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This essay is concerned with the Bruhat­Chevalley ordering in a Coxeter system.

My sources have been §§5.8–5.11 of [Humphreys:1990] and [Dixmier:1974].
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1. Strong exchange

Suppose (W, S) to be a Coxeter system, C the open positive chamber in a realization of (W, S), so that
elements of S correspond to reflections in the walls ofC. The Tits cone C of the realization is the interior
of the union of theW ­transforms of C . IfH a half space bounded by a wall of C and containing C, then
C ∩ H is called a simple geometric root of the system, and theW ­transforms of these are the geometric
roots . A (geometric) root is positive if it contains C. For w inW and λ > 0, wλ < 0 if and only if C and
w−1C are on opposite sides of the boundary of λ. Let∆ be the set of positive roots corresponding to the
walls of C, Σ the set of all roots, and Σ+ the set of positive roots.

For every rootλ, let sλ be the reflection in the boundary ofλ. Ifλ = wαswithαs in∆, then sλ = wsαw−1.

If r is a root reflection, so is wrw−1 . If w = urv then uv is what we get by deleting r. But uv =
uru−1 · urv = uru−1w. Hence:

Proposition 1.1. If w = s1 . . . sn is an expression for w as product of elements in S, then[deletion]

u = (s1 . . . si−1) · (si+1 . . . sn) = (s1 . . . si−1) · si · (si−1 . . . s1) · (s1 . . . sn)

is of the form rw where r is a reflection inW .

Conversely:

Proposition 1.2. Let w be inW , r = rλ a root reflection with λ > 0. Then ℓ(rw) < ℓ(w) if and only if[strong-exchange]

w−1λ < 0, and if w = s1 . . . sn then

rw = s1 . . . si−1 · si+1 . . . sn

for some intermediate si. If the expression for w is reduced, then si is unique.

Proof. Suppose the gallery C, s1C, . . . , wC crosses the hyperplane λ = 0 in a wall labeled si. Then

rw = s1 . . . ŝi . . . sn
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for the usual geometric reasons, and ℓ(rw) < ℓ(w).

C

wC

λ = 0

w = s2s1s3s2s3s1s3s2s1

C

wC

λ = 0

sλw = s2s1s3s2s3ŝ1s3s2s1

If we start with a reduced expression, the gallery crosses λ = 0 exactly once, guaranteeing uniqueness.
If w−1λ > 0, then w−1r−1λ < 0, so we can apply this argument to rwC.

If r is not in S, the reduced expression s1 . . . ŝi . . . sn may collapse further, as it does in the diagrams

above.

Set x ⇐ y if ℓ(x) < ℓ(y) and xr = y for some r in R, and define x ≤ y to mean we can reach y from
x by 0 or more such reflections. Since wr = wrw−1 · w, it doesn’t matter whether we use left or right
multiplications by reflections in this definition. This order is called the strong Bruhat order . I define the
strong Bruhat graph to be that with elements ofW as nodes and oriented edges x ⇐ y. The closure of
y is the set of all x ≤ y, and if x ≤ y the interval [x, y] is the set of w with x ≤ w ≤ y.

Of course x ≤ y if and only if x−1 ≤ y−1.

The following is one of the two main results about the strong Bruhat order:

Proposition 1.3. If y = s1 . . . sn then x ≤ y if and only if x can be expressed as a subexpression of this[subexpressions]

one.

Proof. if x = ry < y then by strong exchange x can be expressed as a subexpression. This gives one half
the Proposition.

On the other hand, suppose we have the reduced expression

y = s1 . . . sn = usiv .

Then uŝiv = usiu
−1 · usiv.

It follows immediately from this that the Bruhat ordering ofWT is the same as it is onWT as a subset of

WS .

It follows from this result that the set of Coxeter group elements represented by a subexpression of a

given reduced expression do not depend on the particular reduced expression. But this can be seen in

some sense more directly. The following is a special case of a result of [Tits:1968].

Lemma 1.4. If[braids]

w = s1 . . . sn = t1 . . . tn

are two reduced expressions for w then one may be obtained from the other by a sequence of braid
relations.

Proof. The proof is by induction on n. The cases n = 1 or 2 are trivial. So assume n > 1, and that

ss1 . . . sn = tt1 . . . tn
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are reduced. If s = t we can cancel the common left factor and apply induction. Otherwise suppose
s 6= t. Let

x = s1 . . . sn, y = t1 . . . tn .

Then sw < w so wαs < 0, and tw < w so wαt < 0. Thus wλ < 0 for all positive roots in the span of αs

and αt, so w may be expressed as
w = sws,tx = twt,sx

where sws,t = twt,s = wℓ is the longest element in the Weyl group generated by s and t, with ℓ(w) =
ℓ(wℓ) + ℓ(x). Since sws,tx = ss1 . . . sn, we may cancel s and by induction obtain ws,tx from s1 . . . sn by

a sequence of braid relations. Similarly for wt,sx and t1 . . . tn. But then we can also obtain sws,tx from
twt,sx by a single braid relation, so the Lemma is proved. .

Corollary 1.5. The elements represented by subexpressions of a given reduced expression does not[reduced-independent]

depend on the particular reduced expression.

Proof. By the Proposition, it suffices to prove that it is true for two reduced expressions related by a braid
relation. But this is immediate.

2. Structure of the graph

We’ll now look at some examples of the strong Bruhat order.

Example. Let (W, S) be the dihedral group of order 8, with generators s, t. The following figure indicates
how root reflections transform elements ofW (and shows also the lines of reflection and the chambers):

1

s

st

sts

stst = tsts

tst

ts

t

There are a number of things to notice about this graph. First of all, there is some redundancy here. For

example, the reflection sts takes t to stst, so t ≤ stst. But this can be seen also by the chain t­ts­sts­stst.
With the redundant links removed, the graph of the order looks like this:
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1

s

st

sts

stst = tsts

tst

ts

t

All dihedral groups exhibit the same behaviour—for these groups, x ≤ y if and only if ℓ(x) ≤ ℓ(y).

Second of all, multiplication by s is an involution of the group. How does this involution relate to the
closure graph? Very nicely. All possibilities are shown in this figure. It takes edges to edges, and in in a
very simple way, which the next Proposition will explain.

Example. Now letW be the symmetric groupSn, S the subset of elementary transpositions interchang­
ing i and i + 1. A permutation is expressed by the array

(
σ(i)

)
. The reflections are the swaps of two

coordinates. The definition says that x ≺ y if y is obtained from x by swapping xj and xk in the array
(xi), where j < k and xj < xk. For example, [2, 4, 1, 5, 3] ≺ [2, 4, 5, 1, 3]. [Humphreys:1990] (on p. 119)
attributes toDeodhar a simple criterion. First some notation: if (x1, . . . , xm) is any array, let 〈x1, . . . , xm〉
be the same array sorted from smallest to largest. If x ≤ y if and only if

〈x1, . . . , xk〉 � 〈y1, . . . , yk〉

for each k, in the sense that after sorting corresponding entries are less than or equal. This is clearly a
necessary condition, and probably not too hard to construct for such x and y a chain of reflections.

Proposition 2.1. Suppose s in S, x ⇐ y. Then exactly one of the following occurs:[xsys]

(a) sx = y, so that s reverses the edge in the strong Bruhat graph between them;
(b) smaps the edge x ⇐ y to the edge sx ⇐ sy.

In otherwords, applying s to the edge doesn’t reverse the orientation of the edge, unless it just exchanges
its endpoints.

Proof. Suppose x ⇐ y. The case y = sx is trivial, so suppose r 6= s. Let r = rλ with λ > 0.

Since rλy < y, Proposition 1.2 implies that y−1λ < 0. But then♣ [strong-exchange]

sx = srλy = ssλs · sy = ssλsy .

Since r 6= s, sλ > 0, so that sx < sy if and only if (sy)−1sλ < 0. But

(sy)−1sλ = y−1λ < 0 .

Basically, what is forbidden is this configuration:

x

y

r

sx

sy
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There are thus three kinds of edge­swaps: (a) an edge reverses itself; (b) sx < y and sx < sy; or (c)
x < y, sx < x, sy > y:

1

s

st

sts

stst = tsts

tst

ts

t

1

s

st

sts

stst = tsts

tst

ts

t

1

s

st

sts

stst = tsts

tst

ts

t

Corollary 2.2. Suppose x ⇐ y with ℓ(y) = ℓ(x) + 1. Then[dixmier]

(a) if sx > x then either y = sx or sx ⇐ sy;
(b) if sy < x then either y = sx or sx ⇐ sy.

In diagrams:

x

sy

sxy

r s

sx

y

xsy

rs

Proof. This is just a restatement of what’s forbidden.

Corollary 2.3. Suppose x < y, with ℓ(y) − ℓ(x) = 2, sy < y. Either sx > x and [x, y] = {x, sx, sy, y} or[rank2-diff]

sx < x and the interval [x, y] is isomorphic to [sx, sy].

Proof. Since x > y, parity considerations require that the interval between x and y be filled with edges
of length 1. If [x, y] 6= {x, sx, sy, y} then there exists x < z < y with z 6= sx, z 6= sy. In this case the
Proposition implies that sx < sz < sy, and since sy < y we must have sx < x. In particular sx /∈ [x, y].

Now there is a further dichotomy: either sy ∈ [x, y] or not. In the second case, s is an isomorphism of
[x, y] with [sx, sy]. In the first case, the map z 7→ sz, sy 7→ x is an isomorphism of [x, y] with [sx, sy].

Corollary 2.4. Suppose sx < x. Then y ≤ x if and only if sy ≤ x.[s-stability]

Proof. The proof is by induction on ℓ(x) − ℓ(y). If it is 0, there is nothing to prove. Otherwise, we can
find a chain

xn = y ⇐ xn−1 ⇐ . . . ⇐ x0 = x

The case n = 1 is that of the Proposition. If n > 1, we have Say y ⇐ xn−1 with xn−1 < x. Induction
tells us sxn−1 ≤ x. The Proposition says either sy < sxn−1 or xn−1 = sy. Either way, sy ≤ x.
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3. Minimal links

We have seen in the case of dihedral groups that the Bruhat order is generated by pairs x = ry with
ℓ(x) = ℓ(y) − 1. This is a general fact, and the second of the two most important results.

There is one very simple case:

Proposition 3.1. Suppose x < y and ℓ(x) = ℓ(x) − 2. Then there exist exactly two w with x < w < y.[interval]

That is to say, the Bruhat interval [x, y] in this case is very simple.

Proof. By induction on ℓ(y). The minimum this can be is 2, in which case x = 1, y = st, and
[x, y] = {1, s, t, st}.

x

y

sxsy

r s

Otherwise, choose sy < y. If sx < x, then Corollary 2.3 tells us that [x, y] is isomorphic to [sx, sy], and♣ [rank2-diff]

we apply induction. If sx > x the same result tells us [x, y] = {x, sx, sy, y}.

Define x ≺ y to mean x = ry < y and ℓ(y) − ℓ(x) = 1.

Proposition 3.2. If x < y, then there exists a chain x = x0 ≺ x1 ≺ . . . ≺ xn = y.[dist1]

This allows a very simple algorithmic description of closures. In the proof, I follow [Dixmier:1974], pp.

250–252.

Proof. We may assume that x = ry < y. We proceed by induction on ℓ(y) +
(
ℓ(y) − ℓ(x)

)
.. If

ℓ(x) = ℓ(y) − 1, there is nothing to be proven. So we may assume ℓ(y) ≥ ℓ(x) + 3.

Choose s with sy < y. Then sx = sry = srs · sy and

ℓ(sx) < ℓ(x) + 1 ≤ ℓ(y) − 2 < ℓ(y) − 1 = ℓ(sy) .

So sx < sy. We may apply induction to get a chain from sx to sy:

sx = w0 < w1 < w2 < . . . < wn = sy < wn+1 = y

with (say) wi+1 = riwi. In particular, rn = s.

• If x < sx, we can just extend the chain to include x:

x < sx = w0 < w1 < w2 < . . . < wn = sy < wn+1 = y

• If x > sx and w1 = x, the chain we want is

x = w1 < w2 < . . . < wn = sy < wn+1 = y .

• Otherwise, sx < x and w1 6= x. The situation is indicated by this diagram:



Bruhat closures (5:45 p.m. May 7, 2009) 7

x

y

sx = w0

w1

sy below y

r0
s

Let t0 = sr0s. Since s 6= r0, we know that sw1 > w1 and that t0x = sw1, so we may fill in the diagram.

x

y = wn+1

sx = w0

w1

sy below y

r0

sw1

s

The diagram is deceptive, though, because we do not know (yet) that sw1 < y. Even so, we may keep
on filling in as long as ri 6= s:
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x

y = wn+1

sx = w0

w1

w2

sy below y

r0

r1

sw1

sw2

s

We have rn = s; let i be least with ri = s. So then we get a chain

x < sw1 < sw2 < . . . < swi = wi+1 < wi+2 < . . . sy < y

If i = n, the picture is this:

x

y = wn+1

sx = w0

sy = wn

w1

w2

wn−1

r0

r1

sw1

sw2

sw1

sw2

swn−1

s

In this case, swn−1 < y by Corollary 2.2. But then x < sw1 < sw2 < . . . < swn−1 < y is the chain we♣ [dixmier]

want. Otherwise i < n, and the picture is this:
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x

y = wn+1

sx = w0

w1

w2

wi

r0

r1

sw1

sw2

swi = wi+1

wi+2

sy = wn

s

s

In this case, the chain is indicated in the diagram.

Corollary 3.3. Suppose y = sx > x. Then the z < y with z ≺ y are (a) x together with (b) all the sw[cl-construction]

where w ≺ x and sw > w.

Corollary 3.4. Suppose xs < x, ys < y, y < x. Then ys < xs.[cl-ysxs]

Proof. By induction. If ℓ(x) = ℓ(y) + 1 this is Corollary 2.2. Otherwise, according to the Proposition we♣ [dixmier]

may find y < z ≺ x. Again by Corollary 2.2 we have zs < z, and we may apply induction.♣ [dixmier]
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