LECTURE 8: GEOMETRIC FLAVOR AND SUBWORD PROPERTY OF BRUHAT ORDER

WANG, QIANG

1. Geometric flavor

This section is a brief introduction on the role of Bruhat order in the study of Flag and Schubert varieties.

Let G be an algebraic group, in our following discussion we concentrate on $G=$ $G L_{n}(\mathbb{C})$. Let $B \subset G$ be the Borel subgroup of G, which in the case of $G=G L_{n}$ is the set of all upper triangular matrices. Then G / B has the structure of smooth projective variety.

Let V be an n-dimensional complex vector space. A flag is a sequence

$$
\{0\}=V_{0} \subset V_{1} \subset \cdots \subset V_{k}=V
$$

of subspaces of V. If we denote by $d_{i}=\operatorname{dim}\left(V_{i}\right)$, then $\left(d_{0}, \cdots, d_{k}\right)$ is a strictly increasing sequence with $d_{0}=0$ and $d_{k}=n$, which is called the signature of the flag. We say that a flag is complete if $d_{i}=i$ for all $i=0, \ldots, n$.

Fix an ordered basis $\mathcal{B}=\left(v_{1}, \cdots, v_{n}\right)$ of V. The standard flag of V is given by setting $V_{i}=\operatorname{span}\left\{v_{1}, \cdots, v_{i}\right\}$. It is clear that each V_{i} is invariant under B.

The group $G=G L_{n}$ acts transitively on the set of all complete flags and B is the stabilizer. Thus the set of complete flags can be thought as the smooth projective variety G / B. In the case of partial flags one obtains G / P where P is a parabolic subgroup. A (partial) flag variety of signature $\left(d_{0}=0, d_{1}, d_{2}=n\right)$ is just a Grassmannian of all d_{1}-dimensional subspaces of V.

It is known that G can be decomposed in terms of the Bruhat decomposition

$$
G=B W B
$$

where W is a Weyl subgroup of G, and in the case of $G=G L_{n}, W$ is the subgroup of all permutation matrices $\left(\cong S_{n}\right)$. Then $G / B=\bigcup_{w \in W} B w B / B$ is the disjoint union of Schubert cells $C_{w}:=B w B / B$ indexed by $w \in W$.

Let $X_{w}=\overline{C_{w}}$ be the topological closure of $C_{w} . X_{w}$ is the Schubert variety in flag manifold $F=F(V)$ of all complete flags in V. The following theorem connects Bruhat order to the study of flag varieties.

Theorem 1.1. $X_{v} \subseteq X_{w}$ if and only if $v \leq w$ in Bruhat order.
Let $H^{*}(F ; \mathbb{Z})$ be the cohomology ring associated with F. Each closed subvariety X of F determines an element $[X] \in H^{*}(F, \mathbb{Z})$. Recall the Schubert polynomials σ_{w} from Lecture 1. The next theorem relates Schubert classes with Schubert polynomials.

[^0]Theorem 1.2. There is a surjective ring homomorphism

$$
\begin{aligned}
\varphi: \mathbb{Z}\left[x_{1}, \cdots, x_{n}\right] & \rightarrow H^{*}(F ; \mathbb{Z}) \\
\sigma_{w} & \mapsto\left[X_{w}\right]
\end{aligned}
$$

2. Subword property of Bruhat order

In this section we continue the discussion of Bruhat order in Lecture 7. Let (W, S) be a Coxeter system.

Definition 2.1. A subword of a word $s_{1} s_{2} \cdots s_{q}$ is a word of the form $s_{i_{1}} \cdots s_{i_{k}}$ where $1 \leq i_{1}<\cdots<i_{k} \leq q$. Write $s_{i_{1}} \cdots s_{i_{k}} \prec s_{1} s_{2} \cdots s_{q}$.

Lemma 2.2. Let $u, w \in W$ and $u \neq w$. Suppose w has a reduced expression $s_{1} s_{2} \cdots s_{q}$ and u has a reduced expression which is a subword of $s_{1} s_{2} \cdots s_{q}$. Then there exists $v \in W$ such that
(1) $u<v$
(2) $\ell(v)=\ell(u)+1$
(3) v has a reduced expression which is a subword of $s_{1} s_{2} \cdots s_{q}$.

Proof. Let $u=s_{1} \cdots \hat{s}_{i_{1}} \cdots \hat{s}_{i_{2}} \cdots \hat{s}_{i_{k}} \cdots s_{q}$ be the reduced word of u such that i_{k} is minimal among all possible choices.

Let $t=t_{i_{k}} \in \hat{T}\left(s_{q} s_{q-1} \cdots s_{1}\right)$. Then $u t=s_{1} \cdots \hat{s}_{i_{1}} \cdots \hat{s}_{i_{2}} \cdots s_{i_{k}} \cdots s_{q}$ (adding $s_{i_{k}}$ back). At the least, we know $\ell(u t) \leq \ell(u)+1$. We claim that $u t>u$. Assuming this claim, we can let $v=u t$, all conditions are easily checked.

So we need to prove the claim. First note that by definition of Bruhat order, ut is always comparable with u. Suppose $u t<u$, then $\ell(u t)<\ell(u)$. By the corollary of S.E.P (Strong Exchange Property) we know $t=t_{p} \in \hat{T}\left(s_{q} \cdots \hat{s}_{i_{k}} \cdots \hat{s}_{i_{k-1}} \cdots \hat{s}_{i_{1}} \cdots s_{1}\right)$. Either $p<q+1-i_{k}$ or not. If $p<q+1-i_{k}$, then t is of then form

$$
t=s_{q} s_{q-1} \cdots s_{p+1} s_{p} s_{p-1} \cdots s_{q}
$$

otherwise

$$
t=s_{q} \cdots \hat{s}_{i_{k}} \cdots \hat{s}_{i_{d}} \cdots s_{r} \cdots \hat{s}_{i_{d}} \cdots \hat{s}_{i_{k}} \cdots s_{q}
$$

for some $r<i_{k}$ and $r \neq i_{j}$ for any $j \in[k]$.
In the first case, consider

$$
\begin{aligned}
& w=w t t=\left(s_{1} \cdots s_{q}\right)\left(s_{q} \cdots s_{i_{k}} \cdots s_{q}\right)\left(s_{q} s_{q-1} \cdots s_{p+1} s_{p} s_{p-1} \cdots s_{q}\right) \\
& =s_{1} \cdots \hat{s}_{i_{k}} \cdots \hat{s}_{p} \cdots s_{q}
\end{aligned}
$$

But this contradicts to our assumption that $\ell(w)=q$.
In the second case, consider

$$
\begin{aligned}
& u=u t t \\
& =\left(s_{1} \cdots \hat{s}_{i_{1}} \cdots \hat{s}_{i_{k}} \cdots s_{q}\right)\left(s_{q} \cdots \hat{s}_{i_{k}} \cdots \hat{s}_{i_{d}} \cdots s_{r} \cdots \hat{s}_{i_{d}} \cdots \hat{s}_{i_{k}} \cdots s_{q}\right)\left(s_{q} \cdots s_{i_{k}} \cdots s_{q}\right) \\
& =s_{1} \cdots \hat{s}_{i_{1}} \cdots \hat{s}_{r} \cdots s_{i_{k}} \cdots s_{q}
\end{aligned}
$$

But this contradicts to the minimality of i_{k}.
Theorem 2.3 (Subword Property; S.P.). Let $s_{1} s_{2} \cdots s_{q}$ be a reduced expression of w, then $u \leq w$ if and only if u has a reduced expression that is a subword of w.

Proof. \Rightarrow :
Assume $u \leq w$, that means we have the following sequence:

$$
u=u_{0} \xrightarrow{t_{1}} u_{1} \cdots \xrightarrow{t_{m}} u_{m}=w
$$

Then $u_{m-1}=w t_{m}=s_{1} \cdots \hat{s_{i}} \cdots s_{q}$ for some i by the S.E.P (Strong Exchange Property). Repeat this argument to u_{m-2}, \cdots, u_{0}, we get an expression of u that is a subword of w. This subword may not be reduced yet, but D.P. (Deletion Property) promise us that it contains as a subword a reduced expression of u. $\Leftarrow:$
If u has a reduced expression that is a subword of $s_{1} s_{2} \cdots s_{q}$, then the above lemma allows us to construct a sequence $u<v_{1}<\cdots<v_{s}$ such that their length are strictly increasing by one but each has a reduced word that is a subword of $s_{1} s_{2} \cdots s_{q}$. Then it is clear that $v_{s}=w$.
Corollary 2.4. For any $u, w \in W$ the following are equivalent:
(1) $u \leq w$.
(2) Every reduced expression of w has a subword that is a reduced expression of u.
(3) Some reduced expression of w has a subword that is a reduced expression of u.

Proof. This follows from a pure logical consideration, formally: If A, P are first order formulas, and A does not involve x (P may or may not involve x), then

$$
\forall_{x}(A \rightarrow P(x)) \Leftrightarrow A \rightarrow \forall_{x}(P(x))
$$

and

$$
\forall_{x}(P(x) \rightarrow A) \Leftrightarrow \exists_{x}(P(x)) \rightarrow A
$$

Here A is the statement that " $u<v$ ". P(x) is the statement that " x is a reduced expression of w, and it has a subword that is a reduced expression of u ". Then S.P. is the formula $\forall_{x}(A \leftrightarrow P(x)$.
Corollary 2.5. For any $u, w \in W$ the interval $[u, w]:=\{x \in W \mid u \leq x \leq w\}$ is always finite.

Proof. We argue a stronger statement that indeed $[e, w]$ is finite where e is the identity element of W (the least element of the Bruhat order). Pick a reduced expression $s_{1} s_{2} \cdots s_{q}$ of w, then any $x \in[e, w]$, by above corollary, can be written as a subword of $s_{1} s_{2} \cdots s_{q}$, there are only at most 2^{q} of them.

[^0]: Date: January 23, 2009.

