s s 12030 and one can5

easily check, using Theorem 3.8, that r G s. Again using 3.8, we see that
Ž .r G 23010 s t. Furthermore, t is maximum in the Adherence Order with

the properties tHHs and r G t.
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