Sara Billey

http://www.math.washington.edu/~billey/classes/581/bulletins/bruhat.ps

Coxeter Groups. $\begin{aligned} & \text { generators }: \quad s_{1}, s_{2}, \ldots s_{n} \\ & \text { relations }: \quad s_{i}^{2}=1 \text { and }\left(s_{i} s_{j}\right)^{m(i, j)}=1\end{aligned}$

Coxeter Graph. $V=\{1, \ldots, n\}, E=\{(i, j): m(i, j) \geq 3\}$.

Define. If $\boldsymbol{w} \in \boldsymbol{W}=$ Coxeter Group,

- $\boldsymbol{w}=s_{i_{1}} s_{i_{2}} \ldots s_{i_{p}}$ is a reduced expression if p is minimal.
- $l(\boldsymbol{w})=$ length of $\boldsymbol{w}=\mathrm{p}$.

Example. $S_{n}=$ Permutations generated by $s_{i}=(i \leftrightarrow i+1), i<n$, with relations

$$
\begin{aligned}
& s_{i} s_{i}=1 \\
& \left(s_{i} s_{j}\right)^{2}=1 \text { if }|i-j|>1 \\
& \left(s_{i} s_{i+1}\right)^{3}=1
\end{aligned}
$$

$\boldsymbol{w}=4213=s_{1} s_{3} s_{2} s_{1}$ and $l(\boldsymbol{w})=4$

Other Examples. Weyl groups and dihedral groups.

$$
0-2
$$

Natural Partial Order on W.
$\boldsymbol{v} \leq \boldsymbol{w}$ if any reduced expression for \boldsymbol{w} contains a subexpression which is a reduced expression for \boldsymbol{v}.

Example. $s_{1} s_{3} s_{2} s_{1}>s_{3} s_{1}>s_{1}$

Chevalley-Bruhat Order on Coxeter Groups

Natural Partial Order on W.
$\boldsymbol{v} \leq \boldsymbol{w}$ if any reduced expression for \boldsymbol{w} contains a subexpression which is a reduced expression for \boldsymbol{v}.

Example. $s_{1} s_{3} s_{2} s_{1}>s_{3} s_{1}>s_{1}$

Ehresmann-Chevalley-Bruhat Order on Coxeter Groups

Natural Partial Order on W.
$\boldsymbol{v} \leq \boldsymbol{w}$ if any reduced expression for \boldsymbol{w} contains a subexpression which is a reduced expression for \boldsymbol{v}.

Example. $s_{1} s_{3} s_{2} s_{1}>s_{3} s_{1}>s_{1}$

Natural Partial Order on W.

$\boldsymbol{v} \leq \boldsymbol{w}$ if any reduced expression for \boldsymbol{w} contains a subexpression which is a reduced expression for \boldsymbol{v}.

Example. $s_{1} s_{3} s_{2} s_{1}>s_{3} s_{1}>s_{1}$

- $\boldsymbol{v} \leq \boldsymbol{w}$ if any reduced expression for \boldsymbol{w} contains a subexpression which is a reduced expression for \boldsymbol{v}.
- $\boldsymbol{v} \leq \boldsymbol{w}$ if every reduced expression for \boldsymbol{w} contains a subexpression which is a reduced expression for \boldsymbol{v}.
- Covering relations: \boldsymbol{w} covers $\boldsymbol{v} \Longleftrightarrow \boldsymbol{w}=s_{i_{1}} s_{i_{2}} \ldots s_{i_{p}}$ (reduced) and there exists j such that $v=s_{i_{1}} \ldots \widehat{s_{j}} \ldots s_{i_{p}}$ (reduced).
- Covering relations: \boldsymbol{w} covers $\boldsymbol{v} \Longleftrightarrow w=v t$ and $l(w)=l(v)+1$ where $\boldsymbol{t} \in\left\{\boldsymbol{u} \boldsymbol{s}_{\boldsymbol{i}} \boldsymbol{u}^{\mathbf{1}}: \boldsymbol{u} \in \boldsymbol{W}\right\}=$ Reflections in W.

Quotient \boldsymbol{E}_{6} modulo \boldsymbol{S}_{6}

Inclusions of Schubert Varieties

- Bruhat Decomposition: $\boldsymbol{G}=\boldsymbol{G} \boldsymbol{L}_{\boldsymbol{n}}=\bigcup_{\boldsymbol{w} \in \boldsymbol{S}_{n}} \boldsymbol{B} \boldsymbol{w} \boldsymbol{B}$
- Flag Manifold: $\boldsymbol{G} / \boldsymbol{B}$ a complex projective smooth variety for any semisimple or Kac-Moody group \boldsymbol{G} and Borel subgroup \boldsymbol{B}
- Schubert Cells: BwB/B
- Schubert Varieties: $\overline{B w B / B}=X(w)$

Chevalley. (ca. 1958) $\boldsymbol{X}(\boldsymbol{v}) \subset \boldsymbol{X}(\boldsymbol{w})$ if and only if $\boldsymbol{v} \leq \boldsymbol{w}$ i. e.

$$
\overline{B w B / B}=\bigcup_{v \leq w} B v B / B
$$

\Longrightarrow The Poincaré polynomial for $H^{*}(X(w))$ is $P_{w}\left(t^{2}\right)=\sum_{v \leq w} t^{2 l(v)}$

- Grassmannian Manifold: $\left\{\boldsymbol{k}\right.$-dimensional subspaces of $\left.\mathbb{C}^{n}\right\}=\boldsymbol{G} \boldsymbol{L}_{n} / \boldsymbol{P}$ for $\boldsymbol{P}=$ maximal parabolic subgroup.
- Schubert Cells: $\boldsymbol{B} \boldsymbol{w} \boldsymbol{B} / \boldsymbol{P}$ indexed by elements of

$$
W^{J}=W /\left\langle s_{i}: i \in J\right\rangle
$$

- Schubert Varieties: $X(w)=\overline{B w B / P}=\bigcup_{w \geq v \in W^{J}} B v B / P$.
- Elements of \boldsymbol{W}^{J} can be identified with partitions inside a box, and the induced order is equivalent to containment of partitions.

Möbius Function on a Poset: unique function $\boldsymbol{\mu}:\{\boldsymbol{x}<\boldsymbol{y}\} \rightarrow \mathbb{Z}$ such that

$$
\sum_{x \leq y \leq z} \mu(x, y)= \begin{cases}1 & x=z \\ 0 & x \neq z\end{cases}
$$

Theorem. (Verma, 1971) $\boldsymbol{\mu}(\boldsymbol{x}, \boldsymbol{y})=(-1)^{l(y)-l(x)}$ if $\boldsymbol{x} \leq \boldsymbol{y}$.
Theorem. (Deodhar, 1977) $\mu(x, y)^{J}= \begin{cases}(-1)^{l(y)-l(x)} & {[x, y]^{J}=[x, y]} \\ 0 & \text { otherwise }\end{cases}$
Apply Möbius Inversion to

- Kazhdan-Lusztig polynomials.
- Kostant polynomials
- Any family of polynomials depending on Bruhat order.
rank generating function: $W(t)=\sum_{u \in W} t^{l(u)}=\sum_{k \geq 0} a_{k} t^{k}$

Computing $W(t)$. for $W=$ finite reflection group

- $W(t)=\prod\left(1+t+t^{2}+\cdots+t^{e_{i}}\right)$ (Chevalley)
- $W(t)=\prod_{\alpha \in R^{+}} \frac{t^{\mathrm{ht}(\alpha)+1}-1}{t^{\mathrm{ht}(\alpha)-1}}$
(Kostant '59, Macdonald '72)

Here, $\boldsymbol{e}_{i}^{\prime} \boldsymbol{s}=$ exponents of $\boldsymbol{W}, \boldsymbol{R}^{+}=$positive roots associated to \boldsymbol{W} and s_{1}, \ldots, s_{n}, ht $(\alpha)=k$ if $\alpha=\alpha_{i_{1}}+\cdots+\alpha_{i_{k}}$ (simple roots).

- Carrell-Peterson, 1994: If $\boldsymbol{X}(\boldsymbol{w})$ is smooth

$$
P_{[\hat{0}, w]}(t)=\sum_{v \leq w} t^{l(v)}=\prod_{\beta \in R_{+} \sigma_{\beta} \leq w} \frac{t^{\mathrm{ht}(\beta)+1}-1}{t^{\mathrm{ht}(\beta)}-1}
$$

- Gasharov: For $\boldsymbol{w} \in \boldsymbol{S}_{\boldsymbol{n}}$, if $\boldsymbol{X}(\boldsymbol{w})$ is rationally smooth

$$
P_{[\hat{0}, w]}(t)=\prod\left(1+t+t^{2}+\cdots+t^{d_{i}}\right)
$$

for some set of $\boldsymbol{d}_{i}{ }^{\prime}$ s.

- In 2001, Billey and Postnikov gave similar factorizations for all rationally smooth Schubert varieties of semisimple Lie groups.

Fact 5: Symmetric Interval $[\hat{0}, w] \Longrightarrow$ $X(w)$ is Rationally Smooth

Definition. A variety \boldsymbol{X} of dimension \boldsymbol{d} is rationally smooth if for all $\boldsymbol{x} \in \boldsymbol{X}$,

$$
H^{i}(X, X \backslash\{x\}, \mathbb{Q})= \begin{cases}0 & i \neq 2 d \\ \mathbb{Q} & i=2 d\end{cases}
$$

Theorem. (Kazhdan-Lusztig '79) $\boldsymbol{X}(\boldsymbol{w})$ is rationally smooth if and only if the Kazhdan-Lusztig polynomials $\boldsymbol{P}_{\boldsymbol{v}, \boldsymbol{w}}=\mathbf{1}$ for all $\boldsymbol{v} \leq \boldsymbol{w}$.

Theorem. (Carrell-Peterson '94) $\boldsymbol{X}_{\boldsymbol{w}}$ is rationally smooth if and only if $[\hat{\mathbf{0}}, \boldsymbol{w}]$ is rank symmetric.

Fact 5: Symmetric Interval $[\hat{0}, w] \Longrightarrow$ $X(w)$ is Rationally Smooth

Series for Verma Modules

- $\mathfrak{g}=$ complex semisimple Lie algebra
- $\mathfrak{h}=$ Cartan subalgebra
- $\boldsymbol{\lambda}=$ integral weight in \mathfrak{h}^{*}
- $M(\lambda)=$ Verma module with highest weight $\boldsymbol{\lambda}$
- $L(\lambda)=$ unique irreducible quotient of $M(\lambda)$
- $W=$ Weyl group corresponding to \mathfrak{g} and \mathfrak{h}

Fact. $\{L(\lambda)\}_{\lambda \in \mathfrak{h}^{*}}=$ complete set of irreducible highest weight modules.
Problem. Determine the formal character of $M(\boldsymbol{\lambda})$

$$
\operatorname{ch}(M(\lambda))=\sum_{\mu}[M(\lambda): L(\mu)] \cdot \operatorname{ch}(L(\mu))
$$

Answer. Only depends on Bruhat order using the following reasoning:
$\cdot[M(\lambda): L(\mu)] \neq 0 \Longleftrightarrow\left\{\begin{array}{l}\lambda=x \cdot \lambda_{0} \\ \mu=y \cdot \lambda_{0} \\ x<y \in W\end{array}\right.$
(Verma, Bernstein-Gelfand-Gelfand, van den Hombergh)

- $\left[M\left(x \cdot \lambda_{0}\right): L\left(y \cdot \lambda_{0}\right)\right]=m(x, y)$ independent of $\boldsymbol{\lambda}_{0}$. (BGG '75)
- $m(x, y)=1 \Longleftrightarrow \begin{aligned} & \#\{r \in \mathcal{R}: x<r x \leq z\}=l(z)-l(x) \\ & \forall x \leq z \leq y .\end{aligned}$
$m(x, y)=P_{x, y}(1)=$ Kazhdan-Lusztig polynomial for $x<y$
(Beilinson-Bernstein '81, Brylinski-Kashiwara '81)

Fact 6: $[x, y]$ Determines the Composition

Series for Verma Modules

Conjecture. The Kazhdan-Lusztig polynomial $\boldsymbol{P}_{\boldsymbol{x}, \boldsymbol{y}}(\boldsymbol{q})$ depends only on the interval $[\boldsymbol{x}, \boldsymbol{y}]$ (not on \boldsymbol{W} or \mathfrak{g} etc.)

Example.

Fact 7: Order Complex of (u, v) is Shellable

- Order complex $\Delta(u, v)$ has faces determined by the chains of the open interval (u, v), maximal chains determine the facets.
- $\boldsymbol{\Delta}=$ pure \boldsymbol{d}-dim complex is shellable if the maximal faces can be linearly ordered C_{1}, C_{2}, \ldots such that for each $k \geq 1,\left(\overline{C_{1}} \cup \cdots \cup\right.$ $\left.\overline{C_{k}}\right) \cap \overline{C_{k+1}}$ is pure $(d-1)$-dimensional.

Fact 7: Order Complex of (u, v) is Shellable
Lexicographic Shelling of $[\boldsymbol{u}, \boldsymbol{v}]$: (Bjorner-Wachs '82, Proctor, Edelman)

- Each maximal chain \rightarrow label sequence

$$
\begin{gathered}
v=s_{1} s_{2} \ldots s_{p}>s_{1} \ldots \widehat{s_{j}} \ldots s_{p}>s_{1} \ldots \widehat{s_{i}} \ldots \widehat{s_{j}} \ldots s_{p}>\ldots \\
\text { maps to } \\
(j, i, \ldots)
\end{gathered}
$$

- Order chains by lexicographically ordering label sequences.

Consequences:

1. $\Delta(u, w)^{J}$ is Cohen-Macaulay.
2. $\Delta(u, w)^{J} \equiv \begin{cases}\text { the sphere } S^{l(w)-l(u)-2} & (u, w)^{J}=(u, w) \\ \text { the ball } B^{l(w)-l(u)-2} & \text { otherwise }\end{cases}$
3. $\boldsymbol{P}=$ ranked poset with maximum rank \boldsymbol{m}
4. \boldsymbol{P} is rank symmetric if the number of elements of rank \boldsymbol{i} equals the number of elements of rank $m-i$.
5. \boldsymbol{P} is rank unimodal if the number of elements on each rank forms a unimodal sequence.
6. \boldsymbol{P} is \boldsymbol{k}-Sperner if the largest subset containing no $(\boldsymbol{k}+\mathbf{1})$-element chain has cardinality equal to the sum of the \boldsymbol{k} middle ranks.

Theorem.(Stanley '80) For any subset $\boldsymbol{J} \subset\left\{s_{1}, \ldots s_{n}\right\}$, let \boldsymbol{W}^{J} be the partially ordered set on the quotient $\boldsymbol{W} / \boldsymbol{W}_{\boldsymbol{J}}$ induced from Bruhat order. Then $\boldsymbol{W}^{\boldsymbol{J}}$ is rank symmetric, rank unimodal, and \boldsymbol{k}-Sperner.
(proof uses the Hard Lefschetz Theorem)

Problem. Given two elements $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{W}$, what is the best way to test if $\boldsymbol{u}<\boldsymbol{w}$?
Don't use subsequences of reduced words if at all possible.

Tableaux Comparison in S_{n}.
(Ehresmann)

- Take $\boldsymbol{u}=352641$ and $\boldsymbol{v}=652431$.
- Compare the sorted arrays of $\left\{\boldsymbol{u}_{1}, \ldots \boldsymbol{u}_{i}\right\} \leq\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{i}\right\}$:

$$
\left.\begin{array}{cccccccccccc}
& & & & & 3 & \leq & 6 & & & & \\
\\
& & & & 3 & 5 & \leq & 5 & 6 & & & \\
\\
& & & 2 & 3 & 5 & \leq & 2 & 5 & 6 & & \\
\\
& 2 & 3 & 5 & 6 & \leq & 2 & 4 & 5 & 6 & & \\
& 2 & 3 & 4 & 5 & 6 & \leq & 2 & 3 & 4 & 5 & 6 \\
1 & 2 & 3 & 4 & 5 & 6 & \leq & 1 & 2 & 3 & 4 & 5
\end{array}\right)
$$

Fact 9: Efficient Methods for Comparison

- Generalized to B_{n} and D_{n} and other quotients by Proctor (1982).
- Open: Find an efficient way to compare elements in $\boldsymbol{E}_{\mathbf{6}, \mathbf{7}, \mathbf{8}}$ in Bruhat order.

Another criterion for Bruhat order on W.
$\boldsymbol{u} \leq \boldsymbol{v}$ in $\boldsymbol{W} \Longleftrightarrow \boldsymbol{u} \leq \boldsymbol{v}$ in $\boldsymbol{W}^{\boldsymbol{J}}$ for each maximal proper $\boldsymbol{J} \subset$ $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$.

Patterns on Permutations. Small permutations serve as patterns in larger permutations.

Def. by Example. $\boldsymbol{w}_{\mathbf{1}} \boldsymbol{w}_{\mathbf{2}} \ldots \boldsymbol{w}_{\boldsymbol{n}}$ (one-line notation) contains the pattern 4231 if there exists $i<j<k<l$ such that

$$
\begin{aligned}
\boldsymbol{w}_{i} & =4 \operatorname{th}\left\{\boldsymbol{w}_{\boldsymbol{i}}, \boldsymbol{w}_{\boldsymbol{j}}, \boldsymbol{w}_{\boldsymbol{k}}, \boldsymbol{w}_{\boldsymbol{l}}\right\} \\
\boldsymbol{w}_{\boldsymbol{j}} & =2 \operatorname{nd}\left\{\boldsymbol{w}_{\boldsymbol{i}}, \boldsymbol{w}_{\boldsymbol{j}}, \boldsymbol{w}_{\boldsymbol{k}}, \boldsymbol{w}_{\boldsymbol{l}}\right\} \\
\boldsymbol{w}_{\boldsymbol{k}} & =\operatorname{3rd}\left\{\boldsymbol{w}_{\boldsymbol{i}}, \boldsymbol{w}_{\boldsymbol{j}}, \boldsymbol{w}_{\boldsymbol{k}}, \boldsymbol{w}_{\boldsymbol{l}}\right\} \\
\boldsymbol{w}_{l} & \left.=1 \operatorname{st}, \boldsymbol{w}_{\boldsymbol{j}}, \boldsymbol{w}_{\boldsymbol{k}}, \boldsymbol{w}_{l}\right\}
\end{aligned}
$$

If \boldsymbol{w} no such $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}, \boldsymbol{l}$ exist, \boldsymbol{w} avoids the pattern 4231.

		$\begin{array}{llr} w=625431 & \text { contains } & 6241 \\ w=612543 & \text { avoids } & 4 \end{array}$				

Or equivalently, w contains 4231 if matrix contains submatrix

$$
\left[\begin{array}{ccccccccc}
& \vdots & & \vdots & & \vdots & & \vdots & \\
\ldots & \mathbf{0} & \ldots & \mathbf{0} & \ldots & \mathbf{0} & \ldots & \mathbf{1} & \ldots \\
& \vdots & & \vdots & & \vdots & & \vdots & \\
\ldots & \mathbf{0} & \ldots & \mathbf{1} & \ldots & \mathbf{0} & \ldots & \mathbf{0} & \ldots \\
& \vdots & & \vdots & & \vdots & & \vdots & \\
\ldots & \mathbf{0} & \ldots & \mathbf{0} & \ldots & \mathbf{1} & \ldots & \mathbf{0} & \ldots \\
& \vdots & & \vdots & & \vdots & & \vdots & \\
\ldots & \mathbf{1} & \ldots & \mathbf{0} & \ldots & \mathbf{0} & \ldots & \mathbf{0} & \ldots \\
& \vdots & & \vdots & & \vdots & & \vdots &
\end{array}\right]
$$

Extending to other infinite families of Weyl groups: $\boldsymbol{B}_{\boldsymbol{n}}$ and $\boldsymbol{D}_{\boldsymbol{n}}$: Use patterns on signed permutations.

Applications of Pattern Avoidance.

1. (Knuth,Tarjan) Stack-sortable permutations are 231-avoiding.
2. (Lascoux-Schützenberger) Vexillary permutations are 2143-avoiding. The number of reduced words for a vexillary permutation is equal to the number of standard tableau of some shape. Extended to types B, C, and D by Lam and Billey.
3. (Billey-Jockusch-Stanley) The reduced words of a 321 -avoiding permutation all have the same content. Extended to fully commutative elements in other Weyl groups by Fan and Stembridge.
4. (Billey-Warrington) New formula for Kazhdan-Lusztig polynomial when second index is 321 -hexagon-avoiding.
5. (Lakshmibai-Sandhya) For $\boldsymbol{w} \in \boldsymbol{S}_{\boldsymbol{n}}, \boldsymbol{X}_{\boldsymbol{w}}$ is smooth (equiv. rationally smooth) if and only if \boldsymbol{w} avoids 4231 and 3412. Extended to types B, C, D to characterize all smooth and rationally smooth Schubert varieties by Billey.

Minimal List of Bad Patterns for Type B, C, D

Theorem. Let $\boldsymbol{w} \in \boldsymbol{B}_{\boldsymbol{n}}$, the Schubert variety $\boldsymbol{X}(\boldsymbol{w})$ is rationally smooth if and only if \boldsymbol{w} avoids the following 26 patterns:

$\overline{1} 2 \overline{3}$	$1 \overline{2} \overline{3}$	$12 \overline{3}$	$1 \overline{3} \overline{2}$	$\overline{2} \overline{1} \overline{3}$	$\overline{2} 1 \overline{3}$	$2 \overline{1} \overline{3}$
$2 \overline{3} \overline{1}$	$\overline{3} 1 \overline{2}$	$\overline{3} \overline{2} \overline{1}$	$\overline{3} \overline{2} 1$	$\overline{3} 2 \overline{1}$	$3 \overline{2} \overline{1}$	$3 \overline{2} 1$
$\overline{2} \overline{4} 31$	$2 \overline{4} 31$	$\overline{3} \overline{4} \overline{1} \overline{2}$	$\overline{3} 4 \overline{1} 2$	$\overline{3} 412$	$34 \overline{1} 2$	3412
$4 \overline{1} 3 \overline{2}$	$413 \overline{2}$	$\overline{4} 231$	$423 \overline{1}$	4231		

Theorem. Let $\boldsymbol{w} \in \boldsymbol{D}_{\boldsymbol{n}}$, the Schubert variety $\boldsymbol{X}(\boldsymbol{w})$ is rationally smooth if and only if \boldsymbol{w} avoids the following 55 patterns:

Minimal List of Bad Patterns for Type B, C, D

Theorem. (Billey-Postnikov) Let \boldsymbol{W} be the Weyl group of any semisimple Lie algebra. Let $\boldsymbol{w} \in \boldsymbol{W}$, the Schubert variety $\boldsymbol{X}(\boldsymbol{w})$ is (rationally) smooth if and only if for every parabolic subgroup \boldsymbol{Y} with a stellar Coxeter graph, the Schubert variety $\boldsymbol{X}\left(f_{Y}(\boldsymbol{w})\right)$) is (rationally) smooth.

1. Bruhat Order Characterizes Inclusions of Schubert Varieties
2. Contains Young's Lattice in S_{∞}
3. Nicest Possible Möbius Function
4. Beautiful Rank Generating Functions
5. $[\boldsymbol{x}, \boldsymbol{y}]$ Determines the Composition Series for Verma Modules
6. Symmetric Interval $[\hat{0}, w] \Longleftrightarrow X(w)$ rationally smooth
7. Order Complex of $(\boldsymbol{u}, \boldsymbol{v})$ is Shellable
8. Rank Symmetric, Rank Unimodal and \boldsymbol{k}-Sperner
9. Efficient Methods for Comparison
10. Amenable to Pattern Avoidance
