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Preface

The object of this monograph is to document what is most interesting about
linear monoids. We show how these results fit together into a coherent blend
of semigroup theory, groups with BN-pair, representation theory, convex ge-
ometry and algebraic group theory. The intended reader is one who is familiar
with some of these topics, and is willing to learn about the others.

The intention of the author is to convince the reader that reductive
monoids are among the darlings of algebra. We do this by systematically
assembling many of the major known results with many proofs, examples and
explanations. To further entice the reader, we have included many exercises.

The theory of linear algebraic monoids is quite recent, originating around
1980. Both Mohan Putcha and the author began the systematic study inde-
pendently. But this development would not have been possible without the
pioneering work of Chevalley, Borel and Tits on algebraic groups. Also, there
is the related, but more general theory of spherical embeddings, developed
largely by Brion, Luna and Vust. These theories were developed somewhat
independently, but it is always a good idea to interpret monoid results in the
combinatorial apparatus of spherical embeddings.

Each chapter of this monograph is focussed on one or more of the major
themes of the subject. These are: classification, orbits, geometry, representa-
tions, universal constructions and combinatorics. There is an inherent diver-
sity and richness in the subject that usually rewards a stalwart investigation.

I would like to acknowledge some of those whose efforts or participation
have made this monograph possible. The late Roy R. Douglas, my Ph. D.
supervisor, whose boundless, open-minded enthusiasm got me started on the
study of algebraic monoids. Mohan S. Putcha, for often taking the next step
when I was stuck. My former students Wenxue Huang, Zhuo Li and Zhenheng
Li, for suggesting improvements and helping me not to forget how mathemat-
ical ideas move from one generation to the next. Lou Solomon, for finding
the fundamental links with combinatorics and Hecke-Iwahori algebra. Karl
Hofmann and Èrnest Vinberg, for giving me the opportunity to assess and
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present my ideas in the broader context of Positivity in Lie Theory. Vladimir
Popov, who invited me into this exciting EMS project with Springer-Verlag.

London, Canada, Lex E. Renner
July, 2004
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1

Introduction

The theory of linear algebraic monoids has been developed significantly only
over the last twenty-five years, due largely to the efforts of Putcha and the
author. It culminates a natural blend of algebraic groups, torus embeddings
and semigroups. Unfortunately, this work had not been made as accessible
as it might have been. Many of the fundamental developments were obtained
after Putcha published his basic monograph “Linear algebraic monoids” in
1988. Solomon’s 1995 survey “An introduction to reductive monoids” provides
an engaging introduction to the theory of reductive monoids for a reader
with an interest in algebra and combinatorics, but without requiring a lot of
background from semigroups and algebraic group theory.

The purpose of this monograph is to update the literature with a detailed
survey of the latest developments, along with many proofs, examples and
explanations. At the same time, we hope to make the discussion reasonably self
contained, even though the prerequisites are quite high. Our hope is that we
can make this subject, and its methods, more accessible to a larger audience.

The systematic development of the theory of algebraic monoids began
around 1978. Both Putcha and the author independently saw the potential
in these monoids for a rich, and highly structured blend of group theory,
combinatorics and torus embeddings. Putcha began his investigation around
1978 by experimenting with some of the main ideas of semigroup theory:
Green’s relations, regularity, semilattices, and so on. His efforts yielded a lot
of technically useful information. In particular, he established control of the
idempotent set of an irreducible monoid.

About the same time I started writing my Ph.D. thesis armed with some
encouraging success in applications to rational homotopy theory. These appli-
cations inspired the hope that reductive monoids could be properly understood
as a geometric blend of the Zariski closure of a maximal, split torus, and the
unit group.

The first major result came around 1982. Reductive monoids are regular.
At this point we knew for certain that we were onto something special. Any
regular monoid is inevitably (somehow) determined by its unit group and its



2 1 Introduction

idempotent set. A major developmental theme from this point on was the rôle
of the idempotent set of any irreducible monoid. From there, Putcha found
his cross section lattice Λ, the most useful way to control the G × G-orbits
of M . Armed with Λ, and Grosshans’ codimension 2 condition, it was then
possible for me to develop the classification theory of reductive monoids in
a way that allowed a description of the set of morphisms from any reductive
normal monoid. About that time I started my investigation of the analogue
of the Bruhat decomposition for reductive monoids.

Around 1986, Putcha observed that each reductive monoid M has a type
map, λ : Λ→ 2S . This is truly the monoid analogue of the Dynkin diagram: it
determines M up to a kind of central extension, it determines Nambooripad’s
biordered set of idempotents, and it determines the set of B×B-orbits of M .
This is just what Putcha needed to develop his abstract theory of Monoids of
Lie type, the monoid analogue of the theory of groups with BN pair. But it is
no soft excercise in generalization theory (see Chapter 10). In any case, the
type map is the exact, minimal, discrete entity that can be used to determine
the salient structure of a Monoid of Lie type.

In a joint effort, around 1988, we determined explicitly a large class of type
maps. These are the type maps of J-irreducible monoids. A reductive monoid
M is J-irreducible if it has exactly one, non zero, minimal G×G-orbit. This
leads to some speculation about what is possible in general. On the one hand,
it is impossible to list all type maps but, on the other hand, there are still
some interesting questions here. We have recently determined the type maps
of reductive monoids with exactly two minimal, non zero G×G-orbits.

In another joint effort, arround 1990, we investigated the irreducible, mod-
ular representations of a finite monoid of Lie type. By combining the results of
semigroup representations (Munn-Ponizovskii) with the results of Chevalley
group representations (Curtis-Richen) we obtained the surprising result that
irreducible modular representations of the monoid restrict to irreducible rep-
resentations of the unit group. It is as if the finite group is somehow “dense” in
the monoid, as in the geometric case. This led me, around 1998, to a complete
classification of irreducible, modular representations of finite monoids of Lie
type; along with an enumerative theory, relating these representations to the
Weil zeta function of the adjoint quotient.

We mention here some related developments. Around 1990 Solomon began
a study of the monoid Hecke-Iwahori algebra, initially for Mn(Fq). These
algebras are semisimple, and they have very recently appeared (with Halverson
et al.) in a solution of the Schur-Weyl duality theorem for quantum gln(q).

Around 1990, S. Doty proved that the coordinate algebra of a reductive
normal monoid M in characteristic p > 0 is a direct limit of generalized Schur
algebras in the sense of Donkin. In particular, Rep(M) is a highest weight
category in the sense of Cline, Parshall and Scott.

In 1994, É.B. Vinberg introduced some new ideas into the theory of alge-
braic monoids: abelianization, flat deformation, Env(G0) and the asymptotic
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semigroup As(G0). He also gave a new approach to the classification of re-
ductive monoids.

Also around 1994, Rittatore in his Grenoble thesis systematically identified
the entire theory of algebraic monoids as a part of the theory of spherical
embeddings. He also extended much of Vinberg’s work to characteristic p >
0, and later proved that any reductive, normal, algebraic monoid is Cohen-
Macaulay.

In writing this survey I have tried to assess every contribution that im-
pacts significantly on the theory of algebraic monoids. Hopefully, I have not
improperly stated the work of any author. There is some difficulty on this
point because there is a natural hierarchy of theories:

i) affine torus embeddings
ii) reductive algebraic monoids
iii) symmetric varieties
iv) spherical embeddings.

Indeed, this is obvious from the definitions (and a theorem of Vust, to get from
iii) to iv)). One should also mention horospherical varieties along with this
list. Each of these topics is a legitimate, well established discipline in its own
right, with its own methods and techniques. Furthermore, many results about
reductive monoids can be identified as the special case of some more general
results about symmetric varieties or spherical embeddings. As we have already
pointed out, this observation has led to some important work of Rittatore. He
systematically identifies the theory of algebraic monoids as a special case
within the theory of spherical embeddings. We describe his approach in § 5.3.
We also identify the key ideas of embedding theory as they pertain to reductive
monoids.

On the other hand, there are several features about algebraic monoids that
have yet to be worked out for general spherical varieties:

i) The possible G×G-orbits that could occur for some reductive monoid are
easy to construct in explicit detail. See § 5.3.3 for some detail here. One
can calculate the B × B-orbits, and the adherence ordering on the set R
of these orbits, in terms of the lattice of G × G-orbits and the Bruhat
ordering on the associated Weyl group, and certain of its subgroups.

ii) There is an abstract theory, due to Putcha, known as monoids of Lie type
in the spirit of Tits’ theory of BN -pairs.

These monoid constructions should ultimately work for more general
spherical vartieties, when more is known about the “global” structure of spher-
ical homogeneous spaces. It appears to be one of the wide open challenges to
describe explicitly (in terms of the dense orbit) the possible spherical homo-
geneous spaces that could occur on the boundary of a given spherical variety.

Some of our results in Chapter 11, on the cell decomposition of the “won-
derful” compactification X , have been obtained using other methods. Indeed,
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Brion has obtained a cell decomposition of X using the method of Birula-
Bialynicki.

This survey is organized as follows. Each of the next thirteen chapters is
devoted to some particular theme directly related to algebraic monoids. Chap-
ter 7, for example, is devoted to the problem of determining the orbit structure
of reductive monoids. There is also a fifteenth chapter where we discuss sev-
eral results that are directly related to the theory of algebraic monoids, but
which require techniques beyond the scope of this survey.

There is no need to summarize every chapter in this introduction. We have
already discussed the main results of the theory above. The reader should
consult the table of contents for a description of each chapter and a guide to
how the material is organized.



2

Background

In this chapter we assemble some of the major ideas and results from algebraic
geometry, algebraic group theory and semigroup theory. This is intended to
set the tone for the reader. It is intended also to provide some convenient
references for the ensuing development. The theory of algebraic monoids is a
rich blend of these three influences.

2.1 Algebraic Geometry

Algebraic monoids are affine, algebraic varieties with other structures attached
to them. In this section, we introduce some basic concepts, such as varieties,
morphisms, dimension and divisors. We assume in this section that K is an
algebraically closed field.

2.1.1 Affine Varieties

We define affine n-space over K to be Kn, the set of all n-tuples of elements
of K. An element P ∈ Kn is called a point and, if P = (a1, . . . , an), then ai
will be called the coordinates of P . Let A = K[X1, . . . , Xn] be the polynomial
ring in n variables over K. We think of the elements of A as functions on
Kn as follows: if f(X1, . . . , Xn) ∈ A, then we define f : Kn → K by the
rule f(P ) = f(a1, . . . , an). Thus we can talk about the zeros of f , namely
Z(f) = {P ∈ Kn|f(P ) = 0 }. If E is any subset of A, we define

Z(E) = {P ∈ Kn|f(P ) = 0 for all f ∈ E}.

Definition 2.1. A subset X of Kn is called an algebraic set if X = Z(E) for
some subset E of A.

Notice that, if X = Z(E) is an algebraic set, then X = Z(E0) for
some finite subset E0 of E. Indeed, A is a Noetherian ring, and thus



6 2 Background

Z(E) = Z((E)), where (E) denotes the ideal generated by E. But then
(E) = (f1, . . . , fn) is finitely generated by the Noetherian condition and thus
Z((E)) = Z({f1, . . . , fm}).

Proposition 2.2. The union of two algebraic sets is algebraic. The intersec-
tion of any collection of algebraic sets is algebraic. The empty set is algebraic.
The whole space is algebraic.

Proof. If X = Z(E) and Y = Z(F ), then X ∪ Y = Z(EF ), where EF =
{fg |f ∈ E and g ∈ F}. If Xα = Z(Eα), then ∩Xα = Z(∪Eα). φ = Z(1) and
Kn = Z(0).

Definition 2.3. The Zariski topology on Kn is the topology on Kn defined
by taking as open sets the complements of algebraic sets. By Proposition 2.2
this is a topology on Kn.

Example 2.4. Consider the Zariski topology on K. In this case, A = K[X ],
and it is well known that every ideal of A is principal. Thus every algebraic
set Z is the zero locus of a single polynomial f ∈ A. Furthermore, since
K is algebraically closed, f factors as f(X) = c(X − a1) . . . (X − an) with
c, a1, . . . , an ∈ K. Hence Z = {a1, . . . , an}. Thus the Zariski topology on K is
the cofinite topology.

Definition 2.5. A nonempty subset of a topological space X is called irre-
ducible if it cannot be expressed as the union X = X1∪X2 of two, nonempty,
proper closed subsets of X.

Example 2.6. K is irreducible because any proper closed subset of K is finite,
while K is algebraically closed, and therefore infinite.

Theorem 2.7. (Hilbert’s Vanishing Theorem) Let K be an algebraically
closed field, let a be an ideal of A = K[X1, . . . , Xn], and let f ∈ A be a
polynomial which vanishes at all points of Z(a). Then f r ∈ a for some integer
r > 0.

Proof. See Atiyah-Macdonald [2] page 85.

Thus, there is an inclusion-reversing correspondence between algebraic sets in
Kn and radical ideals of A = K[X1, . . . , Xn]. It is easy to check that, under
this correspondence, prime ideals correspond to irreducible closed subsets.

Example 2.8. Kn is irreducible, since it corresponds to the zero ideal in A.

Example 2.9. If f is an irreducible polynomial in A = K[X1, . . . , Xn], then
Z(f) is an irreducible, algebraic subset of Kn of codimension one. Z(f) is
called a hypersurface.

If Y ⊆ Kn we define the ideal of Y by

I(Y ) = {f ∈ A|f(P ) = 0 for all P ∈ Y }.
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Definition 2.10. If Y is an affine, algebraic set, the affine coordinate ring of
Y is K[Y ] = A/I(Y ).

We now study the Zariski topology on affine varieties.

Definition 2.11. A topological space X is called noetherian if it satisfies the
descending chain condition on closed sets: for any sequence Y1 ⊇ Y2 ⊇ . . . of
closed sets, there exists an integer r > 0 such that Yr = Yr+1 = . . . .

It is easily checked that any affine algebraic set Y is a noetherian topolog-
ical space. Indeed, this follows directly from the fact that K[X1, . . . , Xn] is a
noetherian ring which, by definition, is a ring which satisfies the ascend-
ing chain condition on ideals. Any descending chain of closed subsets of Y
determines an ascending chain of ideals of K[Y ].

Noetherian topological spaces behave differently from Hausdorff topologi-
cal spaces.

Proposition 2.12. Let X be a noetherian topological space and let Y ⊆ X be
a closed subset of X. Then Y can be expressed as a finite union Y = Y1∪· · ·∪Yr
of irreducible subsets. If we insist that Yi 6⊆ Yj for i 6= j, then the Yi are
uniquely determined.

The Yi are called the irreducible components of Y .

Proof. To prove existence of such a decomposition of Y one uses Zorn’s lemma.
Let S be the set of nonempty closed subsets of X which cannot be written
as a finite union of irreducible, closed subsets. If S is nonempty, it must have
a minimal element, since X is a noetherian topological space. Let Y be such
a minimal element. Then Y must be reducible, and therefore we can write
Y = U ∪ V where U and V are proper closed subsets of Y . By minimality
of Y , each of U and V can be written as a finite union of irreducible closed
subsets, and hence Y also: a contradiction. This establishes the first part of
the claim. We leave the rest of the proof to the reader.

Corollary 2.13. Any algebraic set in Kn can be expressed uniquely as a union
of irreducible closed subsets, no one containing the other.

2.1.2 Dimension Theory

We begin with a definition.

Definition 2.14. a) Let X be a topological space. The dimension of X is the
supremum of all integers n such that there exists a chain Z0 ⊆ Z1 ⊆ · · · ⊆
Zn of distinct, irreducible closed subsets of X. We define the dimension
of an affine variety to be its dimension in this sense.

b) In a commutative ring A, the height of a prime ideal p is the supremum of
all integers n such that there is a chain p0 ⊂ p1 ⊂ · · · ⊂ pn = p of distinct
prime ideals. The dimension or Krull dimension of A is the supremum of
the heights of all prime ideals of A.
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Proposition 2.15. If X is an affine algebraic set, then the dimension of X
is equal to the dimension of its affine coordinate ring K[X ].

Proof. There is a one-to-one inclusion-reversing correspondence between the
prime ideals of K[X ] and the irreducible closed subsets of X .

Remark 2.16. a) It follows from Chapter 11 of [2] that the dimension ofK[X ]
is equal to the transcendence degree of the fraction field K(X) of K[X ]
over K.

b) It follows from a) above that the dimension of Kn is n.
c) If A is a noetherian ring and f ∈ A is a regular element, then dim(A/(f))

= dim(A) − 1. See page 122 of [2].

2.1.3 Divisor Class Groups

The class group ultimately contains a subtle mixture of local and global infor-
mation about a normal, algebraic variety. In general, it is not easy to calculate
these class groups. But on the other hand, it is often possible to compute the
class group of a variety which can be expressed as the union of well-behaved
subvarieties.

Our general reference for this section is Fossum’s monograph [29]. Also,
Section 6 of Chapter II of [38] is a good introduction from a more geometric
point of view.

A commutative ring A is called an integral domain if, for any x, y ∈
A\{0}, xy 6= 0. It is easy to check that A is an integral domain if and only if the
zero ideal of A is a prime ideal. Let A be a noetherian integral domain. We say
that A is normal if it is integrally closed in its field K(A) of fractions. We call
an irreducible, algebraic variety X normal if its coordinate ring A = K[X ] is
a normal integral domain. A minimal, nonzero prime ideal p of A is called a
height one prime ideal. If X is an algebraic variety over K then the height
one primes of A are in one-to-one correspondence with the closed irreducible
subvarieties Y of X of codimension one. We call these subvarieties prime
divisors. It follows from Theorem 38, page 124 of [57], that

A =
⋂

ht(p)=1

Ap.

Furthermore, each Ap is a discrete valuation ring of A. We denote by

νY : K(A)∗ → Z

the discrete valuation on K(A) determined by p and Y = Spec(A/p). If f ∈
K(A), it is easy to check that

νY (f) = 0

for all but a finite number of prime divisors Y of X .
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Definition 2.17. If X is a normal, algebraic variety, let Div(X) be the free
abelian group with basis {Y | Y is a prime divisor of X}. If f ∈ K(X) we
define the divisor of f , denoted div(f), by

div(f) =
∑

νY (f)Y,

where the sum is taken over all prime divisors of X. We refer to div(f) as a
principal divisor, and denote by Prin(X) ⊆ Div(X) the subgroup of principal
divisors. Finally, we define the divisor class group of X:

Cl(X) = Div(X)/Prin(X).

Notice that we have an exact sequence of abelian groups:

0→ K∗ → K(X)∗ → Prin(X)→ Div(X)→ Cl(X)→ 0.

Example 2.18. Let X be a normal, irreducible, algebraic variety. Then the
following are equivalent:

a) Cl(X) = 0.
b) Every height one prime p of K[X ] is principal.
c) K[X ] is a unique factorization domain.

In particular, Kn has trivial divisor class group.

Proposition 2.19. Let X be irreducible and normal, and let Z be a proper,
closed subvariety of X. Let U = X\Z.

a) There is a surjective morphism Cl(X)→ Cl(U) defined by Y → Y ∩U if
Y ∩ U is nonempty, and zero otherwise.

b) If codimX(Z) ≥ 2, then Cl(X)→ Cl(U) is an isomorphism.
c) If Z = ∪iZi is a union of prime divisors, then there is an exact sequence

⊕iZ→ Cl(X)→ Cl(U)→ 0

where the first map is defined by (a1, . . . , an) →
∑
aiZi. In particular, if

Cl(U) is trivial, then Cl(X) is generated by {Zi}.

Proof. For a) notice that every prime divisor of U is the restriction of its
closure inX . The result in b) follows since Prin(U) = Prin(X) andDiv(U) =
Div(X). For c), notice that the kernel of Div(X)→ Div(U) is generated by
{Zi}.

Example 2.20. If X = Pn, then Cl(X) = Z. Indeed, let H ⊆ X be a linear
hypersurface. Then by c) above, Cl(X) is generated by the class of H , since
X\H = Kn. On the other hand, each divisor Y of X has a well defined degree
determined by the degree of its defining equation. But any rational function
on X has degree zero, being the the quotient of two homogeneous polynomials
of the same degree. Hence degree : Cl(X)→ Z is an isomorphism.
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2.1.4 Morphisms

In this section we acquaint the reader with some of the basic facts about mor-
phisms of algebraic varieties. Our discussion is mainly concerned with affine
varieties and affine morphisms. This simplifies the discussion significantly.

Definition 2.21. a) Let X be an affine variety with coordinate ring K[X ].
A function f : X → K is regular at a point P ∈ X if there is an open
subset U ⊆ X with P ∈ U , and g, h ∈ K[X ] such that f = g/h on U .

b) We say that f is regular on X if it is regular at every point of X.

Definition 2.22. Let X and Y be irreducible affine varieties. A morphism
ψ : X → Y is a continuous function such that, for every open subset U ⊆ Y
and every regular function f : U → K, f ◦ ψ : ψ−1(U) → K is a regular
function.

Proposition 2.23. Let X and Y be affine algebraic varieties with coordinate
rings K[X ] and K[Y ] respectively. Define

γ : Hom(X,Y )→ Hom(K[Y ],K[X ])

by γ(f) = f∗, where f∗(h) = h ◦ f . Then γ is an bijection. Here Hom on the
left means morphisms of varieties, and Hom on the right means morphisms
of K-algebras.

Proof. We give a sketch. See page 19 of [38] for more details. The map γ is well
defined since K[X ] is canonically identified with the ring of regular functions
on X . Furthermore, γ is clearly one-to-one.

Conversely, given a homomorphism ψ : K[Y ] → K[X ] of K-algebras,
define ψ∗ : X → Y as follows. For x ∈ X , define εx by εx(g) = g(x). Then
define ψ∗(x) = εx ◦ ψ. One then checks that ψ∗ is a morphism, and that
γ(ψ∗) = ψ.

A version of the above result is true even if X is not affine. In that case,
let O(X) be the ring of regular functions on X . Then

γ : Hom(X,Y )→ Hom(K[Y ],O(X))

is a bijection. See Proposition 3.5 of Chapter I of [38] for more details.
We now distinguish certain classes of morphisms that will be important in

our later discussions.

Definition 2.24. a) A morphism f : X → Y is finite if f∗ : K[Y ] → K[X ]
makes K[X ] into a finitely generated module over K[Y ].

b) A morphism f : X → Y is dominant if f(X) ⊆ Y is a dense subset. Notice
that this is equivalent to saying that f∗ : K[Y ]→ K[X ] is injective.

c) A dominant morphism f : X → Y , between irreducible varieties, is bi-
rational if f induces an isomorphism f∗ : K(Y ) → K(X) of function
fields.
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d) A morphism f : X → Y is flat if the functor F (M) = M ⊗K[Y ] K[X ],
from K[X ]-modules to K[Y ]-modules, is exact.

Remark 2.25. a) A finite morphism has finite fibres.
b) A finite dominant morphism f : X → Y induces a K-algebra homomor-

phism f∗ : K(Y )→ K(X) of function fields. The typical fibre has s points
in it, where s is the separable degree of f .

c) If f : X → Y is a birational morphism, then there are open subsets U of
X and V of Y such that f |U : U → V is an isomorphism.

d) Let X and Y be affine varieties with graded coordinate algebras K[X ] =∑
n≥0An and K[Y ] =

∑
n≥0Bn, respectively. Assume also that A0 =

B0 = K. Then each of X and Y has a cone point 0X ∈ X and 0Y ∈ Y . Let
f : X → Y be a morphism of varieties such that f∗ is a homomorphism of
graded K-algebras. Then f is a finite morphism if and only if f−1(0Y ) =
0X .

e) A flat surjective morphism is open, and has equidimensional fibres.

Given a normal, irreducible, affine variety X , it is sometimes possible to con-
struct a morphism f : U → Y from some open subset U of X to the affine
variety Y . On the other hand, we would then like to know whether f extends
to a morphism f : X → Y , without actually constructing this extension. The
following codimension two condition gives us a very useful criterion.

Theorem 2.26. Let X be a normal, irreducible, affine variety, and assume
that U ⊆ X is an open subset such that codimX(X\U) ≥ 2. If f : U → Y is
a morphism to the affine variety Y , then f extends uniquely to a morphism
f : X → Y .

Proof. Our assumptions give us a K-algebra homomorphism f∗ : K[Y ] →
O(U). However, by a previous remark in this section

A =
⋂

ht(p)=1

Ap,

where A = K[X ]. But O(U) =
⋂
ht(p)=1Ap, since codimX(X\U) ≥ 2. Thus

K[X ] = O(U).

Example 2.27. Let Z = K2, and let U = Z\{0}. Then it is easy to check that
O(U) = K[X,Y,X−1] ∩K[X,Y, Y −1] = K[X,Y ] = O(Z).

The codimension 2 condition has been used very effectively by Grosshans [34]
in his work on invariant theory.

It is useful in characteristic p > 0 to keep track of the separable degree of
a morphism. Our definition of separable is not the most general one, but it is
good enough for our purposes.
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Definition 2.28. Let f : X → Y be a dominant morphism of irreducible,
algebraic varieties. Assume that f is generically finite. This means that f∗ :
K(Y )→ K(X) is a finite extension of fields. We say that f is separable if f∗

is a separable extension of fields.

It turns out that, if f : X → Y is generically finite, then there is an open
subset U of Y such that |f−1(y)| is constant for y ∈ U . If further f is separable
then the degree of K(X) over K(Y ) is this common value.

Notice in particular that, if f is injective, dominant and separable, then it
is birational. Also notice that any generically finite morphism is separable in
characteristic zero.

Theorem 2.29. (Zariski’s Main Theorem) Let f : X → Y be a birational
morphism between irreducible varieties. Assume that f is finite-to-one and
that Y is normal. Then f is an open embedding. In particular, if f is also
surjective, then it is an isomorphism of varieties.

For a development of this Theorem see Corollary 11.4, Chapter III of [38].

2.2 Algebraic Groups

In this section we (re)acquaint the reader with the fundamentals of algebraic
group theory. The reader who is unfamiliar with algebraic groups and their
finite dimensional representations should consult [7, 40, 69, 134]. Algebraic
group theory is the “generic point” of any theory of algebraic monoids.

Obviously, we cannot state or prove everything we need here. So we try
to assemble the main constructions and results that are particularly relevant
to the development of the theory of algebraic monoids. Notice, in particular,
that we are interested only in affine algebraic groups.

As usual we assume that our algebraic varieties are defined over the alge-
braically closed field K.

2.2.1 Algebraic Groups

Definition 2.30. Let G be an algebraic variety. Assume that we have mor-
phisms of algebraic varieties m : G ×G → G, m(x, y) = xy, and i : G → G,
i(x) = x−1, such that G is a group with m as multiplication and i as inverse.
Then (G,m, i) is called an algebraic group.

Remark 2.31. Let G be an algebraic group.

a) There are obvious notions of morphism and isomorphism of algebraic
groups.

b) Any algebraic group is a smooth variety.
c) The direct product of algebraic groups is an algebraic group.
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d) Any closed subgroupH ofG is an algebraic group with the group structure
it inherits from G.

e) If ρ : G→ H is a morphism of algebraic groups, then the kernelK and im-
age N of ρ are algebraic groups. Furthermore, dim(G)=dim(K)+dim(N).

f) If N is a closed, normal subgroup ofG, then G/N has the unique structure
of an algebraic group such that the canonical morphism π : G→ G/N is
a morphism of algebraic groups.

g) The irreducible components of G are in fact the connected components.
So there is a unique, connected component of the identity, denoted G0.
G0 is normal in G and has finite index in G.

Example 2.32. a) K∗, the multiplicative group of nonzero elements of K.
b) (K,+), the additive group.
c) Tn(K), the group of upper-triangular invertible n× n matrices.
d) Dn(K), the group of diagonal invertible n× n matrices.
e) Un(K), the group of unipotent upper-triangular n× n matrices.
f) Gln(K), the group of n× n invertible matrices.

Any algebraic group has certain distinguished subgroups associated with it,
suggested already by the above examples. We first define these different types
of groups.

Definition 2.33. Let G be a connected, algebraic group.

a) G is solvable if it is solvable as a group.
b) G is a D-group or a torus if its coordinate algebra is generated by char-

acters. A character is a morphism χ : G→ K∗.
c) G is nilpotent if it is nilpotent as a group.
d) G is unipotent if, for any morphism ρ : G→ Gln(K), there is a nonzero

vector v ∈ Kn such that ρ(g)(v) = v for any g ∈ G. Any unipotent
algebraic group is nilpotent.

Tn(K) is solvable. By the Lie-Kolchin Theorem [40], any connected, solv-
able group is isomorphic to a closed subgoup of Tn(K) for some n.

Dn(K) is a D-group. Any D-group is isomorphic to a closed subgroup of
Dn(K) for some n.

Un(K) is unipotent. Any unipotent algebraic group is isomorphic to a
closed subgroup of Un(K) for some n.

Each of the groups mentioned above is a maximal subgroup, of the given
type, of Gln(K).

Definition 2.34. (The Radical) Let G be a connected algebraic group. G
has a maximal, connected, unipotent, normal subgroup, denoted Ru(G). Ru(G)
is called the unipotent radical of G. G has a maximal, connected, solvable
normal subgroup, denoted R(G). R(G) is called the radical of G.
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In each case, factoring out the radical yields a group with trivial radical of that
type. A group G is called reductive if the unipotent radical is trivial, and
semisimple if the radical is trivial. Reductive groups are the most important
class of algebraic groups.

Any algebraic group has maximal, connected, solvable (or unipotent or
diagonalizable) subgroups. This would be a minor issue if there was no way
to compare any two of these maximal subgroups. However, we have the fol-
lowing extremely useful conjugacy thereom. This allows one to associate with
each algebraic group, exactly one set of structure constants for each type of
subgroup. This, ultimately leads to a classification of semisimple algebraic
groups.

Theorem 2.35. (Conjugacy Theorems) Let G be a connected algebraic
group, and let H and K be two maximal, connected, solvable (or diagonal-
izable, or unipotent) subgroups of G. Then there exists g ∈ G such that
gHg−1 = K. Each maximal, connected, solvable subgroup B is the semidi-
rect product of its unipotent radical and any of its maximal tori. The maximal
tori of B continue to be maximal tori of G. The unipotent radical of B is a
maximal, unipotent subgroup of G.

Proof. See Theorem 21.3 and Corollary 21.3A of [40] .

The maximal solvable connected subgroups are called Borel subgroups.
Any solvable, connected group G is isomorphic to the semidirect product
G = TU of its unipotent radical U and any of its maximal tori T .

One method of proof of the conjugacy of Borel subgroups is the Borel
Fixed Point Theorem.

Theorem 2.36. (Borel Fixed Point Theorem). Let G be a solvable, con-
nected algebraic group acting on the complete variety X. Then G has a fixed
point.

Proof. Let H = (G,G). Since G is solvable, dim(H)<dim(G). Hence by in-
duction on the dimension of G, H has a fixed point on X . If we let Y be the
set of fixed points of H on X , then the commutative algebraic group G/H
acts on the nonempty complete variety Y . We are thereby reduced to the case
of a commutative group A = G/H . But now the action of A on Y has orbits
of minimal dimension, which are closed and irreducible. On the other hand,
these orbits are affine. But any irreducible, complete, affine variety is a point.

Corollary 2.37. Let B and B′ be two Borel subgroups of the algebraic group
G. Then there exists g ∈ G such that gBg−1 = B′.

Proof. Let B′ be a Borel subgroup of G of maximal dimension, and let B
be any other Borel subgroup of G. Consider the action B′ × G/B → G/B
defined by (b, gB)→ bgG. By the Borel Fixed Point Theorem, B′ has a fixed
point gB on G/B, since G/B is a projective variety. So B′gB = gB, and thus
B′gBg−1 = gBg−1. Hence, B′ ⊆ gBg−1 giving B′ = gBg−1.
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2.2.2 Root Systems, Weyl Groups and Dynkin Diagrams

There is a much-studied classification of semisimple groups that depends on
discrete data obtained from the maximal torus and how it acts on the maxi-
mal unipotent subgroup of its ambient Borel subgroup. This classification in-
evitably involves root sytems, Weyl groups and Dynkin diagrams. The reader
is advised to acquire familiarity with at least one of the many textbooks on
this much celebrated theory. Reference [69] contains many specific facts that
are useful in classification problems related to algebraic monoids, and [40]
develops the theory in detail from a modest background in linear algebra and
algebraic geometry. Our summary here is brief, and is intended only for con-
venient, quick reference. In particular, very little is said about Lie algebras.
For more details the reader should consult [7, 40, 69].

The list of simple, algebraic groups is amazingly short, and does not depend
on the (algebraically closed) field K. In fact, each group can be defined over
Z in such a way that it will specialize to yield the correct (split) group over
any ring. There are four infinite families of simple groups, and five exceptional
groups. Each group has a diagram associated with it, known as its Dynkin
diagram. The Dynkin diagram efficiently codes the structural information
needed to construct the group.

Let G be a semisimple, algebraic group. Let B be a Borel subgroup with
maximal torus T ⊆ B and unipotent radical U . T acts on U by inner auto-
morphisms, u → tut−1. This action induces an action of T on the tangent
space u of U . Since T is a D-group, u decomposes into weight spaces indexed
by certain characters Φ+ ⊆ X(T ), known as (positive) roots:

u = ⊕α∈Φ+gα

We let Φ = Φ+ ∪ −Φ+.

Theorem 2.38. a) dim(gα)=1, for each α ∈ Φ+.
b) There is a unique, closed T -stable subgroup Uα of U whose tangent space

at the identity of U is gα.
c) There is a unique, Borel subgroup B−, called the Borel subgroup opposite

to B (relative to T ), such that T ⊆ B− and B ∩B− = T .
d) If U− is the unipotent radical of B−, the set of weights of T on u− is
−Φ+.

e) G is generated as a group by the groups Uα, α ∈ Φ and T .
e) Φ generates a subgroup of finite index in X(T ).

Example 2.39. Let G = Sln(K), and let B = Tn(K) ∩ G, U = Un(K) and
T = Dn(K) ∩ G. Then B− = LTn(K) ∩ G, where LTn(K) is the group of
invertible lower-triangular matrices. One checks easily that Φ+ = {αi,j |i > j}
and Φ− = {αi,j |i < j}. Here, αi,j(t1, . . . , tn) = tit

−1
j and Ui,j = {In+aEi,j |a ∈

K}, where Ei,j is the elementary matrix with one non zero entry in the (i, j)-
position.
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The above theorem ultimately leads to the following definition of a root
system. For convenience, these objects are usually defined over R.

Definition 2.40. A root system is a real vector space E together with a finite
subset Φ, called roots, satisfying:

a) Φ spans E, and does not contain zero.
b) If α ∈ Φ, the only other multiple of α in Φ is −α.
c) If α ∈ Φ, there is a reflection σα : E → E such that σα(α) = −α, and σα

leaves Φ stable.
d) If α, β ∈ Φ, then σα(β) − β is an integral multiple of α.

Remark 2.41. a) The group W generated by {σα|α ∈ Φ} is called the Weyl
group.

b) A subset ∆ = {α1, . . . , αr} is called a base if ∆ is a basis of E, and each
α ∈ Φ has a unique expression of the form α =

∑
ciαi, where the ci are

integers, either all nonnegative or all nonpositive. Bases exist, every root
is in at least one base, and W permutes them simply transitively.

c) The elements of ∆ are called simple roots, and the corresponding reflec-
tioons are called simple reflections.

d) W is already generated by {σα|α ∈ ∆}, and as such it is a Coxeter
group.

e) There is an inner product (α, β) on E relative to which W is a group of
orthogonal transformations. For σα we obtain σα(β) = β− < β, α > α,
where < β, α >= 2(β, α)/(α, α).

f) If G is a semisimple group with maximal torus T , let E = X(T )⊗R. Then
(E,Φ), as in the above theorem, is a root system. The Weyl group of this
root system is canonically isomorphic to NG(T )/T . G is generated, as a
group, by B and NG(T ).

g) Φ is called irreducible if it cannot be partitioned into a union of two,
mutually orthogonal, proper subsets.

Up to isomorphism, the irreducible root systems correspond to the Dynkin
diagrams, which are depicted in Figure 2.1. Each irreducible root system cor-
responds to a simple algebraic group.

The numbered nodes (circles) in each diagram correspond to the simple
roots. Nodes corresponding to α and β are joined by < α, β >< β, α > bonds.
There is an arrow pointing to the shorter of the two roots, if indeed the roots
are of different length. Notice that α and β can be joined by 0, 1, 2, or 3
bonds, according to whether the order of σασβ ∈ W is 2, 3, 4, or 6.

For convenience and completeness, we have depicted the extended Dynkin
diagrams. The extra node (circle with a “×”) corresponds to the highest root,
which is also the highest weight of the adjoint representation.

It is easy to see that the information embodied in the Dynkin diagram is
equivalent to the information embodied in the Cartan matrix:

< α, β >; α, β ∈ ∆.
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Fig. 2.1. The extended Dynkin diagrams of the simple algebraic groups.
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The set of fundamental dominant weights {λ1, . . . , λr} is defined so that
< λi, αj >= δi,j (Kronecker delta). The dominant weights are the Z-linear
combinations λ =

∑
ciλi with each ci ≥ 0. Each weight is conjugate under W

to exactly one dominant weight. X(T ) has finite index in the set of weights.
The Cartan matrix is the coefficient matrix for expressing the fundamental
dominant weights in terms of the simple roots. It can also be used to define a
presentation of g via generators and relators.

2.2.3 Tits System and Bruhat Decomposition

Inspired by work of Chevalley [14], Tits [140] devised an efficient set of axioms
to describe the structure of the simple Chevalley groups and other simple
algebraic groups. The resulting theory, known as Tits systems or BN -pairs,
is extremely efficient and far-reaching. It is essential in the development of
Putcha’s theory of monoids of Lie type.

Definition 2.42. (Tits System) Let G be a group generated by two sub-
groups B and N , where T = B∩N is a normal subgroup of N . Let W = N/T ,
and assume that S ⊆W is a set of elements of order two of W . By standard
abuse of language, we write wB for w ∈ W . This is allowed since two repre-
sentatives of w in N differ by an element of T , which is contained in B. We
say that (G,B,N, S) is a Tits system if

a) for s ∈ S and w ∈W , sBw ⊂ BwB ∪BswB;
b) for s ∈ S, sBs 6= B.

W is the Weyl group of the system, and |S| is the rank. A subgroup of G
conjugate to B is called a Borel subgroup of G.

Example 2.43. Let G be a reductive group, and B a Borel subgroup of G
containing the maximal torus T . Let N = NG(T ) and let S be the set of
simple reflections corresponding to the base ∆ determined by T and B. Then
(G,B,N, S) is a Tits system.

Theorem 2.44. Let (G,B,N, S) be a Tits system with Weyl group W . For
I ⊆ S let WI be the subgroup of W generated by I, and let PI = BWIB.

a) PI is a subgroup of G. In particular, PS = G.
b) For v, w ∈ W , BvB = BwB if and only if v = w. In particular, sBw ⊂
BswB if and only if sBw ∩BwB = φ.

The subgroups PI are called parabolic subgroups of G.

Definition 2.45. For w ∈ W , define the length of w relative to S as l(w) =
min{k|w = s1 . . . sk, si ∈ S}.

Theorem 2.46. a) The only subgroups of G containing B are the PI .
c) If PI is conjugate to PJ , then I = J .
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c) The following are equivalent.
i) I = J .

ii) WI = WJ .
iii) PI = PJ .

d) NG(P ) = P .

2.2.4 Representations

In this section, we describe the set of irreducible, rational representations of
a semisimple group G. The case of a reductive group is only slightly more
complicated. As usual, we let T be a maximal torus of G and B = TU a Borel
subgoup of G containing T . Let B− = TU− be the opposite Borel subgroup
containing T , and ∆ the the base of Φ determined by B. Let

ρ : G→ Gl(V )

be a rational representation of G. The weights of ρ are the characters of T
associated with the eigenspaces of the action of T on V . Then V = ⊕Vλ,
where Vλ = {v ∈ V |ρ(t)(v) = λ(t)v, t ∈ T }. By the Lie-Kolchin theorem,
there is a one-dimensional subspace L of V such that ρ(B)(L) = L. Then L
is pointwise fixed by the unipotent radical of B. A nonzero vector v in L is
called a highest weight vector.

Proposition 2.47. Let V be a nonzero, rational G-module, and let v be a
highest weight vector. Let V ′ be the submodule of V generated by v. Then the
weights of V ′ are of the form λ −

∑
cαα where α ∈ ∆ and the cα are non-

negative integers. Furthermore, dim(V ′
λ)=1, and V ′ has a unique, maximal,

proper submodule M . Consequently, V ′/M is an irreducible G-module.

Proof. Since ρ(U)(v) = {v}, V ′ is spanned by ρ(U−)(v). But U− is a product
of Uα’s with α ∈ −Φ+, and so applying U− to a vector of weight λ results in a
vector of the form v+u. But the components of u have weight λ−

∑
cαα 6= λ,

where α ∈ −Φ+ and the cα are non negative. In particular, dim(V ′
λ)=1.

Any proper submodule of V ′
λ cannot contain v, and consequently it cannot

contain any vectors of weight λ. So take M to be the sum of all proper
submodules of V ′.

The weight λ is called the highest weight of V ′, and V ′ is called a
highest weight module. The above proposition shows that if we order the
weights of V ′ as follows:

λ > µ

whenever λ − µ is a sum of positive roots, then λ is greater than all other
weights of V ′ for this partial ordering. It turns out that this weight λ is
actually a dominant weight.
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Theorem 2.48. a) Let V be an irreducible, rational G-module. There is a
unique B-stable one-dimensional subspace spanned by a highest weight
vector v with dominant weight λ. All other weights of V are of the form
λ− γ, where γ is a sum of positive roots.

b) If V ′ is another irreducible rational G-module with highest weight λ′, then
V and V ′ are isomorphic if and only if λ = λ′.

c) Let λ ∈ X(T ) be a dominant weight. Then there exists an irreducible
G-module Vλ of highest weight λ.

Proof. For a), we already have everything but the uniquness. But there cannot
be two different, highest weights. For b), if V and V ′ are two irreducible G-
modules with highest weight λ, let v ∈ V and v′ ∈ V ′ be the respective
highest weight vectors. It is easy to construct a highest weight module V ′′

inside V ⊕V ′ that projects onto both V and V ′. But it has a unique maximal
submodule, M ⊂ V ′′. Then both V and V ′ are isomorphic to V ′′/M .

To prove c), define

H0(λ) = {f ∈ K[G]|f(xy) = λ(x)f(y) for x ∈ B−, y ∈ G}.

One checks that H0(λ) is a subspace of K[G] stable under right translation.
It is possible to find a function f ∈ H0(λ) such that f(xy) = λ(y)f(x) for all
x ∈ G and y ∈ B. Here, we may think of λ as a character on B by declaring
λ(u) = 1 for u ∈ U . It turns out that the submodule of H0(λ) generated
by this f is the sought after irreducible representation. In characteristic zero,
H0(λ) is actually irreducible.

Remark 2.49. (Borel-Weil-Bott Theory) The entity H0(λ) in the proof of
part c) above can be interpreted geometrically. If λ is interpreted as above, as
a character λ : B → K∗, we can define a line bundle on G/B as follows. Let
B act on G ×K∗ by the rule b ∗ (g, t) = (gb−1, λ(b)t). Let L(λ) = {[g, t]|g ∈
G, t ∈ T } be the quotient space of this action. We then have a canonical
projection π : L(λ) → G/B defined by setting π([g, t]) = gB. Then π is a
principal Gm-bundle over G/B. We let L(λ) be the sheaf on G/B associated
with π. Notice that λ is not required to be dominant for this construction.
The Borel-Weil Theorem states that:

a) H0(λ) is the space of sheaf-theoretic global sections of L(λ).
b) H0(λ) is nonzero if and only if λ is dominant; and irreducible if char(K)=0.
c) The correspondence λ → L(λ) determines a one-to-one homomophism
BW : X(T )→ Pic(G/B). The image has finite index, equal to the order
of the fundamental group of G.

In characteristic zero, a refinement of the above results leads to a decompo-
sition of K[G] as a sum of G×G-modules. Indeed, the action (G×G)×G→ G,
defined by ((g, h), x) → gxh−1, defines a rational action of G × G on K[G].
The resulting decomposition of K[G] into isotypic components leads to the
following description of K[G]:
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K[G] =
⊕

λ∈X(T )+

H0(λ∗)⊗H0(λ).

The summands H0(λ∗)⊗H0(λ) are the blocks of K[G] in the sense of Green
[33]. Notice also that K[G] has simple G×G-spectrum. This is in fact one
of the ways to define an affine spherical variety. See [76].

2.2.5 The Class Group of a Reductive Group

Let G be a connected, reductive group with coordinate algebra K[G]. In this
section we calculate the class group of G in terms of certain extremal functions
on G (using Proposition 2.19 and the Bruhat-Tits decomposition of G). Many
of our results are contained explicitly or implicitly in [42], [75] and [137].

Let B and B− ⊆ G be opposite Borel subgroups of G. Let

T = B ∩B−.

Then there is a big cell

BB− ⊆ G.

BB− is open and dense in G, and is isomorphic to Km × (K∗)n as varieties.
In particular, Cl(BB−) = 0. On the other hand,

G\BB− = ∪α∈∆BsαB−,

where ∆ is the set of simple roots of T relative to B. Write

Dα = BsαB−.

We sometimes write Dα(G) if there is possibility of confusion. By part c) of
Proposition 2.19, Cl(G) is generated by {Dα | α ∈ ∆ }. If f ∈ K[G] and

Z(f) ⊆ ∪α∈∆Dα,

it follows easily that

BfB− = K∗f.

Definition 2.50. Let L(G) = { f ∈ K[G] | V (f) ⊆ ∪Dα, f(1) = 1 }.

We refer to L(G) as the augmented cone of G (although, strictly speak-
ing, L(G) is the set of lattice points of such a cone).

Define

c : L(G)→ Div(G)

by
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c(f) =
∑

α∈∆

να(f)Dα

where να is the valuation on K[G] associated with the prime divisor Dα ⊆ G
of G. Notice that c will not be injective unless G is a semisimple group.

Let

Div0(G) = ⊕α∈∆ZDα ⊆ Div(G).

Proposition 2.51. Cl(G) = Div0(G)/ < c(L(G) >, where < c(L(G)) > is
the subgroup of Div0(G) generated by c(L(G)). In particular, Cl(G) = 0 if
and only if the ideal of each Dα is principal.

Proof. By part c) of Proposition 2.19, Cl(G) is generated by {Dα}, while the
principal divisors in Div0(G) are exactly the ones comming from L(G).

Proposition 2.52. There is a canonical one-to-one correspondence between
L(G) and the set X(T )+ of dominant weights of irreducible representations
of G.

Proof. By Theorem 31.4 of [40], if λ ∈ X(T )+ there is a function cλ ∈ L(G)
such that the right G-submodule Vλ of

H0(λ) = { f ∈ K[G] | f(xy) = λ(x)f(y) for all x ∈ B−, y ∈ G }

generated by cλ, is irreducible. It then follows from part b) of Theorem 2.48
that this Vλ is unique.

Conversely, any c ∈ L(G) yields an irreducible representation V of G by
considering the submodule ofK[G] generated by this c under right translation.
By part a) of Theorem 2.48, V = Vλ for some λ ∈ X(T )+.

The coefficients {να(f)} in the formula c(f) =
∑

α∈∆ να(f)Dα have the
following interpretation for a semisimple group G. Let

α∨ =
2α

(α, α)

be the coroot associated with α ∈ ∆. Then, by Theorem 5.3 of [42],

να(f) = (α∨, λ) =< α, λ >

where λ corresponds to f via Proposition 2.52. In particular, if λ = λα is
fundamental and dominant, then να(λβ) equals one if α = β and zero if
α 6= β.

Proposition 2.53. Let G be connected and reductive, and let G′ = (G,G).
Then
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a) Cl(G) = Cl(G′)
b) In particular, the following are equivalent:

i) Cl(G) = 0.
ii) Cl(G′) = 0.

Proof. Let Z be the connected center of G. The multiplication morphism
m : G′ × Z → G is a central isogeny, as in §2 of [42]. Hence, by Proposition
2.6 of [42], there is an exact sequence

0→ X(G)→ X(G′ × Z)→ X(ker(m))→ Cl(G)→ Cl(G′ × Z)→ 0.

But X(G) = X(G/G′) = X(Z/(Z ∩G′)) and X(G′ × Z) = X(Z). Hence
X(G′ × Z)→ X(ker(m)) is surjective, since ker(m) = Z ∩G′.

Proposition 2.54. Let G be a connected reductive group. Then there exists
a connected reductive group G1, with Cl(G1) = 0, and a finite dominant
morphism π : G1 → G with central kernel.

Proof. By Proposition 1 of [75] (reproved in Corollary 3.3 of [42]), this is true

for G′ = (G,G), which is semisimple. Say f : Ĝ′ → G′ is the universal cover
of G′. Let Z be the connected center of G. Then the desired morphism is
g : Ĝ′ × Z → G, defined by g(x, z) = f(x)z.

Now let L ⊆ G be a Levi factor of G. Then there exist opposite parabolic
subgroups P, P− of G such that L = P ∩ P−. However,

PP− ∼= U × L× U−,

where U = Ru(P ) and U− = Ru(P
−). Since U and U− are affine spaces,

Cl(L) = Cl(PP−).
We conclude this section with the following corollary.

Corollary 2.55. There exists a surjective morphism Cl(G)→ Cl(L). In par-
ticular, if Cl(G) = 0 then Cl(L) = 0

Proof. PP− is open in G. Hence Cl(G) → Cl(PP−) is surjective from part
a) of Proposition 2.19.

2.2.6 Actions, Orbits, Invariants and Quotients

Let G be a reductive group, and let X be an irreducible variety. We assume
that X is affine unless otherwise stated. An action

µ : G×X → X

of G on X is a morphism of algebraic varieties such that:
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a) for all g, h ∈ G and x ∈ X , µ(g, µ(h, x)) = µ(gh, x),
b) for all x ∈ X , µ(1, x) = x.

We denote µ(g, x) by gx. The orbit of x ∈ X is Gx = {y ∈ X | y =
gx for some g ∈ G, x ∈ X}. The isotropy subgroup of x ∈ X is Gx =
{g ∈ G | gx = x}. An orbit Gx ∈ X is dense if it is a dense subset of X in
the Zariski topology. Any dense orbit is actually an open subset. The theory
of algebraic monoids provides us with many important examples where some
action G×X → X has a dense orbit.

An orbit Gx ∈ X is closed if it is a closed subset of X in the Zariski
topology. Any orbit of minimal dimension is closed.

The action µ induces a linear action ρ of G on K[X ] as follows. For g ∈ G
and f ∈ K[X ] define ρg(f) ∈ K[X ] by ρg(f)(x) = f(g−1x) for all x ∈ X .
ρ is rational in the sense that K[X ] is the union of its finite dimensional,
G-stable subspaces. The ring of invariants K[X ]G of µ (or ρ) is defined as
follows:

K[X ]G = {f ∈ K[X ] | ρg(f) = f for all g ∈ G}.

The following result summarizes some of the fundamental theorems of
Geometric Invariant Theory. The reader should consult [62, 65, 134] for
an appreciation of the scope and significance of this theory.

Theorem 2.56. Let µ : G × X → X be an action of the reductive group G
on the affine variety X.

a) K[X ]G is a finitely generated K-algebra.
b) If we define the quotient X/G to be the affine variety defined by K[X ]G,

then the canonical morphism π : X → X/G identifies X/G with the set of
closed orbits of G on X. In fact, the closure of any orbit Gx in X contains
exactly one closed G-orbit.

Notice that this notion of quotient is not usually an orbit space in the usual
sense. But it has some categorical properties that are normally expected of
any orbit space.

Example 2.57. Let PGln(K)×Mn(K)→Mn(K) be the action defined by

(g,A)→ gAg−1.

Then the quotient of this action can be identified as follows:
ForA ∈Mn(K), let det(tI−A) = tn−σ1(A)tn−1+· · ·+σn−1(A)t+(−1)nσn(A)
be the characteristic polynomial of A. Then define

Ad : Mn(K)→ Kn

by Ad(A) = (σ1(A), . . . , σn(A)). This is our quotient in the sense of the above
theorem. It is well known that the closure of the conjugacy class of A contains
the semisimple part As of A. Furthermore, two semisimple endomorphisms
are conjugate if and only if they have the same characteristic polynomial.
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The following result is originally due to V. L. Popov [74].

Proposition 2.58. Let X be a normal, irreducible, affine variety with trivial
divisor class group. Assume the connected, semisimple, algebraic group G acts
on X. Let X/G be the geometric invariant theory quotient of this action (as in
Theorem 2.56). Then X/G is also a normal variety with trivial divisor class
group.

Proof. We let A = K[X ], so that K[X/G] = K[X ]G. We denote the action of
G on elements a ∈ A by g(a). Let a ∈ AG be a non-unit. Then a ∈ A is also
a non-unit. Write a = p1p2 . . . pm, where pi ∈ A is prime. Now for g ∈ G we
obtain g(a) = g(p1) . . . g(pm). Since G is connected, the action stabilizes each
irreducible component of Z({a}). Thus for each i, g(pi) = αi(g)pi, for some
unit αi : G → K∗ with αi(1) = 1. But αi must be constant since the unit
group of K[G] is K∗. Thus {pi} ⊆ AG. These pi are easily seen to be prime
in AG. Thus AG is a unique factorization domain.

2.2.7 Cellular Decompositions of Algebraic Varieties

Some of the well established ways to study the “topology” of an algebraic
variety is the use of comparison theorems or base change theorems, along
with results that tell us how to proceed when a variety can be broken up
into manageable peices. Roughly speaking, a comparison theorem states that
if an algebraic variety X is considered as a topological space Xtop then the
cohomology of X can be understood or calculated in terms of a more conve-
nient cohomology theory. One of the most well known comparison theorems
of this type states that, if H∗(X,Ql) is the l-adic cohomology of the smooth,
projective variety X , then

H∗(X,Ql)⊗Ql
C ∼= H∗(X,C).

A base change theorem usually concerns the situation when a variety X
is subjected to some convenient base extension X → X. A lot of information
about l-adic cohomology of X can be calculated in terms of the Weil zeta
function ofX. This method of counting the points of the appropriate reduction
mod p is particularly interesting in the theory of algebraic monoids. We are
often interested in counting the elements of certain finite monoidsM(Fqn) over
the finite field Fqn . Letting n→∞ yields an interesting enumerative theory, as
well as useful topological information about certain related algebraic varieties.

There is another method that applies to varieties that can be broken up
into well-behaved peices, or cells. The most commonly studied cellular decom-
positions in algebraic geometry are those of Bialynicki-Birula [4]. If S = K∗

acts on a smooth complete variety X with finite fixed point set F ⊆ X , then
X =

⊔
α∈F Xα where Xα = {x ∈ X | lim

t→0
tx = α}. Furthermore, Xα is iso-

morphic to an affine space. We refer to Xα as a BB-cell. If further, a reductive
group G acts on X extending the action of S, we may assume (replacing S if
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necessary) that each Xα is stable under the action of some Borel subgroup B
of G with S ⊆ B. In case X is a complete homogeneous space for G, each cell
Xα turns out to consist of exactly one B-orbit.

But there are yet other types of cellular decompositions that do not arise
from the method of [4] (as we shall see in Theorem 10.15), and these can also
work out well homologically. In particular, let X be an irreducible algebraic
variety, and assume that X is a disjoint union

X =
⊔

i

Ci

of cells, where each cell Ci is isomorphic to the affine space Kni . Assume
further that ∪ni≤mCi is closed in X for each m > 0.

Theorem 2.59. The natural map

cX : A∗(X)→ H∗(X,Z)

from the Chow ring of X to cellular homology, is an isomorphism. Further-
more, {Ci | ni = m } is a Z-basis for Am(X).

Proof. See Fulton [30] Example 1.9.1 and Example 19.1.11.

2.3 Semigroups

The purpose of this section is to assemble some of the basic ideas from semi-
group theory that are particularly relevant to the theory of algebraic monoids.
In each situation, we try to illustrate the material with relevant examples from
linear algebra.

2.3.1 Basic Semigroup Theory

A set S together with an associative operation m : S × S → S is called
a semigroup. If S has an element 1 ∈ S such that 1s = s1 = s for all
s ∈ S, then S is called a monoid. If S is a semigroup, we define S1 = S
if S is a monoid, and S1 = S ∪ {1} with the obvious multiplication, if S
is not a monoid. In either case S1 is a monoid. If X ⊆ S then E(X) =
{e ∈ X |e2 = e} is the set of idempotents of X . If S, T are semigroups,
then a map ψ : S → T is a homomorphism if ψ(xy) = ψ(x)ψ(y) for all
x, y ∈ S. The equivalence relation on S induced by a homomorphism is called
a congruence. A subsemigroup of S which is a group is called a subgroup of
S. Notice that the identity element of a subgroup of S could be any idempotent
of S. If e ∈ S is an idempotent, then the unit group of eSe is a maximal
subgroup of S. All maximal subgroups of S are obtained this way. An ideal
of S is a nonempty subset J of S such that if x ∈ J then S1xS1 ⊆ J . There
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is also the notion of one-sided ideal. If S has a minimum ideal K, it is called
the kernel of S. Any finite semigroup has a kernel.

An element a ∈ S is regular if axa = a for some x ∈ S. S is regular if
each of its elements is regular. Let M be a monoid with unit group G. We
say that M is unit regular if, for each a ∈ M , there is a unit g ∈ G such
that a = aga. Equivalently, M = GE(M) = E(M)G. The monoid Mn(K) of
n×n matrices is unit regular, and the semigroup S of singular n×n matrices
is regular.

Let S be a semigroup, and let M = S1. It is useful to introduce
Green′s relations [32].

Definition 2.60. Let a, b ∈M .

a) aRb if aM = bM .
b) aLb if Ma = Mb.
c) aJb if MaM = MbM .
d) aHb if aRb and aLb.
e) aDb if aRc and cLb for some c ∈M .

We denote by Hx (or H if no confusion is possible) the H-class of x: and
similarily for R, L and J.

Example 2.61. Let M = Mn(K). aLb if and only a and b are row equiva-
lent. aRb if and only if a and b are column equivalent. aJb if and only if
rank(a)=rank(b). In this example J = D.

Remark 2.62. Let S be a semigroup.

a) If a ∈ S then a lies in a subgroup of S if and only if aHe for some
idempotent e ∈ S.

b) If a ∈ S, e ∈ E(S), aRe and H is the H-class of e, then Ha is the H-class
of a.

c) For e, f ∈ E(S), eRf if and only if ef = f and fe = e.
d) Let a ∈ S be a regular element. Then a = axa for some x ∈ S. Then
e = ax, f = xa ∈ E(S), and eRaLf . Thus a is regular if and only if eRa
for some e ∈ E(S) if and only if aLf for some f ∈ E(S).

2.3.2 Strongly π-regular Semigroups

We begin this section with a definition.

Definition 2.63. Let S be a semigroup. We say that S is strongly π-regular
(sπr) if for any x ∈ S, xn ∈ He for some e ∈ E(S) and some n > 0.

Remark 2.64. a) sπr is the main notion that best captures the semigroup
theoretic essence of many linear semigroups. Indeed, if S = Mn(K), then
any x ∈ S can be written uniquely as x = r + n, where n is nilpotent,
rank(xm)=rank(x) for any m > 0, and rn = nr = 0 (Fitting decompo-
sition). Then xm ∈ He where e is the unique idempotent of S with the
same rank as r, such that er = re = r.
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b) More generally, let S be an sπr subsemigroup of the semigroup T (for
example T = Mn(K)) with a ∈ S and e ∈ E(T ). If aHe in T , then e ∈ S
and aHe in S.

c) Any finite semigroup is sπr.

The following elementary result is taken from [82]. We include the proof
for convenience. This should indicate the usefulness of the sπr condition.

Theorem 2.65. Let S be an sπr semigroup, a, b, c ∈ S. Then

a) aJab implies aRab, and aJba implies aLba.
b) abJbJbc implies bJabc.
c) If e ∈ E(S), J is the J-class of e and H is the H-class of e, then J∩eSe =
H.

d) J = D on S.
e) If aJa2 then the H-class of a is a group.
f) aJabJb if and only if aLeRb for some e ∈ E(S).
g) Any regular subsemigroup of S is an sπr semigroup.

Proof. For a) suppose that aJab. Then xaby = a for some x, y ∈ S1. Then
xia(by)j = a, for all i, j > 0. But there exists j > 0 such that (by)jHe for
some e ∈ E(S). Then a = ae ∈ a(by)jS ⊆ abS. Hence aRab. For b) we
first get abLb from a). Then abcLbcJb. For c) let a ∈ eSe ∩ J . Then by a),
eRea = a = eaLe. Then eHa. For d), let a, b ∈ S be such that aJb. Then
there exist x, y ∈ S such that xay = b. So aJxaJxay = b. Then again by a),
aLxaRb. Thus xDy. For e), let H denote the H-class of a. From a), we see
that aHa2. Then a2x = a for some x ∈ S1. Then ai+1xi = a for all i > 0.
Thus aiRa for all i > 0. By a) again, ai ∈ H for all i > 0. But there exist
j > 0 and e ∈ E(S) such that ajHe. But then e ∈ H and so H is a group.
For f), suppose that aJabJb. Then by a), aRabLb. Hence there exist x, y ∈ S1

such that abx = a and yab = b. Then ya = yabx = bx. Hence aya = a and
bxb = b. Thus ya ∈ E(S) and aLya = bxRb. Conversely, assume that there
exists e ∈ E(S) such that aLeRb. Thus xa = by = e for some x, y ∈ S.
Hence ab|xaby = e|a|ab. Thus aJab. For g), Let a ∈ S′. There exists i > 0
and e ∈ E(S) such that b = aiHe in S. But there exists x ∈ S′ such that
b2xb2 = b2. Then bxb = e, and so e ∈ E(S′) and bHe in S′.

Definition 2.66. Let S be an sπr semigroup. A J-class J of S is regular if
E(J) 6= 0. Equivalently, every element of J is regular. Let U(S) denote the
partially ordered set of all regular J-classes of S. Let J ∈ U(S), and define
J0 = J ∪ {0}, with multiplication

xy =

{
0 , if x = 0, y = 0 or xy /∈ J
xy , if xy ∈ J .

Definition 2.67. a) A completely simple semigroup is an sπr semigroup
with no ideals other than S.
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b) A completely 0-simple semigroup is an sπr semigroup with no ideals other
than {0} and S.

Remark 2.68. a) Definition 2.67 is not the standard definition of simple and
completely simple semigroups. However, by a theorem of Munn [63], our
definitions are equivalent to the standard ones.

b) Let S be an sπr semigroup, J ∈ U(S). If a, b ∈ J , then there exist s, t, x ∈
S1 such that sat = b and axa = a. Then b = (sax)a(xat) ∈ JaJ . Thus J0

is completely 0-simple semigroup.
c) Let S be sπr, J ∈ U(S). If E(J)2 ⊆ J , then by Theorem 2.65b) J2 = J ,

and hence J is completely simple.
d) A completely 0-simple semigroup has two J-classes, while a completely

simple semigroup has one J-class.

It turns out that there is a very satisfying structure theorem for completely
simple and completely 0-simple semigroups.

Definition 2.69. Let G be a group and let Γ,Λ be non-empty sets.

a) Let P : Λ × Γ → G be any map of sets. Define S = Γ × G × Λ, with
multiplication

(i, g, j)(k, h, l) = (i, gP (j, k)h, l).

One checks that S is a completely simple semigroup.
b) Let P : Λ × Γ → G ∪ {0} be any map of sets such that for all i ∈ Γ

there exists j ∈ Λ with P (j, i) 6= 0. Define S = (Γ × G × Λ) ∪ {0} with
multiplication

(i, g, j)(k, h, l) =

{
0 , if P (j, k) = 0
(i, gP (j, k)h, l) , if P (j, k) 6= 0 .

One checks that S is a completely 0-simple semigroup.

In case a), S is called a Rees matrix semigroup without zero over G with
sandwich matrix P . In case b) S is called a Rees matrix semigroup with zero
over G with sandwich matrix P .

The following theorem is due to D. Rees [15].

Theorem 2.70. a) Any completely simple semigroup is isomorphic to a Rees
matrix semigroup without zero.

b) Any completely 0-simple semigroup is isomorphic to a Rees matrix semi-
group with zero.

Proof. We sketch the proof of b). Part a) follows from this, since we can con-
struct a completely 0-simple semigroup from a completely simple semigroup
by adjoining a superfluous zero element.

So let S be completely 0-simple semigroup. Thus S = J∪{0}, where J ⊆ S
is a regular J-class of S. Choose e ∈ E(S), and let H,L,R be the H-class,
L-class, R-class of e, respectively. Define
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Γ = L/R = L/H, Λ = R/L = R/H.

For λ ∈ Λ choose rλ ∈ λ, and for γ ∈ Γ choose lγ ∈ γ. Define P : Λ × Γ → S
by

P (λ, γ) = rλlγ .

By part a) of Theorem 2.65 we see that, if rλlγ 6= 0, then rλlγ ∈ H . Thus
we have a map P : Λ × Γ → H ∪ {0}. One can check, as in Theorem 1.9
of [82], that P is a sandwich matrix, and that S is isomorphic to the Rees
matrix semigroup S′ = (Γ ×H × Λ) ∪ {0} with sandwich matrix P . In fact,
an isomorphism

ψ : S′ → S

is given by ψ(0) = 0 and ψ(γ, h, λ) = rλhlγ . One must check that ψ is well
defined and bijective.

2.3.3 Special Types of Semigroups

In this section we introduce some of the different types of semigroups that
show up in the theory of algebraic semigroups. Certainly we are not intending
to be encyclopedic on this point.

Definition 2.71. A semilattice is a commutative semigroup consisting of
idempotents.

Definition 2.72. a) Let S be a semigroup, and assume that S = tα∈ΩSα is
partitioned into a disjoint union of subsemigroups. Then we say that S is
a semilattice of the Sα if, for all α, β ∈ Ω, there exists δ ∈ Ω such that
SαSβ ∪ SβSα ⊆ Sδ.

b) A semigroup S is completely regular if it is the union of its subgroups.
c) A semigroup S is a semilattice of groups if, in addition to being completely

regular, each of its J-classes is in fact an H-class.

It turns out that the semigroup S is completely regular if and only if it is a
semilattice of completely simple semigroups.

Example 2.73. a) Let S be the set of diagonal n × n matrices. Then S is a
semilattice of groups.

b) Let S be the set of upper-triangular n × n matrices A = (ai,j), of rank
n− 1, such that an,n = 0. Then S is completely simple.

Let S be a semigroup and a, b ∈ S. Recall that a divides b, written a|b, if
xay = b for some x, y ∈ S1.

Definition 2.74. A semigroup S is archimedean if, for all a, b ∈ S, a|bi for
some i > 0.
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Remark 2.75. a) A semigroup S is a semilattice of archimedean semigroups
if and only if, for all a, b ∈ S, a|b implies a2|bi for some i > 0. For such
a semigroup, define x ∼ y in S if x|yi for some i > 0 and y|xj for some
j > 0. Then ∼ is the desired semilattice decomposition. See Theorem 1.15
of [82] for more details.

b) Tn(K), the monoid of upper-triangular matrices, is a semilattice of archimedean
semigroups. The corresponding semilattice in this case is canonically iso-
morphic to the semilattice of diagonal idempotents of Tn(K).

c) Any commutative semigroup is a semilattice of archimedean semigroups.

Definition 2.76. A semigroup S is called an inverse semigroup if for each
x ∈ S there exists a unique x∗ ∈ S such that

xx∗x = x, and x∗xx∗ = x∗

Example 2.77. Let N be the set of n× n matrices with at most one nonzero
entry in each row or column. Then N is an inverse semigroup.

Certain finite inverse semigroups will play the rôle of the Weyl group in
the theory of algebraic monoids. See Proposition 8.1 and Theorem 8.8.

2.4 Exercises

2.4.1 Abstract Semigroups

1. Check that the definitions of S in 2.69 in fact yield completely (0-)simple
semigroups.

2. Let S = Γ × G × Λ be a completeley simple semigroup with sandwich
matrix P : Λ×Γ → G. Identify the Green’s relations R,L and H on S in
terms of P .

3. Prove that Tn(K) is a semilattice of archimedean semigroups.
4. Prove that Mn(K) is sπr.
5. Prove that S = {x ∈ Mn(K) | rank(x) ≤ 1} is a completely 0-simple

semigroup.
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Algebraic Monoids

The theory of algebraic monoids is built on the theory of algebraic groups, the
theory of torus embeddings, and related semigroup constructions. Indeed, if
M is an irreducible, algebraic monoid, then M = G where G is the algebraic
group of units of M . So we hope the reader can acquire some familiarity with
algebraic groups, Lie algebras, Tits buildings and torus embeddings [7, 40,
140, 31]. A brief summary of some of this essential background was assembled
in the previous chapter.

In this chapter we acquaint the reader with some of the basic results about
irreducible monoids. A significant number of these results amount to marrying
the semigroup concepts with the geometric concepts. Where appropriate, we
sketch some proofs. Nearly everything in this section is discussed in more
detail in Putcha’s monograph [82]. We reproduce some of Putcha’s results for
the convenience of the reader.

The reader might wish to begin with a more concrete and combinato-
rial approach, with many useful examples. In that case, he should consult
Solomon’s survey [128]. On the other hand, he might wish to start from the
point of view of linear semigroups, in which case he should consult Okninski’s
book [66].

3.1 Linear Algebraic Monoids

Definition 3.1. Let K be an algebraically closed field.

a) An linear algebraic monoid M is an affine, algebraic variety together with
an associative morphism µ : M ×M →M and an identity element 1 ∈M
for µ.

b) M is irreducible if it cannot be expressed as the union of two, proper,
closed, non-empty subsets.

c) The irreducible components of M are the maximal, irreducible subsets of
M .
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We often write “algebraic monoid” when we mean “linear algebraic monoid”.
This abuse of language should not cause problems, since we are here concerned
only with linear monoids, and it is easily seen that these are all affine. The
problem of characterizing affine algebraic monoids among algebraic monoids
has been discussed in [101, 121].

If M is an algebraic monoid, there is a unique, irreducible component
M0 ⊆ M such that 1 ∈ M0. Indeed, M0 = G0 where G0 is the identity
component of the unit group G of M . G is an algebraic group, open in M .
Notice also that the monoid structure on an irreducible algebraic monoid
is uniquely determined by the group structure of its unit group. This is so
because the group is open and dense in the monoid. See Proposition 3.12
below.

An algebraic monoid M may be identified by its bialgebra A = K[M ].

Definition 3.2. A bialgebra is a K-algebra A together with a coassociative
morphism 5 : A −→ A⊗K A and counit ε : A→ K.

One obtains an algebraic monoid M = M(A) from the bialgebra A as
follows. Define

M = HomK−alg(A,K).

The multiplication ∗ on M is defined via 5:

f ∗ g = (f ⊗K g) ◦ 5.

For example consider the bialgebra A = K[Tij | 1 ≤ i, j ≤ n] with

5 : A −→ A⊗K A defined by

5 (Tij) =
∑

h

Tih ⊗ Thj , and

ε : A −→ K defined by

ε(Tij) =

{
1 , i = j
0 , i 6= j

.

One easily checks that A is the coordinate ring ofMn(K) = HomK−alg(A,K).
The bialgebra approach is useful technically in decomposing the coordinate

algebra into blocks. See § 9.4.

Definition 3.3. A morphism ϕ of algebraic monoids M and N is a morphism
ϕ : M → N of algebraic varieties such that ϕ(xy) = ϕ(x)ϕ(y) for x, y ∈ M ,
and ϕ(1) = 1.

For an interesting example, consider ϕ : M2(K) −→M3(K) defined by

ϕ

(
a b
c d

)
=



a2 ab b2

2ac ad+ bc 2bd
c2 cd d2


 .
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Definition 3.4. Let M be an algebraic monoid.

a) E(M) = {e ∈M | e2 = e} is the set of idempotents of M .
b) M is regular if for each a ∈M there exists x ∈M such that axa = a.
c) M is unit regular if M = GE(M).
d) U(M) is the set of subsets of M of the form GeG, where e ∈ E(M). These

subsets are known as regular J-classes. This is not the usual definition,
but is equivalent for irreducible algebraic monoids.

It turns out that any regular, irreducible monoid is unit regular. See [82].

Example 3.5. Let M = Mn(K). This is one of the motivating examples for
much of the important structure theory of reductive monoids. Notice that
Mn(K) is regular.

Example 3.6. (Finite monoids) Let M be a finite monoid, and let A =
Hom(M,K). Define 5 : A −→ A ⊗ A = Hom(M × M,K) by the rule
5(f)(s, t) = f(st). It is easy to check that (A,5) is a bialgebra and that the
associated algebraic monoid is canonically isomorphic to M .

Example 3.7. (Semidirect products) Let M and N be algebraic monoids
and suppose that we have a morphism γ : M ×N −→ N of algebraic varieties
such that

γ(s, t1t2) = γ(s, t1)γ(s, t2) for s ∈M, t1, t2 ∈ N

and

γ(s1s2, t) = γ(s1, t)γ(s2, t) for s1, s2 ∈M, t ∈ N .

Write ts for γ(s, t). Then M ×N is an algebraic monoid with (s1, t1)(s2, t2) =
(s1s2, t

s2
1 t2).

Any algebraic monoidM is strongly π-regular, as in § 2.3.2. Precisely, if x ∈
M then xn ∈ He, the unit group of eMe, for some e ∈ E(M). Furthermore,
e ∈ {xn | n > 0 }. The integer n can be chosen independently of x ∈M . In any
case, there is always an abundance of idempotents. For example, if E(M) =
{1}, then M = G. One can easily check this condition for M = Mn(K). In
general, one can use the following theorem.

Theorem 3.8. Let M be an algebraic monoid. Then for some n > 0, there
exists a morphism ρ : M −→ Mn(K), of algebraic monoids, such that ρ is a
closed embedding of algebraic varieties.

The basic idea behind Theorem 3.8 is right translation of functions.
Define

γ : M −→ End(K[M ])

by the rule γs(f)(t) = f(ts), where s, t ∈ M , and f ∈ K[M ]. Then γ is
a morphism of monoids. To obtain the morphism ρ, one chooses a finite-
dimensional subspace V ⊆ K[M ] such that
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a) γs(V ) ⊆ V for all s ∈M .
b) V generates K[M ] as a K-algebra.

It then turns out that ρ : M −→ End(V ), ρ(s)(v) = γs(v), satisfies the
conclusion of Theorem 3.8.

Corollary 3.9. Let ϕ : M → N be a morphism of algebraic monoids. If
e ∈ E(N) ∩ ϕ(M), then there exists f ∈ E(M) such that ϕ(f) = e.

Proof. By Theorem 3.8 we can think of M as a submonoid of some End(V ).
But then ϕ−1(e) is a closed subsemigroup of End(V ). By the comment just
preceding Theorem 3.8, any such semigroup has idempotents.

Let M be an algebraic monoid. Recall that an ideal I ⊆M is a nonempty
subset such that MIM ⊆ I.

Theorem 3.10. Let M be an irreducible monoid. If P ⊆ M is a prime ideal
(so that M\P is multiplicatively closed) then P is closed in M . Furthermore,
there exists a morphism χ : M → K of algebraic monoids such that P =
χ−1(0).

Theorem 3.10 is proved in [101]. The strategy there is to first show that the
result is true for irreducible monoids Z with unit group a torus. The general
case then follows once it is shown that P is determined by P ∩T . See Exercises
8, 9, 10 and 11 of § 3.5.3 for an outline of this proof.

It follows from Theorem 3.10 that any quasi-affine, irreducible monoid is
actually affine.

One should notice that the unit groups of irreducible algebraic monoids
are “big”. The next result records how this observation is reflected in Green’s
relations (Definition 2.60).

Proposition 3.11. Let M be an irreducible algebraic monoid. Let a, b ∈ M ,
e, f ∈ E(M) and G = G(M).

a) aRb if and only if aG = bG.
b) aLb if and only if Ga = Gb.
c) aJb if and only if GaG = GbG.

The main point behind the proofs of a), b) and c) is the following basic
fact from algebraic group theory: if G×X → X is a regular action then any
orbit is open in its closure.

If M is an algebraic monoid, then J = D. Indeed, by Theorem 1.4 of [82],
this is true for any sπr monoid.

Proposition 3.12. Let M be an algebraic monoid and let e ∈ E(M). Then
He, the unit group of eMe, is an algebraic group, open in eMe.

Proof. This follows from Theorem 3.8 applied to eMe. Indeed, ρ(M) ∩
G`n(K) = ρ(G(M)), which is closed in G`n(K) and open in ρ(M).
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We end this section with a statement of the fundamental results about
idempotents. See Corollary 6.4 and Corollary 6.8 of [82] for proofs.

Proposition 3.13. Let M be an irreducible algebraic monoid, and let e ∈
E(M). Then

a) e ∈ T for some maximal torus T ⊆ G. So E(M) =
⋃

g∈G

gE(T )g−1.

b) eJf if and only if g−1eg = f for some g ∈ G.
c) eRf if and only if g−1eg = f = eg for some g ∈ G.
d) eLf if and only if geg−1 = f = ge for some g ∈ G.

It is possible to characterize which irreducible algebraic groupsG can occur
non trivially as the unit group of some algebraic monoid.

Theorem 3.14. Let G be an irreducible algebraic group. Then the following
are equivalent.

a) There exists an irreducible, algebraic monoid M with unit group G such
that G 6= M .

b) X(G) 6= {1}.

See Execise 6 of 3.5.1 for an outline of the proof.

3.2 Normal Monoids

Unlike the case of algebraic groups, not every irreducible algebraic monoid is
normal as an algebraic variety. This is mainly a technical nuisance, since any
algebraic monoid has a lot in commom with its normalization. On the other
hand, there are important advantages to normal monoids. This will become
apparent in the classification problem. See Theorem 5.2.

Let X be an irreducible, algebraic variety. Recall that the normalization
η : X ′ → X of X is the unique finite, birational morphism η from an irre-
ducible normal variety X ′ to X . If X is affine, the coordinate algebra of K[X ′]
is the integral closure of K[X ] in its field of fractions.

Luckily we have the following result for the normalization of an algebraic
monoid. This was first recorded in [100].

Proposition 3.15. Let M be an irreducible, algebraic monoid with unit group
G. Let η : M ′ → M be the normalization of M . Then M ′ has the unique
structure of an algebraic monoid such that η is a finite, birational morphism
of algebraic monoids.

Proof. One must check that the multiplication morphism m : M ×M → M
extends to a morphismm′ : M ′×M ′ →M ′. This extension is possible because
of the universal property of normalization.
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Remark 3.16. If M is an irreducible, algebraic monoid with unit group G,
and π : G′ → G is a finite dominant morphism, define M ′ so that K[M ′] is
the integral closure of K[M ] in K[G′]. Then M ′ is an irreducible algebraic
monoid with unit group G′. Furthermore, there is a unique (finite) morphism
θ : M ′ →M such that θ|G′ = π.

Example 3.17. LetM = {(x, y) | x2 = y3}. ThenM is an irreducible, algebraic
monoid with unit group isomorphic to K∗, and pointwise multiplication. Here

K[M ] = K[X,Y ]/(X2 − Y 3),

which is not normal. The normalization of M is

η : K →M,

defined by η(t) = (t3, t2).

3.3 D-monoids

The closure of a maximal torus plays a special rôle in the theory of algebraic
monoids. For example, from Proposition 3.13, we see that any idempotent is
in the closure of a maximal torus. This is good news because such monoids
have been much studied as torus embeddings. In this section we give a
short description of this class of monoids.

Example 3.18. Let H be a closed, connected subgroup of Dn(K)∗ ∼= K∗ ×
· · · ×K∗. Let M = H, the Zariski closure of H in Dn(K), the set of diagonal
matrices. Then M is a semilattice of groups in the sense of Definition 2.72 c).
Such monoids are called D-monoids. Furthermore, U(M) = {[x] ∈ H | [x] =
[y] if there exists g ∈ H such that y = gx}. This is just another way of talking
about affine torus embeddings. U(M) is isomorphic to the face lattice of a
rational polytope [31].

D-monoids are described axiomatically as follows.

Definition 3.19. A D-monoid is an irreducible, algebraic monoid M such
that K[M ] is spanned over K by X(M) = {χ ∈ K[M ] | 5 (χ) = χ ⊗ χ}.
X(M) is called the character monoid of M . Notice that we may regard X(M)
as a subset of X(G).

It is easy to see that M is a D-monoid if and only if M is isomorphic
to a closed submonoid of Dn(K) for some n > 0. Indeed, choose characters
χ1, . . . , χn ∈ X(M) that generate K[M ] as an algebra, and define

ψ : M → Dn(K)

by ψ(z) = (χ1(z), . . . , χn(z)).
If G is a D-group and ρ : G → Dn(K) ⊆ Mn(K) is a rational represen-

tation of G, the set of weights of ρ is the set Φ = {χ ∈ X(G) | ρ(g)(v) =
χ(g)v for all g ∈ G and some nonzero v ∈ Kn}.
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Proposition 3.20. Let M be a D-monoid with unit group G. Let

ρ : G→ Dn(K)

be a representation of G with weights Φ ⊆ X(G). Then ρ extends to a repre-
sentation ρ : M → Dn(K) if and only if Φ ⊆ X(M).

Proof. It is easy to check that ρ∗(K[Dn(K)]) ⊆ K[G] is the subalgebra gen-
erated by Φ.

Remark 3.21. As we have already mentioned, if Z is a D-monoid with unit
group T , then the set of T -orbits on Z is naturally the face lattice of a rational
polytope P(Z). But each T -orbit H of Z contains exactly one idempotent
e = e(H). So the face lattice of P(Z) is in one-to-one correspondence with
E(Z), the set of idempotents of Z. The order relation “e ≤ f , if ef = fe = e”
on E(Z) corresponds to the lattice ordering on the face lattice of P(Z).

One can also identify the face lattice of P(Z) as the semilattice of
archimedean components of the commutative monoid X(Z). See Remark 2.75
c).

Many useful properties of rational polytopes transfer over to the semilat-
tice E(Z). Recall that a ranked poset is a poset P with a rank function
r : P → N such that, if x covers y, then r(x) = r(y) + 1. This is another
way of saying that all the maximal chains of P have the same length. Some
authors refer to a ranked poset as a graded poset.

Proposition 3.22. Let Z be a D-monoid of dimension n.

a) E(Z) is a ranked poset. The rank function here is r(e) = dim(Te).
b) If f ∈ E(Z), let E1(f) = {e ∈ E(Z) | r(e) = n− 1}. Then

f = Πe∈E1(f)e.

Proof. The proof amounts to a translation of well known properties of poly-
topes to the language of D-monoids.

It is of interest to know when a D-monoid Z is normal. Also it is of interest
to identify the coordinate ring of the normalization (Proposition 3.15) of Z.

Proposition 3.23. Let Z be an irreducible D-monoid with unit group G and
coordinate ring the monoid algebra K[X(Z)]. Observe that X(Z) ⊆ X(G).
The following are equivalent.

a) Z is normal.
b) If χ ∈ X(G) and χm ∈ X(Z) for some m > 0, then χ ∈ X(Z).

Let S = {χ ∈ X(G) | χm ∈ X(Z) for some m > 0}. Then, if η : Z ′ → Z is
the normalization of Z, the coordinate ring of Z ′ is the semigroup algebra of
S.

We leave the proof to the reader.
See Example 3.17 for a simple example. Notice that the normalization

morphism induces a bijection on idempotents.
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3.4 Solvable Monoids

Definition 3.24. An irreducible monoid M is solvable if G(M) is a solvable,
algebraic group.

Remark 3.25. By Theorem 17.6 of [40] and Theorem 3.8 above, any solvable
monoid M is isomorphic to a closed submonoid of Tn(K), the upper trian-
gular monoid, for some n > 0. Using this fact one can construct a universal
morphism π : M → Z, to a D-monoid, such that π|T : T → Z is an isomor-
phism for any maximal torus T ⊆ G = G(S). If M is irreducible and B ⊆ G
is a Borel subgroup, then B ⊆M is solvable. Furthermore BB ⊆ B. Thus by

a Theorem of Steinberg [134] M = GB. Similarly, M =
⋃

g∈G

gBg−1.

The following result is due to Putcha; Corollary 6.32 of [82].

Theorem 3.26. Let M be an irreducible monoid with zero and unit group G.
Then the following are equivalent:

a) G is solvable.
b) M is a semilattice of archimedean semigroups.

We refer the reader to [82] for the proof. Notice however that, from Re-
mark 3.25 above, it suffices to prove that Tn(K) is a semilattice of archimedean
semigroups. See Excercise 3 of 2.4.1. Putcha obtains other interesting char-
acterizations of solvable monoids. See Theorem 6.35 of [82] for example.

3.5 Excercises

3.5.1 Linear Algebraic Groups

1. Let G be an algebraic group acting on a variety X . Suppose that Y ⊆ X
is closed and gY ⊆ Y for some g ∈ G. Prove that gY = Y . Hint: Y ⊇
gY ⊇ g2Y . . . , yet each gsY is closed in Y .

2. Let U ⊆ G be a closed subsemigroup, where G is an algebraic group.
a) Prove that 1 ∈ U .
b) Prove that U is a subgroup of G.

3. Let G be a linear algebraic group and let x ∈ G. Write x = su = us,
where u is unipotent and s is semisimple. Using Exercise 2 above, prove
that
a) u, s ∈ {xn|n ≥ 1}
b) For any x ∈Mn(k) there exists an idempotent in {xn|n ≥ 1}.

4. Let M be an irreducible, algebraic monoid with unit groupG, and suppose
that ρ : G′ → G is a finite dominant morphism of algebraic groups. Prove
that there exists an irreducible algebraic monoid M ′ with unit group G′,
and a finite dominant morphism ψ : M ′ →M , such that ψ|G′ = ρ.
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5. Let G be a connected algebraic group with X(G) = {1}. Suppose that M
is an irreducible, algebraic monoid with unit group G. Prove that M = G.

6. Let G be a connected algebraic group with X(G) 6= {1}.
a) Let T ⊆ G be a maximal torus and let 1 6= χ ∈ X(G) ⊆ X(T ) (by

restriction). For a finite subset S ⊆ X(T ), let < S >⊆ X(T ) denote
the submonoid generated by S. Prove that there exists n > 0 such
that C =< S + nχ >⊆ X(T ) satisfies C ∩ −C = {0}.

b) If ρ : G → Gl(V ) is a representation, show that ρ(T ) has a zero
element (of its own) if and only if C =< φT (V ) >⊆ X(T ) satisfies
C ∩ −C = {0}. Here, φT (V ) is the set of weights of T on V via ρ.

c) Using a), show that there exists a representation ρ : G→ Gl(V ) with
finite kernel such that the condition of b) is satisfied.

d) Using c) and Exercise 4 above, show that there exists an irreducible
algebraic monoid M with 0 and unit group G.

7. Let M be irreducible and suppose that x, y ∈ T . Suppose that there exists
g ∈ G(M) such that gxg−1 = y. Prove that there exists h ∈ NG(T ) such
that hxh−1 = y

8. Suppose that G ⊆ Gl(V ) is a closed connected subgroup such that V is
an irreducible module for G. Prove that
a) G is reductive.
b) dimZ(G) ≤ 1.

9. Let ρ : G → G′ be a finite dominant morphism of reductive alge-
braic groups. Prove that ρ : U → U is bijective. Here, U = {g ∈
G | g is unipotent }.

3.5.2 Linear Algebraic Semigroups

1. Let S be an algebraic semigroup and let I ⊆ S be a two-sided ideal such
that S\I is multiplicatively closed. Prove that I is Zariski closed.

2. Let A be a positively graded, finitely generated k-algebra with A0 = k. Let
M = End(A), the monoid of degree-preserving k-algebra endomorphisms.
a) Prove that M is an algebraic monoid with 0.
b) For e, f ∈ E(M), define e ∼ f if Image(e) ∼= Image(f) as graded

k-algebras. Prove that E(S)/ ∼ is a finite set.
3. Let A be a k-algebra, and assume that we have a rational action ρ : k∗ →
Aut(A). Prove that the following are equivalent.
a) ρ extends to a rational action ρ : k→ End(A).
b) A = ⊕n≥0An, where ρ(f)(t) = tnf , for all f ∈ An.

4. Let ψ : S → T be a morphism of algebraic semigroups, and suppose that
e ∈ E(T ) ∩ ψ(S). Prove that ψ−1(e) contains an idempotent.

5. Let M be an algebraic monoid and let x ∈M . Suppose that x has a right
inverse y ∈M such that xy = 1. Prove that y is also a left inverse of x.

6. Let M be an irreducible algebraic monoid, and let ρ : M → End(V ) be
an irreducible representation. Let e ∈ E(M). Prove that e(V ) ⊆ V is an
irreducible representation of eMe.
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7. Let k be a field, and let E ⊆ Mn(k) be an infinite set of idempotents of
rank r. Prove there exists e, f ∈ E, e 6= f , such that rank(ef)=rank(fe).

8. With E as in Exercise 7 above, but Zariski closed, let X = {f ∈
E|rk(fe) < r or rk(ef) < r}. Prove that X is a closed, proper subset
of X .

9. Suppose that S ⊆ Mn(k) is a closed subsemigroup, and let e, f ∈ Mn(k)
be such that rk(ef)=rk(fe)=rk(e)=rk(f). Show that eJf in S.

10. Let ∼ be the equivalence relation on E(S) generated by e ∼ f if
rk(ef)=rk(fe)=rk(e)=rk(f). Suppose that V ⊆ E(S) is an irreducible
component, and S ⊆ Mn(k) as in Exercise 9. Prove that e ∼ f for all
e, f ∈ V .

11. Using Exercies 7-10 prove that any connected component of E(S) consists
of J-related idempotents. See [111] for more details and some applications
to rational homotopy theory. See also [99, 27] for some related applications.

3.5.3 Irreducible Algebraic Semigroups

1. Let S be an irreducible algebraic semigroup, and suppose that E(S) = S.
Prove that S is a rectangular band (see [15]).

2. Let M be an irreducible algebraic monoid and let x ∈ M . Prove that
{B ∈ B|x ∈ B} is closed in B. Here, B is the projective variety of Borel
subgroups of G.

3. Let M be an irreducible monoid with solvable unit group G, and 0 ∈M .
Prove that N = {x ∈ M |xn = 0 for some n > 0} is a two-sided ideal of
M .

4. Let M be irreducible. For x ∈M , prove that the following are equivalent:
a) x ∈ He, the H-class of some idempotent, and x is a semisimple element

in He.
b) For any representation ρ : M → End(V ), ρ(x) is diagonalizable.

5. let M be an algebraic monoid with 0. Prove that the following are equiv-
alent.
a) M is connected in the Zariski topology.
b) There exists a chain of idempotents 1 = e0 > e1 > · · · > en = 0 such

that ei ∈ Hei−1 , for each i = 1, 2, . . . , n.
See [106].

6. Let M be an algebraic monoid with M = G. Prove that E(M) ⊆ G0.
7. Let M be an irreducible algebraic monoid with 0, such that rk(G)=1.

In particular, G is solvable. Prove that every irreducible component of
N = {x ∈M |xn = 0, for some n > 0} has codimension one in M .

8. Let M be an irreducible monoid with solvable unit group G, and let
X(M) = Hom(M,k) be the monoid of characters of M . Let T ⊆ G
be a maximal torus, and let Z = T . Prove that j∗ : X(M)→ X(Z) is an
isomorphism, where j : Z → M is the inclusion. Conclude that, for any
such M , there exists a D-monoid Z and a morphism π : M → Z such



3.5 Excercises 43

that π|T : T → Z is an isomorphism. Furthermore, π is universal for maps
from M to D-monoids. (See [101].)

9. Let M be solvable and irreducible with π : M → Z as in Exercise 8 above.
An ideal of M is a subset I ⊆M such that MIM ⊆ I. We write I < M .
a) Prove that the following are equivalent for I < M :

i) If xn ∈ I for some n > 0, then x ∈ I.
ii) I = π−1(π(I)).
Such ideals are called radical. Notice that any radical ideal of M is
closed.

b) Prove that there is one-to-one correspondence between radical ideals
of M and ideals of Z. Notice that any ideal of Z is radical.

10. Let M be irreducible and suppose that I < M . Let X = B ⊆ M , where
B ⊆ G is a Borel subgroup. Let I(B) = I ∩ M . Suppose that I(B) is
radical. Prove that I is closed in M . Conclude that any prime ideal of M
is closed. (An ideal I < M is prime if M\I is multiplicatively closed.)

11. Let M be irreducible, and suppose that P,Q < M are prime ideals such
that P ∩ T = Q ∩ T . Prove that P = Q. Hint: use exercise 9 above.

12. Let M be an irreducible algebraic monoid, and suppose B ⊆ M is the
closure of a Borel subgroup of G. Suppose x ∈ B is the zero element of
B. Prove that x is the zero element of M .

13. Let M be an irreducible monoid and let η : M ′ →M be the normalization
of M . Prove that M has the unique structure of an algebraic monoid so
that η is a morphism of algebraic monoids.

14. Let M be irreducible. Suppose that V ⊆ M\G is closed, and has codi-
mension one in M . Prove that V < M .

15. Let M be reductive, and let e ∈ M . Let P = {g ∈ G|ge = ege}. Prove
that Ru(P )e = {e} (See [95]).

16. a) Let G be a connected, commutative algebraic group in characteristic
zero. Prove that, for all n > 0, ψn : G→ G, ψn(x) = xn, is a surjective
morphism of algebraic groups.

b) Let M be an irreducible, commutative monoid in characteristic zero.
i) Prove that E(M) is finite.
ii) Prove that

⋃
e∈E(M)He is a submonoid of M .
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Regularity Conditions

The major question underlying much of the structure theory of algebraic
monoids is the rôle of idempotents. Namely, “How is a monoid put together
from its unit group and its set of idempotents?”

To identify monoids with interesting structural properties, one needs to
assume some kind of regularity condition either directly or indirectly. A reg-
ularity condition is some structural assumption that allows the idempotents
to play a decisive role.

4.1 Reductive Monoids

Definition 4.1. Let M be an irreducible algebraic monoid.

a) M is reductive if G(M) = {g ∈M | g−1 ∈M} is a reductive group.
b) M is regular if M = G(M)E(M) = E(M)G(M)

The next result is due to Putcha and the author. We sketch the proof from
Theorems 7.3 of [82].

Theorem 4.2. Let M be an irreducible monoid with unit group G and zero
element 0 ∈M . The following are equivalent.

a) G is reductive.
b) M is regular.
c) M has no non-zero nilpotent ideals.

Proof. Assume a), and let S ⊆M be an irreducible component of M\G. One
then checks that S = MeM for some e ∈ E(S). But GeMeG is closed in
M since B1eMeB2 = eMe for appropriate Borel subgroups B1 and B2 of G.
On the other hand, GeMeG is dense in S = MeM . Thus S = GeMeG. But
inductively, eMe is regular, since G(eMe) is an image of the reductive group
CG(e). Thus, S consists of regular elements, and so M is regular.
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If M is regular and a ∈ M then, by definition, ag = e = e2 for some
e ∈ E(M) and g ∈ G. So there can be no non-zero nilpotent ideals.

Assume that G is not reductive, and find a representation M ⊆ End(V )
of M as a closed submonoid. Assume that V1 ⊆ V2 ⊆ · · · ⊆ Vi ⊆ · · · ⊆ Vn = V
is an M -stable filtration such that each Vi/Vi−1 is irreducible over M . Let

M ′ ⊆

n∏

i=1

End (Vi/Vi−1) be the semisimplification of M (as in [102]) and

notice that we have an induced map

θ : M −→M ′ .

Now ker(θ|G) = Ru(G), and so θ−1(0′) is a nilpotent ideal of M of dimension
greater than or equal to dim(Ru(G)).

But what happens ifM does not have a zero element? The following answer
is due to Putcha (see Theorem 7.4 of [82]). For e ∈ E(M), let

Ge = {g ∈ G | ge = eg = e }.

Recall that a monoid M is completely regular if M =
⊔
e∈E(M)He. For

example, any commutative, regular monoid is completely regular.

Theorem 4.3. Suppose that M is irreducible with unit group G and minimal
idempotent e ∈ E(M). Then the following are equivalent.

a) M is regular.
b) R(G) is completely regular.
c) Ge := {g ∈ G | ge = eg = e}0 is reductive.

Proof. If M is regular and a ∈ R(G) then axa = a for some x ∈ M . But
M = ∪B where B is a Borel subgroup of G. Hence x ∈ B for some B. But
also, a ∈ R(G) ⊆ B. Thus a ∈ B is a regular element of B. But then aHe for
some e ∈ E(B) by 3.19 and 4.12 of [82]. Consequently e ∈ R(G) by an easy
calculation.

If R(G) is completely regular, first notice that e ∈ R(G), since all minimal
idempotents are conjugate. One then checks that R(Ge) ⊆ R(G)e, while the
latter group is a torus. Thus Ge is reductive.

If Ge is reductive then, by Theorem 4.2, Me := Ge is regular. But from
6.13 of [82] M = GMeG, since e ∈ K = ker(M), the minimal, (regular)
J-class of M .

Further results have been obtained by Huang in [39]. In particular, he
obtains the following characterization of reductive monoids.

Theorem 4.4. Let M be an irreducible algebraic monoid. Then the following
are equivalent.

a) M is reductive.
b) M is regular and the semigroup kernel of M is a reductive group.

A similar result was obtained by Rittatore in [121].
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4.2 Semigroup Structure of Reductive Monoids

Reductive monoids enjoy the richest and most interesting structural proper-
ties. Let M be reductive with unit group G and Borel subgroup B ⊆ G with
maximal torus T ⊆ B. Let E = E(M), and let P , Q denote parabolic sub-
groups of G. ClG(e) is the conjugacy class of e in M . The following result was
first observed by Putcha in [85].

Theorem 4.5. Let M be an irreducible algebraic monoid with reductive unit
group G.

a) P (e) = {x ∈ G | xe = exe} and P−(e) = {x ∈ G | ex = exe} are opposite
parabolic subgroups such that eRu(P

−) = Ru(P )e = {e}.
b) If e, f ∈ E with eM = fM or Me = Mf , then x−1ex = f for some

x ∈ G.
c) Λ := {e ∈ E(T ) | Be = eBe} ∼= G\M/G. In particular,

M =
⊔

e∈Λ

GeG

d) ClG(e) ∼= {(P,Q) | P and Q are opposite and there exists x ∈ G such
that x−1Px = P (e)}.

4.2.1 The Type Map

Definition 4.6. a) Λ is the cross section lattice of M relative to T and B.
b) The type map λ : Λ → 2S is defined as follows: λ(e) ⊆ S is the unique

subset such that P (e) = Pλ(e).

The type map is the most important single combinatorial invariant in
the structure theory of reductive monoids. It is in some sense, the monoid
analogue of the Coxeter-Dynkin graph. It also shows us which G × G-orbits
are involved in the monoid, as well as how the monoid structure is built up
from these orbits [85, 86]. See § 10.4 for more discussion on how this is done.

Example 4.7. The type map of Mn+1(K). Let S = {s1, . . . , sn} be the simple
involutions of Sln(K) ordered in the usual way. Let

ei =




1
. . .

1
0

. . .

0




i = 1, . . . , n+ 1 ;

Then Λ = {0, e1, . . . , en+1} and, for i ≥ 2,

λ(ei) = {s1, . . . , si−1} ∪ {si+1, . . . , sn}
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See Chapter 7 for more sample calculations of the type map along with
the corresponding lattice diagrams.

Putcha has used Theorem 4.5 as a basis for the “abstract” theory. Indeed,
let G be a group with BN pair and finite Weyl group. He then defines a
monoid of Lie type to be an abstract monoidM with unit groupG satisfying
a) and b) above, as well as being generated by G and E(M). Properties c)
and d) then follow automatically. Such monoids are classified up to central
extension by the type map λ : Λ→ P, λ(e) = P (e) where P = {P < G | B ⊆
P} ∼= 2S . See Chapter 10 for the main details of this surprising development.
For example, to see how one constructs a monoid of Lie type from a type map
λ : Λ→ 2S .

In § 5.3.3 the type map is described in terms of the standard classification
mechanism of spherical embeddings.

Theorem 4.8. Let M be an reductive algebraic monoid with unit group G,
and cross section lattice Λ. Let e ∈ Λ.

a) Define
eMe = {x ∈M | x = exe}.

Then eMe is a reductive algebraic monoid with unit group He = eCG(e).
A cross section lattice of eMe is eΛ = {f ∈ Λ | fe = f}.

b) Define
Me = {x ∈ G | ex = xe = e}0.

Then Me is a reductive monoid with zero e ∈ M and unit group {x ∈
G | ex = xe = e}0. A cross section lattice for Me is Λe = {f ∈ Λ | fe =
e}.

The reader is refered to [82] for the proof.

4.3 Solvable Regular Monoids

Let M be an irreducible normal monid with solvable unit group G. The as-
sumption that M is regular imposes decisive restrictions on the structure of
M . The results of this section were first recorded in [108]. Write

G = TU = UT,

where U is the unipotent radical of G, and T ∈ G is a maximal torus of G.
Consider X(T ) ⊆ X(T ), the set of characters of T . As indicated, X(T ) can
be thought of as the set of characters of T that extend over T . Let e ∈ E(T )
be the minimal idempotent. We assume, with little loss of generality, that e
is the zero element of T . Let

U+ = {u ∈ U | eu = e}

U0 = {u ∈ U | eu = ue}

U− = {u ∈ U | ue = e}.
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Theorem 4.9. a) m : U+ × U0 × U− −→ U is an isomorphism.
b) U0 = CU (T )
c) T × U+ −→ U+, (t, u) 7−→ tut−1 extends to an action of T on U+.
d) T × U− −→ U−, (t, u) 7−→ t−1ut extends to an action of T on U−.
e) m : U+ ×M0 × U− −→ M is an isomorphism of varieties, where M0 =

TU0
∼= T × U0.

f) ΦT (U) = {α ∈ X(T ) | L(U)α 6= 0} is contained in X(T ) ∪ −X(T ).

A special case of this was first considered on page 182 of [47], and some of
those embeddings were observed to be algebraic monoids.

The multiplication law on M can be defined in terms of the coordinates
of Theorem 4.9 e). First let

U = U+U0U−
∼= U+ × U0 × U− .

Then U−U+ ⊆ U defines

ζ+ : U− × U+ −→ U+

ζ0 : U− × U+ −→ U0

ζ− : U− × U+ −→ U−

so that for u ∈ U− and v ∈ U+

uv = ζ+(u, v)ζ0(u, v)ζ−(u, v) .

Now recall from Theorem 4.9 c) and d) above, the actions

a+ : T × U+ −→ U+

a− : T × U− −→ U−

extending the action of T by inner automorphisms. Denote

a+(x, u) by ux

and

a−(y, u) by uy.

From formula (4) of [108], we obtain the following multiplication table.

Proposition 4.10. The morphism of 4.9 e) is an isomorphism of algebraic
monoids if we define the product on U+ ×M0 × U− by

(u, x, v)(a, y, b) = (uζ+(v, a)x, xζ0(v, a)y, ζ−(v, a)yb) .

There are converses to Theorem 4.9 and Proposition 4.10.

Proposition 4.11. Let U be a connected, unipotent algebraic group and sup-
pose we are given the following data.
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a) A torus action ρ : T −→ Aut(U) by algebraic group automorphisms.
b) A normal torus embedding T ⊆ T such that 0 ∈ T and ΦT (U) ⊆ X(T ) ∪
−X(T ).

Then there exists a unique structure of a regular algebraic monoid on M =
U+ × T × CU (T )× U− extending the group law on U+ × T × CU (T )× U− =
G = UT .

Proof. Since ΦT (U) ⊆ X(T ) ∪ −X(T ), the actions T × U+ −→ U+ and T ×
U− −→ U− both extend over T . Thus we can define a monoid structure on
M using the formula

(u, x, v)(a, y, b) = (uζ+(v, a)x, xζ0(v, a)y, ζ−(v, a)yb) .

of 4.10.

4.4 Regular Algebraic Monoids

In this section we deal with the general case: the structure of any normal,
regular algebraic monoid M with arbitrary (connected) unit group G. These
results were first recorded in [117]. As in [117], we proceed in two steps. This
makes things easier to understand.

So let M be a normal, regular monoid with unit group G. By Theorem
4.3, Ge is reductive for any minimal idempotent e of M .
Step 1: Assume that Ge is a Levi factor of G. Thus G is the semidirect
product

G = Ge n U

of Ge and U , where U = Ru(G) C G is the unipotent radical of G.

Theorem 4.12. Let T ⊆ G be a maximal torus and let T ⊆M be the Zariski
closure of T in M . Let ΦT (U) ⊆ X(T ) be the weights of the action Ad : T −→
Aut(L(U)) on the Lie algebra of U . Then ΦT (U) ⊆ X(T ) ∪−X(T ).

Conversely, suppose that we are given an algebraic group G of the form
G = G0 n U , where G0 ⊆ G is a Levi factor, along with a normal algebraic
monoid M0 with zero and unit group G0 and maximal D-submonoid T ⊆M0.
Consider the action Ad : T −→ Aut(L(U)) and assume that ΦT (U) ⊆ X(T ).
Then there exists a unique, normal, algebraic monoid M with unit group G
and maximal D-submonoid T ⊆M .

Proof. Let N = TU ⊆ M and let e ∈ E(T ) be a minimal idempotent of M .
Since Ge is a Levi factorof G, any maximal torus of CG(e) is in Ge. Then e,
being the zero element of Ge, is the zero element of T . This is precisely the
point of the assumption in “Step 1”.

Then (TU)e ∩ U ⊆ Ge ∩ U = {1}. Hence (TU)e is a connected solvable
group with no unipotent elements other than 1. So (TU)e is a torus, and thus,
by 4.3, N is regular. Hence, by Theorem 4.9 f), ΦT (U) ⊆ X(T ) ∪ −X(T ).
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Conversely, assume that we have ρ : G0 −→ Aut(U) such that ΦT (U) ⊆
X(T ) ∪ −X(T ). Then we can write

U = U+U0U−

where

L(U+) =
⊕

α∈X(T )

L(U)α

L(U0) = CL(U)(T )

and

L(U−) =
⊕

−α∈x(T)

L(U)α.

One checks that U+, U0 and U− are normalized by G0 since we can define
them (as above) using a central one parameter subgroup of G0. Therefore
define M by

M = U+ ×M0 × U0 × U− .

Now the action ρ : G0 −→ Aut(U+) extends to ρ : M0 −→ End(U+) and
ρ−1 : G0 −→ Aut(U−) extends to ρ−1 : M0 −→ End(U−) (using the opposite
monoid Mop

0 in the latter case).
Hence we can define the multiplication on M using the formula of Propo-

sition 4.10.

Step 2: Now let M be any normal, irreducible, regular algebraic monoid with
unit group G. Let e ∈ E(M) be a minimal idempotent. Let

H = GeRu(G) < G ,

and define
N = H ⊆M .

Theorem 4.13. a) N is a regular monoid of the type considered in Theorem
4.12. Furthermore, gNg−1 = N for all g ∈ G.

b) Define N×HG = {[x, g] | x ∈ N, g ∈ G} where [x, g] = [y, b] if there exists
k ∈ H such that y = xk−1 and h = kg. Then N×HG is a regular algebraic
monoid with multiplication [x, g][y, h] = [xgyg−1, gh]. Furthermore,

ϕ : N ×H G −→M

ϕ([x, g]) = xg

is an isomorphism of algebraic monoids.
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Proof. Let g ∈ G. Then gGeg
−1 = Ggeg−1 . But geg−1 = heh−1 for some

h ∈ GeRu(G) by Theorem 6.30 of [82]. Thus gGeg
−1 = hGeh

−1 and so
gGeRu(G)g−1 = GeRu(G). Hence gNg−1 = N . To see that N is regular,
notice that GeRu(G))e = Ge and so by Theorem 4.3 N is regular.

Now Ge ×Ru(G) −→ GeRu(G) is bijective, and its kernel is Ge ∩Ru(G),
which is an infinitesimal unipotent group scheme. One checks, as in Lemma
4.1 of [117], that Ge ∩Ru(G) is actually central in Ge, yet Z(Ge) is a diago-
nalizable group scheme. Thus, N is a regular monoid of the type considered
in Theorem 4.12.

For b) one checks that ϕ is surjective and birational while M is normal.
Thus, ϕ is an isomorphism.

4.5 Regularity in Codimension One

It follows from Theorem 4.2 above that any normal, reductive monoid M is
determined by the diagram

T ⊇ T ⊆ G .

Hence, if we know the closure of a maximal torus in M , we can identify M to
within isomorphism. Furthermore, any T ⊇ T ⊆ G, as above, for which

a) the Weyl group action on T extends over T ,
b) T is a normal affine variety,

occurs for some M .
The main reason for this rigidity in the classification is the Extension

Principle (§ 5.1) enjoyed by all normal reductive monoids and which we now
state.

Any morphism α : G −→ N of algebraic monoids which extends over T
via

T

⋂
T N

�
���

-α|T

can be extended to a unique morphism β : M −→ N of algebraic monoids.
This extension property (EP ) results largely from the fact that reductive
monoids are regular. In fact, M =

⋃
e∈ΛGeG, a condition that should make

one suspect that M has the EP .
So what about nonreductive monoids? It is easy to see from simple exam-

ples that

(1) Not every M is regular.
(2) Not every M satisfies EP .
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(3) There exist morphisms (unlike the case of reductive monoids) of nonre-
ductive monoids ϕ : M ′ −→M such that

ϕ : T
′
−→
∼=

T ,

ϕ : G′ −→
∼=

G and

ϕ is not a finite-to-one morphism.

To illustrate (3), define

M ′ = {(s, t, u) | s, t, u ∈ k}

with
(s, t, u)(k, `, v) = (sk, t`, `u+ sv)

and
M = {(s, t, u) | s, t, u ∈ k}

with
(s, t, u)(k, `, v) = (sk, t`, k`u+ s2v).

Finally, define ϕ : M ′ −→M by

ϕ(s, t, u) = (s, t, su) .

So there are some very significant differences. However, there are some very
compelling open questions here, and they are all related.

Problem 4.14. Given an irreducible monoid M1, does there exist an irre-
ducible monoid M and a morphism ϕ : M −→M1 such that
a) ϕ : G −→

∼=
G1,

b) ϕ : T −→
∼=

T 1 and

c) M satisfies EP relative to T ⊇ T ⊆ G?

Problem 4.15. Given T ⊇ T ⊆ G so that the W action on T extends over
T , does there exist an M realizing these data?

Problem 4.16. Are the following equivalent for M normal?
a)M has the EP relative to T ⊇ T ⊆ G.
b)M is regular in codimension one.

We say an irreducible monoid M is regular in codimension one if there
exists a closed two-sided ideal I ⊆M such that

(i) dim(I) ≤ dim(M)− 2
(ii) M\I ⊆

⋃
e∈E(M)GeG.

Problem 4.17. If M has the EP , is M regular in codimension one?

Remark 4.18. Notice that it is not always possible to find a regular monoid
with given T ⊇ T ⊆ G. (See [103] for the precise restrictions when G is
solvable.) For example, no regular monoid shares Dn(k) ⊇ Dn(k)

∗ ⊆ Tn(k)
∗

with Tn(k). It is hoped that regularity in codimension one is the exact general
condition that allows us to extend known results about reductive monoids to
the general case.
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4.6 Exercises

4.6.1 D-monoids

1. Assume that M is reductive and let x ∈ M . Prove that dim(ClG(x))≤
dimM - dimT .

2. Let Z = {(a, b, c, d) ∈ K4|ab = cd}. Find the lattice of idempotents of Z.
What is the polytope involved?

3. Let M be irreducible and consider X(M) ⊆ K[M ], the monoid of charac-
ters of M . Prove that X(M) is a linearly independent subset of K[M ].

4. Let Z be a D-monoid with zero, and assume that σ : Z → Z is an
automorphism of Z such that σ(e) = e for any e ∈ E(Z). Prove that σ is
the identity automorphism. Conclude that Aut(Z) is a finite group.

5. Let Z be a D-monoid with zero, and let E1(Z) = {e ∈ E(Z)|1 covers e}.
a) Show that Ge = K∗.
b) Prove that, for each e ∈ E1(Z), there exists an unique injective mor-

phism αe : K → Z such that α(K∗) = Ge and α(0) = e.
c) Consider the morphism ψ : K×· · ·×K → Z defined by ψ(t1, . . . , ts) =

αe1(t1) . . . αes(ts), where E1(Z) = {e1, . . . , es}. Prove that ψ is sur-
jective, and that ψ induces a bijection on E1.

d) Using c), prove that the following are equivalent:
i) ψ is a finite morphism.
ii) E(Z) is a Boolean lattice.
iii) For any e, f ∈ E1(Z), e 6= f , ef ∈ E2(Z).

6. Let Z be a one-dimensional, normal D-monoid with zero. Prove that Z ∼=
K.

7. Let Z be a normal D-monoid with zero. For e ∈ E1(Z) define χe : Z →
eZ ∼= K by χe(z) = ez. Define ψ : Z → Km, m = |E1(Z)|, by ψ(z) =
(χe(z))e∈E1(Z). Prove that ψ is a finite morphism.

8. Let M be reductive and let x ∈ M . Assume that x ∈ T . Prove that
ClG(x) ⊆M is closed.

9. Let Z be a three dimensional D-monoid with zero. Prove that |E1(Z)| =
|E1(Z)|. Prove that any n ≥ 3 can occur as |E1(Z)|.

10. Let Z be a D-monoid and let e ∈ E(Z). Prove that Ze = {x ∈ Z|exHe} is
the unique open submonoid of Z with e as minimal idempotent. Prove that
there exists a morphism χ : Z → K such that Ze = {z ∈ Z | χ(z) 6= 0}.

4.6.2 Regular and Reductive monoids

1. Let M be regular, and assume that I ⊆ M is a two-sided ideal of M .
Prove that I = I.

2. Let ρ : M → N be a morphism of algebraic monoids such that
a) ρ|T is bijective,
b) ρ(G(M)) = G(N),
c) N is regular.
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Prove that ρ(M) = N .
3. Prove that for any irreducible monoid M there exists an irreducible

monoid N and a morphism ρ : M → N satisfting the three conditions
of Exercise 2 above.

4. Let M be reductive with zero. Suppose that σ : M → M is an automor-
phim such that σ(x)Jx for any x ∈M . Prove that σ(x) = gxg−1 for some
g ∈ G.

5. Let M be reductive with zero and dimZ(G)=1. Assume also that (G,G)
is simple. Prove that there exist morphisms ρi : M → Mi, i = 1, . . . , s,
such that
a) Each ρi : G→ Gi is an isomorphism.
b) Each Mi has a unique, nonzero, minimal J-class.
c) ρ : M →M1× · · ·×Ms, ρ(x) = (ρ1(x), . . . , ρs(x)), induces a bijection

on minimal nonzero J-classes.
6. Let M be reductive and let x ∈ M . Prove there exists a maximal torus
T , an idempotent e ∈ E(T ), and σ ∈ NG(T ) such that xHeσ.

7. Let M be irreducible and reductive. Prove there exists a unique, minimal
idempotent of M which is central.

8. Let M be irreducible and normal. Prove that T is also normal.

4.6.3 Regularity in Codimension One

1. Let A be a finite-dimensional K-algebra. Prove that the following are
equivalent.
a) A is regular in codimension one, as an algebraic monoid.
b) For any primitive idempotent e ∈ E(A), dim(eAe)=1.

2. Let M be reductive, and let P be a parabolic subgroup of G(M). Prove
that P is regular in codimension one.
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Classification of Reductive Monoids

Associated with any reductive monoid M , are the unit group G of M , and
the maximal D-submonoid Z = T ⊆ M of M . Here, T ⊆ G is a maximal
torus of G. The classification of reductive groups follows the well-established
identification in terms of Dynkin diagrams and root systems [7]. On the other
hand Z is an affine torus embedding of T and, as such, it is classified by its
integral polyhedral cone X(Z) ⊆ X(T ). X(Z) is just the set of characters
of Z, as defined in the previous chapter. Integral polyhedral cones were first
discussed in [104], in the classification problem. G and Z are tied together by
the Weyl group W = NG(T )/T . The natural action of W on T extends to an
action of W on Z.

Our approach to the classification of these monoids is straightforward.
Assume that M is normal and reductive. As above, we have the diagram,

Z ⊇ T ⊆ G

where Z is a normal T -embedding with W -action extending the natural W -
action on T . We explain in this chapter how M is uniquely determined by this
diagram.

Conversely, given such a diagram we show how to construct the monoid
M so that the Zariski closure T ⊆ M of T in M is T -isomorphic to Z. The
main ideas behind § 5.1 are taken from [104].

5.1 The Extension Principle

Let M be a normal, reductive monoid with unit group G and Borel subgroup
B ⊆ G. Let T ⊆ B be a maximal torus. Recall from Definition 4.6 that

Λ = {e ∈ E(T ) | Be = eBe} ,

the cross-section lattice of M associated with B and T . For example, let
M = Mn(K), B = Tn(K), T = Dn(K). Then Λ = {eo, e1, . . . , en} where ei is
the rank = i matrix
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The following result provides an analogue of the big cell for algebraic
monoids.

Lemma 5.1. Let B− ⊆ G be the Borel subgroup opposite of B relative to T .
Let e ∈ Λ be such that dim(eT ) = dim(T )− 1. Let

Ze = {x ∈ T | ex ∈ eT }

= T ∪ eT .

Define m : U− × Ze × U −→ M by m(x, y, z) = xyz. Then m is an open
embedding.

Proof. Notice first from Corollary 4.3 of [104] that U− −→ U−e, u 7→ ue, is
bijective; and similarly for U −→ eU , v 7→ ev.

Now suppose that u1x1v1 = u2x2v2, where ui ∈ U
−, vi ∈ U and xi ∈ Ze.

Then u−1
2 u1x1 = x2v2v

−1
1 . But u−1

2 u1x1 ∈ B− while x2v2v
−1
1 ∈ B. However,

B ∩ B− = T , using Proposition 27.2 of [40], since in any representation ρ
of G we can put ρ(B+) and ρ(B−) in the upper and lower triangular form,
respectively, by choosing a suitable basis of weight vectors. Thus u−1

2 u1x1 =
x2v2v

−1
1 ∈ T . It then follows easily that u−1

2 u1 = 1 and v2v
−1
1 = 1, and so

x1 = x2 as well. This proves that

m : U− × Ze × U −→M

is injective. But from Proposition 28.5 of [40] we know thatm is also birational.
Hence, by Theorem 2.29, it is actually an open embedding since M is normal.

The following extension principle was first recorded in Corollary 4.5 of [104].

Theorem 5.2. (Extension Principle) Let M be normal and reductive,
and suppose M ′ is any algebraic monoid. Suppose that α : G −→ M ′ and
β : T →M ′ are morphisms of algebraic monoids with α|T = β|T . Then there
exists a unique morphism ϕ : M →M ′ such that ϕ|G = α and ϕ|T = β.

Proof. By the codimension two condition Theorem 2.26, it suffices to extend
α to a morphism γ : U → M ′ where U ⊆ M is any Zariski open set with
codimM (M\U) ≥ 2.

Therefore we let V be an irreducible component of M\G. By Thereom 4.5,
there exists e ∈ Λ ∩ V such that dim(eT ) = dim(T ) − 1. But then from
Lemma 5.1, Ue ∼= U−×Ze×U is an open subset of M such that Ue ∩V 6= φ.
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Thus, define U =

(
⋃

e∈Λ1

Ue

)
∪ G. Here, Λ1 ⊆ Λ is the subset of maximal

idempotents of Λ\{1}. It suffices to define ϕe : Ue −→M ′ by

ϕe(u, x, v) = α(u)β(x)α(v) .

Clearly the ϕe’s patch together to yield the desired morphism γ : U →M ′.

Remark 5.3. Theorem 5.2 has an appealing interpretation in terms of weights.
Let M be a normal, reductive monoid with diagram T ⊇ T ⊆ G. Suppose
that ρ : G −→ G`(V ) is a rational representation of G. Then the following
are equivalent.

a) ρ extends over M to a representation ρ : M −→ End(V ).
b) The set of weights of ρ|T , say ΦT (ρ), is contained in X(T ).

As a simple example, consider the classical adjoint, ρ : G`n(K) −→
G`n(K), defined by ρ(A) = Adj(A). Now G`n(K) is the unit group of Mn(K).
If T ⊆ G`n(K) is the maximal torus of diagonal matrices, then T = Dn(K) ⊆
Mn(K). Thus X(T ) = 〈χ1, . . . , χn〉, where χi(t1, . . . , tn) = ti (the i-th projec-
tion). By the above criterion, ρ extends to ρ : Mn(K) −→Mn(K) since

ΦT (ρ) = {χ1 · · · · · χ̂i · · · · · χn | i = 1, . . . , n} ⊆ X(T ) = 〈χ1, . . . , χn〉.

Of course, the perceptive reader already knows that the adjoint can be defined
directly on all of Mn(K) without appealing to weights.

Returning now to our classification problem, we state our main theorem.

Theorem 5.4. a) Let G be a reductive group with maximal torus i : T ⊆ G
and let j : T ⊆ Z be a normal affine torus embedding such that the Weyl
group action on T extends over Z. Then there exists a normal monoid M
such that T ⊆M is isomorphic to Z.

b) Let M be any normal reductive monoid with unit group G and maximal
D-submonoid Z = T ⊆M . Then Z is normal.

c) If M1 and M2 are such that Z1 ⊇ T1 ⊆ G1 and Z2 ⊇ T2 ⊆ G2 are
isomorphic as diagrams of the algebraic monoids. Then this isomorphism
extends to an isomorphism M1

∼= M2.

Proof. a) j∗ : X(Z)→ X(T ) identifies X(Z) with a “convex” subset of X(T ).
By this, we mean that X(Z) is the intersection of a convex subset of X(T )⊗R
with X(T ). For each dominant λ ∈ X(Z) there exists an irreducible repre-
sentation (ρλ, V ) of G such that λ is the highest weight of ρλ. It follows from
Proposition 3.5 of [104] that the weights of ρλ, say Φ(ρλ), are contained in
X(Z) (proof: Φ(ρλ) ⊆ Conv(W · λ), since λ is the highest weight. But X(Z)
is convex). Thus, ρλ : G −→ G`(Vλ) has the property that ρλ|T extends to
ρλ : Z −→ End(Vλ). Thus we choose {(ρλi , Vλi)}

s
i=1, as above, such that
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s⋃

i=1

W ·λi ⊆ X(Z) generates this monoid. Define M1 = ρ(G) ⊆ End(V ) where

ρ = ⊕si=1ρλi and V = ⊕si=1Vλi . It follows easily that M1 is a reductive monoid
with unit group G, such that T ⊆ T is T -isomorphic to T ⊆ Z. However, M1

may not be normal. Hence let M = M̃1, the normalization of M1.
b) Let M be normal, and consider Z ⊃ T ⊂ G where Z is the closure of

T in M . The issue here is the normality of Z. Hence let α : Z̃ → Z be the
normalization. But then Z̃ ⊇ T ⊆ G is as in a). Thus there exists a normal

monoid M̃ with this Z̃ ⊃ T ⊂ G. But now we have a morphism of diagrams

Z̃ ⊇ T ⊆ G

α

y δ

y
yβ

Z ⊇ T ⊆ G

where δ = idT , β = idG.
But by Theorem 5.2 we obtain a unique morphism ϕ : M̃ →M such that

ϕ|Z̃ = α and ϕ|G = β. One checks that ϕ is finite and birational. But M is
normal, and so ϕ is an isomorphism by Zariski’s main theorem. In particular,
α : Z̃ → Z is an isomorphism, and so Z is normal.

c) follows directly from Theorem 5.2.

Theorem 5.2 has many interesting and useful consequenses. In Chapter 9 it
is used to obtain a concise understanding of the finite dimensional representa-
tions of reductive normal algebraic monoid. In [104] we obtained the following
theorem.

Theorem 5.5. Let M be a reductive algebraic monoid with one-dimensional
center and zero element 0 ∈M . If M is smooth as an algebraic variety, then
M ∼= Mn(K) as algebraic monoids.

Proof. We sketch the basic idea of the proof. We refer the reader to [104] for
the details. Let T ⊆ G(M) be a maximal torus of G(M). By Theorem 5.2
above, one is essentially reduced to showing that G(M) ∼= Gln(K) in such a
way that T is isomorphic to Dn(K).

First notice that Z = T = {x ∈ M | xt = tx for all t ∈ T }. For suppose
that x ∈ {x ∈ M | xt = tx for all t ∈ T }. Then x is a semisimple element
of M , in the sense that its G-conjugacy class is closed in M . Also, x is in
the closure of some Borel subgroup B of G. The set of these subgroups can
be regarded as a closed subset of G/B. By the Borel Bixed Point Theorem
(Theorem 2.36), we may assume that T ⊆ B since T is solvable. From linear
algebra and the Lie-Kolchin theorem we may assume that B ⊆ Tn(K) (upper-
triangular monoid) for some n, and that {x}∪T ⊆ Dn(K) (diagonal monoid).
The composite

{x} ∪ T ⊆ Dn(K) ⊆ Tn(K)→ Dn(K)
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is injective, where Tn(K)→ Dn(K) is the projection to the diagonal. But the
image of B and the image of T are the same in Dn(K). Thus x ∈ T .

Hence Z is the centralizer of T acting on the smooth variety M . By well
known results (see for example [42]) Z is a smooth variety. But Z is an affine
torus embedding with zero. It follows easily that Z ∼= Kn. Now Aut(Kn) ∼=
Sn, and so the Weyl group W of T , is a subgroup of Sn. However, it must
be generated by reflections, and these are easily identified. In fact, if K[Z] =
K[χ1, . . . , χn], then the reflections of W are among those of Sn. Each of these
is of the form σi,j , which interchanges χi and χj and fixes all the other χk. An
interesting exercise then shows that W must be all of Sn, since otherwise ZW

would be too large. The last step here involves identifying the roots. But these
must be of the form χi/χj since we know the reflections. But the Weyl group
acts transitively on the set {χi/χj}, and so Φ = {χi/χj | i 6= j }. The end
result here is that the triple (X(T ), Φ,X(Z)) is what you get from Mn(K). It
follows easily from this (using 5.2) that M ∼= Mn(K).

Remark 5.6. A reductive monoid M is called semisimple if it is normal, has
a one dimensional center and a zero element. Such a monoid is classified in
[104] by its polyhedral root system

M  (X(T ), Φ,X(Z))

where T is a maximal torus of G with roots Φ ⊆ X(T ), and Zariski closure
Z ⊆ M . It follows from Theorem 5.4, that all reductive, normal monoids are
classified by such triples.

Remark 5.7. One can characterize all smooth reductive algebraic monoids in
the spirit of Theorem 5.5. We refer the interested reader to the work of Tima-
shev [138].

5.2 Vinberg’s Approach

In this section we describe another approach, due to Vinberg [142], to the
classification of reductive monoids. In this approach, we assume that K is an
algebraically closed field of characteristic zero. This has some obvious advan-
tages which we exploit (following [142]). On the other hand, Rittatore [123]
has since proved that this assumption on K is not really necessary for many
of Vinberg’s results. For simplicity, we stick to Vinberg’s approach.

Let M be a reductive, normal monoid with unit group G. We obtain

K[M ] ⊆ K[G] .

Now, it is well known that

K[G] =
⊕

λ∈X+

K[G]λ
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where X+ is the set of dominant characters of T with respect to B. Here, each
K[G]λ is an irreducible G×G-module with highest weight λ⊗ λ and G×G
acts on G via ((g, h), x) 7→ gxh−1. This “multiplicity ≤ 1” condition implies
that any G × G-stable subspace of K[G] is a sum of some of the K[G]λ. In
particular,

K[M ] =
⊕

λ∈L(M)

K[G]λ

where L(M) ⊆ X+. We refer to L(M) as the augmented cone of M . It is
clear that distinguishing M from the other reductive monoids with unit group
G amounts to identifying L(M). Notice also that L(M) is not a cone in the
usual sense, rather it is the set of lattice points of such a cone.

Definition 5.8. a) For λ, µ ∈ X+ define X(λ, µ) as the set of highest weights
of the irreducible components of K[G]λK[G]µ. Thus,

K[G]λK[G]µ =
⊕

ν∈X(λ,µ)

K[G]ν .

It is known that λ+ µ ∈ X(λ, µ) and also that, if ν ∈ X(λ, µ), then

ν = λ+ µ−
∑

kiαi

where ki ≥ 0.
b) An additive submonoid L ⊆ X+ is called perfect if

λ, µ ∈ L implies X(λ, µ) ⊆ L .

Theorem 5.9. A submonoid L ⊆ X+ defines an algebraic monoid with unit
group G if and only if it is perfect, finitely generated, and it generates X(T )
as a group.

Proof. By definition, any subspace of K[G] of the form K[G]L =
⊕

λ∈L

K[G]λ,

for L ⊆ X+ perfect, is a subalgebra of K[G]. On the other hand, one checks
that 5(K[G]λ) ⊆ K[G]λ ⊗ K[G]λ for any λ ∈ X+. Hence K[G]L defines a
monoid M . Now K[G]L is finitely generated by results of [76] and so M is
algebraic. To show that K[G]L = K[M ] and K[G] have the same quotient
field one needs to know that the representations ρλ : G −→ G`(Vλ), λ ∈ L,
separates the points of G (and conversely). See [142] for the details.

Vinberg goes on to characterize those monoids, as above, with unit group
G which are normal. This makes use of a result, due to Popov in [76], that

implies K[M ] is normal if and only if K[M ]U
−×U is normal. This allows

a decisive characterization in terms of rational polyhedral cones related to
X(T ) ⊗ Q and its dual. We describe here Vinberg’s classification of normal
reductive monoids.
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Theorem 5.10. A subset L ⊆ X+ defines a normal algebraic monoid M(L)
with G as unit group if and only if L = X+ ∩K, where K ⊆ X(T )⊗ Q is a
closed convex polyhedral cone such that

a) −∆ = {−α1, . . . ,−αn} ⊆ K.
b) K ∩ C generates X(T )⊗Q, where C is the Weyl chamber of T .

The reader is refered to Theorem 2 of [142] for many details. Rather than
reproducing those proofs here, we show how the invariant K can be obtained
from the results of § 5.1. Conversely, we also indicate how Theorem 5.4 of
§ 5.1 can be deduced from Theorem 5.10.

Notice that any cone L as in Theorem 5.10, automatically defines a re-
ductive monoid M = M(L) (using Theorem 5.9) since, if ν ∈ X(λ, µ), we
obtain

ν = λ+ µ−
∑

kiαi

where ki ≥ 0, for all i. Furthermore M(L) has a zero element if and only

a) K ∩X(T/T0) is a pointed cone, and
b) K ∩ C0 = {0}, where C0 is the Weyl chamber of G0.

There is a unique largest such K with C ∩ K = L. Notice however, that
Vinberg works over Q.

Given the augmented cone L = L(M), with M normal and reductive, one
can view L(M) ⊆ X(T ) as a fundamental domain for the Weyl group action
on X(T ). Since X(T ) is an integral polyhedral cone, we obtain

X(T ) = ∩ν∈V 1X(T )ν

where

a) V 1 = {νe : X(T )→ Z | νe is induced from λe : K∗ ⊆ T }. Here λe : K∗ ⊆
T is the unique 1− PSG that converges to the idempotent e ∈ E1(T );

b) X(T )ν = {χ ∈ X(T ) | ν(χ) ≥ 0}.

Now for each f ∈ E1(T ), there is a unique e ∈ Λ1 = Λ ∩ E1(T ) such that
e = wfw−1 for some w ∈W . One observes that

e νe

identifies Λ1 with

N1 = {ν ∈ V 1 | ν(−α) ≥ 0 for all α ∈ ∆}.

Hence the set of integral points of the maximal K (for this L) is

K(Z) =
⋂

e∈Λ1

X(T )νe .

We can now assess how the classification of normal monoids in [142] is related
to the classification theory of § 5.1. Let K(Q) denote Vinberg’s K.
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Corollary 5.11. Let M be normal. Let K(Q) and X(T ) be as above. Then

a) X(T ) = (∩w∈Ww(K)) ∩X(T );
b) K(Q) = ∩e∈Λ1 (X(T )⊗Q)νe .

5.3 Algebraic Monoids as Spherical Varieties

The theory of reductive algebraic monoids can be thought of as a significant
special case within the theory of spherical embeddings [121]. Indeed, the action

µ : G×G×G −→ G

µ((g, h), x) = gxh−1

proves that G is isomorphic to (G×G)/∆G, which is homogeneous for G×G.
Furthermore, the Borel subgroup B × B− ⊆ G × G has a dense orbit on G.
This is the key assumption that makes the theory of spherical varieties work.
Thus any algebraic monoid M with unit group G is a spherical embedding for
(G×G)/∆G.

5.3.1 Spherical Varieties

Spherical embeddings are classified using a numerical set-up known as the
coloured cone. This theory was founded by Luna and Vust in their seminal
paper [56]. Rittatore [121] has identified how reductive monoids fit into this
more general general set-up, as we shall see in the next section.

We summarize briefly this beautiful theory. The reader who wants to pur-
sue this more general point of view in detail should consult [10, 11, 48, 56, 55,
139, 144].

Let G be reductive and let G/H be a spherical homogenous space for
G. Then by definition, a Borel subgroup B of G has a dense orbit on G/H .
Let G/H ⊆ X be a simple embedding of G/H . Then by definition, G acts
on X , X has a unique closed G-orbit Y ⊆ X , and X is normal.

Now let

Ω =

{
χ ∈ X(B)

g · f = χ(g)f for all g ∈ B and
some f ∈ K(G/H) with f 6= 0

}
.

The key point here is that, if f1, f2 are two nonzero rational functions on
G/H of weight χ ∈ Ω, then f1/f2 ∈ K(G/H)B = K. Therefore any discrete
valuation ν over K has the property ν(f1) = ν(f2). Hence

ν(χ) ∈ Q is well defined for χ ∈ Ω .

In particular, we may think of G-invariant, discrete valuations on K(G/H) as
elements of
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Q(G/H) = Hom(Ω,Q) .

Let ρν be the element of Q(G/H) associated with the G-invariant valuation
ν of K[G/H ]. It is a fundamental theorem of Brion and Vinberg [9, 141] that
B has only a finite number of orbits on any spherical embedding. The original
proof of this theorem applied only in characteristic zero as it relied heavily
on the results of Popov in [76]. However, Grosshans [35] has since extended
many of the results of [76] to arbitrary characteristic. Thus, the general proof
of this fundamental finiteness result in positive characteristic is similar to
Popov’s original proof.

Definition 5.12. Let G and G/H be as above, and let X be simple embedding
of G/H with unique closed orbit Y .

a) Denote by V(G/H) the set of G-invariant discrete valuations of K[G/H ].
b) Denote by D(G/H) the (finite) set of B-stable prime divisors of G/H.
c) Let F(X) = {D ∈ D | Y ⊆ D}.
d) B(X) = {D ⊆ X | D is an irreducible G-stable divisor of X} ⊆ Q(G/H).

The inclusion is obtained by first identifying D ∈ B with its G-invariant,
discrete, normalized valuation on K[G/H ], and then applying the above
remarks.

F(X) is called the set of colors of X.

Remark 5.13. a) The map ν → ρν is injective.
b) Each D ∈ D(G/H) determines a valuation ρD of K[G/H ]. The map D →
ρD may be noninjective in general. However, it is injective for reductive
monoids. See part b) of Proposition 5.15 below.

The basic theorem here ([48]) is as follows.

Theorem 5.14. Let G/H ⊆ X be a simple embedding with closed orbit Y ⊆
X. Let F(X) and B(X) be as above. Let C(X) be the rational cone in Q(G/H)
generated by B(X) ∪ ρ(F(X)). Then the correspondence

X 7−→ (C(X),F(X))

uniquely determines the simple normal G-embedding X of G/H to within G-
isomorphism.

The complete and correct formulation of Theorem 5.14 requires the defi-
nition of a colored cone [48]. That way one can characterize axiomatically
exactly which pairs (C,F) can arise from some spherical embedding X of
G/H . However, it is not our mission here to write the book on spherical em-
beddings. Theorem 5.14 implies, in particular, thatX is determinied to within
isomorphism by

(B(X),F(X)).

This is sufficient for our purposes since, in the case of reductive normal
monoids, the exact classification has been made precise in Theorem 5.4. See
also Theorem 5.16 below.
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5.3.2 Rittatore’s Approach

Let G be a reductive group. We regard G as the homogeneous space for G×G
defined by the action

µ : G×G×G→ G

µ((g, h), x) = gxh−1. As already mentioned, the Bruhat decomposition shows
us that G is spherical for G × G. Indeed, the Borel subgroup B × B− of
G × G has a finite number of orbits on G. Hence exactly one of them must
be dense in G. For convenience, we simply write G for (G×G)/∆(G), where
∆(G) = {(g, h) ∈ G | g = h}. Let B ⊂ G be a Borel subgroup of G, and let
B− be the Borel subgroup of G opposite to B relative to the maximal torus
T of G. For convenience, we use the Borel subgroup B ×B− of G×G as the
prefered Borel subgroup.

In order to describe Rittatore’s work on reductive monoids, it will be
necessary to identify the salient ingredients. These are:

a) the colors of G,
b) Q(G), and
c) V(G).

Let X(T ) be the set of characters of T , and let S be the set of simple reflec-
tions (of the Weyl group W ) relative to T and B. Denote by sα the simple
reflection associated with the simple root α. Let C(G) be the Weyl chamber
of G associated with T and B.

Proposition 5.15. a) Q(G) ∼= X(T )∗ ⊗Q, the dual of X(T )⊗Q.
b) The colors of G are the B ×B−-invariant divisors {Dα = BsαB− } as α

ranges over the simple roots. The valuation ρD (associated with D = Dα ∈
D) is determined in Q = X(T )∗ ⊗Q, by the rule ρD = α∨ ∈ X(T0)

∗ ⊗Q.
c) V(G) = −C(G) ⊆ Q(G)

Proof. The set of weights Ω of K(G)(B×B−) is canonically isomorphic to
X(T ). Hence

HomZ(Ω,Z) ∼= X(T )∗.

It is well known that the codimension one orbits of the Bruhat decomposition
are as stated. See Proposition 9 of [121] for the calculation of ρD.

The proof of c) is more complicated, and consequently we refer the reader
to [121] (especially Proposition 8 of [121]) for most of the details. However,
the basic idea is easy to describe, and we do that here. Associated with each
normalized G×G-valuation ν ∈ V(G) is an elementary embedding U of G (as
a G × G-variety). Choose a 1 − PSG λ ∈ X(T )∗ such that limt→0λ(t) = x
exists and belongs to U\G. We can assume that λ ∈ −C(G), by conjugating
λ if necessary. It then follows that BxB− is open in U\G. It follows from this
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that ν is equivalent to the valuation νλ defined as follows.

K∗ acts on G via λ through G × G. Denote the induced action on K[G] by
t · f = λ(t)∗(f). This determines a decomposition K[G] = ⊕n∈ZK[G]n, where

K[G]n = {f ∈ K[G] | t · f = tnf}.

For f ∈ K[G], we can write f =
∑
fn, so we define νλ(f) = inf{n | fn 6= 0}.

It is easy to check that νλ extends to a valuation of K(G). One needs to check
that ν is G×G-invariant. For those details we refer the reader to [121].

We now let M be a normal monoid with reductive unit group G. Assume
for simplicity that M has a zero element (The general case is only superficially
more complex.). Then

F(M) = D(G)

the set of all B × B−-stable, irreducible divisors of G. Thus, all colors of G
are involved in M , and so not surprisingly they do not play much of a rôle
in the classification of reductive monoids with zero. Thus, we see that M is
determined by C(M), or what amounts to the same thing, B(M).

We can now paraphrase Rittatore’s identification (Theorem 4 of [121]) of
the theory of reductive monoids within the theory of spherical embeddings.

Theorem 5.16. Let G be a reductive group. The irreducible, normal algebraic
monoids M with unit group G are in bijective correspondence with the strictly
convex polyhedral cones in Q(G) generated by all of D(G) and a finite set of
elements of V(G).

The following proposition (essentially a special case of Proposition 13 of
[121]) indicates how Rittatore’s cone is the dual of Vinberg’s cone.

If the solvable group B acts rationally on the K-algebra A, we denote by
A(B), the subset of B-eigenvectors of the action.

Proposition 5.17. Let M be normal with group G, and zero element 0 ∈M .
Then

K[M ](B×B−) = {f ∈ K(G)(B×B−) | χf ∈ C(M)∨} .

Thus if char(K) = 0 then

K[M ] =
⊕

λ∈C(M)∨

K[G]λ.

Hence
C(M)∨ = L(M)

where L(M) is the augmented cone used in § 5.2 by Vinberg.
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Proof. The first equality follows from Theorem 3.5 of [48]. Everthing else here
can be deduced from this. On the other hand, by part b) of Corollary 5.11,
K = ∩e∈Λ1(X(T )⊗ Q)νe , while X(T )+ = {χ ∈ X(T ) | να(χ) ≥ 0 for all α ∈
∆}, and so L(M) = K(Z) ∩X(T )+. But K(Z) ∩X(T )+ = C∨.

The results of Proposition 5.17 hold in arbitrary characteristic, since any
normal monoid has a good G×G-filtration. See Definition 9.7.

5.3.3 Type Maps and Colors

Let Y = GyG be a G×G-orbit of the reductive monoid M . Let

X = {x ∈M | Y ⊆ GxG}.

A description of (B(X),F(X)) can be obtained directly from the theory of
spherical embeddings. However, there is also a monoid approach.

In this subsection, we take the following point of view in the study of the
orbit structure of a reductive monoid. On the one hand, as in the previous
subsection, we obtain,

a) D(G) = F(M), the colors of M , and
b) B(M), the set of G × G-invariant valuations of G associated with M

(identified with the appropriate 1-PSGs of G).

On the other hand, we obtain the type map, (see Definition 4.6).

λ : Λ→ 2S

which is the combinatorial invariant of M analagous to the Dynkin diagram.
Λ = {e ∈ E(T ) | eB = eBe}, the cross-section lattice (relative to B−), is a set
of idempotent representatives for the set of G×G-orbits of M . The type map
says a lot about how the G×G-orbits of M fit together to make the monoid
structure of M possible.

In this subsection, we continue our comparison of the two viewpoints, and
further assess how the type map approach can be described in terms of the
“divisors, colors, and cones” approach.

Let M be a reductive monoid with 0, and recall that

Λ1 = {e ∈ Λ\{1} | e is maximal}.

Λ1 is the algebraic monoid notion equivalent to B. Indeed, for each e ∈
Λ1 ⊆ E(T ), there is an essentially unique 1-PSG ν : K∗ → T such that
limt→0ν(t) = e. So we can make the identification of

B(M) ∼= Λ1

where it is understood that Λ1 includes the set of 1-PSGs involved.
Notice that, for e ∈ Λ,
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λ(e) = λ∗(e) t λ∗(e),

where λ∗(e) = {s ∈ S | se = es 6= e} and λ∗(e) = {s ∈ S | se = es = e}. See
Definition 7.11.

Theorem 5.18. Let e ∈ Λ and let s ∈ S. Then s ∈ λ∗(e) if and only if
GeG ⊆ BsB−.

Proof. Now BeB− is dense in GeG (since BB− ⊆ G is dense), and so GeG ⊆
BsB− if and only if BeB− ⊆ BsB−, and this happens if and only if e ∈
BsB−. Equivalently, e ∈ eBsB−e. But eBsB−e = eBeseB−e. But He is
a reductive group with opposite Borel subgroups eBe and eB−e, and Weyl
group W ∗(e) = eCW (e)e. Furthermore, eBeB−e is the dense eBe × eB−e-
orbit of He. Thus, e ∈ eBeseB−e is equivalent to saying that e = ese. This is
equivalent to es = se = e for, if e and s do not commute, ese must be strictly
less than e in the J-order.

For an algebraic monoid M we make the following definition.

Definition 5.19. For e ∈ Λ define

λ1(e) = {f ∈ Λ1 | fe = ef = e}.

The following result helps to illustrate how the Luna-Vust approach to
spherical varieties applies to the case of reductive monoids. We give an alge-
braic monoid style proof.

Proposition 5.20. Let M be reductive, and let e ∈ Λ. Then e is uniquely
determined by

(λ1(e), λ∗(e)) ∈ 2Λ
1

× 2S .

Furthermore, e ≤ f if and only if λ∗(e) ⊆ λ∗(f) and λ1(e) ⊆ λ1(f).

Proof. Consider e as an element of E(T ), and let A = {f ∈ E1(T ) | fe =
ef = e}, where E1(T ) is the set of maximal idempotents of E(T )\{1}. Then

e = Πf∈Af.

But it is easy to see that

{f ∈ E1(T ) | fe = ef = e} = {wfw−1 | f ∈ λ1(e) and w ∈ W∗(e)}.

Thus e is determined by (λ1(e), λ∗(e)) since W∗(e) is the Coxeter group gen-
erated by λ∗(e). The claim is clear from this.
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For the reductive monoid M , consider the G × G-orbit Y = GeG, where
e ∈ Λ, and define

X = {x ∈M | Y ⊆ GxG}.

X is the unique open G×G-subvariety of M with Y as its only closed orbit.
As in Theorem 5.14, X is determined up to isomorphism by (B(X),F(X)).
Proposition 5.20 above allows the following identification:

(B(X),F(X)) ∼= (λ1(e), λ∗(e))

where, as above, it is understood that each element of λ1(e) “remembers” its
associated G×G-invariant valuation of K[G].

It is desirable to have an identification of the colors of the spherical G×G-
homogeneous spaces GeG, e ∈ Λ. Indeed, in many cases, the boundary of
GeG has codimension greater than one in GeG. Hence in those cases, GeG is
determined as a G×G-variety, by its colors.

Theorem 5.21. Let M be reductive, and let e ∈ Λ. Then

a) GeG = tr∈WeWBrB.
b) The codimension one B × B−-orbits of GeG are as follows. There are

three types.
i) BesB− = BseB−, where s ∈ S and es = se 6= e.

ii) BesB−, where s ∈ S and es 6= se.
iii) BseB−, where s ∈ S and se 6= es.
In each case, the B ×B−-orbit in question is contained in BsB−.

Proof. a) follows from Theorem 8.8. The list of codimension one B×B−-orbits
in b) follows from Theorem 14.1, taking into account that B− = w0Bw

−1
0 ,

where w0 is the longest element in the Weyl group.
BsB− is stable under the action of T (on the left or the right). Thus, by

continuity, eBsB− ⊆ BsB−. Similarily, BsB−e ⊆ BsB−. The last claim in
b) follows easily from this.

Example 5.22. Let M = Mn(K). Then M is reductive with unit group G =
G`n(K). Let B ⊆ G be the Borel subgroup of invertible lower-triangular
matrices. Let B− be the invertible upper-triangular matrices. For e ∈ E(M)
define (as in [83])

ϕe(x) = det(exe+ 1− e)

for x ∈M . Let
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si =




1
. . .

1
0 1
1 0

1
. . .

1




i = 1, . . . , n− 1

and

ei =




1
. . .

1
0

. . .

0




i = 1, . . . , n− 1,

so that rank (ei) = i. Then D(G) = {BsiB
− | i = 1, ..., n− 1} and BsiB− =

ϕ−1
ei

(0).
Let Xi = {x ∈M | rank(x) ≥ i}. Then

F(Xi) = λ∗(ei) = {si+1, . . . , sn−1}.
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Universal Constructions

Every branch of algebra has universal constructions of interest. If reductive
monoids are involved, there are some pleasant surprises.

6.1 Quotients

Theorem 6.1. Let M be an irreducible, algebraic monoid with unit group G,
and let Ru(G) ⊆ G be the unipotent radical of G. Then there exists a unique
algebraic monoid N , and a surjective morphism π : M → N such that

a) the unit group of N is G/Ru(G);
b) π|G is the usual quotient morphism from G to G/Ru(G);
c) π is universal for morphisms from M with kernel containing Ru(G).

Furthermore, if Z ⊆ M is a maximal D-submonoid of G, then Z ′ = π(Z) is
a maximal D-submonoid of N , and π : Z → Z ′ is an isomorphism.

Proof. By Theorem 3.8 we can assume that M ⊆ End(V ) is a closed sub-
monoid. There exists a filtration

0 = V1 ⊆ V2 ⊆ · · · ⊆ Vn

of M -modules such that Vi/Vi−1 is a simple M -module. Hence there is a
canonical (induced) morphism

ϕ : M → Πn
i=2End(Vi/Vi−1).

Let N1 = ϕ(M). Then N1 is an irreducible algebraic monoid with unit group
G(N) abstractly isomorphic to G/Ru(G). Furthermore, ϕ induces an isomor-
phism ϕ : Z → Z ′ on maximal D-submonoids, since we are just passing to
the associated graded object. By part c) of Theorem 4.5, N1 = G(N)Z ′G(N),
and so ϕ : M → N1 is surjective. However, N1 may not be quite right. So
define
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N = M/U = the normalization of N1 along G/Ru(G)→ G(N1).

Corollary 6.2. Let M be an irreducible, algebraic monoid with solvable unit
group G = TU . Then the coordinate ring O[M/U ] ⊆ O[M ] of M/U is
K[X(M)], the semigroup algebra of the set of characters of M .

Proof. In this case, N = M/U is a D-monoid. Hence π : Z → N is an
isomorphism by Theorem 6.1, and O(M/U) = K[X(M)], the monoid algebra,
since M/U is a D-monoid.

In group theory, the abelization is already available abstractly. There-
fore the corresponding results for algebraic groups are not so surprising. For
monoids, the situation is somewhat different. The following result is mostly
due to Vinberg [142].

Theorem 6.3. Let M be a normal reductive algebraic monoid with unit group
G. Let G0 be the semisimple part of the unit group of G. Let A be the geometric
invariant theory quotient of M by the action (g, h, x)→ gxh−1 of G0×G0 on
M . Let π : M → A be the quotient morphism. Then

a) the coordinate algebra of A is K[X(M)], the monoid algebra of the char-
acter monoid of M ;

b) if Z is the connected center of G, then π : Z → A is the finite dominant
quotient morphism obtained from the action of Z ∩ Z(G0) on Z;

c) the G0 ×G0-orbit G0xG0 ⊆M is closed if and only if it intersects Z.

Proof. Assume that M has a zero element. The general case is only su-
perficially more complicated. Now the semisimple part G0 of any reductive
monoid is closed in M (proof: G0 = ∩χ∈X(M)ker(χ)). Thus, for any e ∈ E(Z)
eG0 ⊆ eM is closed, since eG0 is the semisimple part of the reductive monoid
eM . But eG0 = G0eG0 = G0e. Hence by the basic theorem of geometric
invariant theory,

π|Z : Z → A

separates the idempotents of Z. Let Z0 = Z∩Z(G0). It follows that π(Z) ⊆ A
is open and G(A)-invariant. Since M has a zero element, so too does A, and
π(0M ) = 0A. Thus, π(Z) = A. In any case,

Z/Z0 → A

is finite, dominant and birational. Hence by Zariski’s main thereom (Theo-
rem 2.29), Z/Z0 → A is an isomorphism. But then Z must meet every closed
G0 ×G0-orbit.
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6.2 Class Groups of Reductive Monoids

Definition 6.4. Let M be reductive. We say that M is locally simply con-
nected (lsc) if H(e) has trivial divisor class group for each e ∈ Λ.

We are here using the word “locally” in the sense of semigroup theory,
rather than in the sense of geometry. The property P of a semigroup S is called
a local property if, for any idempotent e ∈ S, P holds for the semigroup eSe.
Notice also that, strictly speaking, any simply connected group is semisimple.

Remark 6.5. The following results are discussed in detail in § 2.2.5. We state
them here for convenience. Let G be a connected reductive group with com-
mutator subgroup G′.

a) A connected, semisimple group G is simply connected if and only if
Cl(G) = 0.

b) Suppose that G is a connected, reductive group whose commutator sub-
group G′ = (G,G) has trivial divisor class group. Then the same property
holds for any Levi subgroup L of G. (This also follows from Remark 2.13
and Lemma 2.17 of [137].)

c) For any connected reductive group G, there exists a connected reductive
group G1 with Cl(G1) = 0, and a finite dominant morphism ζ : G1 → G.

d) If G is connected and reductive, then Cl(G) = 0 if and only if Cl(G′) = 0.

Definition 6.6. M is J-coirreducible if Λ1 is a singleton.

Recall that Λ1 ⊆ Λ is the subset of Λ that represents the codimension one
G×G-orbits of M . See part a) of Definition 4.6 and §5.3.3.

Theorem 6.7. Let M be reductive.

(a) If Cl(M) = (0) then M is locally simply connected.
(b) If M is J-coirreducible then there exits M ′ → M , finite and dominant,

such that Cl(M ′) = (0). Furthermore, Cl(M) is finite.
(c) For any such M there exists π : M ′ → M such that

(i) Cl(M ′) = (0) and
(ii) π induces a bijection of U1(M ′)→ U1(M), where U1(M) denotes the

set of maximal J-classes of M\G.

Proof. Notice first that, given X such that Cl(X) = (0), then Cl(U) = (0) for
any open set U ⊆ X . Thus, to prove (a) it suffices to show that Cl(eMe) = (0)
for any e ∈ E(M). We apply Theorem 10.6 of [29]. This theorem says that
if the K-algebra A = ⊕i≥0Ai is a graded, noetherian, and factorial then A0

is also factorial. To do this we must show that A = K[M ] = ⊕n≥0An with
A0 = K[eMe]. But we know from Corollary 6.10(ii) of [82] that there exists
a one parameter subgroup λ : K∗ → G such that lim

t→0
λ(t) = e. Consider the

action µ : K∗ ×M → M given by µ(t, x) = λ(t)xλ(t). µ induces a rational
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action ρ : K∗ → Aut(K[M ]). If we let An = {f ∈ K[M ]|ρ(t)(f) = tnf} then
K[M ] = ⊕n≥0An is the desired ⊕-decomposition.

To prove (b) we may assume without loss of generality that 0 ∈M . Notice
that this implies that dim Z(G) = 1. Now M\G is irreducible of codimen-
sion one in M . So it determines a divisor class D ∈ Cl(M). Since M\G is
irreducible, we have by part c) of Proposition 2.19 an exact sequence

0→ Z ·D → Cl(M)→ Cl(G)→ 0. (1)

By Theorem 3.4 of [101], there exists χ : M → k such that χ−1(0) = M\G.
Hence, in Cl(M), D has finite order. We conclude that Cl(M) is finite since,
from Corollary 2.8 of [42], Cl(G) is finite. To find M ′ we first assume that
Cl(G) = (0). For if Cl(G) 6= 0, we first consider ζ : G1 → G, a finite dominant
morphism with Cl(G1) = (0). We then apply Lemma 7.1.1 of [104] to obtain
a reductive monoid M1 with unit group G1 and a finite dominant morphism
M1 → M extending ζ. With another application of Lemma 7.1.1 of [104] we
may assume that G = G0×K

∗ where G0 is semisimple and simply connected.
From the exact sequence in (1) we obtain Cl(M) = Z · D, a finite cyclic
group. Before we construct M ′ we need to determine exactly what controls
the order of D in Cl(M). Let e ∈ Λ\{1} be the unique maximal element, and
let Te = T ∪ eT = T . Then Te ⊆ T is an open submonoid. Furthermore, by
Lemma 5.1 there exist opposite Borel subgroups B, B− containing T such
that m : B−

u × Te × Bu → M , m(x, y, z) = xyz, is an open embedding.
Letting R = K[M ] and S = K[B−

u × Te × Bu], we obtain R ⊆ S. Since
Te ∼= (K∗)r−1 × K as varieties, we see from Corollary 7.2 and Theorem 8.1
of [29] that S is a UFD. Let µ = {f ∈ R|f |M\G = 0}. Clearly |Cl(M)| =
inf{n|µ(n)) is a principal ideal} where µ(n) denotes the nth symbolic power of
the ideal µ ([29]). So write µ(n) = (χ) where n = |Cl(M)|. We may assume that
χ : M → K is a morphism of algebraic monoids, adjusting the initial χ with a
non-zero scalar if necessary. Consider χ ◦m ∈ S. From our remarks above we
see that (χ◦m) = pn where p = µ·S. Using the isomorphism Te ∼= (K∗)r−1×K
and the fact that χ◦m factors through p2 : B−

u ×Te×Bn → Te, (x, y, z)� y,
we obtain the following diagram:

K ↪→
j
Te ↪→

i
B−
u × Te ×Bu −→χ◦m

K.

j is the unique inclusion with the property j(0) = e. It follows that n =
degree (χ ◦m ◦ i ◦ j). Now let (X,φ,C) be the polyhedral root system of M
(Definition 3.6 of [104]) and let v : C → N be the “valuation” determined
by j (notice that v−1(0) ⊆ C is the facet of C determined by e). Let χ ∈ C
denote the restriction of χ to T . We can construct a new polyhedral root
system (X ′, φ′, C′) as follows:

Since G = G0 × K
∗, X = X0 ⊕ Z. Furthermore, C ⊆ X0 ⊕ N and χ =

(0, 1) ∈ C. We define
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X ′ = X0 ⊕
1

n
Z

φ′ = φ

C′ = {ζ ∈ X ′|mζ ∈ C for some m > 0}.

It is easily checked that (X ′, φ′, C′) is the polyhedral root system of the
reductive monoid M ′ obtained via Lemma 7.1.1 of [104] from the map
ζ : G → G ⊆ M given by ζ(g, α) = (g, αn). Furthermore, v : C → N extends
uniquely to v′ : C′ → N via v′(a, b/n) = v(a, 0) + b = v(a, 0) + (1/n)v(0, b).
Notice that if χ′ = (0, 1/n) then v′(χ′) = 1. But from our above calculation
applied to M ′, |Cl(M ′)| = v′(χ′). Hence Cl(M ′) = (0).

For (c) we may assume M has a zero element. The general case is not
essentially different. Let e ∈ Λ1 be a maximal idempotent of Λ\{1}. As above,
there exists v : C → N which extends to v : X → Z. Let

H = {χ ∈ X |v(χ) ≥ 0}

and let

Ce = ∩w∈Ww
∗(H) ⊆ X.

It is easily checked that (X,φ,Ce) is a polyhedral root system with j :
(X,φ,C) ↪→ (X,φ,Ce). Let Mα be the associated reductive monoid, where
α = GeG ∈ U1(M). By construction Mα is J-coirreducible. Now from Theo-
rem 8.l(a) of [104] there exists a birational morphism ζα : Mα →M inducing
j above. Applying part (b) above we can modify Mα slightly, if necessary, and
assume that Cl(Mα) = (0). The unique maximal J-class of Mα gets mapped
to α. After ordering U1(M), define

ζ :
∏

α∈U1(Mα)

Mα →M

by ζ(x1, . . . , xm) = ζα1(x1) · · · · · ζαm(xm). Consider the action of H = G0 ×
· · ·

(m−1)
×G0 on N =

∏
Mα given by

(g1, . . . , gm−1)(x1, . . . , xm) = (x1g
−1
1 , g1x2g

−1
2 , . . . , gm−2xm−1g

−1
m−1, gm−1xm).

Define M ′ = N/H , the geometric invariant theory quotient of N by H , and
let q : N →M ′ be the canonical quotient morphism.

By standard results of geometric invariant theory (Theorem 1.10 of [62])
there exists a unique morphism π : M ′ → M such that π ◦ q = m, where
m : N →M is the multiplication morphism. Based on Proposition 3.3 of [109]
we see that M ′ is a reductive algebraic monoid with unit groupG0×K

∗×· · ·
(m)
×

K∗. Furthermore, by Proposition 2.58, Cl(M) = (0) since Cl(N) = (0) and
G0×· · ·×G0 is a semisimple group. To complete the proof we must show that
π identifies the maximal J-classes of M ′ with those of M . But π is surjective
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by construction, and so for each α ∈ U1(M) there exists J ∈ U1(M ′) such
that π(J) = Jα. But also, Cl(M ′) = (0), and so |U1(M ′)| ≤ dim(Z(G′)) = m.
Thus U1(M ′)→ U1(M) is bijective.

Remark 6.8. The above theorem was first recorded in [114]. Part c) leads di-
rectly to the construction of a “total coordinate ring” or “Cox ring” for the
reductive monoid M . This generalizes some of the main results of [17]. See
[28] for a general approach to this problem.

6.3 Flat Monoids

Vinberg [142] discovered a universal construction involving reductive monoids
that has some remarkable properties. Let K be an algebraically closed field
of characteristic zero. Associated with each semisimple group G0 is a certain
reductive monoid Env(G0) which is the universal flat deformation of G0.

Recall from § 5.2, the augmented cone L(M) of a reductive monoid M .
Let Z ⊆M be the closure in M of the connected center Z of G. It is easy to
check that there is a natural partial order on L(M) defined as follows.

λ1 ≥ λ2 if λ1 = χλ2

for some χ ∈ X(Z). Notice that this makes sense even though X(Z) 6⊆ L(M).
Indeed, X(Z) ⊗ Q+ = X(M) ⊗ Q+ ⊆ L(M) ⊗ Q+. Notice also that there
may be a decomposition in L(M) of the form λ1 = χλ2, with χ ∈ X(Z) but
χ 6∈ X(M). The point here is that T ∼= T0 ×Z0 Z, where Z0 = Z ∩ T0. Thus
X(T ) = {(λ, χ) ∈ X(T0)×X(Z) | λ|Z0 = χ|Z0}. We let

M ⊆ L(M)

denote the set of minimal elements of L(M) with respect to the above partial
order.

Before stating the main result, we need one more notion. As before, we let
X(T0)+ denote the monoid of dominant weights of T0. If λ ∈ X(T0)+, we can
write

λ =
∑

α∈∆

cαλα,

where {λα} is the set of fundamental dominant weights of G0. Define

c : X(T0)+ → Cl(M)

by c(λ) =
∑

α∈∆ cα[BsαB−]. As in § 2.2.5, we write Dα = BsαB−. The main
ideas behind the theorem below are due to Vinberg [142]. Our approach is a
little different, in that we emphasise the rôle of the Dα.
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Example 6.9. Let M = M2(K) and let A =

(
a b
c d

)
∈ M . Then L(M) =

{(δk, f lλ) | k > 0, l > 0 }, relative to U and U−, the upper-unitriangular and
lower-unitringular groups of Gl2(K). Here δ(A) = ad − bc, and fλ(A) = d.
Furthermore, λ is the fundamental dominant weight for G0 = Sl2(K). Now

m : Z ×G0 →M

induces j : L(M) ⊆ L(Z × G0) = Zχ ⊕ Nfλ(0), with j(δ) = χ2 and j(fλ) =
(χ, fλ(0)). Hence

L(M) = {(χs, fλ(0)t) | s− t ≥ 0, s− t is even }.

Then

M = {(χt, fλ(0)t) | t ≥ 0 }.

Notice that any f ∈ L(M) can be written uniquely as

f = δkf lλ = (χ2k, 1)(χl, fλ(0)l).

Theorem 6.10. Let M be a reductive monoid with unit group G, and let G0

be the semisimple part of G. Assume (for convenience) that M has a zero
element. The following are equivalent:

a) The abelization π : M → A is flat, with reduced and irreducible fibres.
b) The following two conditions hold:

i) If χ1λ1 = χ2λ2 (λi ∈M, χi ∈ X(Z)) then χ1 = χ2 and λ1 = λ2.
ii) M is a subsemigroup of L(M).

c) The canonical map c : X(T0)+ → Cl(M) is trivial.
d) For any irreducible representation ρ : M → End(V ) there is a character
χ : Z → K of Z, and an irreducible representation σ : M → End(V ),
such that σ(e) 6= 0 for any e ∈ Λ1 and ρ = χ⊗ σ.

e) Any f ∈ L(M) factors as f = χg where χ ∈ X(Z) and g ∈  L(M) with
zero set Z(g) ⊆ ∪α∈∆BsαB−.

Proof. a) implies b). We sketch the proof from [142]. According to Proposition
3 of [142], if π : M → A is flat, then b)i) above holds. Now consider the
inclusion i−1(0) ⊆M . Since π is flat, the induced map i∗ : K[M ]→ K[π−1(0)]
induces an inclusion i∗ : M → K[π−1(0)]\{0}. But K[π−1(0)] is an integral
domain. Then M is multiplicatively closed and thus b)ii) holds.

b) implies a). By Proposition 3 of [142], condition b)i) implies that π is

flat. If also b)ii) holds, then K[π−1(0)]U×U− ∼= K[M] (semigroup algebra) via

i∗ : K[M ]→ K[π−1(0)]. Then K[π−1(0)]U×U−

has no zero divisors. Thus, by
the results of [76], K[π−1(0)] has no zero divisors. This proves that π−1(0) is
reduced and irreducible. But Y = {a ∈ A | π−1(a) is reduced and irreducible}
is open and G-invariant, by well known properties of morphisms [38]. Thus
Y = A.
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b) implies e). If b) holds, then we have already observed above that
i∗(M) ⊆ K[π−1(0)]\{0}. Furthermore, K∗ · i∗(M) = {f ∈ K[π−1(0)] | f 6=
0 and BfB− = K∗f }. We then let f ∈ L(M). By our assumption, we have
a unique factorization

f = χg

where χ ∈ X(Z) and g ∈ (M). We must show that Z(g) ⊆ ∪α∈∆Dα, where
Dα = BsαB−. Recall from the proof of Theorem 5.2 that

M\G = ∪e∈Λ1De,

where De = GeG and Λ1 is the set of maximal idempotents of Λ\{1}.
Furthermore, if χ ∈ X(M)\{1}, then Z(χ) ⊆ ∪e∈Λ1De. But π−1(0) =
∩χ∈X(M)\{1}Z(χ). Thus

π−1(0) = ∩e∈Λ1De.

On the other hand, if g ∈ M, we have observed above that g|π−1(0) 6= 0.
Hence, for any e ∈ Λ1, De 6⊆ Z(g). But for any f ∈ L(M),

Z(f) = (∪α∈CDα) ∪ (∪e∈BDe)

(where C ⊆ ∆ and B ⊆ Λ1) since any B × B−-invariant prime divisor D of
M is either a Dα or else a De. We conclude that

Z(g) ⊆ ∪α∈∆Dα.

e) implies b). If we have such a factorization f = χg, for any f ∈ L(M),
we need to show two things:

i) M = {g ∈ L(M) | Z(g) ⊆ ∪Dα };
ii) the factorization f = χg, with χ ∈ X(Z) and g ∈M, is unique.

Clearly, {g ∈ L(M) | Z(g) ⊆ ∪Dα } ⊆ M, since if Z(g) ⊆ ∪Dα and g = χh,
with χ ∈ X(Z), then χ ∈ K[M ] is a unit (since otherwise, De ⊆ Z(g) for
some e ∈ Λ1). Hence χ = 1, since M has a zero element. Conversely, if
f 6∈ {g | Z(g) ⊆ ∪Dα}, then by assumption we can write f = χg, where
χ ∈ X(Z) and Z(g) ⊆ ∪Dα. Clearly, f > g, so that f is not a minimal
element of L(M). This proves i). To prove ii), assume that χ1g1 = χ2g2, with
χi ∈ X(Z) and gi ∈ M. Then Z(χi) ⊆ ∪De, while Z(gi) ⊆ ∪Dα. Hence
Z(χ1) = Z(χ2) and Z(g1) = Z(g2). All the zeros and poles of χ1χ

−1
2 are in

{De}, while all the zeros and poles of g2g
−1
1 are in {Dα}. Yet χ1χ

−1
2 = g2g

−1
1 .

Thus, χ1χ
−1
2 has neither zeros nor poles. Hence χ1 = χ2.

e) implies c). Given λ =
∑
α∈∆ cαλα ∈ X(T0)+, we have the irreducible

representation ρ : G0 → Gl(V ) with highest weight λ. Furthermore, by The-
orem 5.3 of [42], there is a unique gλ ∈ L(G0) (see Definition 2.50) such that
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να(gλ) = cα for each α ∈ ∆, where να is the valuation of K[G0] associated
with Dα. On the other hand, there is a character χ : Z → K∗ such that

χ⊗ ρ : Z ×G0 → Gl(V )

factors through

Z ×G0 → G ⊆M.

Here, Z × G0 → G is the multiplication map. Thus f = χgλ ∈ L(M). By
assumption, f factors as f = µg, where Z(g) ⊆ ∪α∈∆Dα and µ ∈ X(Z). But
να(g) = cα for all α ∈ ∆. Hence c(λ) = [Z(g)] = 0 ∈ Cl(M).

c) implies e). Let f ∈ L(M). Then there is a representation ρ : M →
End(V ) such that ρ|G0 has highest weight λ =

∑
α∈∆ cαλα, where να(f) = cα

for each α ∈ ∆. By the assumption of c), we can find g ∈ L(M) such that
να(g) = cα for each α, and νD(g) = 0 for all prime divisors D ⊆M\G. Hence
we let χ = fg−1. Then να(χ) = 0 for all α ∈ ∆, while νD(χ) = νD(f) ≥ 0 for
any D ⊆M\G. Thus χ ∈ X(Z), and f = χg is the desired factorization.

The proof that d) and e) are equivalent is left to the reader.

Definition 6.11. A reductive monoid M is called flat if the conditions of
Theorem 6.10 are satisfied.

Corollary 6.12. Let M be flat. Then

M = {f ∈ L(M) | Z(f) ⊆ ∪α∈∆BsαB−}.

Corollary 6.13. If Cl(M) = {0} then M is flat.

Example 6.14. Mn(K) is flat. One can use Corollary 6.13 above. But one can
also show this directly using the calculations of Example 5.22. Recall from
that example the “determinant functions”

ϕe(x) = det(exe+ 1− e).

Then M =< ϕe1 , . . . , ϕen−1 >, the submonoid of K[Mn(K)] generated by the
ϕei .

Let M be a reductive normal monoid with abelization π : M → A. The
following theorem was also obtained by Vinberg in [142].

Theorem 6.15. The following are equivalent.

a) M is flat.
b) There exists a morphism θ : Z → T0 of algebraic groups such that

i) θ|Z0 is the identity;
ii) L(M) = {(χ, fλ(0)) ∈ L(Z ×G0) | χθ

∗(λ)−1 ∈ X(A) }.
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Proof. Assume that M is flat, and let f ∈ M ⊆ L(M). Then we can write
f = fλ, where λ ∈ L(G0) ∼= X(T0)+. Indeed, M is identified with X(T0)+ via

M ⊆ L(M) ⊆ L(Z ×G0)→ L(G0) ∼= X(T0)+.

Hence we define θ∗(λ) = fλ|Z ∈ X(Z). Notice that θ∗(λ)|Z0 = fλ|Z0 for all
λ ∈ L(G0). Now fλ = θ∗(λ)fλ(0) ∈ L(Z ×G0), where fλ(0) = fλ|G0. Notice
also that θ∗ extends uniquely to a homomorphism θ : X(T0)→ L(Z) = X(Z).

Suppose that χgµ(0) ∈ L(Z0 × G0) is such that χθ∗(µ)−1 ∈ X(A).
Then χgµ(0) = (χθ∗(µ)−1)(θ∗(µ)fµ(0)) ∈ L(M), since χθ∗(µ)−1 ∈ X(A)
and θ∗(µ)fµ(0) ∈ M. Conversely, if χfµ(0) ∈ L(M) ⊆ L(Z × G0), then by
our assumption χfµ(0) = δfµ, where δ ∈ X(A) and fµ ∈ M. Furthermore,
the decomposition is unique. But fµ = θ∗(µ)fµ(0), and so χfµ(0) = δfµ =
δθ∗(µ)fµ(0). Thus χ = δθ∗(µ). Hence χθ∗(µ)−1 = δ ∈ X(A).

We have shown that, if M is flat, then L(M) = {(χ, fλ(0)) ∈ L(Z ×
G0) | χθ

∗(λ)−1 ∈ X(A) }. Furthermore, θ∗ satisfies property b)i).
Now assume b), so that there exists θ∗ : X(T0) → X(Z) such that

fλ(0)|Z0 = θ∗(λ)|Z0 for all λ, and L(M) = {(χ, fλ(0)) ∈ L(Z×G0) | χθ
∗(λ)−1 ∈

X(A) }. Then for (χ, fλ(0)) ∈ L(M), we can write

(χ, fλ(0)) = (χθ∗(λ)−1, 1)(θ∗(λ), fλ(0))

so that

M = {(θ∗(λ), fλ(0)) ∈ L(Z ×G0) | fλ(0) ∈ L(G0)}.

Thus, condition b) of Theorem 6.10 is satisfied and, consequently, M is flat.

It turns out that that there is a universal, flat monoid Env(G0), associated
with each semisimple group G0. This amazing monoid was originally discov-
ered and constructed by Vinberg in [142]. He refers to it as the enveloping
semigroup of G0. It has the following universal property:

Let M be any flat monoid with zero. Assume that the semisimple part of
the unit group of M is G0. Let A(M) denote the abelization of M , as in
Theorem 6.3, and let πM : M → A(M) be the abelization morphism. (We
make one exception with this notation. We let A denote the abelization of
Env(G0). Let π : Env(G0)→ A be the abelization morphism.)

Given any isomorphism ϕ0 from the semisimple part of G(M) to the
semisimple part of Env(G0), there are unique morphisms

a : A(M)→ A

and

ϕ : M → Env(G0)

such that
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i) ϕ|G0 = ϕ0;
ii) a ◦ πM = π ◦ ϕ;
iii) φ : M ∼= E(a, π), via φ(x) = (πM (x), ϕ(x)), where E(a, π) = {(x, y) ∈

A(M) × Env(G0) | a(x) = π(y)}, is the fibred product of A(M) and
Env(G0) over A.

There are several ways to construct this monoid Env(G0), and there are al-
ready hints in Theorem 6.10. However, we use the construction in Theorem
17 of Rittatore’s thesis [120]. The reader should also see Vinberg’s construc-
tion in [142]. Notice that we are using multiplicative notation. In particular,
X(T0/Z0)+ is the the subgroup of X(T0) generated by the positive roots.

Theorem 6.16. Let G0 be a semisimple group and let

L(G0) = {(χ, λ) ∈ L(T0 ×G0) | χλ
−1 ∈ X(T0/Z0)+}.

Define

K[Env(G0)] =
⊕

(χ,λ)∈L(G0)

(Vλ ⊗ V
∗
λ )⊗ χ ⊆ K[G0 × T0].

Then K[Env(G0)] is the coordinate algebra of the normal, reductive algebraic
monoid Env(G0) with the above-mentioned universal property. In particular,
L(Env(G0)) = L(G0).

Proof. It follows from Vinberg’s criterion in Theorem 5.10 that K[Env(G0)]
is the coordinate algebra of a normal, reductive monoid. Indeed, this follows
directly from the defining conditions of L(G0), taking into account the fact
that, for all λ, µ ∈ X+, any ν ∈ X(λ, µ) has the form

ν = λ+ µ−
∑

kiαi

where ki ≥ 0. Also,

G(A) ∼= T0/Z0

via K[A] =
⊕

(χ,fλ)∈X(A) Vλ ⊗ V
∗
λ ⊗ χ, where

X(A) = {(χ, fλ)|dim(Vλ) = 1} ∼= X(T0/Z0)+.

Env(G0) is flat by the criterion of Theorem 6.15. Indeed, if (χ, fλ) ∈
L(Env(G0)), we can write

(χ, fλ) = (χλ−1, 1)(λ, fλ)

with (χλ−1, 1) ∈ X(A) ⊆ L(M), and (λ, fλ) ∈ L(M). Hence

M = {(λ, fλ) | λ ∈ X(T0) = X(Z}.
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With these identifications, θ∗ : X(T0)+ → X(Z) = X(T0) is just the inclusion.
In particular, θ∗ extends to an isomorphism θ∗ : X(T0)→ X(Z).

Now let M be any flat reductive monoid with semisimple part G0 and zero
element 0 ∈M . We assume that the semisimple part G0 of the unit group of
M has been identified with G0 ⊆ Env(G0).

So L(M) = {(χ, fλ(0)) ∈ L(Z × G0) | χθ
∗
M (λ)−1 ∈ X(A) }, where θ∗M :

X(T0)→ X(Z). Define a∗ : X(Z(Env(G0)))→ X(Z(M)) by

a∗(χ) = θ∗M (γ(χ)),

where γ is the inverse of θ∗, and define ϕ∗ : L(Env(G0))→ L(Z ×G0) by

ϕ∗(χ, fλ(0)) = (θ∗M (γ(χ)), fλ(0)).

It can be checked, as in the proof of Theorem 5 of [142], that ϕ∗(L(Env(G0)) ⊆
L(M) ⊆ L(Z × G0), and consequently ϕ : G → Env(G0) extends to
a morphism ϕ : M → Env(G0). It then follows from the definition of
L(M), along with a diagram chase, that L(M) is the result of a pushout of
a∗ : X(A)→ X(A(M)) and π∗ : X(A)→ L(Env(G0)). This kind of pushout
turns into a tensor product over K[A] on the level of coordinate algebras.
Thus,

K[M ] ∼= K[A(M)]⊗K[A] K[Env(G0)],

which is the coordinate ring of the sought-after fibred product. The morphisms
ϕ and a are unique because Z ·G0 is dense in M .

Example 6.17. Let M = {(x, y, z) ∈M2(K)×K2 | det(x) = yz}. In this case,
G0 = Sl2(K), and so Env(G0) = M2(K). Also A(M) = {(d, y, z) ∈ K3 | d =
yz} ∼= K2. Thus,

M ∼= E(a, π)

where π : M2(K) → K is the determinant, and a : A(M) → K is given by
a(d, y, z) = d = yz

It is useful to know the type map of Env(G0) (see Definition 4.6). Recall
that this is essentially a description of the G × G-orbits of Env(G0), along
with enough information to build the monoid from these orbits. The lattice
of orbits was calculated by Vinberg in [142]. We describe his results in a way
that allows us to relate Env(G0) to certain other monoids associated with G0.
Our proof here is somewhat sketchy. See [142] for more details.

Theorem 6.18. Let Λ denote the cross section lattice of Env(G0). Then Λ =
{eI,X | I,X ⊆ S, and no component of X is contained in S\I}. Λ is ordered
as follows:

eI,X ≥ eJ,Y if and only if I ⊆ J and X ⊆ Y.

Furthermore, the type map of Env(G0) is given as follows:
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λ∗(eI,X) = {s ∈ S\I | sx = xs for all x ∈ X},
λ∗(eI,X) = X.

Furthermore, λ1(eI,X) = {eα | α ∈ I}, where eα is short for eα,φ.

Proof. Notice that Cl(Env(G0)) is a finite group. Then for each e ∈ Λ1 there
is a χ ∈ X(A) such that χ−1(0) = MeM . Thus, Λ1 = {eα | α ∈ S}, since A is
a simplicial, affine torus embedding with zero element. Then each convergent
1 − PSG, λ : K∗ → A, has limit f = fI = limt→0λ(t) ∈ E(A). Also I ⊆ S
equals {α ∈ S | π(eα) ≥ f}. Now C = λ(K) ⊆ A is one-dimensional, so the
inverse image

MI = λ−1(C)

is a semisimple flat monoid. Thus, MI\G(MI) is an irreducible, algebraic
variety (such monoids are called J-coirreducible since |Λ1| = 1). It is known
[97] that the cross section lattice of MI is

ΛI = {X ⊆ S | no component of X is contained in S\I} t {1}.

Furthermore, for eX ∈ ΛI , λ∗(eX) = X . Hence λ∗(eX) = {s ∈ S\I | sx =
xs for all x ∈ X}.

If we denote eX ∈ ΛI by eI,X , we see that

Λ = {1} tI∈S Λ
′
I

where Λ′
I = ΛI\{1}. Putting these all together yields the desired results.

A peculiar yet intriguing by-product of Env(G0) is the irreducible alge-
braic semigroup, π−1(0) ⊆ Env(G0). Vinberg [143] calls it the asymptotic
semigroup of G0 since, like the asymptotic cone of a hyperboloid, it canon-
ically reflects the behaviour of G0 at infinity. He denotes this semigroup by
As(G0). His construction also depicts G0 as a flat deformation of As(G0).

See Theorem 10.19 for more information about J-irreducible monoids.
From the proof of Theorem 6.18 we see that As(G0) = MS\G(MS), where

MS is any J-coirreducible monoid of type S. This means that if Λ1 = {eφ},
then λ∗(eφ) = φ = S\S. Thus if eφ ∈ T , then eφT is a simplicial affine
torus embedding with zero. Furthermore, the distinct idempotents of eφT are
contained in distinct G×G-orbits of As(G0). Hence there are exactly 2r such
orbits, where r is the semisimple rank of G. The cross section lattice of any
MS is

Λ = {1} t {eI | I ⊆ S}.

The type map λ of MS is determined by λ∗. Furthermore

λ∗(eI) = I.

It is likely that all the results of this section could be extended to the case of
positive characteristics. Rittatore has already made an important contribution
in this direction in [123].
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6.4 Multilined Closure

LetM be a reductive monoid with zero. Associated with each minimal nonzero
J-class J ∈ U(M), there is an irreducible representation ρ : M → End(V ) such
that ρ(e) 6= 0 for any e ∈ E(J). So let {J1, . . . , Jm} be the minimal nonzero
J-classes of M , and let ρi, i = 1, . . . ,m, be the corresponding irreducible
reresentations of M such that ρi(Ji) 6= 0. Assume that Mj = ρj(M) is a J-
irreducible monoid of type Ij . By this we mean that Mj is J-irreducible
and, for any minimal nonzero idempotent e of Mj , Pλ(e) is a parabolic sub-
group of G(Mj) of type Ij . See § 7.3 for a detailed discussion of J-irreducible
monoids. In particular, notice that the cross section lattice of a J-irreducible
monoid may be identified with a subset of P(S), the set of subsets of the set of
simple roots. In fact, the cross section lattice ΛI of the J-irreducible monoid
MI of type I is

ΛI = {eA | A ⊆ S, and no component of A is contained in I } ∪ {0}.

Then if e ∈ ΛI , we have either e = eA for some A ⊆ S, or else e = e0 = 0.
But the “zero” here is not a subset of S. Let

ρ = (ρ1, . . . , ρm) : M → ΠEnd(Vi).

Definition 6.19. We define a multilined closure of type I=(I1, . . . , Im) to
be the closure M(I1, . . . , Im) of ρ(M)(K∗ × .... × K∗) in ΠEnd(Vi). Then
M(I1, . . . , Im) is called the multilined closure associated with M .

The multilined closure was first discussed in [52]. The following structure
theorem was obtained.

Theorem 6.20. Let Λi (respectively, λi) be the cross section lattice (respec-
tively, type map) of Mi. Define the following subset of Λ1 × · · · × Λm:

ΛI = {(eY1 , . . . , eYm)|Yi ⊆ λj(eYj ), whenever Yi 6= 0}.

Define
λI(eY1 , . . . , eYm) = ∩mi=1λi(eYi).

If Λ is the cross section lattice of M(I) and λ is its type map, then

Λ = ΛI, and
λ = λI.

The natural map M →M(I) induces a bijection on minimal nonzero J-classes.
In particular, it is a finite morphism.
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Proof. By the results of § 7.3, Λ ⊆ Λ1 × · · · × Λm. Let (e1, . . . , em) ∈ Λ,
ei = eYi , i = 1, . . . ,m. We claim that e ∈ ΛI. Otherwise, for some nonempty
sets Yiand Yj , we would obtain Yi 6⊆ Yj . Then for some simple root α ∈ ∆,
s = sα ∈ Yi while s 6∈ λj(Yj). Let P = P (e) and P− = P−(e). Then the root
subgroup of α,

Uα ⊆ Ru(PYj ) ⊆ Ru(P ),

since P ⊆ PYj . Hence Uαe = e. Since s ∈ CW (ei), Uα ⊆ CG(ei). Let

H = {g ∈ G | gei = eig = ei} ⊆ CG(ei).

Since H ⊆ CG(ei) is a normal subgroup with Xα ⊆ H , s ∈ W (H), the Weyl
group of H . Now Q = CB(ei)H is a parabolic subgroup of CG(ei), and thus
Q = CB(ei)WKCB(ei). Since H is normal in CG(ei), the component A ⊆ S
of s in Yi is contained in K. Let {fi} be the set of minimal elements of Λi.
Then ei ≥ fi, and

Qfi ⊆ HBfi = HfiBfi = fiBfi.

Hence Q ⊆ P (fi) = PIi , and so A ⊆ Ii, a contradiction. Hence e ∈ ΛI. Clearly,
λ(e) = λI(e).

We now prove the converse, namely that λI(e) ⊆ λ. For Y ⊆ S, let

eY = (eY1 , . . . , eYm)

where Yi is the union of the components of Y not contained in Ii. Then for
all i, j,

Yi ⊆ Y ⊆ λj(ej).

Hence eY ∈ ΛI. Clearly, eY eZ = eY ∩Z , for all Y, Z ⊆ S. Let

Ŷ = {(eZ1 , . . . , eZm) | Zi = 0 or Yi}.

We claim that

ΛI = ∪Y⊆SŶ .

Let 0 6= e = (e1, . . . , em) ∈ ΛI, Y = λ(e). If ei = eZ 6= 0, then

Z ⊆ Y ⊆ λi(ei).

Hence, Yi = Z, and so e ∈ Ŷ . This proves the claim.
To finish the proof, we need to show that ΛI ⊆ Λ, and we do this by

induction on m. If m = 1, this is just the J-irreducible case. So assume that
m > 1. By the above discussion, if (e1, . . . , em) ∈ Λ and ei = 1, then
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ej = 1 or 0 for all j = 1, . . . ,m. (∗)

Let P be a standard maximal parabolic subgroup ofG. Let P− be its opposite,
and let L = P ∩ P−. Let T0 be the identity component of the center of L.
Then dim(T0)=1. For i = 1, . . . ,m, let

E({αρi(t) | t ∈ T0}) = {1, ei, fi, 0}

with P (ei) = P−(fi) = P . By the above discussion (concerning Ŷ ), it
suffices to show that (e1, . . . , em) ∈ Λ. But, by the induction hypothesis,
(e1, . . . , em−1, 0) ∈ E(T1), where

T1 = {(α1ρ1(t), . . . , αmρm(t)) | αi ∈ K
∗, i = 1, . . . ,m}

Clearly,

E(T1) ⊆ ⊕
m
i=1{1, ei, fi, 0}.

By (∗), 1 = (1, . . . , 1) covers (1, . . . , 1, 0), and (1, . . . , 1, 0) covers (e1, . . . , em−1, 0)
in E(T1). But E(T1) is a relatively complemented lattice. Hence there exists
e ∈ E(T1) such that e 6= (1, 1, . . . , 1, 0), and such that

(e1, . . . , em−1, 0) < e < 1

So again by (∗), either e = (e1, . . . , em−1, em), or else e = (e1, . . . , em−1, fm).
However, P (e1, . . . , em−1, fm) is not parabolic. Hence e = (e1, . . . , em−1, em),
completing the proof.

Remark 6.21. This multilined closure construction behaves as if it is, in some
sense, dual to the construction in Theorem 6.7. In the construction of M ′

in Theorem 6.7 the maximal idempotents have a special property, while in
the multilined closure construction the minimal idempotents have a special
property.

Example 6.22. Let G0 = Sl3(K) so that S = {s1, s2}. Let ρ1 = id : G0 −→
Gl3(K), and let ρ2 : Sl3(K) −→ Gl3(K) be defined by ρ2(x) = (x−1)t. Define
M1 = K∗ρ1(G0), and M2 = K∗ρ2(G0). Thus

M1 is of type J1 = {s1},

M2 is of type J2 = {s2}.

By Theorem 6.20, M(J1, J2) has cross section lattice as depicted in the dia-
gram below.
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6.5 Normalization and Representations

As we have pointed out in § 3.2, any irreducible algebraic monoid M has a
normalization η : M ′ →M . Here M ′ has the unique structure of a normal,
algebraic monoid such that η is a finite, birational morphism of algebraic
monoids. Furthermore, η has the appropriate universal property.

Let K be an algebraically closed field of characteristic zero and let G be
a semisimple group, defined over K. In §3 of [20], DeConcini provides a very
revealing construction of the normalization of MV , where MV is the lined
closure of the rational representation ρ : G → End(V ) of the semisimple
group G. A lined closure is the special case of the mutiltilined closure (see
Definition 6.19), with m = 1. So, in our case,

MV = ρ(G)K∗ ⊆ End(V )

where K∗ ⊆ End(V ) is the set of nonzero homotheties.
Let Vλ be the irreducible representation of G with highest weight λ. Let

Σλ be the saturation of λ. Thus

Σλ = {µ | µ is dominant and µ ≤ λ}.

Along with DeConcini [20], we set

Mλ = MW ,

where

W = ⊕µ∈Σλ
Vµ.

An irreducible representation Vλ is called miniscule if Σλ = {λ}. In this case
λ is called a miniscule weight.

The following result is obtained in [20] (see his Theorem 3.1).
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Theorem 6.23. 1. Mλ is a normal variety with rational singularities.
2. Mλ is the normalization of Mλ.
3. Mλ and Mλ are equal if and only if λ is a miniscule weight.

His proof requires an application of the results of [21]. The proof also
requires the result [45] of Kannan on the projective normality of the wonderful
compactification.

Miniscule weights are the role models for the standard monomial theory. If
λ is miniscule, the calculation of Vnλ = H0(G/P,Lnλ) involves a striking blend
of combinatorics and intersection theory. Hodge worked this out for Sln(K),
and then Seshadri extended Hodge’s work to the case of any miniscule weight.
See [37] for a good introduction.

6.6 Exercises

6.6.1 Flat Monoids

1. Let f ∈ L(M). Prove that Z(f) ⊆ (∪α∈∆Dα) ∪ (∪e∈Λ1De).
2. Let M be reductive. Show that L(M) is a commutative, totally cancella-

tive semigroup that embeds in a free abelian group of rank less than or
equal to |∆|+ |Λ1|.

3. Prove the equivalence of d) and e) in Theorem 6.10.
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Orbit Structure of Reductive Monoids

Let M be a reductive monoid with unit group G. We assume that M has
a zero element 0 ∈ M . The general case is not interestingly different (see
Proposition 8 of [121]). From Theorem 4.2, M is regular, so that

M = GE(M) = E(M)G .

But we can do much better than this. Indeed, from Theorem 4.5,

M =
⊔

e∈Λ

GeG

where Λ = {e ∈ E(T ) | Be ⊆ eB}.
In this chapter we want to explain how M is “stuck together” using G, Λ

and P (e) = {g ∈ G | ge = ege}. Since P (e) is a parabolic subgroup containing
B, the reader should take note of the key objective here: to obtain control of
the structure of M in terms of something easily described in terms of the
Coxeter-Dynkin complex of G, and the set of standard parabolic subgroups
of G.

Our second objective here is to identify and record a large number of
examples where we can determine Λ and Λ −→ P, e  P (e), explicitly.
Notice that there is a canonical identification P = 2S , where S is the set of
simple reflections. See Theorem 2.46. Thus we usually write the type map as
λ : Λ −→ 2S

7.1 The System of Idempotents and the Type Map

In this section we describe the orbit structure of a reductive monoid, assuming
there is only one minimal, nonzero orbit. The results of this section are taken
from [95].

Let M be reductive with unit group G, Borel subgroup B ⊆ G and max-
imal torus T ⊆ B. W = NG(T )/T . From Definition 4.6 we obtain the type
map
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λ : Λ −→ 2S .

Recall that λ(e) = {s ∈ S | se = es}, where S ⊆ W is the set of simple
reflections of W relative to B, and Λ is the cross section lattice of M relative
to B and T .

Notice that λ(e) determines P (e) = {g ∈ G | ge = ege} since P (e) is
generated by B and λ(e). Note also that P (e) and P−(e) = {g ∈ G | eg = ege}
are opposite parabolic subgroups.

Definition 7.1. Let

E(λ) =

{
(J, P,Q)

J ∈ G\M/G, P and Q are opposite parabolics,
P = gP (e)g−1 for some g ∈ G, where J ∩Λ = {e}

}
.

A quasi-ordering on a set E is a relation ≤ on E that is transitive and
reflexive.

Theorem 7.2. Both E(M) and E(λ) have canonically defined quasi-orderings
≤` and ≤r. Define

ψ : E(M) −→ E(λ)

by ψ(e) = (GeG, P (e), P−(e)). Then ψ is an isomorphism of biordered sets.
≤r and ≤` are defined as follows.

On E(M) define
e ≤r f if fe = e.
e ≤` f if ef = e.
e ≤ f if ef = fe = e.

On E(λ) define

(J1, P,Q)R(J2, P
′, Q′) if J1 = J2 and P = P ′.

(J1, P,Q)L(J2, P
′, Q′) if J1 = J2 and Q = Q′.

(J1, P,Q) ≤ (J2, P
′, Q′) if J1 ≤ J2 and there exist opposite Borel sub-

groups B and B−, such that B ⊆ P ∩ P ′ and B− ⊆ Q ∩Q′.

Then define on E(λ)

≤r = R◦ ≤

and

≤` = L◦ ≤ .

Proof. Assume that GeG = GfG. Then one checks, as in Lemma 3.4 of [95],
that

~

{
eM = fM if and only if P (e) = P (f) and
Me = Mf if and only if P−(e) = P−(f) .

Next we check that ψ is bijective. Let (J, P,Q) ∈ E(λ). Then P = P (e)
for some e ∈ E(J). Further, by the results of [83], P is opposite to P−(e).
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So by standard results there exists g ∈ P such that g−1P−(e)g = Q. Thus,
(J, P,Q) = ψ(g−1eg). Conversely, if ψ(e) = ψ(f), then by ~ above that
eM = fM and Me = Mf . But then e = f , by an elementary semigroup
calculation.

For the remainder of the proof we refer the reader to Theorem 3.5 of [95].
Notice that, in view of ~ above, all that remains here is to check that e ≤ f
if and only if ψ(e) ≤ ψ(f).

The moral of the story is that, once we know λ, we obtain E automati-
cally. If we also know G, then we can reconstruct M up to a kind of “central
extension” abstractly. It can be seen direcly that E(M) is a biordered set
in the sense of Nambooripad [64].

7.2 The Cross Section Lattice and the Weyl Chamber

Let M be a reductive algebraic monoid. For the results of this section, it
is not necessary to impose any other restrictions. We need to show how the
cross-section lattice Λ can be described in terms relating X(T ) and the set of
dominant weights

X(T )+ = {χ ∈ X(T ) | ∆α(χ) ≥ 0 for all α ∈ ∆}

where ∆α : X(T ) −→ Z is defined by the equation

χ− sα(χ) = ∆α(χ)α.

Let e ∈ E(T ). Then eT is also a D-monoid with unit group eT . So let
X(eT ) denote the monoid of characters of eT . Consider

µe =

{
χ ∈ X(eT ) ⊆ X(T )

∣∣∣∣
χ 6= 0 and
χeT\eT = 0

}

where X(eT ) ⊆ X(T ) via the map T → eT , z → ez. One can easily check
that

X(T )\{0} =
⊔

e∈E(T )

µe .

Let ∆ be the set of simple roots of G relative to B and T . For α ∈ ∆ let
Uα be the one dimensional, unipotent subgroup of B, normalized by T with
weight α.

Lemma 7.3. Let α ∈ ∆ and e ∈ E(T ). The following are equivalent:

a) Uαe = eUαe;
b) either Uαe = eUα, or else Uαf = f for all f ∈ E1(eT ).
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Proof. In case eUα 6= e and Uαe 6= e, one obtains that Uαe = eUαe. Otherwise,
if Uαf = f for all f ∈ E1(eT ) yet Uαe 6= eUαe (i.e. Uαe 6= eUα and Uαe 6= e),
then eUα = e 6= Uαe is the only other possibility. Hence σαeσα 6= e and thus,
σαfσα 6= f for some f ∈ E1(eT ). But then fUα = feUα = fe = f . Hence
Uαf 6= f , since fσα 6= σαf . Contradiction.

Lemma 7.4. a) The following are equivalent:
i) Uαe = eUα (equivalently, sαe = esα);

ii) ∆α(χ) = 0 for some χ ∈ µe.
b ) The following are equivalent (assuming Uαe 6= eUα).

i) Uαf = f for all f ∈ E1(eT );
ii) ∆α(χ) > 0 for some χ ∈ µe.

Proof. For a), first note that, for χ ∈ µe, ∆α(χ) = 0 iff sα(χ) = χ. But
sα(µe) = µe′ where e′ = sαesα. Hence sα(µe) ∩ µe 6= φ iff sαesα = e. Ac-
cordingly, if χ ∈ µe and sα(χ) = χ, then χ ∈ sα(µe) ∩ µe. Conversely, if
χ1 ∈ sα(µe) ∩ µe 6= φ, then χ1sα(χ1) ∈ µe and ∆α(χ) = 0.

For b), assume first that Uαf = f for all f ∈ E1(eT ). Now fT ∼= K as
algebraic varieties. Hence there is a unique character χf ∈ X(T ) such that
O(fT ) = K[χf ]. But from Lemma 3.6 of [109], ∆α(χf ) ≥ 0. Now

K[eT ] = K[χ | χn ∈ 〈χf1 , . . . , χf2〉 for some n > 0] (∗)

where {fi}
s
i=1 = E1(eT ). Now if ∆α(χf ) = 0 for all f ∈ E1(eT ), then

sα(χf ) = χf for all f ∈ E1(eT ). Hence by (∗), sα(K[eT ]) = K[eT ] and
so sαe = esα. Thus Uαe = eUα, a contradiction. Thus ∆α(χf ) > 0 for some
f ∈ E1(eT ). Hence ∆α(χ) > 0 for all χ ∈ µe. Conversely, suppose that
∆α(χf ) > 0 for some f ∈ E1(eT ). Consider

χ = χNf χf2 · . . . · χfs ∈ µe

where N > 0 and E1(eT ) = {f, f2, . . . , fs}. Then ∆α(χ) < 0 if N >> 0. This
is a contradiction.

Theorem 7.5. The following are equivalent for e ∈ E(T )\{0}.

a) e ∈ Λ\{0};
b) there exists χ ∈ µe such that ∆α(χ) ≥ 0 for all α ∈ ∆.

Proof. Now e ∈ Λ′ := Λ\{0} if and only if for all α ∈ ∆ either Uαe = eUα
or else Uαe 6= eUα and Uαf = f for all f ∈ E1(eT ). By Lemma 7.4 this is
equivalent to:

For each α ∈ ∆, either

∆α(χ) = 0 for some χ ∈ µe

or else
∆α(χ) > 0 for all χ ∈ µe .

Thus, e ∈ Λ\{0} if and only if for all α ∈ ∆ either
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i) ∆α(χ) = 0 for some χ ∈ µe, or else
ii) ∆α(χ) > 0 for all χ ∈ µe.

Hence b) implies a).
Conversely, if e ∈ Λ\{0} then ∆ = ∆1 t∆2, where

∆1 = {α ∈ ∆ | sαe = esα}

and

∆2 = {α ∈ ∆ | sαe 6= esα}.

Let χ0 ∈ µe and define

χ =
∏

w∈W∆1

w(χ0) ∈ µe .

Then ∆α(χ) = 0 for all α ∈ ∆. But ∆α(χ) > 0 for all α ∈ ∆2.

Theorem 7.5 has a very appealing geometric interpretation.
One can identify E(T ) with the face lattice F of the rational polyhedral

coneX(T )⊗Q+ ⊆ X(T )⊗Q. Furthermore,X(T )⊗Q+ isW -invariant. We can
think of µe⊗Q+ as the topological interior of X(eT )⊗Q+ ∈ F. Theorem 7.5
says that

Λ =

{
e ∈ E(T )

the interior of X(eT )⊗Q+ meets
X(T )+ ⊗Q+

}
.

Clearly, |ClW (e) ∩ Λ| = 1 for all e ∈ E(T ).
Recall that a reductive monoid M is semisimple if the center of G is

one-dimensional and M has a zero element. In this case the zero element
of M is in the closure Z of Z the one-dimensional connected center of M .
As Z is contained in any maximal torus T of G, we have in particular that
Z ⊆ T . Thus we obtain the induced (dual) map on the corresponding character
monoids:

γ : X(T )→ X(Z) ∼= N.

This γ determines, on the associated rational polyhedral cones, a homomor-
phism

ζ : X(T )⊗Q+ → X(Z)⊗Q+ ∼= Q+,

by setting ζ = γ ⊗ 1. For M semisimple we make the following definition.

Definition 7.6. Let
P = ζ−1(1).

P is the polytope of M .
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From the above results, P is W -invariant, and the face lattice F of P is canon-
ically identified with E(T ). Furthermore, we can identify Λ as a subset of F

using Theorem 7.5.

Example 7.7. Let M = Mn(K), the semisimple monoid of n×n matrices over
K. In this case Z = {αIn | α ∈ K

∗ }, where In is the identity n×n matrix. If
T is the D-group of invertible diagonal matrices then T is the set of diagonal
matrices and ζ : X(T )⊗Q+ → X(Z)⊗Q+ is easily identified with the map

ρ : (Q+)n → Q+

defined by ρ(s1, ..., sn) =
∑
i si. The polytope here is

P = {(s1, ..., sn) ∈ (Q+)n |
∑

i

si = 1 }.

The face lattice of P is easily identified with E(T )\{0}. Notice that characters
are written additively in this setup.

7.3 J-irreducible Monoids

We start with a simple lemma to focus our discussion.

Lemma 7.8. Let M be a reductive monoid with zero 0 ∈ M . Let Λ ⊆ E(T )
be a cross section lattice. The following are equivalent.

a) Λ\{0} has a unique minimal element e0 (so that e0f = e0 for all f ∈ Λ\0);
b) there exists a rational representation ρ : M −→ End(V ) such that

i) V is irreducible over M .
ii) ρ is a finite morphism.

Proof. Assume that ρ : M −→ End(V ) is as in b). Suppose that e1, e2 ∈ Λ\0
are minimal elements yet e1 6= e2. Then e1Me2 = 0. But ρ(Me1)V and
ρ(Me2)V are M -submodules of V . Thus, ρ(Me1)V = ρ(Me2)V = V . But
then ρ(e1)V = ρ(e1)ρ(Me2)V = ρ(e1Me2)V = 0, so that ρ(e1) = 0. But this
is impossible since ρ is a finite morphism.

Now assume that Λ\{0} has a unique minimal element e. Let ρ : M −→
End(W ) be a finite morphism of algebraic monoids [82]. If we replace W by

W =

n⊕

i=1

Wi/Wi−1, where W0 ⊆ W1 ⊆ · · · ⊆ Wn = W is a composition

series of W , then gr(ρ) : M −→ End(W ) is also a finite morphism since, by

regularity of M , gr(ρ)−1(0) = {0}. So assume that W =

n⊕

i=1

Vi where each Vi

is irreducible. Now ρ(e) 6= 0, since ρ is finite. Say ρ(e)(V1) 6= 0. Thus we let
ρ1 = ρ|V1. Then ρ : M −→ End(V1) is the desired irreducible representation.
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Definition 7.9. Let M be as in Lemma 7.8. We say that M is J-irreducible.

The major purpose of this chapter is to determine the cross section lattices
and the type maps of J-irreducible reductive moniods. But first, let us notice
what determines the cross section lattice Λ and the type map λ : Λ→ 2S .

Given M as in Lemma 7.8, we observe several discrete invariants.

i) the type of the representation ρ : M −→ End(V )
ii) λ(e0) = J0 = {s ∈ S | se0 = e0s} ⊆ S
iii) {g ∈ G | ge0 = ege0} = P (e0) < G.

To define the type of ρ, let B ⊆ G be a Borel subgroup and let L ⊆ V be the
line such that ρ(B)L = L. Then the type of ρ is the parabolic subgroup

P = {g ∈ G | ρ(g)L = L} .

These invariants all amount to the same thing. Indeed, P = P (e0) =⊔

w∈WJ0

BwB and L = e0(V ). So our mission here is as follows.

Determine the type map λ : Λ→ 2S in terms of λ(e0) = J0 ⊆ S where
e0 ∈ Λ\{0} is the minimal element.

For the remainder of this section we assume that M is a J-irreducible monoid.

Lemma 7.10. Let e, f ∈ E(M) be nonzero idempotents. Then P (e) = P (f)
if and only if eRf .

Proof. If eRf , then f = eg for some g ∈ G. Hence fe = e. If x ∈ R(e),
then xe = exe and so xf = xeg = exeg = fexeg = fexf . Hence f(xf) =
f(fexf) = fexf = xf . Thus, P (e) ⊆ P (f). By symmetry, P (f) ⊆ P (e).

Conversely, assume that P (e) = P (f). Assume that e ∈ T ⊆ P (e). Now
there exists g ∈ P (f) such that f ′ = gfg−1 ∈ T . Then fRf ′ and P (f) =
P (f ′). So without loss of generality, f = f ′. Now let h ∈ E1(T ) be such that
he = eh = h. Then there exists a cross section lattice Λ such that e, h ∈ Λ.
Then

B = {g ∈ G | gh = hgh for all h ∈ Λ}

⊆ P (e)

since e ∈ Λ. But B ⊆ P (e) = P (f). Hence by definition,

f ∈ {h ∈ E(T ) | gh = hgh for all g ∈ B} = Λ .

Since h ∈ Λ is the unique, nonzero, minimal element of Λ, we have fh = h.
But this is true for any h ∈ E1(eT ) = {h1, . . . , hs}, the set of minimal, nonzero
idempotents of eT . Thus f = e since e = h1 ∨ · · · ∨ hs. Similarly, f = fe. So
e = f .
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Lemma 7.10 is the crux of the matter. Indeed, let

λ : Λ\{0} −→ 2S ,

where λ(e) = {s ∈ S | se = es}, be the type map. Then P (e) = Pλ(e). Hence
by Lemma 7.10, λ is injective. Thus it remains to find λ(Λ\{0}) ⊆ 2S and to
recover the J-ordering on Λ from this image.

Definition 7.11. For e ∈ Λ define

λ∗(e) = {s ∈ S | se = es 6= e}

λ∗(e) = {s ∈ S | se = es = e}.

It is easy to check that e ≥ f implies that both λ∗(f) ⊆ λ∗(e) and λ∗(e) ⊆
λ∗(f). In particular, λ∗(e) ⊆ λ∗(e0) = J0. But we can do much more here. It
turns out that we can characterize {I ∈ 2S | I = λ∗(e) for some e ∈ Λ\0} and
that λ∗(e) determines λ∗(e) ⊆ J0.

First recall the graph structure on S:

s and t are joined by an edge if st 6= ts.

Therefore we can talk about the connected components of any subset of
S. The following theorem is the main result of [95].

Theorem 7.12. a) The following are equivalent for I ⊆ S.
i) I = λ∗(e) for some e ∈ Λ\{0}.

ii) No connected component of I lies entirely in J0.
Furthermore, if e ≥ f then λ∗(e) ⊇ λ∗(f)

b) For any e ∈ Λ\{0}, λ∗(e) = {s ∈ J0\λ
∗(e) | st = ts for all t ∈ λ∗(e)}.

Proof. For b) we refer the reader to the straightforward calculation of Lemma
4.10 of [95]. For a), first notice that e 7→ λ∗(e) is an injection Λ\{0} −→ 2S

since λ is injective and it is determined by λ∗. Furthermore, if e ≥ f then
eMe ⊇ fMf , while λ∗(e) is canonically identified with the simple reflections
of eMe (and similarly for f). Hence λ∗(e) ⊇ λ∗(f).

To see why i) and ii) are equivalent, we start with e0 and notice that
λ∗(e0) = φ; and then work our way “up”. The key step is Theorem 4.13 of
[95].

For e ∈ Λ\{0} there is a canonical bijection between {f ∈ Λ\{0} | f covers
e} and

{s ∈ S | se 6= es}. (∗)

Hence f corresponds to the unique s with λ∗(f) = λ∗(e) ∪ {s}.
To find f given s, consider WI where I = λ∗(e) ∪ {s}. Then it is eas-

ily checked that there is a minimal element e′ ∈ ΛWI = {e ∈ Λ | we =
ew for all w ∈ WI} such that e′e = ee′ = e and e′ 6= e. This gives us “a foot
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in the doorway” since λ∗(e′) ⊇ µ(e) ∪ {s}. We can now find f by induction
on dimM using the J-irreducible monoid e′Me′.

Now, given I ⊆ S as in a) ii), let

K1 = S\J0

K2 = K2 ∪ {s ∈ I\K1 | st 6= ts1, some t ∈ K1}

...

Ki = Ki−1 ∪ {s ∈ I\Ki−1 | st 6= ts, some t ∈ Ki−1}

...

By definition I = Ks for some s > 0. But from (∗) applied repeatedly, there
exists ei ∈ Λ\{0} such that λ∗(ei) = Ki.

Remark 7.13. a) Theorem 7.12 provides an algorithm for calculating Λ and
λ : Λ −→ 2S for any J-irreducible monoid M in terms of J0 = λ(e0) =
λ∗(e0). In each case, S\J0 corresponds to the set of fundamental dominant
weights involved in the associated irreducible representation of M .

b) One defines a reductive monoidM , with zero, to be Ji-irreducible if |Λj | =
1 for all j ≤ i. The reader can check that

i) M is J2-irreducible if and only if J0 = S\{s} for some s ∈ S,
ii) M is J3-irreducible if and only if J0 = S\{s} where s corresponds to

an end node on the Dynkin diagram of G. See Figure 7.1 below.
c) One can use Theorem 7.12 to characterize other classes of J-irreducible

monoids.
i) We say that a semisimple monoid M is J-simple if each H-class of
M has at most one simple component. It turns out that M is J-
simple if and only if S is connected and M is either J2-irreducible or
S\J0 = {s, t} where st 6= ts. See Figure 7.2 below and Exercise 3 of
7.7.1.

ii) Λ(M) is a distributive lattice if and only if S\J0 is connected.

7.4 Explicit Calculations of the Type Map

In this section we illustrate Theorem 7.12 by using it to calculate the type
maps of several interesting classes of J-irreducible monoids. In our first exam-
ple we calculate the type maps associated with the adjoint representation.

7.4.1 The Type Map for the Adjoint Representations

In this subsection we illustrate Theorem 7.12 by calculating the type maps
for the monoids associated with the adjoint representations of simple groups.
Here M = K∗Ad(G) ⊆ End(g) where g is the Lie algebra of G. Also, by b)
of Theorem 7.12, it suffices to calculate
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{λ∗(e) | e ∈ Λ\{0}}

in each case. We also include the Hasse diagram of Λ in each case, along with
an illustration of the corresponding extended Dynkin diagram. The reader
can use the extended Dynkin diagram to “see” how Theorem 7.12 is used to
calculate Λ.

a) Type A`:

S = {s1, . . . , s`}

sisj 6= sjsi if |i− j| = 1

J0 = {s2, . . . , s`−1}

λ∗(Λ\{0}) = {S\{si, si+1, . . . , sj} | 1 ≤ i ≤ j ≤ `} ∪ {S} .
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b) Type B`:

S = {s1, . . . , se}

sisj 6= sjsi if |i− j| = 1

J0 = {s1, s3, . . . , s`}

λ∗(Λ\0) = {φ; {s2}; {s1, s2}, {s2, s3}; . . .

. . . ; {s1, s2, . . . , si}, {s2, s3, . . . , si+1}; . . .

. . . ; {s1, . . . , s`−1}, {s2, . . . , s`}; {s1, . . . , s`}}.
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c) Type C`:

S = {s1, . . . , s`}

sisj 6= sjsi if |i− j| = 1

J0 = {s2, s3, s4, . . . , s`}

λ∗(Λ\0) = {φ; {s1}; {s1, s2}; . . . ; {s1, . . . , si}; . . . , {s1, . . . , s`}} .
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d) Type D`:

S = {s1, . . . , s`−2, s`−1, s`}

sisj 6= sjsi if |i− j| = 1 and i, j ≤ `− 1 or {i, j} = {`− 2, `} .

J0 = {s1, s3, s4, . . . , s`}

λ∗(Λ\0) = {φ; {s2}; {s1, s2}, {s2, s3}; {s1, s2, s3}, {s2, s3, s4}; . . . ;

{s1, s2, . . . , s`−3}, {s2, s3, . . . , s`−2};

{s1, s2, . . . , s`−2}, {s2, s3, . . . , s`−2, s`}, {s2, s3, . . . , s`−1};

{s1, s2, . . . , s`−2, s`}, {s1, s2, . . . , s`−1}, {s2, s3, . . . , s`};

{s1, s2, . . . , s`}}.
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e6) Type E6:
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S = {s1, s2, s3, s4, s5, s6}

sisj 6= sjsi if {i, j} ∈ {{1, 2}, {2, 3}, {3, 4}, {3, 5}, {5, 6}}

J0 = {s1, s2, s3, s5, s6}

λ∗(Λ\0) = {φ; {s4}; {s3, s4}; {s2, s3, s4}, {s3, s4, s5};

{s1, s2, s3, s4}, {s2, s3, s4, s5}, {s3, s4, s5, s6};

{s1, s2, s3, s4, s5}, {s2, s3, s4, s5, s6}; {s1, s2, s3, s4, s5, s6}}.
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e7) Type E7:

S = {s1, s2, s3, s4, s5, s6, s7}

sisj 6= sjsi if {i, j} ∈ {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {4, 6}, {6, 7}}

J0 = {s2, s3, s4, s5, s6, s7}

λ∗(Λ\0) = {φ; {s1}; {s1, s2}, {s1, s2, s3}; {s1, s2, s3, s4}, {s1, s2, s3, s5};

{s1, s2, s3, s4, s5}, {s1, s2, s3, s5, s6}; , {s1, s2, s3, s4, s5, s6},

{s1, s2, s3, s5, s6, s7}; {s1, s2, s3, s4, s5, s6, s7}}.
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e8) Type E8:

S = {s1, s2, s3, s4, s5, s6, s7, s8}

sisj 6= sjsi if {i, j} ∈ {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {5, 7}, {7, 8}}

J0 = {s2, s3, s4, s5, s6, s7, s8}
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λ∗(Λ\0) = {φ; {s1}; {s1, s2}; {s1, s2, s3}; {s1, s2, s3}; {s1, s2, s3, s4},

{s1, s2, s3, s4, s5}; {s1, s2, s3, s4, s5, s6}, {s1, s2, s3, s4, s5, s7};

{s1, s2, s3, s4, s5, s6, s7}, {s1, s2, s3, s4, s5, s7, s8};

{s1, s2, s3, s4, s5, s6, s7, s8}}.
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f) Type F4:

S = {s1, s2, s3, s4}

sisj 6= sjsi if |i− j| = 1

J0 = {s2, s3, s4}

λ∗(Λ\0) = {φ; {s1}; {s1, s2}; {s1, s2, s3}; {s1, s2, s3, s4}} .
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g) Type G2:

S = {s1, s2}

s1s2 6= s2s1

J0 = {s1}

λ∗(Λ\0) = {φ; {s1}; {s1, s2}} .
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In each of these examples one may also interpret Λ\{0} as the lattice of
centers of unipotent radicals of standard parabolic subgroups.

7.4.2 Further Examples of the Type Map

In this subsection we illustrate Theorem 7.12 with two classes of pictorial
diagrams, Figure 7.1 and Figure 7.2.

In Figure 7.1 we calculate (λ,Λ) for all J-irreducible monoids with J0 =
S\{s}. These cross section lattices correspond to J-irreducible monoids that
arise from dominant weights µ of the form µ = aω, where ω is a fundamental
dominant weight.

In Figure 7.2 we calculate (λ,Λ) for all J-irreducible monoids with J0 =
S\{s, t} and st 6= ts. These cross section lattices correspond to J-irreducible
monoids that arise from dominant weights µ of the form µ = aω1 + bω2 where
ω1 and ω2 are adjacent fundamental dominant weights. See Exercise 3 of 7.7.1
for another characterization of this class of J-irreducible monoids.

The structure of J-irreducible monoids has a peculiar, but interesting rela-
tionship with irreducible representations. The following result is originally due
to S. Smith [126]. It becomes useful in the development of Putcha’s abstract
theory of monoids of Lie type. See Chapter 10.

Proposition 7.14. Let ρ : G −→ G`(V ) be an irreducible representation and
let P < G be parabolic with U = Ru(P ) such that B ⊆ P . Let M = K∗ρ(G)
be the associated J-irreducible monoid, with Λ, T and B as usual. Then

a) V U is an irreducible P/Ru(P )-module
b) e 7→ V Ru(P (e)) is a 1-1 correspondence between Λ\{0} and {V Ru(P ) | P ⊇
B}.

Proof. Assume first that P = P (e) for some e ∈ Λ\{0}. Let W = V U . Since
V is irreducible, we have that WBu/U = V Bu is one-dimensional. Hence W
is an indecomposable P/U -module. Now e ∈ CG(e) and so e : W → W is a
CG(e)-module homomorphism. Hence

W = e(W )⊕ ker(e)

as CG(e)-modules. But, as already mentioned, W is indecomposable. Hence
ker(e) = 0 and W = e(W ) = e(V ). But e(V ) is irreducible over eMe by an
easy calculation as in Proposition 5.1 of [95]. Thus, e(V ) = V U is irreducible
over P .
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Fig. 7.1. Λ\{0} for J2-irreducible monoids. This is the case where J0 = S\{s}.
Each lattice is labeled by S\J0.
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An, Bn, Cn, F4, G2 :
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Fig. 7.2. Λ\{0} for J-irreducible monoids with J0 = S\{s, t} and st 6= ts. Again
each lattice is labeled by S\J0.
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Now assume that P < G is any standard parabolic subgroup. We can then
find e ∈ Λ\{0} such that eCG(e) = eCP (e) and P ⊆ P (e). Indeed, let P = PI ,
and write I = λ∗ t λ∗ where λ∗ ⊆ J0 consists of all connected components
of I lying in J0. Then e ∈ Λ\{0} is the unique idempotent with λ∗(e) = λ∗.
Hence

e(V ) = V Ru(P (e)) ⊇ V Ru(P ) .

But Ru(P )e = {e} and so e(V ) ⊆ V Ru(P ) also. This completes the proof.

It turns out that any subspace of V , of the form V U (where U is the
unipotent radical of some standard parabolic subgroup Q = PI), is already
of the form V U = e(V ) where e ∈ Λ\{0}. In fact, e ∈ Λ\{0} is the unique
minimal element of {e ∈ Λ\{0}|se = es for all s ∈ I}. For more detail, see
Corollary 5.4 of [95].

7.5 2-reducible Reductive Monoids

In this section we study the orbit structure of semisimple algebraic monoids
with exactly two nonzero minimal orbits. These results were first obtained in
a joint paper with Putcha [98].

The case of one minimal orbit was diccussed in the previous section. The
present situation is more complicated, but our results are still very precise and
revealing. We associate with each 2-reducible monoid M , certain invariants
(I+, I−) and (∆+, ∆−). These invariants are not entirely independent, but
should be regarded as the minimal information needed to determine the much
sought after type map of M . We end the discussion with two carefully chosen
examples. The first one illustrates how the Cartan matrix is used in calculating
(∆+, ∆−) from (I+, I−) and the polytope of M .

Vinberg obtained a similar description of the G×G-orbits of his universal,
flat deformation monoid Env(G0) of the semisimple group G0. See § 6.3 for
a summary of these results.

A reductive monoid M is 2-reducible if M\{0} has exactly two minimal
G × G-orbits. Given a 2-reducible monoid M , we obtain certain invariants
(I+, I−) and (∆+, ∆−). From these, we calculate the cross section lattice Λ,
and the type map of M . But (I−, I+) and (∆+, ∆−) are not entirely inde-
pendent; and it appears that the final answer depends on the “shape” of the
inverse of the Cartan matrix; and not just the shape of the Dynkin diagram.

7.5.1 Reductive Monoids and Type Maps

Let M be reductive with unit group G, and let Λ be the cross-section lattice
of M , relative to T and B. Then

Λ = {e ∈ E(T ) | Be = eBe}.
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We let

Λ′ = Λ\{0},

so that by Theorem 4.5 c)

M =
⊔

e∈Λ

GeG.

Since Λ is a lattice, it has two operations, the meet ∧, and the join ∨. The
meet of e, f ∈ Λ is just there product ef in M . The join of e and f is the
smallest idempotent h ∈ Λ with he = e and hf = f .

In this section, we regard the type map

λ : Λ→ 2∆

as taking values in the set of subsets of ∆, the set of simple roots. This slight
change of notation should not cause difficulties.

Lemma 7.15. Let W (e) = Wλ(e) = {w ∈ W | we = ew}, the associated
parabolic subgroup of W . Let W∗(e) = {w ∈ W | we = ew = e}, and W ∗(e) =
{w ∈ W | we = ew 6= e}. Then

a) λ∗(e) =
⋂
f≤e λ(f) and W∗(e) =

⋂
f≤eW (f);

b) λ∗(e) =
⋂
f≥e λ(f) and W ∗(e) =

⋂
f≥eW (f).

It follows from Lemma 7.15 that

i) for e ∈ Λ, λ(e) = λ∗(e) t λ∗(e);
ii) for e, f ∈ Λ, λ(e) ∩ λ(f) ⊆ λ(e ∨ f) ∩ λ(e ∧ f);
iii) for e ∈ Λ, W (e) = W ∗(e)×W∗(e);
iv) if e ≥ f then λ∗(e) ⊆ λ∗(f) and λ∗(f) ⊆ λ∗(e). Furthermore, λ∗ restricted

to eMe is the λ∗ of eMe, and λ∗ restricted to Me is the λ∗ of Me.

Here, eMe is the reductive monoid with unit group eCG(e), and Me = Ge,
where Ge = {g ∈ G | ge = eg = e}0; Me is also a reductive monoid.

Definition 7.16. Let M,Λ and λ be as above. Let Λ1 ⊆ Λ be the subset of
nonzero minimal elements.

a) The core C of Λ is

C = {e ∈ Λ | e = e1 ∨ · · · ∨ ek, for some ei ∈ Λ1}.

b) Define θ : Λ′ → C by

θ(e) = ∨{f ∈ Λ1 | f ≤ e}

so that, if e1 ≤ e2, then θ(e1) ≤ θ(e2).
c) Write Λ′ =

⊔
h∈C Λh, where Λh = θ−1(h)
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Recall that a reductive monoidM with zero is semisimple if dim(Z(G)) =
1. For any semisimple monoid M , there is a special relationship between Λ′

and S ⊆ X(T ). If α ∈ ∆ then by Theorem 10.20 of [82] there exists eα ∈ Λ
′

such that P (eα) = P∆\{α}. Morover, eα is unique. See Lemma 7.22 below.

Definition 7.17. Let C ⊆ Λ′ be the core.

a) Define π : ∆→ C by π(α) = θ(eα).
b) Write ∆ = th∈C∆h, where ∆h = π−1(h).

Proposition 7.18. a) If e ∈ Λh then

λ∗(e) = {α ∈ λ∗(h) | sαsβ = sβsα for all β ∈ λ
∗(e)}.

b) If e ∈ Λh and f ∈ Λk then

e ≤ f if and only if h ≤ k and λ∗(e) ⊆ λ∗(f).

Proof. Consider a). Since e ≥ h, λ∗(e) ⊆ λ∗(h). Let α ∈ λ∗. Then since
W (e) = W ∗(e)×W∗(e), sαsβ = sβsα for all β ∈ λ∗(e).

So it remains to prove the reverse inclusion. Now E(eT ) is the face lattice
of a polytope (see Section 4). Therefore e is the join of the nonzero minimal
idempotents of E(eT ). Hence

e = ∨{xe′x−1 | e′ ∈ Λ1, e ≥ e
′, x ∈ W ∗(e)}.

Let α ∈ λ∗(h) be such that sαsβ = sβsα for all β ∈ λ∗(e). Then sαx = xsα
for all x ∈ W ∗(e). Let e′ ∈ Λ1 be such that e ≥ e′. Since e ∈ Λh, h ≥ e′. Let
x ∈W ∗(e). However, α ∈ λ∗(h). Hence

sαxe
′x−1 = xsαe

′x−1 = xe′x−1 = xe′sαx
−1 = xe′x−1sα.

By the above join formula for e, and Proposition 7.5 of [82], sαx = xsα. Thus,
sα ∈ W (e). Now sα commutes with all the nonzero minimal idempotents in
E(eT ), and thus, esα has the same property. Thus, esα commutes with all
idempotents of of eT . Since eW (e) acts faithfully on E(eT ), it follows from
Chapter 10 of [82] that esα = e. Hence sα ∈ W∗(e) and α ∈ λ∗(e).

For b), let h ≤ k and λ∗(e) ⊆ λ∗(f). Let e′ ∈ Λ1 be such that e ≥ e′. Then
e′ ≤ h ≤ k ≤ f . Let x ∈ W ∗(e) ⊆W ∗(f). Then,

fxe′x−1 = xfe′x−1 = xe′x−1.

Hence xe′x−1 ≤ f . Therefore by the above join formula for e, e ≤ f . The
converse is clear.
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7.5.2 The Type Map of a 2-reducible Monoid

Let M be a 2-reducible, semisimple monoid. Our terminology is well chosen
because of the following proposition.

Proposition 7.19. Let M be a semisimple monoid. The following are equiv-
alent.

a) M is 2-reducible;
b) i) there is a rational representation ρ : M → End(V ⊕W ) so that ρ is

finite as a morphism, and V and W are irreducible M -summands;
ii) M is not J-irreducible.

Proof. If M is 2-reducible, let Λ1 = {e, f}. There exist irreducible represen-
tations ρ1 : M → End(V ) and ρ2 : M → End(W ) such that ρ1(e) 6= 0 and
ρ2(f) 6= 0. It is easy to check that ρ = ρ1 ⊕ ρ2 does the job. Conversely, if
the conditions of b) are satisfied, let Λ1 = {e1, . . . , er}, where r ≥ 2. We can
assume that e1(V ) 6= 0. But then e1(V ) generates V as an M -module, and
so e2(V ) = 0 since e1Ge2 = 0. Thus e2(W ) 6= 0. But now for any i > 2,
ei(V ⊕W ) = 0. Thus r = 2.

In this section, we determine Λ and λ : Λ → 2∆ in terms of certain
invariants (I+, I−) and (∆+, ∆−).

Write
Λ1 = {e+, e−}.

Then
C = {e+, e−, e0},

where e0 = e+ ∨ e−. Let

I+ = λ∗(e+), I− = λ∗(e−) and I0 = λ∗(e0).

Then
I0 = I+ ∩ I−.

By 7.16 c),
Λ′ = Λ+ t Λ− t Λ0

and by 7.17 b)
∆ = ∆+ t∆− t∆0

where ∆+ = π−1(e+), ∆− = π−1(e−), and ∆0 = π−1(e0). Hence

i) α ∈ ∆+ if eα ≥ e+ and eα 6≥ e−;
ii) α ∈ ∆− if eα ≥ e− and eα 6≥ e+;
iii) α ∈ ∆0 if eα ≥ e+ and eα ≥ e−.

See the paragraph preceding Definition 7.17 the definition of eα. By Proposi-
tion 7.18, our problem is reduced to determining λ∗(Λ+), λ∗(Λ−) and λ∗(Λ0).
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Remark 7.20. If M is 2-reducible but not semisimple, then dim(Z(G)) = 2.
One can then show that, in this situation,

a) λ∗(Λ+) = {X ⊆ ∆| no component of X is in I+}
b) λ∗(Λ−) = {X ⊆ ∆| no component of X is in I−}
c) λ∗(Λ0) = {X ⊆ ∆| no component of X is in I0}.

In this case, M is a special case of the multilined closure with n = 2. Here n
is the number of minimal G × G orbits of M\{0}. The multilined closure is
an appealing situation where the lattice of orbits and the type map can be
written down directly in terms of the types of the minimal orbits. This has
been described in generality in Chapter 6. See also Remark 7.21 below for the
case n = 1. In any case, the semisimple case is more complicated. It is also
more interesting.

Remark 7.21. We shall freely use the results from § 7.3 about J-irreducible
monoids in the proof of Theorem 7.23 below. Notice that Proposition 7.18
includes Theorem 7.12 as a special case.

We now return to the 2-reducible case.

Lemma 7.22. ∆+ 6= φ and ∆− 6= φ.

Proof. Choose a maximal e ∈ Λ+. Then e is covered by some f ∈ Λ0. Fur-
thermore, f is unique, since if e is also covered by h ∈ Λ0, and f 6= h, then
e = fh ≥ e0, a contradiction. Thus, both fMf and Mf are J-irreducible,
and hence semisimple. Hence λ(e) = ∆\{α} for some α ∈ ∆. This e ∈ Λ is
actually unique with λ(e) = ∆\{α}. (The connnected center Z of CG(e) is
two dimensional. So Z has exactly four idempotents {e, f, 0, 1}. P (f) is the
opposite parabolic of P (e). But then B 6⊆ P (f), so that f 6∈ Λ.) In any case,
α ∈ ∆+. Similarly, ∆− 6= φ.

As we already mentioned, we want to determine λ : Λ → 2∆ in terms
of I+, I−, ∆+ and ∆−. By Proposition 2.5, it suffices to determine the sets
λ∗(Λ+), λ∗(Λ−) and λ∗(Λ0). Let

A+ = {X ⊆ ∆ | no component of X is contained in I+, ∆+ 6⊆ X}
A− = {X ⊆ ∆ | no component of X is contained in I−, ∆− 6⊆ X}
A0 = {X ⊆ ∆ | no component of X is contained in I0, and either ∆+ 6⊆
X and ∆− 6⊆ X or else ∆+ ∪∆− ⊆ X}.

Theorem 7.23.
a) λ∗(Λ+) = A+;
b) λ∗(Λ−) = A−;
c) λ∗(Λ0) = A0.

In all cases, λ∗ is injective.
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Proof. Suppose first thatX ∈ A+. Then α 6∈ X for some α 6∈ ∆+. By Theorem
10.20 of [82], there exists e ∈ Λ+ such that λ(e) = ∆\{α}. Hence X ⊆ λ(e).
By Proposition 7.18 a), X ⊆ λ∗(e). Now eMe is a J-irreducible monoid of
type I+ ∩ λ

∗(e). Since no component of X is contained in I+, there exists
f < e such that λ∗(f) = X . Clearly, f ∈ Λ+.

Conversely, let f ∈ Λ+. Let e ∈ Λ+ be maximal such that f ≤ e. By
the proof of Lemma 7.22, |λ(e)| = |∆| − 1. Hence λ(e) = ∆\{α} for some
α ∈ ∆+. Also, λ∗(f) ⊆ λ∗(e) ⊆ ∆\{α} by iv) following Definition 7.16. Hence
λ∗(f) ∈ A+, by Proposition 7.18 a).

Similarly, λ∗(Λ−) = A−.
To prove c), we proceed by induction on dim(M). Let f ∈ Λ0. Then f ≤ e

for some maximal e 6= 1. So eMe is a 2-reducible monoid. First, suppose that
eMe is not semisimple. Then by Remark 7.20, λ(e) = λ∗(e) = ∆\{α1, α2}.
By Proposition 7.18, α1, α2 6∈ ∆0. Suppose that α1, α2 ∈ S+. Then there exist
e1, e2 ∈ Λ+ such that λ(e1) = ∆\{α1} and λ(e2) = ∆\{α2}. By Remark 7.20,
there exists h ∈ Λ+ such that e covers h and λ(h) ⊆ ∆\{α1, α2}. By Proposi-
tion 7.18 b), h < e1 and f < e2. But {1, e2, h} is a maximal chain in E(Th).
So dim(Th) = 2, while {1, e1, e2, e, h} ⊆ E(T h). This is a contradiction since
|E(T h)| = 4 for such D-monoids. Similarly, α1, α2 ∈ ∆− leads to a contradic-
tion. So assume that α1 ∈ ∆+ and α2 ∈ ∆−. Then by Proposition 7.18 b),
λ∗(f) ⊆ λ∗(e) = ∆\{α1, α2}. Hence λ∗(f) ∈ A0.

Next assume that eMe is semisimple. Then λ(e) = λ∗(e) = ∆\{β} for
some β ∈ ∆0. Correspondingly, in eMe, let

∆\{β} = ∆′
+ t∆

′
0 t∆

′
−.

Let λ1 denote λ in eMe. We claim that ∆+ = ∆′
+. Let α ∈ ∆+. Since eMe

is a semisimple monoid, there exists e1 < e such that λ1(e1) = ∆\{α, β}. If
λ(e1) = ∆\{α}, then e1 ∈ Λ+, and hence α ∈ ∆′

+. So assume that λ(e1) =
∆\{α, β}. Now λ(e2) = ∆\{α} for some e2 ∈ Λ+. However,

β 6∈ λ∗(e2) =⇒ λ∗(e2) ⊆ ∆\{β} =⇒ e2 ≤ e.

But
e2 ≤ e =⇒ λ1(e2) = ∆\{α, β} =⇒ e1 = e2 =⇒ α ∈ ∆′

+

Therefore let β ∈ λ∗(e2). Since e2 ∈ Λ+, e2Me2 is J-irreducible, and hence
semisimple. Let λ2 denote λ for e2Me2. There exists e3 < e2 such that
λ2(e3) = λ2(e2)\{β}. hence

∆\{α, β} = λ∗(e2) ∪ (λ∗(e2)\{β}) ⊆ λ2(e3) ∪ λ∗(e2) ⊆ λ(e3).

If λ(e3) = ∆\{β}, then e3 = e ∈ Λ0, a contradiction. Hence λ(e3) = ∆\{α, β}.
By Proposition 7.18 b), e3 < e and so α ∈ ∆′

+. Thus, ∆+ ⊆ ∆′
+. Similarly,

∆− ⊆ ∆
′
−.

Suppose that α ∈ ∆′
+, α 6∈ ∆+. Then α 6∈ ∆− since ∆− ⊆ ∆′

−. Hence
α ∈ ∆0. There exists e1 ∈ Λ+ with e1 < e such that λ1(e1) = ∆\{α, β}. Since
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α 6∈ ∆+, λ(e1) 6= ∆\{α}. Hence λ(e1) = ∆\{α, β}. Now λ(e2) = ∆\{α} for
some e2 ∈ Λ0, since α ∈ ∆0. By Proposition 7.18 b), e1 < e2. Hence e1 < ee2.
By ii) of § 7.5.1

∆\{α, β} = (∆\{α}) ∩ (∆\{β}) ⊆ λ(ee2).

By Proposition 7.18 b), λ(ee2) 6= ∆\{α} or ∆\{β}. Hence λ(ee2) = ∆\{α, β}.
Hence λ1(e1) = λ1(ee2) = ∆\{α, β}. Since eMe is semisimple, e1 = ee2 ∈ Λ0,
a contradiction. Hence ∆′

+ ⊆ ∆+ and so ∆′
+ = ∆+. Similarly, ∆′

− = ∆−. By
the induction hypothesis, λ∗(f) ∈ A0. Thus, λ∗(Λ0) ⊆ A0.

Conversely, let X ∈ A0. Suppose first that ∆+ ∪∆− ⊆ X,X 6= ∆. Then
X ⊆ ∆\{β} for some β ∈ ∆0. There exists f ∈ Λ0 such that λ(f) = ∆\{β}.
If fMf is semisimple, then ∆′

+ = ∆+ and ∆′
− = ∆− as above; and by the

induction hypothesis, λ∗(f ′) = X for some f ′ ∈ Λ0, f
′ ≤ f . If fMf is not

semisimple, then the same is true by Remark 7.21.
Suppose next that ∆+ 6⊆ X and ∆− 6⊆ X . Let α ∈ ∆+, β ∈ ∆− be

such that X ⊆ ∆\{α, β}. We first show that there exists f ∈ Λ0 such that
λ(f) = ∆\{α, β}. Now there exists e ∈ Λ+ such that λ(e) = ∆\{α}. Then
Me and eMe are both semisimple. Suppose that β ∈ λ∗(e). Then there exists
f > e such that λ1(f) = λ∗(e)\{β}, where λ1 is λ for Me. So in M (using iv)
following Lemma 7.15),

∆\{α, β} = (λ∗(e)\{β}) ∪ λ
∗(e) ⊆ λ(f).

Since f > e ≥ e+, f 6∈ Λ−. Hence, λ(f) 6= ∆\{β} and so λ(f) = ∆\{α, β}.
So e is central in fMf , and thus fMf is not J-irreducible. Hence, f 6∈ Λ+.
Thus f ∈ Λ0.

Assume next that β ∈ λ∗(e). Then there exists e1 < e such that λ1(e1) =
λ∗(e)\{β}, where λ1 is λ for eMe. So by iv) just following Lemma 7.15,

∆\{α, β} = (λ∗(e)\{β}) ∪ λ∗(e) ⊆ λ(e1).

Since e1 < e, e1 6∈ Λ−. Hence λ(e1) 6= ∆\{β} and so λ(e1) = ∆\{α, β}. Hence
e is central in Me1 . Thus Me1 has at least four central idempotents. So let f be
a central idempotent of Me1 such that f 6∈ {1, e, e1}. Then ∆\{α, β} ⊆ λ(f)
by iv) again. Since f > e1, f 6∈ Λ− and so λ(f) 6= ∆\{β}. Since f 6= e,
λ(f) 6= ∆\{α}. Thus λ(f) = ∆\{α, β}. If f ∈ Λ+, then fMf is J-irreducible,
and e1 is a central idempotent: a contradiction. Hence f ∈ Λ0.

There exists f ∈ Λ0 such that λ(f) = ∆\{α, β}. Hence either Mf is not
semisimple, or fMf is not semisimple. Suppose that Mf is not semisimple.
There exists f ′ > f , f 6= 1, such that f ′ is central in Mf . By iv) just after
Lemma 7.15, ∆\{α, β} ⊆ λ(f ′). Since f ′ ∈ Λ0, α ∈ ∆+, β ∈ ∆−, λ(f ′) 6=
∆\{α} and λ(f ′) 6= ∆\{β}. Hence λ(f ′) = ∆\{α, β}. Thus by iv) again, and
Proposition 7.18 b), f = f ′: a contradiction. Consequently Mf is semisimple.
But then fMf is not semisimple. Since X ⊆ ∆\{α, β}, X ⊆ λ∗(f). By
Remark 7.21, λ∗(f ′) = X for some f ′ ∈ Λ0, f

′ ≤ f . Thus A ⊆ λ∗(Λ0). This
concludes the proof.
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Corollary 7.24. The partial order on Λ is determined as follows. Let e, f ∈
Λ. Then the following are equivalent:

a) e ≤ f ;
b) i) λ∗(e) ⊆ λ∗(f), and

ii) e, f ∈ Λ+; e, f ∈ Λ−; e, f ∈ Λ0; e ∈ Λ+, f ∈ Λ0; or e ∈ Λ−, f ∈ Λ0.

Proof. This is straightforward using Proposition 7.18 and Theorem 7.23.

7.5.3 Calculating the Type Map Geometrically

In the previous section we found the exact description of the type map

λ : Λ→ 2∆

of a 2-reducible monoid by first identifying the necessary combinatorial invari-
ants (I+, I−) and (∆+, ∆−, ∆0). In this section we determine some geometric
refinements of that situation by calculating the decomposition

∆ = ∆+ t∆− t∆0

in terms of the coordinates of Λ1 = {e+, e−}, thought of as vertices of the
polytope P of M . The problem here is to determine which decompositions of
∆ are possible for a 2-reducible monoid M of type (I+, I−). This is no longer
a purely combinatorial problem.

Let M be a 2-reducible, semisimple monoid, and let T , T , Λ, etc. have the
usual meanings. As above, let P be the polytope of M . By Theorem 7.5, we
have a canonical bijection

ι : Λ1 → {x, y}.

We write ι(e+) = x and ι(e−) = y where {x, y} is the set of vertices of P that
are contained in X(T )+⊗Q+. Let Bd(P) be the boundry of P. For α ∈ ∆ let

i) Hα = SpanQ(∆\{α})
ii) H+

α = ConeQ+(∆\{α}).

For α ∈ ∆, let ωα ∈ X(T )+ ⊗ Q+ be the fundamental dominant weight that
is orthogonal to Hα.

Lemma 7.25. For any α ∈ ∆ there is a unique zα ∈ Q+ωα such that

(zα +Hα) ∩ P = (zα +Hα) ∩Bd(P) 6= φ.

Furthermore,

i) zα ∈ Bd(P)
ii) (zα +Hα) ∩ P is the face F of P corresponding to eα.
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Proof. Let e = eα be the unique idempotent such that λ(eα) = ∆\{α} (see
Lemma 7.22). Let F ∈ F be the face of P corresponding to e ∈ Λ. Then

Q+ωα ⊆ µe,

and thus Q+ωα ∩ F = {zα} (since F is a subset of zα + Hα, it must be
orthogonal to Qωα). Clearly, F ⊆ Bd(P).

Let I = ∆\{α}. Then F is WI -invariant. Thus F −zα is also WI -invariant.
But Qωα ∩ (F − zα) = {0}, and so (F − zα)WI = {0}. Thus F − zα ⊆ Hα.
Hence F ⊆ Hα + zα.

The author would like to thank Hugh Thomas for the proof of the following
Lemma.

Lemma 7.26. The following are equivalent:

a) x ∈ zα +Hα

b) x ∈ zα +H+
α

c) e+ ≤ eα.

The corresponding result holds with x replaced by y and e+ replaced by e−.

Proof. For α ∈ ∆, let C1 = Cone({ωα}) and C2 = Cone((∆\{α}) ∪ {ωα}).
We claim that C1 ⊆ C2. It suffices to show that ωβ ∈ C2 for any β ∈ ∆\{α}.
Now

X(T )⊗Q = Hα ⊕Qωα,

an orthogonal decomposition. So let

ωβ = x+ cωα.

It suffice to show that

i) c ≥ 0, and
ii) x ∈ Cone(∆\{α}).

To get i), we use the inner product. Since ωβ = x+ cωα, we obtain

< ωβ, ωα >=< x, ωα > +c < ωα, ωα > .

But < x, ωα >= 0, so that

c =< ωβ, ωα > / < ωα, ωα >,

and it is well known that this is non-negative.
To get ii), first notice that

< β, x >=< β, ωβ − cωα >=< β, ωβ >= 1.

But if γ 6= β, α, we obtain



116 7 Orbit Structure of Reductive Monoids

< γ, x >=< γ, ωβ − cωα >= 0.

So x is the dual of β in the root system (Hα, ∆\{α}). But it is well known
that, for any root system, the cone generated by the fundamental weights is
contained in the cone generated by the positive roots, since the inverse of the
Cartan matrix has positive entries. This proves the claim.

Now let C = Cone({ωα|α ∈ ∆}). We claim now that

(zα +Hα) ∩ C) = (zα +H+
α ) ∩ C.

From our first claim,

C =
⋃

r≥0

(rzα +H+
α ) ∩ C = C =

⋃

r≥0

(rzα +Hα) ∩ C.

But (rzα +Hα) ∩ (szα +Hα) = φ if r 6= s. Hence

(zα +Hα) ∩ C) ⊆ (zα +H+
α ) ∩ C,

and this establishes the second claim.
Now assume that x ∈ zα + Hα. Then since x ∈ P ∩ C, we get from the

claim that x ∈ zα + H+
α . So clearly, a) and b) are equivalent. Also a) and

c) are equivalent since, from Lemma 7.25, (zα + Hα) ∩ P is the face of P

corresponding to eα ∈ Λ; while x ∈ P is the vertex of P corresponding to e+.
This completes the proof.

Corollary 7.27. For each α ∈ ∆, either x ∈ zα +Hα, or else y ∈ zα +Hα.

Proof. {eα, e+, e−} ⊆ Λ
′, while Λ1 = {e+, e−}. Thus eα ≥ e+ or else eα ≥ e−.

Theorem 7.28. Write x− y =
∑
α∈∆ rαα, where rα ∈ Q.

a) The following are equivalent:
i) rα > 0

ii) eα ∈ Λ+

iii) x ∈ zα +H+
α , y 6∈ zα +H+

α .
b) The following are equivalent:

i) rα < 0
ii) eα ∈ Λ−

iii) y ∈ zα +H+
α , x 6∈ zα +H+

α .
c) The following are equivalent:

i) rα = 0
ii) eα ∈ Λ0

iii) x ∈ zα +H+
α , y ∈ zα +H+

α .

Proof. In each case, it suffices to show that i) and ii) are equivalent since, by
Lemma 7.26, ii) and iii) are equivalent. By Corollary 7.27, exactly one of a)
iii), b) iii) or c) iii) occurs.
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In case a), x ∈ zα +H+
α and y 6∈ zα +H+

α . Then

x = zα +
∑

β 6=α

aββ

and
y = zα +

∑

β∈∆

bββ.

But bα < 0, since y lies in the bounded part of C\(zα+Hα), and thus “below”
the hyperplane zα +Hα. Hence

x− y =
∑

β 6=α

aββ −
∑

β∈∆

bββ =
∑

β 6=α

(aβ − bβ)β − bαα.

Hence rα = −bα > 0 here. Case b) is similar to case a).
In case c) we can write

x = zα +
∑

β 6=α

aββ

and
x = zα +

∑

β 6=α

bββ.

Hence
x− y =

∑

β 6=α

(aβ − bβ)β

and thus, rα = 0 in this case.

7.5.4 Monoids with I+ = ∆\{α} and I
−

= ∆\{β}

In this section we exhibit some explicit calculations of the type maps of 2-
reducible monoids. We restrict our attention to certain monoids with group
G = Gln+1(K). The general problem here is to determine all possible
(+,−, 0)-decompositions of ∆ that can actually occur for the given I+ and I−.
We do not yet have a general solution to this intriguing problem. However,
our calculations indicate that it has something to do with linear programming
problems involving the inverse of the Cartan matrix.

So let G = Gln+1(K), and let us consider 2-reducible, semisimple monoids
M with unit group G. Let ∆ = {α1, . . . , αn} be the set of simple roots of G,
and {ω1, . . . , ωn} the set of fumdamental, dominant weights. Then it is well
known that, for i = 0, . . . , n− 1,

(n+1)ωi+1 = (n− i)α1 +2(n− i)α2 + · · ·+(i+1)(n− i)αi+1 + · · ·+(i+1)αn.

For convenience, we let
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xi+1 = (n+ 1)ωi+1.

Let M be a 2-reducible, semisimple monoid with unit group G and assume
that I+ = ∆\{α1}, I− = ∆\{αi+1}. The polytope P of M is the convex hull
of the W -orbit of {x, y} ⊆ X(T0) ⊗ Q+. Hence x is a rational multiple of
x1, and y is a rational multiple of xi+1. Without loss of generality, x = x1

and y = rxi+1 for some r > 0. By the results of Theorem 7.28, we need to
calculate

x− y =

n∑

i=1

riαi.

But that is elementary, and we obtain

i) rj = n− j + 1− j(r(n − i)) if j ≤ i
ii) rj = (1 − (i+ 1)r)(n− j + 1) if j > i.

By Corollary 7.27, we must have

i) n− r(n − i) > 0, and
ii) (1− (i+ 1)r) < 0.

Hence
1/(i+ 1) < r < n/(n− i).

For certain special values of r, rj can be zero. These values are

r = (n− j)/(j + 1)(n− i).

In any case, it is an elementary calculation. We summarize our results as
follows.

Theorem 7.29. Let M be a 2-reducible, semisimple monoid with unit group
Gln+1(K), and assume that I+ = ∆\{α1}, I− = ∆\{αi+1}. Write x = x1,
y = rxi+1 as above. Then

a) 1/(i+ 1) < r < l/(l− i);
b) if 1 ≤ j ≤ i− 1 and r = (n− j)/(j + 1)(n− i) then

∆+ = {α1, . . . , αj}
∆− = {αj+2, . . . , αn};

c) if 0 ≤ j ≤ i− 1 and (n− j − 1)/(j+ 2)(n− i) < r < (n− j)/(j − i)(n− i)
then

∆+ = {α1, . . . , αj+1}
∆− = {αj+2, . . . , αn}.

It is now possible to calculate Λ and λ in each case using Theorem 7.23. The
details are left to the reader.
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7.5.5 Monoids with I+ = φ and I
−

= φ

It is easy to characterize the pairs (I+, I−) that can actually occur as
(λ∗(e+), λ∗(e−)) for some 2-reducible semisimple monoid M with Λ1 =
{e+, e−}. Indeed, let A,B ⊆ ∆ be any two proper subsets. Then (A,B) =
(I+, I−) for some semisimple, 2-reducible monoid M if and only if either

i) A 6= B, or else
ii) A = B and |∆\A| ≥ 2.

In particular, I+ = I− = φ is possible; in fact generic. Notice that this is
equivalent to {x, y} being a subset of C0, the interior of C.

Theorem 7.30. The following are equivalent:

a) there exists a 2-reducible, semisimple monoid M with I+ = I− = φ and
(∆+, ∆−) = (U, V );

b) U 6= φ, V 6= φ and U ∩ V = φ.

Proof. Obviously, a) implies b). So assume that U, V ⊆ ∆ satisfy b). Define

δ =
∑

α∈U

α−
∑

β∈V

β.

It is then easy to find x, y ∈ C0 so that x− y = δ. Then apply Theorem 7.28.

7.5.6 (J,σ)-irreducible Monoids Revisited

In this section we use the results of Theorems 7.23 and 7.28 to study the
orbit structure of certain reductive monoids M with involution σ : M →M .

Definition 7.31. Let M be an reductive monoid with zero, and suppose that
σ : M →M is a bijective morphism of algebraic monoids. We say that (M,σ)
is (J,σ)-irreducible if the map induced by σ is transitive on the set of minimal
G×G-orbits of M\{0}.

(J,σ)-irreducible monoids were studied systematically by Z. Li and the
other authors of [51, 52, 53]. In all cases, except those that contain D4 as a
component, σ2 induces the identity morphism on the set of G×G-orbits of M .
In such cases, M is a 2-reducible monoid precisely when M\{0} has exactly
two minimal G × G-orbits and σ exchanges these orbits. In this section, we
discuss several examples where M is 2-reducible and semisimple, and σ is
actually an automorphism of M of order two. The purpose of Theorems 7.23
and 7.28 is to identify the minimal information (i.e. ∆+ and ∆−) needed to
get the type map of M .
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Example 7.32. Let M be a 2-reducible, semisimple monoid with unit group
Gl6(K). Assume that there is an automorphism σ : M →M such that σ2 = id
and σ|Gl6(K) is transpose-inverse.

Let F = {λ1, . . . , λ5} be the set of fundamental dominant weights of
Sl6(K). Then σ induces the following involution σ∗ on F :

σ∗(λi) = λ6−i.

From Table 2 on page 295 of [69] we obtain

λ1 − λ5 =
1

6
(4α1 + 2α2 − 2α4 − 4α5),

and

λ2 − λ4 =
1

6
(2α1 + 4α2 − 4α4 − 2α5).

Now any 2-reducible, semisimple monoid M has a representaion ρ : M →
End(V ⊕W ), as in Proposition 7.19. If V is the irreducible M -module with
highest weight λ ∈ X(T )+, then W is the irreducible M -module with highest
weight σ∗(λ) 6= λ. Write

λ = a1λ1 + a2λ2 + a3λ3 + a4λ4 + a5λ5

where ai ≥ 0, and either a1 6= a5 or else a2 6= a4 (so that σ∗(λ) 6= λ). In any
case,

λ− σ∗(λ) =
1

6
([4(a1 − a5) + 2(a2 − a4)]α1 + [2(a1 − a5) + 4(a2 − a4)]α2)

−
1

6
([2(a1 − a5) + 4(a2 − a4)]α4 + [4(a1 − a5) + 2(a2 − a4)]α5).

Now

I+ = {αi | ai 6= 0}

I− = {αi | a6−i 6= 0}.

Notice that in all cases ∆− = {α6−i | αi ∈ ∆+}, while α3 6∈ ∆+ t∆−. So it
suffices to calculate the possibilities for ∆+ in terms of λ.

1. ∆+ = {α1, α2} if 2(a1−a5)+(a2−a4) > 0 and (a1−a5)+2(a2−a4) > 0.
2. ∆+ = {α1, α4} if 2(a1−a5)+(a2−a4) > 0 and (a1−a5)+2(a2−a4) < 0.
3. ∆+ = {α1} if 2(a1 − a5) + (a2 − a4) > 0 and (a1 − a5) + 2(a2 − a4) = 0.
4. ∆+ = {α2} if 2(a1 − a5) + (a2 − a4) = 0 and (a1 − a5) + 2(a2 − a4) > 0.

All other feasible data are obtained by reversing the rôles of λ and σ∗(λ).
But we obtain no new monoids. The potential cases with ∆+ = {α1, α5} or
{α2, α4} are not possible. Also, any situation where |∆+| ≥ 3 is not possible.

We see from Theorems 7.23 and 7.28 that the type map of M is now
determined in each case.
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Example 7.33. Let M be a 2-reducible, semisimple monoid with unit group
K∗SO2n(K) ⊆ Gl2n(K). Assume that there is an automorphism σ : M →M
such that σ2 = id and σ|SO2n(K) is transpose-inverse.

Let F = {λ1, . . . , λn−2, λn−1, λn} be the set of fundamental dominant
weights of SO2n(K). Then σ induces the following involution σ∗ on F :

σ∗(λi) = λi if i ≤ n− 2,

and
σ∗(λn−1) = λn, σ

∗(λn) = λn−1.

From Table 2 on page 296 of [69] we obtain

λm − λn−1 =
1

2
(−αn−1 + αn).

As in the previous example, any 2-reducible, semisimple monoid M has a
representaion ρ : M → End(V ⊕W ), according to Proposition 7.19. If V is
the irreducible M -module with highest weight λ ∈ X(T )+, then W is the
irreducible M -module with highest weight σ∗(λ) 6= λ. Write

λ = a1λ1 + a2λ2 + · · ·+ an−2λn−2 + an−1λn−1 + anλn

where an 6= an−1, (so that σ∗(λ) 6= λ). Then

λ− σ∗(λ) =
an − an−1

2
(−αn−1 + αn).

Now

I+ = {αi | ai 6= 0}

I− = {αi | ai 6= 0}.

where an = an−1, an−1 = an, and ai = ai if i < n−1. Notice again that, in all
cases, ∆− = {α | α ∈ ∆+}, and so we only need to consider the possibilities
for ∆+ in terms of λ. There are just two cases:

1. ∆+ = {αn−1} if an−1 ≥ an;
2. ∆+ = {αn} if an ≥ an−1.

Again we see from Theorems 7.23 and 7.28 how the type map of M is
completely determined in each case. The details are left to the reader. Notice
that the two cases yield the same monoid M , since σ∗ exchanges αn−1 and
αn.
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7.6 Type Maps in General

It is certain that the combinatorial classification of type maps of all semisimple
monoids M is a “dead end” problem. Indeed, it appears to include the com-
binatorial classification of all rational polytopes as a proper subproblem. But
there are still some interesting questions here. It is clear that the type map is
the combinatorial glue that makes the monoid structure possible. But it may
also be (as it is for the case of two 0-minimal J-classes in Theorem 7.28) an
important combinatorial manifestation of the classification data of reductive
monoids.

In this section, we speculate on the likelihood that the set of isomorphism
classes of reductive monoids may have the structure of a union of rational
polyhedral cones, similar to the data one obtains from a non affine torus em-
bedding. Each face appears to represent the set of isomorphism classes of
monoids with the same (fixed) type map. The order relation between these
faces should represent a particular combinatorial degeneracy of that type map.
This speculation leads us to a number of interesting results about the geo-
metric underpinnings of type maps.

Let G be a semisimple algebraic group with maximal torus T . Let X(T )
be the set of characters of T and let ∆ ⊆ X(T ) be the set of simple roots. As
usual, let

C = {x ∈ X(T )⊗Q | < α, x >≥ 0 for all α ∈ ∆ }

be the Weyl chamber of E = X(T )⊗Q associated with ∆.

Definition 7.34. If x1, . . . , xn ∈ C, we say that {x1, . . . , xn} is stable if, for
each i 6= j,

xi − xj =
∑

α∈∆

rαα

has the property that rα < 0 for some α ∈ ∆, and rβ > 0 for some β ∈ ∆.

Conjecture 7.35. The following are equivalent for {x1, . . . , xn} ⊆ C:

a) {x1, . . . , xn} is stable,
b) Each xi is an extreme point of the convex hull of {w(xi) | w ∈ W, i =

1, . . . , n }.

Question 7.36. Write Λ1 = {x1, . . . , xn} ⊆ C. Define, for α ∈ ∆,

rα : Λ1 × Λ1 → Q

by the rule

x− y =
∑

α∈∆

rα(x, y)α.

Then
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a) rα(x, y) + rα(y, z) = rα(x, z);
b) rα(x, y) = −rα(y, x);
c) if x 6= y then there exists α, β ∈ ∆ such that rα(x, y) > 0 and rβ(x, y) < 0.

Does any collection {rα : Λ1 × Λ1 → Q} satisfyting a), b) and c) come
from a subset Λ1 ⊆ C? If not, is there an interpretation?

Given Λ1, Λ
′
1 ⊆ C as in Definition 7.34 we say that Λ1 and Λ′

1 have the
same shape if there is a bijection ρ : Λ1 → Λ′

1 such that

a) Wx = Wρ(x) for each x ∈ Λ1

b) rα(x, y) = 0 if and only if rα(ρ(x), ρ(y)) = 0
c) rα(x, y) > 0 if and only if rα(ρ(x), ρ(y)) > 0.

We do not claim here that, if Λ1 and Λ′
1 have the same shape, then they

come from monoids with the same type map. This does not seem to be true,
although we do not yet have any revealing examples.

Proposition 7.37. Assuming the above conjecture is true, the bijection ρ :
Λ1 → Λ′

1 is unique if it exists.

Proof. Suppose that there there are two, say ρ : Λ1 → Λ′
1 and σ : Λ1 → Λ′

1.
Then let ψ = ρ−1 ◦ σ : Λ1 → Λ1. Notice that ψ satisfies a), b) and c) above.
By Conjecture 7.35, there exists α ∈ ∆ such that

rα(x, ψ(x) > 0.

Thus,
rα(ψ(x), ψ2(x)) > 0,

...

rα(ψn−1(x), ψn(x)).

Also, where we assume that ψn(x) = x. In any case,

n∑

i=1

rα(ψi−1(x), ψi(x)) > 0.

However,

0 = (x − ψ(x)) + (ψ(x) − ψ2(x)) + · · ·+ (ψn−1(x) − ψn(x))

=
∑

α∈∆

rα(x, ψ(x))α + · · ·+
∑

α∈∆

rα(ψn−1(x), ψn(x))α

=
∑

α∈∆

(
n∑

i=1

rα(ψi−1(x), ψi(x)))α.

Thus,
∑n

i=1 rα(ψi−1(x), ψi(x)) = 0, since ∆ ⊆ E is a Q-basis. This contradic-
tion finishes the proof.
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We conclude that, if Λ1 and Λ′
1 have the same shape, then we can add

them as follows.
Let ρ : Λ1 → Λ′

1 be the unique bijection that evidences Λ1 and Λ′
1 of the same

shape. Then define the sum of Λ1 and Λ′
1 as

Λ′′
1 = {x+ ρ(x) | x ∈ Λ1}.

Proposition 7.38. Λ′′
1 has the same shape as Λ1.

Proof. Define ψ : Λ1 → Λ′′
1 by ψ(x) = x+ ρ(x). Now for x ∈ Λ1,

x, ρ(x) ∈ (EWx ∩ C)0,

which is closed under addition. Hence x+ρ(x) ∈ (EWx ∩C)0 as well, and thus
Wx = Wx+ρ(x), since

(EWx ∩ C)0 = {y ∈ C |Wy = Wx}.

To finish the proof, notice that

x+ ρ(x)− (y + ρ(y)) =
∑

α∈∆

(rα(x, y) + rα(ρ(x), ρ(y))α.

Hence rα(x, y) = 0 implies that rα(ρ(x), ρ(y)) = 0, which implies that rα(x+
ρ(x), y + ρ(y)) = 0. Similarly for > and <. Thus Λ1 and Λ′′

1 have the same
shape.

One can pose the dual problem using Λ1 and λ∗. One can determine the
type map in terms of colors (λ∗) and divisors (λ1) (see § 5.3.3). One might
then be able to define the addition of polytopes and cross section lattices (in
that setup) in terms of the associated valuations comming from Λ1.

7.7 Exercises

7.7.1 The Cross Section Lattice

1. Let M be reductive, and let Λ ⊆ E(T ) be a cross section lattice. Prove
that the number of maximal chains in E(T ) is equal to the number of
maximal chains of Λ times the order of the Weyl group.

2. One defines a reductive monoidM , with zero, to be Ji-irreducible if |Λj | =
1 for all j ≤ i. Prove that
i) M is J2-irreducible if and only if J0 = S\{s} for some s ∈ S
ii) M is J3-irreducible if and only if J0 = S\{s} where s corresponds to

an end node on the Dynkin diagram of G.
3. One can use Theorem 7.12 also to characterize other classes of J-irreducible

monoids.
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i) M is J-simple if and only if S is connected and M is either J2-
irreducible or S\J0 = {s, t} where st 6= ts. Here, we say a J-irreducible
monoid is J-simple if λ∗(e) is a connected subset of the Dynkin dia-
gram for each e ∈ Λ.

ii) Λ(M) is a distributive lattice if and only if S\J0 is connected.
4. Let M be reductive, and let Λ be a cross section lattice of M . Prove that

there is a one-to-one correspondence between the set of two-sided ideals
of M and the set of poset ideals of Λ.

7.7.2 Idempotents

1. Let ψ : M → N be a finite dominant morphism of irreducible algebraic
monoids.
a) Prove that U(ψ) : U(M)→ U(N) is bijective.
b) Prove that E(ψ) : E(M)→ E(N) is bijective.

2. Let M be irreducible with unit group G and maximal torus T . Let B be
a Borel subgroup containing T . Let α be a positive root, and consider
Uα ⊆ B, e ∈ E(T ).
a) Prove the following are equivalent:

i) eUα = Uαe,
ii) sαe = esα.

b) Prove the following are equivalent:
i) eUα = Uαe 6= {e},
ii) sαe = esα 6= e.

3. Let M be reductive with e ≤ f ≤ g. Assume that e, f, g ∈ E(T ). As
usual, let S = {sα ∈ W | α ∈ ∆}, and identify S with the set of nodes
on the Dynkin diagram. Prove that each connected component of λ∗(f)
is contained in either λ∗(e) or λ∗(g).
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The Analogue of the Bruhat Decomposition

Recall from § 2.2.3 that any reductive group G has a Bruhat decomposition:

G =
⊔

w∈W

BwB

where W = NG(T )/T . In this chapter we extend this result to reductive
monoids. Instead of W we use

R = NG(T )/T

where NG(T ) ⊆ M is the Zariski closure of NG(T ) in M . Since xT = Tx for
each x ∈ NG(T ), R is a monoid, but much more is true. It turns out that the
following are true (and will be explained in this chapter).

a) R is a finite inverse semigroup with unit group W .

b) M =
⊔

x∈R

BxB, a disjoint union.

c) sBx ⊆ BxB ∪BsxB if s is a simple involution and x ∈ R (Tits’ axiom).
d) There is a canonical length function ` : R→ N.
e) If we define x ≤ y to mean BxB ⊆ ByB, we can determine (R,≤) in

terms of (W,≤) and the cross section lattice.
f) If x ≤ y and `(x) = `(y)− 1, then either x ∈ R+yR+ or else y is obtained

from x by an elementary “interchange” exactly as in the case of a Coxeter
group (Pennell’s Theorem).

vii) There is a combinatorial description of (R,≤) in the case of M = Mn(K).

8.1 The Renner Monoid R

A monoid S is called inverse if for each x ∈ S there exists a unique x∗ ∈ S
such that
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x∗xx∗ = x∗,

xx∗x = x,

and

(x∗)∗ = x .

The standard example here is

Rn =



A ∈Mn(K)

∣∣∣∣∣∣

aij = 0 or 1
Σiaij ≤ 1 for all j
Σjaij ≤ 1 for all i





where A∗ = At. Rn is isomorphic to the semigroup of partial one-to-one
functions on a set of n elements.

Proposition 8.1. Let R = NG(T )/T . Then R is a finite inverse monoid with
unit group W = NG(T )/T and idempotent set E(R) = E(T ).

Proof. Note that NG(T ) = NG(T )T since the latter is closed in NG(T ). Thus
R = WE where E ⊆ R is the image of E(T ) in R.

Now assume that xTxT = xT . Then xT = x2T so that x2 = tx for
some t ∈ T . Thus, xn = tn−1x for all n > 0. But xm ∈ T for m = |W |.
Hence x = t1−mxm ∈ T and so t−1x ∈ T , while π(t−1x) = π(x) where
π : NG(T ) −→ R is the quotient map. But (t−1x)2 = t−2x2 = t−2tx = t−1x.
Hence E(R) = E(T ).

Now W ⊆ R∗, the unit group of R. If x ∈ R then x = we for some w ∈ W
and e ∈ E(T ). If e 6= 1 then E(Z) −→ E(Z), f 7−→ ef is not 1-1. Hence x
cannot be a unit.

But now R is a regular monoid with commutative idempotent set. Thus
R is an inverse semigroup by Theorem 1.17 of [15].

Any reductive group G has an involution τ : G→ G such that

τ2 = id,

τ(xy) = τ(y)τ(x) for all x, y ∈ G,

and

τ(x) = x for all x ∈ T .

Using Theorem 5.2, we can extend τ to an involution τ : M →M for any
normal, reductive monoid M with unit group G. It then follows easily that τ
induces a map

τ : R→ R .

One checks that τ(x) = x∗ for all x ∈ R, since τ(e) = e for all e ∈ E(R),
while τ (w) = w−1 for all w ∈W .
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8.2 The Analogue of the Tits System

In this section we establish the fundamental results about the B × B orbits
of M . We start with a special case, and then use it to build the general case.

Proposition 8.2. Let M be a reductive monoid with unit group G = S`2×K
∗,

G`2 or PG`2 ×K
∗, and zero element 0 ∈M .

a) R = {1, s, e1, e2, n1, n2, 0}.

b) M =
⊔

r∈R

BrB.

c) In the case M = M2(K),

R = R2 =

{(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 0

)}
.

d) In all cases, R ∼= R2 as semigroups, with the orders given.

Proof. The proof of c) is a straightforward calculation. Also b) holds for
M2(K) by a simple calculation. So let M be as assumed. By Section 6 of
[103], there exists a diagram

M ′ α
−−−−→ M2(K)

β

y

M

where α and β are finite and dominant morphisms of algebraic monoids. It is
then easily checked that α and β both induce isomorphisms

R′ α
−−−−→

∼=
R

β

y∼=

R2

This concludes the proof.

Proposition 8.3. Suppose that M is reductive with unit group G ∼= Sl2×K
∗,

Gl2(K) or PGl2 × K
∗, but M does not have a zero. Assume also that G is

not equal to M . Then R = {s, 1, e, x = se = es}. R is isomorphic (with the
ordering given) to

{((
0 i
−i 0

)
, 1

)
,

((
1 0
0 1

)
, 1

)
,

((
0 i
−i 0

)
, 0

)
,

((
1 0
0 1

)
, 0

)}
.

Proof. There exists a finite dominant morphism π : Sl2(K)×K →M . Then
the result follows for M as in Proposition 8.2.
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Proposition 8.4. Let M be any reductive monoid such that G = G(M) has
semisimple rank one. Let T , R and B have the usual meanings, so that W =
{1, s} ⊆ R. Then for any x ∈ R

sBx ⊆ BxB ∪BsxB .

Proof. Now R = WE = E ∪ sE by Proposition 8.1. So let x = se ∈ R. Let
G′ = (G,G) and choose K∗ ⊆ T such that e ∈ K∗. Then M ′ = K∗G′ is of
the form discussed in 8.2 or 8.3. But also x ∈ R′. Then the result follows for
M ′ by a simple calculation with M2(K) and S`2(K) ×K. To get the result
for M notice that, if B′ ⊆ G′ is a Borel subgroup, then B = B′Z(G)◦ is a
Borel subgroup of G. Hence

sBx = sB′Sx = sB′xs

⊆ (B′xB′ ∪B′sxB′)S

= B′xB′S ∪B′sxB′S

= BxB ∪BsxB.

We now explain the general case. So let M be reductive with T , T , R, B,
Φ etc. as usual. For α ∈ Φ let s = sα ∈ S and let T s = {t ∈ T | st = ts }. Let

Tα = (T s)0,

Zα = CG(Tα)

and

Gα = (Zα, Zα).

Then Gα = S`2(K) or PG`2(K).

Lemma 8.5. Let α ∈ Φ, x ∈ R. Then

ZαxB = UαxB ∪ UαsxB

where s = sα ∈ W .

Proof. One can check that either (i) UαxB = xB, or else (ii) U−αxB = xB.
See Lemma 5.2 of [105]. If (i) holds, then

ZαxB = TαGαxB

= Tα(Bα ∪BαsBα)xB, where Bα = B ∩Gα,

= TUαxB ∪ TUαsBαxB

= UαxB ∪ UαsTxB, by (i),

= UαxB ∪ UαsxB,

using standard properties relating R, T and B. If (ii) holds, then we obtain
in the same way
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ZαxB = U−αxB ∪ U−αsxB .

But s(ZαxB) = ZαxB since s ∈ Zα. Hence

ZαxB = sU−αxB ∪ sU−αsxB

= UαsxB ∪ UαxB.

Theorem 8.6. Let x ∈ R and s ∈ S, where s = sα, α ∈ ∆, the set of simple
roots relative to B. Then

sBx ⊆ BxB ∪BsxB .

Proof. Let V = Bu ∩ sBus. Then V Uα = UαV = Bu, and sV = V s. Hence

sBx ⊆ sBxB = sV UαTxB

= sV UαxB

⊆ V ZαxB, since sUα ⊆ Zα,

= V (UαxB ∪ UαsxB)

= BxB ∪BsxB .

One could deduce also that

xBs ⊆ BxB ∪BxsB .

We could do this directly, or we could use the involution of § 8.1 applied to
the result of Theorem 8.6.

Proposition 8.7. a) Let e ∈ E(R), x ∈ R and suppose that BeB = BxB.
Then e = x.

b) Let x, y ∈ R and BxB = ByB. Then x = y.

Proof. We start with a). Write x = e1w = we2 where w ∈ W and e1, e2 ∈
E(R). Now eBxBe = eBeBe and so exe = ue = eu for some u ∈ B. Thus,
ee1 = ee2 = e. But also CB(e1)xCB(e2) = e1BxBe2 = e1BeBe2. Hence
e1ee2 = u1xu2 for some ui ∈ CB(ei). Thus ee1 = e1 and ee2 = e2. One
concludes that

x = ew = we, for some w ∈W

= eu = ue, for some u ∈ B .

But then x, e ∈ R(eMe) while

eBe e eBe = eBe x eBe .

So by induction (on dimM), x = e in R since eMe is a reductive monoid with
unit group eCG(e).

For b), recall first that W is generated by S = {s ∈ W | s =
sα for some α ∈ ∆}. Define for x ∈ R
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`(x) = min{` | x = ρ1 · · · · · ρ`e, for some e ∈ ER, si ∈ S} .

This is not the usual length function on R (as in Definition 8.17 below), but it
is useful in this situation. Our proof, imitating Theorem 29.2 of [40], proceeds
by induction on m = `(x) ≤ `(y); the case m = 0 being part (a) above. So
assume that 1 ≤ `(x) ≤ `(y) and BxB = ByB. Write x = sx∗, s ∈ S and
`(x∗) = `(x)− 1. Then

xB = sx∗B ⊆ ByB .

But then
x∗B ⊆ sByB ⊆ ByB ∪BsyB by 8.6.

Hence, either x∗B ⊆ ByB or else x∗B ⊆ BsyB.
The former case is not possible by the induction hypothesis since `(x∗) <

`(x) ≤ `(y). But in the latter case, we must have x∗ = sy, again by induction.
But then x = sx∗ = s2y = y.

Theorem 8.8. M =
⊔

x∈R

BxB a disjont union.

Proof. We know that the union is disjoint from Proposition 8.7. Let L =⊔

x∈R

BxB. We show that GLG = L. Now G =
⊔

w∈W

BwB, and so it suffices

to show that BwBL ⊆ L, for each w ∈ W . Write w = vs where s ∈ S and
`(w) = `(v) + 1. `(·) is the usual length function on W . Now

BwBL = BwB(tBxB)

= BvB(tsBxB)

⊆ BvB(t(BxB ∪BsxB)), by Theorem 8.6,

= BvBL

⊆ L by induction on length.

Similarly, LG = L by the comment following Theorem 8.6. But GE(R)G = M
and so L = M .

8.3 Row Reduced Echelon Form

The most important technique in linear algebra is the Gauss-Jordan algo-
rithm: given any m× n matrix A we obtain a matrix GJ(A), in row reduced
echelon form, by a procedure known as row-reduction. In the case m = n, the
procedure solves the orbit classification problem for the action

G`n(K)×Mn(K) −→Mn(K) ,

(g,A) 7−→ gA .
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In this section we discuss this problem in general. Let M be reductive with
unit group G, and consider the action

G×M −→ M ,

(g, x) 7−→ gx .

We want to define a nice subset X ⊆M such that for all x ∈M ,

Gx ∩X contains exactly one element.

In this section we omit some details of the proofs. Those details can be found
in Section 9 of [105].

So let M,G,B, T, S,W,R and Λ be as usual, with Λ = {e ∈ E(T ) | Be ⊆
eB}. We first solve the problem in R.

Proposition 8.9. Let f ∈ E(T ). Choose w ∈ W , of minimal length, such
that wfw−1 = e ∈ Λ. Then Bwf ⊆ wfB. Furthermore, ew = wf ∈ Wf is
the unique element of Wf with this property.

Proof. By Lemma 9.2 of [105], Bew ⊆ ewB iff Uα ⊆ wBw
−1 whenever α ∈ ∆

and Uαe = eUα 6= {e}. Suppose this criterion does not hold: say Uα * wBw−1

with Uαe = eUα 6= {e}. Then `(sαw) < `(w) and yet (sαw)−1e(sαw) =
w−1ew = f : a contradiction.

Now suppose that vf, wf ∈ Wf , and both satisfy the property. Then
vfv−1 = wfw−1 = e ∈ Λ. Hence vw−1e = evw−1. One then checks as in
Theorem 9.6 of [105] that vw−1e = e.

Definition 8.10. Let GJ = {x ∈ R | Bx ⊆ xB} be the set of Gauss-Jordan
elements of R.

By Proposition 8.9,

a) W · GJ = R and
b) For each x ∈ R, |Wx ∩ GJ| = 1.

It follows easily, also from Proposition 8.9 that, for any x ∈M ,Gx∩rB 6= φ
for some unique r ∈ GJ. This is roughly equivalent to saying that x can be
put into row echelon form.

Example 8.11. Let M = Mn(K) with T diagonal and B upper triangular.

Then R is identified with the set of 0−1 matrices x = (xij) such that
∑

i

xij ≤

1 for all j and
∑

j

xij ≤ 1 for all i. For x ∈ R we obtain that x ∈ GJ iff x

is in row-reduced echelon form. For example,

x =




1 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 ∈ GJ .
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We can identify GJ with E(T ) using Proposition 8.9.
Given f ∈ E(T ) there is a unique r ∈ Wf ∩ GJ. In the above example, x

corresponds to




1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


 ∈ E(D4) .

We return to our task.

Definition 8.12. Let M be reductive with B, T,R as usual. An element x ∈
M is in reduced form if

(a) x ∈ rB for some r ∈ B;
(b) xr∗ ∈ Λ where r∗ ∈ R is the inverse of r.

Said differently, if r = wf ∈ GJ and x = wfu with u ∈ Bu, then fuf = f .
In the classical situation, (a) says that x is in row echelon form and (b)

says (roughly) that it is reduced.

Theorem 8.13. Let x ∈ M . Then Gx ∩ rB 6= φ for some unique r ∈ GJ.
Furthermore, there is a unique T -orbit in Gx ∩ rB consisting of elements in
reduced form.

Proof. (Sketch) The first part has already been proved. So assume that x ∈
rB. Then we can write

x = wfy, where r = wf , and y ∈ U .

But we can write
U = U1U2

where

U1 =
∏

α∈A

Uα, A = {α ∈ Φ+ | Uαe = eUα 6= e}

U2 =
∏

α∈B

Uα, B = {α ∈ Φ+ | eUαe = e}.

Hence

x = wfy

= wfuv, where u ∈ U1, v ∈ U2,

= uwfv .

One checks that uw ∈ U and also that wfv = (uw)−1x is reduced.
To show uniqueness of wfv up to T -orbit, assume that x1, x2 ∈ rB are

both in reduced form with gx1 = x2. One then shows that gx1 = bx1 = x2 for
some b = tu ∈ B = TU . It then follows that ux1 = x1. Hence x2 = tx1. See
Lemma 9.9 of [105].
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Corollary 8.14. Let x ∈M . Then

a) there is a unique e ∈ E(R) such that GxB = GeB;
b) |Gx ∩ E(eB)| = 1.

Proof. Let z ∈ Gx ∩ rB be in reduced form, as guaranteed by Theorem 8.13.
We can write z = wfb where r = wf and b ∈ B. One then checks that
{fb} = Gx ∩ E(eB). See Lemma 4.1 of [112].

8.4 The Length Function on R

To define the length function on R, we first need to identify the elements of
length zero.

Now R =
⊔

e∈Λ

WeW . It turns out that each WeW has a unique minimal

element.

Proposition 8.15. There is a unique element ν ∈ WeW such that Bν = νB.

Proof. Let w ∈ W be the longest element and let f = wew−1. By Propo-
sition 8.9, there is a unique ν ∈ Wf such that Bν ⊆ νB. One checks that
νB ⊆ Bν also. See Proposition 1.2 of [112].

Example 8.16. Let M = Mn(K). If e =




1
. . .

1
0

. . .

0




has rank = i, then

ν =




0 1 0
. . .

. . . 1

0
. . . 0


, also of rank = i.

Definition 8.17. Define
` : R −→ N

by `(r) = dim(BrB) − dim(BνB)

where ν ∈WrW is such that Bν = νB .

Theorem 8.18. Let s ∈ S ⊆W and r ∈ R. Then

BsBrB ≡




BrB if `(sr) = `(r)
BsrB if `(sr) = `(r) + 1
BsrB ∪BrB if `(sr) = `(r)− 1.
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Proof. By Theorem 8.6 there are the three possibilities. If BsBrB = BrB
then, by Proposition 8.7, sr = r. Thus `(sr) = `(r).

Suppose BsBrB = BsrB. So sBrB ⊆ BsrB and thus `(sr) ≥ `(r).
But BsBrB = UαsBrB for some unique α ∈ ∆. Thus `(sr) ≤ `(r) + 1. If
`(sr) = `(r) then we obtain sBrB = BsrB, and so sr = r. If BsBrB = BsrB
and sr 6= r then we obtain `(sr) = `(r) + 1.

Suppose that BsBνB = BrB∪BsrB and sr 6= r. Then BsBrB = (BsB∪
B)rB = PαrB. One then gets that

BrB = Bs(B\V )rB

where V = Ru(Pα). Hence V ⊆ B is the unique closed, normal unipotent
subgroup of B such that sV = V s and V Uα = UαV = B. Hence BsrB ⊆ BrB
and thus `(sr) < `(r). One then gets `(sr) = `(r) − 1. See Theorem 1.4 [112]
for more details.

Example 8.19. Let M = Mn(K), where K is a finite field. Then M =⊔

x∈Rn

BxB where Rn is the standard example of § 8.1. In [127], Solomon proves

8.15 and 8.18 for this M . He also defines a length function that agrees with
the one in Definition 8.17. He then defines the analogue of Iwahori’s Hecke
algebra as follows:

H(M,B) =
⊕

x∈Rn

Z · Tx

with multiplication defined by

TsTx =




qTx , `(sx) = `(x)
Tsx , `(sx) = `(x) + 1
qTsx + (q − 1)Tx , `(sx) = `(x) − 1

TxTs =




qTx , `(xs) = `(x)
Txs , `(xs) = `(x) + 1
qTxs + (q − 1)Tx , `(xs) = `(x) − 1

TνTx = q`(x)−`(νx)Tνx

TxTν = q`(x)−`(xν)Txν

where

ν =




0 1 0
. . .

. . .

0
. . .

. . . 1
0




.
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He then proves in Theorem 4.12 of [127] that H(M,B) is a ring, with this
definition. The delicate part here is obtaining integral structure constants.
One suspects that his approach works in general. Putcha approached this
problem systematically in [87].

In [129], Solomon has revisited the representation theory of Rn bringing
out a rich blend of combinatorics and algebra.

8.5 Order-Preserving Elements of R

In this section we assess the relationship of elements of R to B, and obtain
the subset of order preserving elements. The standard example here is M =
Mn(K), where R is identified with the set of 01 matrices with at most one
nonzero entry in each row or column. An element r ∈ R is order preserving
if the matrix obtained from r by deleting all the zero rows and all the zero
columns is an identity matrix. The general definition is as follows.

Definition 8.20. Let O ⊆ R be the subset of elements r ∈ R with the property

rBr∗ ⊂ Brr∗

where r∗ ∈ R is the unique element satisfying rr∗r = r and r∗rr∗ = r∗. Any
element with this property is called order preserving.

Lemma 8.21. a) If r, s ∈ O then rs ∈ O.
b) W ∩O = {1}.
c) E(R) ⊆ O.
d) If r ∈ O then rBr∗ ⊆ rr∗Brr∗.

Proof. a) Suppose that rBr∗ ⊆ Brr∗ and sBs∗ ⊆ Bss∗. Consider ss∗r∗ ∈
R. Write ss∗ = e and r∗ = fσ−1. Then ss∗r∗ = efσ−1 = feσ−1 =
fσ−1σeσ−1 = r∗(ss∗)σ. Now compute:

rsB(rs)∗ = rsBs∗r∗ ⊆ rBss∗r∗

= rBr∗(ss∗)σ ⊆ Brr∗(ss∗)σ

= Brss∗r∗ = B(rs)(rs)∗ .

b) Suppose that r ∈ W ∩ O. Then r∗ = r−1, and rBr∗ ⊆ Brr∗ implies
rBr−1 = B.

c) If e ∈ E(R) then, by Theorems 6.16 and 6.30 of [82], eBe∗ = eBe =
eCB(e)e ⊆ Be = Bee∗.

d) Write r = eσ so that r∗ = σ−1e and rr∗ = e. Then rBr∗ ⊆ eM ∩Be. But
if be ∈ eM ∩Be then be = ex, and so ebe = ex = be. Hence be ∈ eBe. We
conclude finally that rBr∗ ⊆ eM ∩Be ⊆ eBe = rr∗Brr∗.

Corollary 8.22. The following are equivalent.
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a) rBr∗ ⊆ Brr∗.
b) rBr∗ ⊆ rr∗B.
c) rBr∗ ⊆ rr∗Brr∗.

Proof. rr∗Brr∗ ⊆ Brr∗ ∩ rr∗B.

Recall now the involution τ : M →M . It has the following properties:

τ |T = id,

τ(B) = B−,

τ2 = id,

τ(xy) = τ(y)τ(x),

and

τ(r) = r∗, for all r ∈ R.

Recall also w ∈ W , the longest element. It satisfies wBw−1 = B−.

Proposition 8.23. Let O− = {r ∈ R|rB−r∗ ⊆ B−rr∗} and let Ow =
{wrw−1 ∈ R|r ∈ O}. Then O = O− = Ow.

Proof. Let r ∈ R. Then r ∈ O iff rBr∗ ⊆ Brr∗ iff τ(rBr∗) ⊂
τ(Brr∗) iff rB−r∗ ⊆ rr∗B− iff rB−r∗ ⊆ B−rr∗ (by Corollary 8.22)
iff r ∈ O−. Hence O = O−.

Again if r ∈ R, r ∈ Ow iff wrwB(wrw)∗ ⊆ Bwrw(wrw)∗ iff wrB−r∗w ⊆
Bwrr∗w iff rB−r∗ ⊆ B−rr∗ iff r ∈ O−. Hence Ow = O−.

Proposition 8.24. Let O∗ = {r∗|r ∈ O}. Then O = O∗. In particular, O is
an inverse monoid.

Proof. r ∈ O iff rBr∗ = rr∗Brr∗ iff r∗rBr∗r = r∗rr∗Brr∗r = r∗Br iff r ∈
O∗. Hence O = O∗.

Lemma 8.25. Let eσ ∈ R. Then there exists c ∈ CW (e) such that ceσ ∈ O.
In particular, ceσHeσ.

Proof. eBσe and eBe are Borel subgroups of He containing eT . Thus, there
exists c ∈ CW (e) such that c(eBσe)c−1 = eBe. But c(eBσe)c−1 = eBcσe and
so ceσ = ecσ ∈ O.

Proposition 8.26. Let e, f ∈ E(R), eJf . Choose σ ∈ W of minimal length
such that σ−1eσ = f , and let r = eσ. Then r ∈ O.

Proof. We proceed by induction on this minimal length l. If l = 0 then e = f
and the result follows from Lemma 8.21(c). So assume that l = n+1. We can
write eσ = eτρ where l(τ) = n = l(σ)−1. Now eτ ∈ O since, if ζ−1eζ = τ−1eτ
with l(ζ) < l(τ), then (ζρ)−1e(ζρ) = σ−1eσ with l(ζρ) < l(σ), a contradiction.
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Also τ−1eτρ 6= ρτ−1eτ since otherwise τ−1eτ = σ−1eσ which contradicts the
minimality of l(σ). So we show that τ−1eτ · ρ ∈ O. Then by Lemma 8.21(a)
eτ · τ−1eτρ = eσ ∈ O. Hence let f = τ−1eτ . Then we have fρ 6= ρf . Now
ρ = σα for some unique α ∈ 4 and there exists a closed subgroup V ⊆ B such
that B = V Uα = UαV and Bρ = V U−α = U−αV . By Lemma 5.1 of [105] we
have that either fUα = {f} and U−αf = {f} or Uαf = {f} and fU−α = {f}.
In either case fBf = fV f = fBρf . Hence fρ ∈ O.

Theorem 8.27. Suppose that r, s ∈ R, rHs, and r, s ∈ O. Then r = s.

Proof. Let r = eσ and s = ceσ where ce = ec. Then eBσe = eBe = eBcσe =
c(eBσe)c−1. But then ce ∈ NHe(eT ) ∩ eBσe and hence ce = e.

There are other ways to characterize the elements of O.

Proposition 8.28. Let r = eσ = σf ∈ R. The following are equivalent:

a) r ∈ O,
b) Br ∩ rB = eBr,
c) Br ∩ rB = rBf ,
d) eBr = rBf .

Proof. r ∈ O iff eBr ⊆ rB iff eBr ⊆ rB ∩ Br (since alwayseBr ⊆
Br) iff eBr = rB ∩ Br (by an easy calculation). Similarily, (a) iff (c). But
Br ∩ rB = eBr ∩ rBf for any r ∈ R. Hence (b) iff (c).

Corollary 8.29. Let r ∈ O. Then l(r) = dim(Br) + dim(rB) − 2 dim(eBr).

Proof. Recall that l(r) = dim(BrB)−dim(BνB). But dim(BrB) = dim(Br)+
dim(rB) − dim(Br ∩ rB) while, by Proposition 8.28, dim(Br ∩ rB) =
dim(BνB).

Remark 8.30. Write r = eσ = σf ∈ R. Then

Br ∩ rB = eBr ∩ rBf

= eBeσ ∩ σfBf

= (eBe ∩ eBσe)σ.

This pictures the elements of O as those for which dim(Br ∩ rB) is maximal.

As usual we fix B ⊆ G a Borel subgroup and T ⊆ B a maximal torus.
Recall from Proposition 8.15 that for each W ×W orbit J of R there exists a
unique ν ∈ J such that Bν = νB. We now study the Green’s relations on R
and O. Let r, s ∈ R.

Theorem 8.31. Let r ∈ R. Then there exist unique elements r+, r−, r0 ∈ R
such that

a) r = r+r0r−
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b) r0Hν, where νJr and Bν = νB
c) r+Rr and r−Lr
d) r+, r− ∈ O.

Proof. First suppose that, for r ∈ R, we have r = r+r0r− satisfying a)-(d). If
also r = s+s0s− then a), b) and c) imply that r+Hs+ and r−Hs−. But then,
by Theorem 8.27, r+ = s+ and r− = s−. Hence r+ and r− are unique. But
then r0 = r∗+rr

∗
− and so r0 is also unique.

To establish existence, we count. Let ν = e0σ = σf0 ∈ J = WrW and let

A = {x ∈ O|xLe0},

B = {x ∈ O|xRf0}

and
C = {x ∈ R|xHν}.

By the above, the product map

A× C ×B →WrW = WνW

is injective.
By Proposition 8.26 and Theorem 8.27 |A| = |E(J)| and |B| = |E(J)|,

while |C| = |Hν |, where Hν = C is the H-class of ν. Thus |A × C × B| =
|E(J)|2|Hν |. To count up J we consider the map

ζ : WνW → E(J)× E(J)

ζ(σντ−1) = (σe0σ
−1, τf0τ

−1). It is easy to check that ζ is well defined and
surjective, and all fibres have the same cardinality. But ζ−1(e0, f0) = Hν .
Thus, |J | = |E(J)|2|Hν |.

8.6 The Adherence Order on R

Definition 8.32. Let x, y ∈ R. We say that x ≥ y if BxB ⊇ ByB. Clearly,
(R,≤) is a poset.

This is the obvious generalization of the Bruhat-Chevalley order from
group theory to the case of reductive monoids. The main result of this section
is the description of (R,≤) in terms of (Λ,≤) and (W,≤). Here,

e ≤ f in Λ if ef = fe = e,

and
x ≤ y in W if BxB ⊆ ByB .

In section § 8.8 we go on to obtain a precise description of (R,≤) for M =
Mn(K).
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So, back to work: for e ∈ Λ, let

W (e) = CW (e)

W∗(e) = {x ∈W (e) | xe = e} CW (e)

D(e) = {x ∈W | x has minimal length in xW (e)}

D∗(e) ≡ {x ∈W | x has minimal length in xWe}.

Now if v ∈ R we can write

v = xey−1

where x, y ∈W . But we can also assume that y ∈ D(e). (by writing y = y0w,
where w ∈W (e) and y0 ∈ D(e), so that v = xey−1 = xe(y0w)−1 = xwey−1

0 .)
The following result is recorded in detail, in [73]. We indicate here the

main points of the proof.

Theorem 8.33. Let e, f ∈ Λ, x, s ∈ W , y ∈ D(e) and t ∈ D(f). Then the
following are equivalent.

a) xey−1 ≤ sft−1.
b) ef = e and there exist w ∈ W (f)W∗(e) and z ∈ W∗(e) such that tw ≤ y

and x ≤ swz.

Proof. Assume that b) holds with w and z as indicated. Now twey ∈ B by
(7) of [73]. Hence sfwey−1 = sft−1twey−1 ∈ sft−1B. Thus sfwey−1 ≤
sft−1. By assumption w = w1w2 with w1 ∈ W (f) and w2 ∈ W∗(e).
Hence sfwey−1 = sfw1w2ey

−1 = sfw1ey
−1 = sw1fey

−1 = sw1ey
−1 =

sw1w2ey
−1 = swey−1. But from (6) of [73], xey−1 ≤ swzey−1. Hence

xey−1 ≤ swzey−1 = swey−1 = sfwey−1 ≤ sft−1 .

Conversely, assume that xey−1 ≤ sft−1. Clearly e ≤ f , and xey−1 ∈
Bsft−1B. Hence e ∈ x−1Bsft−1By. Now there exists a unique w ∈ W such
that

Aw = B−w̃B ∩ x−1Bs ⊆ x−1Bs

is open and dense. Thus,
e ∈ Awft−1By .

From here we can get w̃fw̃−1e = e, and finally

w̃ = w1w2 where w1 ∈W∗(e) and w2 ∈W (f) .

But we are not not quite there. There exists a unique u ∈ W such that

Cu = B−uB ∩ w2t
−1By ⊆ w2t

−1By

is open and dense.
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It turns out that condition b) is satisfied with

w = w−1
2 u ∈ W (f)W∗(e) ,

and
z = u−1w−1

1 ∈ W∗(e) .

We can simplify the statement in the above theorem by using the following
definition.

Definition 8.34. Let a ∈ R. Then

a = xey−1

where e ∈ Λ, x ∈ D∗(e) and y ∈ D(e). We call this the normal form of a.

It easy easy to check that this expression for a is unique. For example, let
M = M3(K). Then

Λ =








1
1

1


 ,




1
1

0


 ,




1
0

0


 ,




0
0

0





 = {e3, e2, e1, e0}

and
W = S3 .

Let

a =




0 1 0
0 0 0
1 0 0


 .

Then
a = (132)e2(1).

This is the normal form since

D∗(e2) = W and D(e2) = {1, (23), (123)} .

Corollary 8.35. Let a = xey−1 and b = sft−1 be in normal form. Then the
following are equivalent:

a) a ≤ b
b) e ≤ f and there exists w ∈W (f)W∗(e) such that x ≤ sw and tw ≤ y.

Proof. If b) is satisfied then so too is Theorem 8.33 b) with z = 1. Conversely,
given Theorem 8.33 b), we have w ∈ W (f)W∗(e) and z ∈ We with tw ≤ y
and x ≤ swz. But if x0 ∈ xW∗(e) is the element of minimal length then

x0 ≤ swγ for all γ ∈W∗(e). (1)
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On the other hand,W (f) = W ∗(f)×W∗(f) whereW ∗(f) = 〈s ∈ S | sf = fs〉,
while W∗(f) ⊆ W∗(e). Hence w ∈ W (f)W∗(e) implies that w = uv where
u ∈ W ∗(f) and v ∈ W∗(e). Let s0 ∈ xW∗(f) be the element of minimal
length. Then

sw = s0µw , for some µ ∈W∗(f)
= s0µuv
= s0uµv , since Wf ⊆ CW (W ∗(f)) .

Hence sw ∈ s0wW∗(e) since µv ∈ W∗(e). Thus from (1) x0 ≤ s0w. Thus, b)
is satisfied since x0ey

−1 (respectively, s0ft
−1) is the normal form for xey−1

(resp. sft−1).

A special case of Corollary 8.35 has been obtained by Brion [12], Kato [46]
and Springer [130], for the canonical monoid.

8.7 The j-order, R+ and Pennell’s Theorem

In this section we describe Pennell’s theorem. This is a decomposition the-
orem for the adherence order on R. Unlike the situation of the Weyl group,
we now have a principle of two types. The basic idea is easily described:
we start with x, y ∈ R and assume x ≤ y. We then see that there exists
x0, x2, . . . , xn ∈ R such that x = x0 < x2 <, . . . , < xn = y and `(y)−`(x) = n.
Then `(xi+1) = `(xi) + 1. (That part is easy.) Pennell’s idea is to establish
the following dichotomy.

For each xi < xi+1 we have either

a) xi ∈ Bxi+1B, or else
b) xi+1 is obtained from xi via a “Bruhat interchange” (see Definition 8.41.

The key here is that, for each i, only one of a) and b) is true. The exact
definition of b) will be given below. For Mn(K) it implies that xi and xi+1

have the same nonzero rows and columns. It is the natural generalization of
the situation encountered in the Bruhat-Chevalley order on a Coxeter group
[41]. The order relation of a) has no analogue in group theory. It was first
studied by Pennell [72].

Definition 8.36. a) Let x, y ∈ R. We write x ≤j y if BxB ⊆ ByB. We
refer to ≤j as the j-order on R.

b) Define
R+ = {x ∈ R | BxB ⊆ B}

= {x ∈ R | x ≤ 1} .

Lemma 8.37. Let r = xey−1 ∈ R be in normal form. Then r ∈ R+ if and
only if x ≤ y.
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Proof. If r ∈ R+ then r ≤ 1. Then by Corollary 8.35 there exists w ∈W such
that x ≤ w ≤ y. Conversely, if x ≤ y then Corollary 8.35 b) is satisfied with
a = r and b = 1, by choosing w = 1.

We now find a discrete characterization of the j-order. Recall from Theo-
rem 8.6 that for x ∈ R and s ∈ S

sBr ⊆ BrB ∪BsrB

and
rBs ⊆ BrB ∪BrsB.

Lemma 8.38. a) If r ∈ R and x ∈ W then rBx ⊆
⋃

{y∈W |y≤x}

rBy and

xBr ⊆
⋃

{y∈W |y≤x}

yBr .

b) If r, r1 ∈ R then rBr1 ⊆
⋃

r2≤r1

Brr2B.

c) If r, r1 ∈ R then r1Br ⊆
⋃

r2≤r1

Br2rB.

Proof. For a) we proceed by induction on `(x). The case of `(x) = 1 follows
from 8.6 since S = {x ∈ W | `(x) = 1}. So assume x = s1s2 · · · · ·sk has length
k. Then rBx = (rBs1 · · · · · sk−1)sk ⊆ (∪y≤x′BryB)sk where x′ = si · . . . sk−1.

But BryBsk ⊆ BryB ∪ BryskB. Thus rBx ⊆
⋃

y≤x′

(BryB ∪ BryskB). The

other case is similar.
For b) write r1 = xey−1 in normal form. Then by a) we have rBr1 =

rBxey−1 ⊆ ∪x1≤xBrx1Bey
−1. But recall that e ∈ Λ, so that B = eBe =

CB(e)e. Hence

Brx1Bey
−1 = Brx1CB(e)ey−1 = Brx1eCB(e)y−1 .

But y ∈ D(e) so that yCB(e)y−1 ⊆ B. Thus

Brx1CB(e)e = Brx1ey
−1yCB(e)y−1 ⊆ Brx1ey

−1B.

But recall that x1 ≤ x and y ∈ D(e), so that r2 = x1ey
−1 ≤ xey−1 = r1.

Finally, rBr1 ⊆ ∪x1≤xBrx1Bey
−1 ⊆ ∪x1≤xBrx1ey

−1B ⊆ ∪r2≤r1Brr2B.
For c) we can use the involution.

Theorem 8.39. Let x, y ∈ R. Then x ≤j y if and only if x ∈ R+yR+.

Proof. If x ∈ R+yR+ then x = r1yr2 for r1, r2 ∈ R+. Thus BxB =
Br1yr2B ⊆ Br1 y r2B ⊆ ByB. Conversely, if BxB ⊆ ByB, then there exist
r1, r2 ∈ R

+ such that BxB ⊆ Br1ByBr2B. But it is easy, using Lemma 8.38
b) and c), to see that

Br1ByBr2B ⊆
⋃

r3≤r1
r4≤r2

Br3yr4B .
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We now describe where this dichotomy comes from. Define

Ref(W ) =
⋃

w∈W

wSw−1 .

Lemma 8.40. Let β ∈ Ref(W ), x, y ∈ W and e ∈ Λ. Assume that x < xβ.
Then the following are equivalent.

a) Bxey−1B ⊆ Bxβey−1B and xey−1 6= xβey−1

b) β /∈W (e).

Proof. Assume b). If β /∈ W (e) then βe 6= e. Then xey−1 6= xβey−1. After
some calculation (as in Theorem 2.8 of [73]) we find that xeβx−1 ∈ R+, using
Lemma 8.37. Hence

Bxey−1B ⊆ Bxey−1B

= Bxeβx−1xβey−1B

⊆ Bxeβx−1Bxβey−1B

⊆ Bxβey−1B

Conversely, assume that β ∈ W (e). Then one obtains after some elementary
calculation that either xey−1 = xβey−1 or else Bxey−1 * Bxβey−1B.

Definition 8.41. Let xey−1, set−1 be in normal form with xey−1 6= set−1.
We say set−1 is obtained from xey−1 via a Bruhat interchange if there exists
β ∈ Ref(W ) ∩W (e) such that x ≤ xβ and xβey−1 = set−1.

We see from Lemma 8.40 that this is the case where xey−1 �j set−1.

Example 8.42. In M3(K) consider

xey−1 =




1 0 0
0 1 0
0 0 1






1 0 0
0 1 0
0 0 0






1 0 0
0 0 1
0 1 0


 =




1 0 0
0 0 1
0 0 0




and

xβey−1 =




1 0 0
0 1 0
0 0 1






0 1 0
1 0 0
0 0 1






1 0 0
0 1 0
0 0 0






1 0 0
0 0 1
0 1 0


 .

Theorem 8.43. (Pennell’s Theorem) Let a, b ∈ R. Then a ≤ b if and only
if there exist θ0, θ1, . . . , θr ∈ R such that a = θ0 ≤ θ1 ≤ · · · ≤ θr = b and,
for each `, either θ`−1 ≤j θ` or else θ` is obtained from θ`−1 by a Bruhat
interchange.

Proof. Plainly, the condition is sufficient. Assume therefore that a ≤ b. Write
a = xey−1 and b = sft−1 in normal form. Then from Theorem 8.43 there
exists w = w1w2 ∈W (f)We such that x ≤ sw and tw ≤ y. Now
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sfwey−1 = sfw1w2ey
−1

= sw1few2y
−1

= sw1ew2y
−1

= swey−1 .

Hence

Bswey−1 ⊆ Bsft−1twey−1B

⊆ Bsft−1B

since twey−1 ∈ R+ .
But also xey−1 ≤ swey−1 since x ≤ sw. We therefore obtain

xey−1 ≤ swey−1 ≤j sft−1 ,

and we are reduced to finding the chain of θi’s from xey−1 to swey−1. Since
x ≤ sw we can find (as in Proposition 5.11 of [41]) γ1, . . . , γr ∈ Ref(W ) such
that

x < xγ1 < xγ1γ2 < · · · < xγ1 · · · · · γr = sw

and, for each i = 1, . . . , r, there exists δi ∈ We such that xγ1 · · · · · γiδi ∈ De.
Since x ∈ De we obtain

x ≤ xγ1δ1 ≤ xγ1γ2δ2 ≤ · · · ≤ xγ1 · · · · · γrδr .

If x = xγ1γ2 · · · · · γrδr then

swey−1 = swδ−1
r ey−1 = xγ1 · · · · · γrey

−1 = xey−1

and so we are done.
If x 6= xγ1 · · · · · γrδr then let

θi = xγ1 · · · · · γiδiey
−1 .

If γi ∈ Ref(W )\W (e) then by Lemma 8.40 Bθi−1B ⊆ BθiB while, if γi ∈
Ref(W ) ∩W (e), θi is obtained from θi−1 via a Bruhat interchange.

Example 8.44. With M = M4(K) let

a =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


 ≤




0 0 0 1
0 0 0 0
0 1 0 0
0 0 0 0


 = b .

Then

θ0 =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


 ≤ θ1 =




0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0


 ≤ θ2 =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 ≤ θ3 =




0 0 0 1
0 0 0 0
0 1 0 0
0 0 0 0


 .



8.8 The Adherence Order on Mn(K) 147

One can easily see that
θ0 ≤j θ1 ≤j θ2 ,

while θ2 ≤ θ3 via a Bruhat interchange. The reader is encouraged to observe
how each θi is obtained from θi−1 by way of an “elementary” move. This
example is developed in complete detail in the next section.

8.8 The Adherence Order on Mn(K)

In this section we use Pennell’s Theorem to determine (R,≤) forM = Mn(K).
The calculation is straightforward. We simply calculate ≤j combinatorially,
and then characterize the Bruhat interchange for Rn = R(Mn(K)).

Let Eij be the n× n matrix (ast) such that

ast =

{
1 , (s, t) = (i, j)
0 , (s, t) 6= (i, j)

.

We refer to Eij as an elementary matrix.

Proposition 8.45. a) Eij ≤ Ekm if and only if i ≤ k and m ≤ j.
b) Let A,C ∈ Rn and write

A =

s∑

`=1

A`

and

C =

t∑

`=1

C`

where {A`} and {C`} are elementary matrices. Define SA = {A1, . . . , As}
and SC = {C1, . . . , Ct}. Then the following are equivalent:

i) A <j C
ii) There exists an injection θ : SA −→ SC such that A` ≤j θ(A`) for

each ` = 1, . . . , s.

Proof. If Eij ≤ Ekm then there exist upper triangular matrices X and Y such
that XEkmY = Eij . But this implies (XEkmY )st = 0 if s > k or t < m.
Conversely, if i ≤ k and m ≤ j then X = Eik and Y = Emj are both upper
triangular. But then XEk`Y = Eij .

For b) first assume that A ≤j C. Notice that s = rank(A) and t =
rank(C). Write

A = w1

(
Is 0
0 0

)
w2

and
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C = w3

(
It 0
0 0

)
w4 ,

where w1, w2, w3, w4 ∈ Sn, the unit group of Rn. Let x = w1w
−1
3 and Y =

w−1
4

(
Is 0
0 0

)
w2. Then XCY = A, and one checks that, for each k = 1, . . . , t,

XCkY ≤j Ck

and
XCkY ∈ SA ∪ {0}.

Then define θ(A`) = Ck such that XCkY = A`.
Conversely, given an injection θ : SA −→ SC such that A` ≤j θ(A`) for

i = 1, . . . , S, then from a) there exist elementary upper triangular matrices

X` and Y` such that X`θ(A`)Y` = A`. Let X =

s∑

`=1

A` and Y =

s∑

`=1

Y`. Then

XCY = A.

Proposition 8.46. Let A = Ei1j1 + · · ·+ Eisjs ∈ Rn and suppose

C = Ei1j1 + · · ·+ Eih−1ih−1
+ Ei`j` + Eih+1jh+1

+ · · ·+ Ei`−1j`−1

+Eihjh + Ei`+1j`+1
+ · · ·+ Eisjs

so that C is obtained from A by interchanging two nonzero rows. Relabel the
two altered positions of A by Eij and Ek`. Then A < C if and only if i < k
and j < ` or i > k and j > `.

Proof. First assume that s = 2. Then

A = (`−1 i)· · · ··(12)(k−1 h)· · · · ·(34)(23)E(23) . . . (`−1 `)(12)· · · ··(j−1 j) .

This is the normal form for A. One checks that

C = [(i− 1 i) · · · · · (12)(k − 1 h) · · · · · (34)(23)(12)]

. . . E(23) · · · · · (`− 1 `)(12) · · · · · (j − 1 j) .

But (i − 1 i) · · · · · (23) < (i − 1 i) · · · · · (23)(12) and so A < C. Conversely,
if i < k and j > ` or i > k and j < ` then the same argument shows that
C < A.

The proof of the general case (s > 2) is similar.

Proposition 8.46 describes the situation of a Bruhat interchange for
Mn(K). It says that A < C via a Bruhat interchange if and only if

a) C is obtained from A by interchanging two non-zero rows of A.

b) In the process of a), a 2× 2 submatrix

(
1 0
0 1

)
of A ends up as

(
0 1
1 0

)
.
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Theorem 8.47. Let x, y ∈ Rn and assume that x ≤ y with `(x) = `(y) − 1.
Then one of the following holds.

a) x is obtained from y by setting some nonzero entry of y to zero.
b) x is obtained from y by moving a nonzero entry either upward or to the

right.
c) y is obtained from x via a Bruhat interchange.

Proof. Assume that c) is not the case and rank(x) < rank(y). Then by The-
orem 8.43 and Proposition 8.45 there is an injection θ : Sx −→ Sy such that
xi ≤ θ(xi) for each xi ∈ Sx. So define θ(x) ∈ Rn by Sθ(x) = θ(Sx). Then
x ≤ θ(x) < y. Thus x = θ(x), and so a) holds.

Now assume that c) is not the case, and rank(x) = rank(y). By Pennell’s
Theorem x ≤j y, and so there exist a, b ∈ R+ such that x = ayb. Then
x = ayb ≤ yb ≤ b. Hence, either x = yb or else yb = b. In the first case x = yb,
and in the second case x = ay. Assume without loss of generality that x = yb
(x and y have the same nonzero rows). An elementary argument shows that
x is obtained from y by moving some nonzero entry of y to the right. Thus b)
holds.

Theorem 8.47 allows us to give a combinatorial description of the adher-
ence order on Rn. First we represent the elements of Rn by sequences of non-
negative integers. Given x ∈ Rn we associate with x a sequence (ε1, ε2, . . . , εn)
where for each i, 1 ≤ i ≤ n,

εi =

{
0 if x has all zeros in the ith column
j if xji = 1 .

For example,




0 0 0 0
0 0 0 1
1 0 0 0
0 0 1 0


 corresponds to (3042). Notice that a sequence

(ε1, ε2, . . . , εn) occurs this way for some x ∈ Rn if and only if 0 ≤ εi ≤ n
for each i; and whenever εi = εj , either i = j or else εi = εj = 0.

Theorem 8.48. Let x = (δ1, . . . , δn), y = (ε1, . . . , εn) ∈ Rn. Then ≤ is the
smallest partial order on Rn generated by declaring x < y if either

a) δj = εj for j 6= i and δi < εi, or
b) i) δk = εk if k 6∈ {i, j}

ii) i < j
iii) δi = εj, δj = εi and εi > εj.

From Theorem 8.47 we have three possibilities. We indicate how each one
fits into the different possibilities of Theorem 8.48.

Proof. Theorem 8.47 a) falls under part a), since we can take δi = 0.
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Theorem 8.47 b) falls under part b) if x and y have the same nonzero rows;
and under part a) if they have the same nonzero columns.

Theorem 8.47 c) is the special case of part b) where both εi and εj are
nonzero.

Example 8.49. Let x = (21403) and y = (35201) in R5. Then x < y since

(21403) < (31402) , by 8.48b)

< (34102) , by 8.48b)

< (35102) , by 8.48a)

< (35201) , by 8.48b) .

8.9 Exercises

1. Give an explicit description, for Mn(K), of each of the following objects:
Λ,R,E(T ), Φ,B, T, PI .

2. Let M be reductive with zero, and let x ∈ M,x 6= 0. Prove there exist
e, f ∈ E1(T ) such that exf 6= 0.

3. Let M be reductive. Prove that

M =
⊔

e∈E(T )

GeB.

4. For the inverse semigroup S recall the natural order ≤ on S: we say that
x ≤ y if there exist e, f ∈ E(S) such that ey = yf = x. Let M be
reductive, and let N = NG(T ). Prove that x ≤ y in N , for the natural
order, if and only if x ∈ yT .

5. Let R+ be the image of B ∩NG(T ) in R. Prove that R+ is J-trivial. i.e.
for x, y ∈ R+, xJy if and only if x = y.

6. Assume that M is reductive, and let λ : K∗ →M be a morphism. Define
w : M → Aut(M) by w(t)(x) = txt−1. Let M0 = {x ∈ M |w(t)(x) = x}
and let
M+ = {x ∈M | limt→0w(t)(x) exists in M}.
a) Find an example where M0 is not irreducible.
b) Prove that M+ contains a Borel subgroup of M .
c) Prove that M0 and M+ are submonoids of M .
d) Prove that ψ : M+ → M0, ψ(x) = limt→0w(t)(x) is a surjective

morphism of algebraic monoids.
e) Let B0 ⊆ CG(λ) be a Borel subgroup. Prove that B0\M0/B0 is finite.

Can you identify the orbits?
7. Let M be semisimple, and let H ⊆ G be a torus. Let Z ⊆ G be the

connected center of G. Let M∗ = {x ∈ M | xH ⊆ Zx }. Notice that M∗

is closed in M .
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a) Let e ∈ E(M∗) = E(M) ∩M∗. Prove that there exists f ∈ E(M∗),
fLe, such that sf = fs for all s ∈ H . Hint: H ⊆ ClG(e).

b) Let Λ ⊆ E(T ) ⊆ CG(H) be a cross section lattice. Prove that M∗ =⋃
f∈Λ∗ GfCG(H), where Λ∗ = Λ ∩M∗. Hint: use Exercise 6 above.

8. Let M be a reductive monoid with zero and assume that M has the
property that

Λ(B, T ) =: {e ∈ E(T ) | Be ⊆ eB } = {f ∈ E(T ) | f ≥ e0 } ∪ {0}

for some e0 ∈ E1(T ). Prove that R has the following property: for any
x ∈ R, either x2 = 0 or else xHe for some idempotent e ∈ E(R).

9. Let M be reductive, and let x ∈M be an element of some minimal J-class
of M . Prove that, for some maximal torus T of M , xT = Tx.

10. Let M be reductive, and let x ∈ M be such that xT = Tx for some
maximal torus T of M . Prove that x ∈ NG(T ).

11. Let M = Mn(K). Prove that R has the following property: if e ≤ f < 1
are idempotents of R, then there exists r ∈ R such that rs = e for some
s > 0, and r is R-related to f .

12. Let G be a connected, solvable group acting on an irreducible, affine va-
riety X . Suppose that there are a finite number of orbits. Let O be the
set of G-orbits on X . Define x ≤ y, if x ⊆ y. Prove that O is a ranked
poset; i.e. any two maximal chains from x to y have the same length. This
applies, in particular, to the Bruhat decomposition of a reductive monoid.

13. Let e ∈ E(T ), T ∈ B. Prove that BeB ∩He = CB(e)e, where He is the
H-class of e in M .

14. Let M be irreducible with unit group G, e ∈ E(T ), T ∈ B. Let U be the
unipotent radical of CB(e). Define U1 = < Uα | eUα = Uαe 6= {e} >
and U2 = < Uα | eUα = Uαe = {e} >. Define ψ : U1 × U2 → U , by
ψ(a, b) = ab. Prove that ψ is an isomorphism of groups.

15. Let M be reductive, and let B ⊆ G be a Borel subgroup of G. Let J be a
regular J-class of B. Define J∗ = {a ∈ M | aHx for some x ∈ J }. Prove
that J∗ = BHeB, where He is the H-class of e in M .

16. Let M be reductive and let e ∈ E(T ). Prove that

dim(GeG) = |Φ| − |{α ∈ Φ | sαe = esα = e }|+ dim(eT ).

Hint: BeB− ⊆ GeG is open for appropriate, opposite Borel subgroups
containing T . So compute dim(BeB−).

17. Let M be reductive with zero. Define rank(x)=dim(xT ) for xT ∈ R. For
e ∈ E1(T ), define χe : T → eT ∼= K by χe(z) = ez. Assume that M has a
unique minimal nonzero J-class. Define a bijection between the rank-one
elements of R and {s(χe)− χe | e ∈ E1(T ), s ∈W}\{0}.
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Representations and Blocks of Algebraic
Monoids

The ultimate mathematical dictionary might define the theory of algebraic
monoids as a branch of algebra that determines the content of mathematical
problems relating convexity and positivity to representation theory. We can
regard this imaginary definition as the major theme of this chapter. What I
want to do here is provide the reader with a self-contained overview of what
is known about algebraic monoids and their finite dimensional representa-
tions. In the first section we discuss normal, reductive monoids. Here we find
that there is a perfect analogue of many results about reductive groups. In
particular, we obtain the desired relationship between the set of irreducible
representations of M and the adjoint quotient of M .

In the next section we focus on the special properties of a normal, reductive
monoid M in characteristic p > 0. The results here are largely due to S.
Doty. We find that K[M ] has a good filtration in the sense of Donkin [24].
Furthermore, the category of rational M -monoids is a highest weight category
in the sense of Cline, Parshall and Scott [16].

In the last two sections we study the blocks of an algebraic monoid. Blocks
are often better behaved for monoids than they are for groups. We discuss the
blocks of monoids in two contrasting situations; solvable monoids with zero,
and M = Mn(K) when char(K) = p > 0. The blocks of a solvable monoid
were studied by the author in [113]. The blocks of Mn(K) were calculated by
S. Donkin in [25].

9.1 Conjugacy Classes and Adjoint Quotient

Semisimple elements play an important rôle in the representation theory of
reductive groups. The most fundamental results relate the conjugacy classes
of semisimple elements to the characters of irreducible representations, via the
ring of class functions on the adjoint quotient. In this section we discuss the
analgous results for normal reductive monoids.
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Let M be an irreducible normal, algebraic monoid. An element x ∈ M is
semisimple if ρ(x) ∈ Mn(K) is diagonalizable for any rational representation
ρ : M −→Mn(K) of M .

Proposition 9.1. Let M be irreducible. The following are equivalent.

a) x ∈M is semisimple.
b) x ∈ T for some maximal torus T ⊆ G.

Proof. b) clearly implies a). So assume a). Assume that M ⊆ Mn(K) as a
closed submonoid. Then x ∈ Mn(K) is diagonalizable, and it follows easily
that x ∈ He, the unit group of eMe, for some idempotent e ∈ M . But x is
semisimple in this reductive group and so x ∈ S where S ⊆ He is a maximal
torus. However, any maximal torus S of He is of the form S = eT for some
maximal torus T ⊆ CG(e). But eT ⊆ T . Then x ∈ S = eT ⊆ T .

Theorem 9.2. Suppose that M is reductive and x ∈ M . Then the following
are equivalent.

a) x is semisimple.
b) x ∈ T for some maximal torus T of G.
c) C`(x), the conjugacy class of x, is closed in M .

Proof. Suppose x ∈ T . Then txt−1 = x for t ∈ T . Thus, by 2.13, Corollary 1
of [134], C`(x) ⊆M is closed.

Conversely, assume that C`(x) ⊆ M is closed. We assume also that M
has a zero element. The general case follows easily from this. By [62] the
categorical quotient π : M −→ X of M by G ×M −→ M , (g, x) 7−→ gxg−1,
exists and induces a one-to-one correspondence between the closed orbits of
M and the points of X . Consider

π | T : T −→ X .

If π(z) = π(y) then gyg−1 = z for some g. But g−1Tg and T are both
contained in CG(y)0. Hence there exists h ∈ CG(y)0 such that hg−1Tgh−1 =
T . But then hg−1 ∈ NG(T ) while (hg−1)−1g hg−1 = gyg−1 = z. Thus π|T
induces an injective map

θ : T/W −→ X

where W = NG(T )/T . On the other hand θ is known to be birational by
Corollary 2 of [134]. Hence θ is an open embedding, topologically. Since M has
a zero, T/W and X are cones. It follows that θ is a finite bijective morphism.
If M is normal then so is X , and thus θ is an isomorphism by Theorem 2.29.

Recall now the element x ∈ M with C`(x) ⊆ M closed. By the above,
π(x) = π(y) for some y ∈ T . But π separates closed orbits and so C`(x) =
C`(y).
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Corollary 9.3. Suppose that M is reductive and let T ⊆ G be a maximal
torus. Then

CM (T ) = {x ∈M | xt = tx for all t ∈ T }

= T .

Proof. If x ∈ CM (T ) then C`(x) ⊆ M is closed and so, by Theorem 9.2, x
is semisimple. It is then possible to find a Borel subgroup B ⊆ G such that
T ∪ {x} ⊆ B. From there we embed B in Tn(K) as a closed submonoid. It
follows from Proposition 15.4 [40] that T ∪ {x} is contained in a maximal
torus of Tn(K). Hence T ∪ {x} ⊆ Tn(K) −→

π
Dn(K) is injective, where π is

the projection to the diagonal. But from Theorem 6.1, π|B factors through
the universal morphism of B to a D-monoid θ : B −→ T and thus x ∈ T .

Corollary 9.4. Let π : M −→ X be the categorical quotient induced by con-
jugation of G on M . Then in the following diagram θ is an isomorphism:

T ↪→ My
yπ

T/W −→
θ

X .

Proof. This is included in the proof of Theorem 9.2.

Example 9.5. Let M be a normal monoid with 0 and unit groups G`2(K). By
[103], M ∼= Mr, r ∈ Q+, where Mr is the unique semisimple monoid with

X(T ) ∼= {(a, b) ∈ Z2

∣∣∣∣
∣∣∣∣
b− a

b+ a

∣∣∣∣ ≤ r } ∪ {(0, 0)} .

Assume further that r = 1/n with (2, n) = 1. Then

K[T ] ∼= K[x, u, v]/(xn − uv)

and the non-trivial element σ of the Weyl group W = {1, σ} acts by

σ(x) = x,

σ(u) = v

and

σ(v) = u.

Hence, the ring of invariants is

K[X ] ∼= K[x, u, v]W = K[x, u+ v] .

Thus
π : Mr −→ X ∼= K2

is a flat morphism.
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The irreducible representations of a normal monoid can be calculated using
Theorem 9.2. Let M be normal and reductive. We obtain

X(T ) ⊆ X(T ), the set of characters of T ,

and

X(T )+ ⊆ X(T ), the set of dominant weights of T .

X(T )+ is obtained by intersecting the set X(T )+ of dominant weights ofX(T )
with X(T ). As expected, X(T )+ is a fundamental domain for the action of
W on X(T ).

Theorem 9.6. Let M be reductive and normal. Then there is a canonical
one-to-one correspondence between X(T )+ and the set of irreducible repre-
sentations of M .

Proof. Assume that ρ : M −→ End(V ) is irreducible. Then ρ|G is irreducible
since G ⊆M is dense. Thus ρ|G is identified by its highest weight λ ∈ X(T )+.
But ρ|G came from ρ, and so λ ∈ X(T ). Hence λ ∈ X(T )+. Conversely,
given λ ∈ X(T )+ we start with ρλ : G −→ G`(Vλ), the unique irreducible
representation with highest weight λ. But all the other weights of ρλ are in
the convex hull of W ·λ, which is contained in X(T ). Hence ρλ|T extends over
T . Thus, by Theorem 5.2, ρλ extends to ρλ : M −→ End(Vλ).

The reader who wants more detailed information about rational represen-
tations should consult [26, 107].

9.2 Rep(M) according to Doty

In this section we discuss some results of S. Doty [26] concerning the structure
of K[M ] as a G × G-module. This is not much of an issue if char(K) = 0
since, in that case, K[M ] =

⊕
λ∈L(M)K[M ]λ, and each K[M ]λ is G × G-

irreducible. Furthermore, L(M) is canonically identified with the set of high
weights of G that come from representations of M . If M is normal, we see
that L(M) = X(T )+, as in Theorem 9.6.

On the other hand, if char(K) = p > 0, then the situation is more complex.
First of all, it is no longer sufficient to consider just the simple G×G-modules.
This leads us naturally to the theory of highest weight categories. From there
we can better understand K[M ] in terms of filtrations.

Let λ : B −→ K∗ be a character of the Borel subgroup B of G. Define

H0(λ) = indGB(Kλ) =

{
f ∈ K[G]

f(bg) = λ(b)f(g) for all
b ∈ B, y ∈ G

}
.

H0(λ) is naturally a G-module via g · f(x) = f(xg) for x, g ∈ G. It is well
known, from Borel-Weil theory (see Remark 2.49), that H0(λ) is nonzero
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if and only if λ is dominant. In this case, the unique, maximal completely
reducible submodule of H0(λ) is

Vλ ⊆ H
0(λ),

the irreducible G-module with highest weight λ. Vλ is the socle of H0(λ).
Now let M be normal and reductive. Define

indM
B

(Kλ) =

{
f ∈ K[M ]

f(xy) = λ(x)f(y) for all
x ∈ B, y ∈M

}
.

It follows from Theorem 9.6 that indMB (Kλ) 6= (0) if and only if λ ∈ X(T )+,

the set of dominant weights of X(T ).

Definition 9.7. a) A good filtration (0) = V0 ⊆ V1 ⊆ V2 ⊆ . . . of the
rational G-module V =

⋃
i≥0 Vi is one for which Vi+1/Vi ∼= H0(λi) for

each i, where λi is a dominant weight.
b) Let X(T )+ be the set of dominant weights of T . If π ⊆ X(T )+ and V is

a rational G-module, we say V belongs to π if any G-module Vλ of the
Jordan-Hölder series of V has λ ∈ π. In any case we let

Oπ(V ) ⊆ V

be the maximal submodule of V belonging to π.

Proposition 9.8. Let π = X(T )+.

a) OπH
0(λ) =

{
H0(λ) if λ ∈ π
(0) if λ /∈ π .

b) Let I(λ) (resp. Q(λ)) be the injective hull of Vλ in the category of rational
G-modules (resp. M -modules). Then

Oπ(I(λ)) =

{
Q(λ) , λ ∈ π
(0) , λ /∈ π .

Furthermore, Q(λ) has a good filtration with all factors Vµ having µ ≥ λ.
c) OπK[G] = K[M ]. Furthermore, K[M ] has a good filtration as a left G-

module. Each H0(µ), µ ∈ π, occurs exactly dim H0(µ) times.

Proof. For a), notice that any submodule of H0(λ) contains Vλ, and so, if
λ /∈ π, then OπH

0(λ) = (0). Now suppose that λ ∈ π. Then H0(λ) lifts (by
Theorem 5.2) to become an M -module. Hence OπH

0(λ) = H0(λ).
For b), first notice that Oπ(−) takes injectives to injectives by (1.1d) of

[24]. Then the formula for Oπ(I(λ)) follows, and Q(λ) has a good filtration
by Theorem 8 of [24].

c) is proved by “Frobenius” reciprocity. See Theorem 4.4 of [26].

Corollary 9.9. K[M ] as an M ×M -module has a good filtration with com-
position factors of the form H0(λ)⊗H0(λ∗).
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Proof. This follows from c) using (2.2a) of [24].

We now explain the key features of the category Rep(M) of rational M -
modules.

a) X(T )+ = X(T )+ ∩X(T ) the poset of dominant weights of M .
b) {Vλ | λ ∈ X(T )+} the simple objects of Rep(M).
c) {H0(λ) | λ ∈ X(T )+} the standard objects of Rep(M).

The following theorem is recorded in [26].

Theorem 9.10. a) The socle of (H0(λ)) is Vλ and the composition series of
H0(λ)/Vλ has only factors of the form Vµ with µ < λ.

b) Each Vλ has an injective hull Vλ ⊆ Q(λ) so that Q(λ) has a good filtration
(0) = Q(λ)0 ⊆ Q(λ)1 ⊆ . . . with Q(λ)1 = H0(λ) and Q(λ)i+1/Q(λ)i =
H0(µi) with µi > λ for i > 0.

Proof. a) is well known, and b) follows from Proposition 9.8.

We have thus identified a key result about reductive normal monoids.
Rep(M) is a highest weight category in the sense of Cline, Parshall and Scott
[16]. We cannot pursue all the important consequences of this result, but
we shall give one striking illustration. Let M be reductive and normal, and
suppose M has a zero element. Then we can write uniquely

K[M ] =
⊕

χ∈Y

K[M ]χ

where Y = X(ZG0), and each K[M ]χ is the subcoalgebra of K[M ] defined
by

K[M ]χ =

{
f ∈ K[M ]

f(gx) = χ(g)f(x) for
g ∈ ZG◦, and x ∈M

}
.

It follows that each K[M ]χ is finite dimensional. Thus, for each χ ∈ Y ,

S(M)χ = HomK(K[M ]χ,K)

is a finite dimensional K-algebra. It follows from Theorem 9.10 that

S(M)χ is quasihereditary.

One could also prove this using Donkin’s work since, in Donkin’s notation,
S(M)χ is the generalized Schur algebra S(πχ) where

πχ = i∗−1(χ) ∩X(T )+

and i : Z(G)◦ −→ T is the inclusion. Notice that πχ ⊆ X(T )+ is a saturated
subset of X(T ) with the given ordering.
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9.3 The Blocks of Mn(K) when char(K) = p > 0

A block can be thought of as an equivalence class of irreducible representa-
tions. The equivalence relation in this setup is generated by declaring irre-
ducible representations (ρ, U) and (ϕ,W ) to be in the same block if there
exists an indecomposable representation (ψ, V ) such that (ρ, U) and (ϕ,W )
occur as factors in a composition series of (ψ, V ). In this section we describe
Donkin’s calculation [25] of the blocks of Mn(K). We end this section with a
related, general conjecture about the blocks of irreducible, reductive monoids
in characteristic p > 0.

Let M = Mn(K), and let T ⊆ G`n(K) be the maximal torus of diagonal
matrices. Then

X(T ) = Zn = {(λ1, . . . , λn) | λi ∈ Z},

X(T ) = {(λ1, . . . , λn) | λi ≥ 0}

and

X(T )+ = {(λ1, . . . , λn) | λ1 ≥ λ2 ≥ · · · ≥ λn} .

Thus
X(T )+ = {(λ1, . . . , λn) | λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0},

and from Theorem 9.6 we can identify the set of irreducible representations
of M with X(T )+ via the usual identification using highest weights (V, ρ) =
(Vλ, ρλ). So let λ = (λ1, . . . , λn) ∈ X(T )+. Define

n∑

i=1

λi = r, the degree of λ,

and

d(λ) = max

{
d ≥ 0

λi − λi+1 ≡ −1 mod(pd) for
all i = 1, 2, . . . n− 1

}
.

Assume that char(K) = p > 0.

Theorem 9.11 (Donkin’s Theorem). Let (ρλ, Vλ) and (ρµ, Vµ) be irre-
ducible representations of Mn(K), where λ = (λ1, . . . , λn) and µ = (µ1, . . . , µn).
Then the following are equivalent.

a) λ and µ are in the same block.
b) i) λ and µ have the same degree.

ii) d(λ) = d(µ).
iii) There exists π ∈ Sn such that λi−i ≡ µπ(i)−π(i)mod(pd+1) for all i =

1, . . . , n.
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The basic idea of the proof parallels that used earlier by Donkin in [23]
for his classification of blocks of a semisimple algebraic group. Indeed, the
first step is to reduce the problem to finding the blocks of the Schur algebra
S(n, r). The blocks of S(n, r) are then just what one might suspect from
knowing the blocks of GLn(K). But the latter may involve arbitrary r, and
it is a delicate matter to compare the two situations.

There is a more conceptual way to state Donkin’s Theorem that leads to
an interesting conjecture. Let λ and µ be as above. By the results of [23], λ
and µ are in the same block for Gln(K) if and only if the three conditions of
Theorem 9.11 b) above are satisfied. Furthermore, the blocks of any reductive
group can be determined in the spirit of the above result for Gln(K) using
Theorem 5.8 of [23].

Let M be a reductive, normal monoid and let λ, µ ∈ X(T )+ represent
irreducible representations of M (as in Theorem 9.6). Let

BlG(λ) = {ν ∈ X(T )+ | λ and ν are in the same G-block}

and let

BlM (λ) = {ν ∈ X(T )+ | λ and ν are in the same M -block}.

Conjecture 9.12. BlM (λ) = BlG(λ)
⋂
X(T )+. In particular, λ and µ are in

the same M -block if and only if they are in the same G-block.

9.4 The Blocks of Solvable Algebraic Monoids

It turns out that there is a striking description of the blocks of certain solv-
able algebraic monoids. While this is a special case, our basic idea here is
expected to yield some decisive results for a large class of (nonsolvable) alge-
braic monoids in characteristic zero.

Let M be an irreducible, algebraic monoid with unit group G and zero
element 0 ∈M .

Definition 9.13. a) M is solvable if G is a solvable algebraic group (see
Definition 2.33).

b) M is polarizable if 0 ∈ Z(G).
c) M is polarized if we are given θ : K∗ −→ Z(G) such that θ extends to
θ : K −→M with θ(0) = 0. Then θ is called the polarization, and (M, θ)
is a polarized monoid.

It is easy to check thatM is polarizable if and only if there exists a polarization
θ : K∗ −→ Z(G).

Let (M, θ) be polarized and solvable. Then K∗ ×M −→ M , (α, x) 7−→
θ(α)x, induces a direct sum decomposition
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O(M) =
∞⊕

n=0

On(M)

where

On(M) =

{
f ∈ O(M)

f(θ(α)x) = αnf(x) for all
α ∈ K∗, x ∈M

}
.

It follows easily that

∆(On(M)) ⊆ On(M)⊗ On(M)

where ∆ is the coalgebra structure on O(M).
Let (M, θ) and (N,φ) be polarized monoids. A θ-morphism between (M, θ)

and (N,φ) is a morphism ϕ : M −→ N of algebraic monoids such that
ϕ(0) = 0 and ϕ( Image (θ)) ⊆ Image (φ). The θ-degree of ϕ is the degree of
ϕ|image(θ). Then ϕ(θ(α)) = φ(αn) if ϕ is of θ-degree n.

Let A be a finite-dimensional associative K-algebra. The blocks of A are
the obvious summands in the decomposition

A =
⊕

e∈Z

eAe

where Z is the set of primitive, central idempotents of A. We denote the blocks
of A by B`(A) and identify them with Z.

If (M, θ) is a polarized monoid we define the blocks of M to be

B`(M) =
⊔

n≥0

B`(Sn(M))

where Sn(M) := HomK(On(M),K) has the algebra structure induced from
the canonical coalgebra structure of On(M).

It is easy to check that this definition agrees with the one given by Green
in 1.6b) of [33]. Indeed, he proves that any coalgebra (R,∆) has a unique
expression R =

⊕
ρ∈B

Rρ such that

i) ∆(Rρ) ⊆ Rρ ⊗Rρ for all ρ ∈ B,
ii) for any other direct sum decomposition R =

⊕
γ∈ΛAγ with ∆(Aγ) ⊆

Aγ ⊗ Aγ , each Aγ is a sum of some Rρ’s.

Proposition 9.14. Let (M, θ) and (N,φ) be polarized monoids and let ϕ :
M −→ N be a dominant θ-morphism. Then ϕ induces a map of sets B`(ϕ) :
B`(N) −→ B`(M). This is a contravariant functor.

Proof. If ϕ has θ-degree k then the induced morphism ϕ∗ : On(N) −→
Okn(M) dualizes to obtain a surjective morphism of K-algebras

ϕn : Skn(M) −→ Sn(N) .

For each primitive, central idempotent e of Sn(N) there is a unique prim-
itive, central idempotent f ∈ Skn(M) such that ϕn(f)e = e. Hence define
B`(ϕ)(e) = f .
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We now describe B`(M) for a polarized monoid (M, θ) with solvable unit
group. As it turns out, there is a straightforward description ofB`(M) in terms
of weight spaces. As above we have Sn(M) = HomK(On(M),K). Define

ρn : M −→ Sn(M)

by ρn(x)(f) = f(x). Then ρn is the universal θ-morphism of θ-degree n to aK-
algebra. It follows easily that ρn(M) ⊆ Sn(M) spans, and Sn(M) is a solvable
K-algebra. If T ⊆ G is a maximal torus one checks that Dn = span(ρn(T ))
is a maximal toral subalgebra of Sn(M).

Proposition 9.15. Let T ⊆ G be a maximal torus and define µn : T × T ×
Sn(M) −→ Sn(M) by µn(s, t, x) = ρn(s)xρn(t). Then there is a bijective
correspondence between the nonzero weight spaces

αSβn = {x ∈ Sn(M) | ρn(s)xρn(t) = α(s)β(t)x for all s, t ∈ T }

and the pairs of primitive idempotents (e, f) ∈ E(Dn)×E(Dn) with eSn(M)f 6=
(0). Also, (e, f) corresponds to the unique αSβn with eSn(M)f = αSβn .

Proof. We leave the details to the reader. The proof hinges on identifying the
set of primitive idempotents of Dn with characters of T . See Proposition 2.3
of [113].

Thus we define

S =
{
(α, β) ∈ X(T )×X(T ) | αSβn 6= 0 for some n ≥ 0

}

∆(T ) =
{
(α, β) ∈ X(T )×X(T ) | α = β

}
.

One checks that
∆(T ) ⊆ S ⊆ X(T )×X(T ) .

We use S to define an equivalence relation on X(T ). For α, β ∈ X(T ) we
define

α −→ β if (α, β) ∈ S, and
α←− β if (β, α) ∈ S .

Lemma 9.16. a) The equivalence relation on X(T ) generated by −→ is the
same as the equivalence relation generated by ←−. It can be described as
follows:

α ∼ β if there exist γ1, . . . , γ2m−1 ∈ X(T )

such that

α = γ1 −→ γ2 ←− . . .←− γ2m−1 = β.

b) Suppose that α ∼ β and λ ∼ δ. Then αλ ∼ βδ.
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Proof. a) is a straightforward calculation. For b) one uses the fact that S is
a semigroup, together with the fact that the “m” for α ∼ β can be chosen
equal to the “m” for λ ∼ δ.

Theorem 9.17. (X(T )/ ∼ ) ∼= B`(M) via α 7−→ [α]. Then X(T ) −→ B`(M)
is a surjective morphism of monoids.

Proof. B`(M) =
⊔
n≥0B`(Sn(M)). Hence letDn = Span(ρn(T )) be the max-

imal toral subalgebra as discussed above. Using standard facts about associa-
tive algebras we see that

B`(Sn(M)) = E1(Dn)/ ∼◦

where ∼◦ is the equivalence relation on E1(Dn) generated by declaring

e ∼◦ f if eSn(M)f 6= 0 or fSn(M)e 6= 0 .

But E1(Dn) is identified, via Proposition 9.15, with Sn = {(α, β) ∈ S |
αSn(M)β 6= 0}. Thus the two equivalence relations correspond. We conclude

that X(T )/ ∼ ∼=
(⊔

n≥0E1(Dn)
)
/ ∼◦.

Now X(T ) −→ X(T )/ ∼ determines a subscheme Y ⊆ T via

Y = Spec(K[X(T )/ ∼]) (monoid algebra)

and one obtains, from 3.2 of [113], that Y ⊆ Z(M), the center of M . Fur-
thermore, the surjection, K[M ] −→ K[Y ], identifies Sn(Y ) with the maximal
toral subalgebra of Z(Sn(M)). In particular,

Y =
⋂

g∈G

gTg−1 .

From these comments, and a little more calculation (3.5 of [113]), we obtain
the following theorem.

Theorem 9.18. There is a canonical bijection

Bln(M, θ) ∼= Xn(Y )

where Xn(Y ) = {χ : Y −→ K | χ has θ-degree n}.

We conclude the chapter with three examples and a conjecture.

Example 9.19. We define polarizable, solvable monoids M and M ′ as follows:

M = {(u, (r, s)) | u, r, s ∈ K}

with multiplication
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(u, (r, s))(v, (k, `)) = (k`u+ r2v, (rk, s`)),

and
M ′ = {(u, (r, s) | u, r, s ∈ K}

with multiplication

(u, (r, s))(v, (k, `)) = (`u+ rv, (rk, s`)).

Define ϕ : M ′ −→ M by ϕ(u, (r, s)) = (ru, (r, s)). One checks that ϕ is a
birational θ-morphism of degree one. Furthermore, ϕ induces an isomorphism

ϕ : T
′
−→
∼=

T .

We now compute the center of each monoid. Clearly,

Z(M) = {(0, (r, r))|r ∈ K}

since M is the algebra of 2×2 upper triangular matrices. As for M ′, one needs
a little more calculation, and we obtain

Z(M ′) = {(0, (r, r)) | r ∈ K} ∪ {(0, (0, s)) | s ∈ K} .

In particular, the inclusion Z(M) ⊂ Z(M ′) is proper, so that M and M ′ have
different block structure even though ϕ : M ′ −→M is a birational equivalence

with T
′
−→
∼=

T .

Example 9.20. Define a polarizable solvable monoid N as follows:

N = {(u, (r, s)) | u, r, s ∈ K}

with multiplication

(u, (r, s))(v, (k, `)) = (k2`u+ r3v, (rk, s`)).

One checks that T = {(0, (α, β))|α, β ∈ K} is the closure in N of the maximal
torus T = {(0, (α, β)) | αβ 6= 0}. Hence assume (0, (r, s)) ∈ T is central. Then
we must have

(0, (r, s))(v, (k, `)) = (v, (k, `))(0, (r, s)) for all v, k, ` .

Thus r3v = sr2v for all v and so r3 = sr2. By the comment preceding Theo-
rem 9.18

K[Y ] = K[U,R, S]/(U,R3 − SR2)

∼= K[R,S]/(R3 − SR2) .

Let x = R, y = S ∈ K[y]. Then f = x(x − y) 6= 0, and yet
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f2 = x2(x− y)2 = (x3 − x2y)(x− y) = 0 .

Thus K[Y ] is not reduced. We can also calculate the number of blocks of N
of each θ-degree, using this presentation of K[Y ]. In fact,

|B`0(N)| = 1

|B`1(N)| = 2

|B`n(N)| = 3 if n ≥ 2 .

It appears that there may be an important structural relationship between
the blocks of solvable monoids, and the blocks of arbitrary irreducible monoids
(at least in characteristic zero).

Example 9.21. We start with M = G, a semisimple, simply connected alge-
braic group of rank r in characteristic zero. Here we find that

Bl(G) = IR(G),

and this is a monoid under the “Cartan product”. Let T ⊂ B ⊂ G be a
maximal torus of the Borel subgroup B of G. Let {ρ1, . . . , ρr} be the set of
fundamental, dominant representations of G, so that ρi : G −→ Gl(Vi). Let
Li ⊂ Vi be the unique, one-dimensional subspace stabilized by B. Let Dn(K)
be the monoid of diagonal n× n matrices. Define

ϕ : T −→ Dn(K)

by ϕ(t) = (ρ1(t)|L1, . . . , ρr(t)|Lr). Then ϕ is the restriction of a U × U−-
equivariant morphism ψ : G −→ Dr(K), which is defined on UTU− by
ψ(utv) = ϕ(t). Somehow, the U × U−-morphism ψ might be thought of as a
kind of “basic monoid” associated with G. In particular,

a) Dr(K) is solvable,
b) Bl(G) ∼= Bl(Dr(K)),
c) G and Dn(K) are (somehow) Morita equivalent via ψ.

Notice that even though G is a group, this “basic” object Dn(K) is a
monoid.

The above example leads us to an interesting conjecture about the blocks of
algebraic monoids.

Conjecture 9.22. Let M be an irreducible, algebraic monoid. There exists an
irreducible, algebraic monoid B(M), and a certain dominant morphism ψ :
M −→ B(M) of algebraic varieties, such that

a) B(M) is solvable,
b) M and B(M) are (somehow) Morita equivalent via ψ
c) in particular, Bl(M) ∼= Bl(B(M)).
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The reader might wonder what it means for algebraic monoids M and N
to be Morita equivalent. Unfortunately, this has yet to be formulated precisely.
Obviously, it will involve a bijection between Bl(M) and Bl(N), as well as
a diagram of Morita equivalences between the corresponding (block) algebras
one obtains from the “coordinate coalgebras” of M and N . In any case, there
should be enough clues in the above example to find the “correct” definition,
at least in the case of polarized monoids.



10

Monoids of Lie Type

Algebraic monoids are rich in structure, mainly because they are algebraic
varieties with much symmetry. In this chapter we focus on those properties
that allow us to identify what makes the theory “tick” from an abstract semi-
group point of view. The reader should think of this development as a natural
extension of Tits’ viewpoint (in [140]) to the case of monoids. One might even
hope that the theory of spherical embeddings is the undisputed clue that
will someday lead us to the ultimate formulation of abstract, combinatorial
diagram geometry.

10.1 Finite Groups of Lie Type

The classification of reductive, normal monoids is independent of the (al-
gebraically closed) ground field (see Theorem 5.4). Thus it can be applied
uniformly to the algebraic closure of finite fields. This allows us to define a
class of finite monoids in the spirit of Steinberg’s theory of Chevalley groups
and their twisted analogues [133]. Such finite monoids are useful in counting
problems related to the Weil zeta function.

Let G be a simple, algebraic group defined over a field of characteristic
p > 0. Chevalley classified all endomorphisms σ : G −→ G with the property
that

Gσ := {x ∈ G | σ(x) = x}

is a finite group. There are essentially two types.

10.1.1 σ Preserves Root Length

Then σ induces an automorphism ρ of the root system of G so that σ(t) =
Frq(ρ(t)), where Frq(t) = tq for all t ∈ T , an appropriately chosen maximal
torus of G. The root systems with automorphisms are An, Dn and E6. It
turns out that Aut(An) = Z/2Z, Aut(Dn) = Z/2Z (n > 4), Aut(D4) = S3

and Aut(E6) = Z/2Z.
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10.1.2 σ Exchanges Root Length

Then G is of the type C2, F4 or G2, and char(K) = 2 or 3. See Chapter II of
[133] for more details.

Chevalley (ρ = id) and Steinberg (ρ 6= id) studied the groups of type
10.1.1, and Suzuki (C2) and Ree (F4, G2) studied the groups of type 10.1.2.
Later Tits [140] found the method (BN pairs) that accommodates the struc-
ture theory of all sixteen families.

Altogether, there are sixteen different families. In addition to those families
where ρ is the identity, there are seven other families:

ρ as in 10.1.1: A2
n, D

2
n, D

3
4 , E

2
6 ;

ρ as in 10.1.2: C2
2 , F

2
4 , G

2
2.

These sixteen families, together with the prime cyclic groups and the alter-
nating groups for n ≥ 5, account for all but twenty six of the finite simple
groups.

We are interested in identifying the endomorphisms that yield finite fixed
point monoids with good behaviour. The following result does the job.

Let G be a connected algebraic group, and let σ be an algebraic group
endomorphism of G. Denote by 1 − σ : G → G, the morphism of varieties
1− σ(g) = gσ(g)−1. As above, let

Gσ := {x ∈ G | σ(x) = x}.

Theorem 10.1. (Lang’s Theorem) Let G and σ be as above, and assume
that σ is surjective. If Gσ is finite then (1 − σ)(G) = G. If G is semisimple,
then Gσ is finite if and only if the differential dσ of σ is nilpotent.

See Theorems 10.1 and 10.5 of [133].

10.2 Endomorphisms of Linear Algebraic Monoids

Theorem 10.2. Let σ : M −→ M be an endomorphism of the reductive
monoid M . The following are equivalent:

a) σ is a finite morphism and Gσ = {x ∈ G | σ(x) = x} is a finite group;
b) The morphism 1 − σ : G −→ G, (1 − σ)(x) = xσ(x)−1, is surjective, and

there exists a maximal torus T ⊆ G so that σ(T ) = T .

The keys to Theorem 10.2 are Lang’s Theorem ( 10.1 above), to get 1− σ
surjective when Gσ is finite; and Theorem 4.2, to get σ finite when σ(T ) = T .

The importance of Theorem 10.2 will become apparent in Theorem 10.4.
We define, for σ and M as in 10.2,

Mσ = {x ∈M | σ(x) = x} .
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To obtain the structure of Mσ we need to know a little more about the ho-
mogeneity properties of this σ-process. The following result is due to Springer
and Steinberg (Section E of [131]).

Proposition 10.3. Let G×X → X be a homogeneous space for the connected
group G. Assume that σ : G → G is such that Gσ is finite. Suppose that τ :
X → X is a morphism compatible with σ : G→ G (so that τ(gx) = σ(g)τ(x)).
Then Xτ = {x ∈ X | τ(x) = x} 6= φ. If Gx is connected for x ∈ X, then
Gσ ×Xτ → Xτ is transitive.

The proof of Proposition 10.3 is a straightforward application of Lang’s
Theorem.

Applying Proposition 10.3 to the appropriate orbits of G or G×G on the
reductive monoid M yields the following result. See Theorem 4.3 of [96] for
the details.

Theorem 10.4. Let M be reductive with σ : M −→M as in Theorem 10.2.

a) Mσ is finite.
b) Mσ is unit regular; Mσ = E(Mσ)Gσ.

c) If T ⊆ B satisfies σ(T ) = T and σ(B) = B, then Mσ =
⋃

e∈Λσ

GσeGσ

where Λσ = {e ∈ E(T ) | Be = eBe and σ(e) = e}. Such T and B exist by
the results of [133].

d) If e ∈ Eσ then Pσ(e) and P−
σ (e) are opposite parabolic subgroups of Gσ.

e) If e, f ∈ Eσ and eMσ = fMσ or Mσe = Mσf , then there exists g ∈ Gσ
such that geg−1 = f .

f) If e ∈ Λσ and U C Pσ(e) is the unipotent radical, then Ue = {e}. Similarly
for U− C P−

σ (e), eU− = {e}.

Putcha calls such monoids, satisfying a) - f), monoids of Lie type. He uses
this as the starting point for his theory of “monoids on groups with BN
pairs”. See § 10.4 for the details of this surprising development, including a
classification theory based on type maps.

10.3 A Detailed Example

The purpose of this example is to illustrate the two significant features while
comparing M and Mσ.

a) The BN pair structure of G and Gσ can be different, i.e. G and Gσ can
be associated with different Dynkin diagrams.

b) It can happen that Λσ $ Λ.
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Actually a) and b) are equivalent for semisimple monoids.
Let K = Fq and let G = S`4(K)×K∗. Define σ : G −→ G by

σ(x, α) = (Frq(w T (x−1)w), αq)

where Frq((xij)) = (xqij) and w =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


, and T is the transpose opera-

tor.
The group Gσ here is a central extension of a unitary group over Fq. See

[135] for those details. The diagonal maximal torus T of G has character group
X(T ) with presentation

X(T ) = 〈x1, x2, x3, x4, δ | x1 + x2 + x3 + x4 = 0〉

where χi ((α1, α2, α3, α4, α)) = αi and δ(α1, α2, α3, α3, α4, α) = α. One checks
that σ∗ : X(T ) −→ X(T ) is given by

σ∗(χ1) = −qχ4

σ∗(χ2) = −qχ3

σ∗(χ3) = −qχ2

σ∗(χ4) = −qχ1

σ∗(δ) = qδ .

Hence

σ∗(χ1 − χ2) = q(χ3 − χ4)

σ∗(χ2 − χ3) = q(χ2 − χ3)

σ∗(χ3 − χ4) = q(χ1 − χ2) .

In the notation of 7.1, ρ∗ is given on the base ∆ = {χ1−χ2, χ2−χ3, χ3−χ4}
via

ρ(χ1 − χ2) = χ3 − χ4

ρ(χ2 − χ3) = χ2 − χ3

ρ(χ3 − χ4) = χ1 − χ2 ,

and σ = Frq ◦ ρ. Hence σ is of type A2
3.

We now construct an interesting reductive monoid M with unit group G
so that σ : G −→ G extends to an endomorphism σ : M −→M that satisfies
the conditions of Theorem 10.2. To construct M we use Theorem 5.4. Then
it suffices to find a finitely generated submonoid C ⊆ X(T ) such that

i) C generates X(T ) as a group
ii) C is invariant under the Weyl group
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iii) C = {x ∈ C | nχ ∈ C for all n > 0}
iv) qC ⊆ σ∗(C) ⊆ C.

To do this we consider

C1 = 〈χi − χj + δ | i 6= j〉

and we let
C = {χ ∈ X(T ) | nχ ∈ C1} .

Then by Theorem 5.4 and Theorem 5.2 there is a unique, normal monoid M
such that

i) G = Sl4(R)×K∗

ii) if T ⊆ G is a maximal torus then X(T ) = C
iii) the morphism σ : G −→ G extends to a finite, surjective morphism σ :

M −→M .

A more direct construction of M can be obtained as follows. Let g be the
Lie algebra of S`4(K), and let ρ : G −→ Aut(g) be defined by ρ(g, α) =
αAd(g), where Ad is the adjoint representation of S`4(K). Then there is a
finite dominant morphism from M to the Zariski closure of the image of ρ.

The following properties of M are easily obtained.

a) M has a unique minimal, nonzero G×G-orbit corresponding to the Weyl
group orbit of χ1 − χ4 + δ (see § 7.2)

b) ρ(χ1 − χ4 + δ) = χ1 − χ4 + δ
c) M is the J-irreducible monoid of type J0 = {β} where the Dynkin diagram

is

q q q

α β γ

Thus, by Theorem 7.12 a), the cross-section lattice is as follows:

q0

q1

q e

q qf2

q

f1

g1 qg2 qg3

@
@

@
@
�

�
�
�

@
@

@
@

�
�

�
�

�
�

@
@

where Λ ≡ {φ, g1, g2, g3, f1, f2, e, 0}. The type map is given as follows:
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λ(0) = {α, β, γ}

λ(e) = {β}

λ(f1) = {α}

λ(f2) = {γ}

λ(g1) = {α, β}

λ(g2) = {α, γ}

λ(g3) = {β, γ}

λ(1) = {α, β, γ} = S .

Also, from the above calculation of σ∗ we obtain σ(e) = e, σ(f1) = f2, σ(f2) =

f1, σ(g1) = g3, σ(g3) = g1 and σ(g2) = g2. By 10.4,Mσ =
⊔

f∈Λσ

GσfGσ, where

Λσ = {0, e, g2, 1} .

The group Gσ is a finite group with BN -pair associated with the diagram

q q

η ζ

obtained by “folding” the diagram

q q q
α β γ

at β, thereby identifying α and γ. The type map of Mσ is given by

λ(e) = {ζ} ←→ {β}

λ(g2) = {ζ} ←→ {α, γ} .

10.4 Abstract Monoids of Lie Type

In this section, we describe Putcha’s theory of abstract monoids of Lie type.
This was developed by Putcha in [85, 86] as the method of understanding
many of the purely semigroup theoretic aspects of the theory of algebraic
monoids. The reader might consider this development as the natural monoid
analogue of Tits’ theory of groups with BN-pair.

In this section, we refer the reader to [85, 86, 97] for many of the proofs.

Definition 10.5. Let M be a regular monoid with unit group G and idempo-
tent set E(M). Assume that G is a group with BN-pair (B,N, S,W ). We say
that M is a monoid of Lie type on G if
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a) M is generated by G and E(M)
b) If e ∈ E(M), then P (e) = {g ∈ G | ge = ege} and P−(e) = {g ∈ G | eg =
ege} are opposite parabolic subgroups of G, and eRu(P

−(e)) = {e} =
Ru(P (e))e

c) If e, f ∈ E(M), and eRf or eLf , then there exists g ∈ G such that
geg−1 = f .

It follows easily that if ef = fe = f then Ru(P (e)) ⊆ P (f), and so
P (e, f) = P (e)∩P (f) is a parabolic subgroup of G. Furthermore, P (e, f) and
P−(e, f) are opposite parabolic subgroups.

The following basic result is obtained in [85]. Let B be a Borel subgroup
of G. We say that P and P− are standard opposite parabolic subgroups if
B ⊆ P .

Theorem 10.6. Let M be a monoid of Lie type on G. Then

a) M = E(M)G = E(M)G
b) the partially ordered set U of J-classes of M is a lattice
c) for each J ∈ U there is a unique eJ ∈ E(J) such that P (e) and P−(e) are

standard opposite Borel subgroups
d) if J1, J2 ⊆ U then eJ1eJ2 = eJ1∧J2 , and hence Λ = {eJ | J ∈ U} ∼= U as

lattices.

Just as in the case of reductive monoids, we refer to Λ as the cross-section
lattice of M . Furthermore, we have the type map

λ : Λ→ 2S

defined by setting λ(eJ ) = CS(eJ) = {s ∈ S | seJ = eJs}.

Remark 10.7. There is a purely combinatorial characterization of the type
maps of monoids of Lie type. We refer the reader to [85].

It is useful to know how one constructs a monoid of Lie type directly from
a type map of the form mentioned in Remark 10.7 above. In the following
example, we describe how this is done for a canonical monoid. The details of
this construction are recorded in [66, 96].

Example 10.8. LetG be a group of Lie type withBN -pair structure (G,B,N, S).
If I ⊆ S let PI be the standard parabolic subgroup of G of type I, and let
P−
I be the parabolic subgroup opposite to P relative to T = N ∩B. It is well

known that

P−
I PI

∼= U−
I × LI × UI .

where PI ∩ P
−
I = LI is the Levi factor common to PI and P−

I . Thus we have
a natural projection map

θI : P−
I PI → LI .
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Restricted to PI or P−
I , θI is a homomorphism.

For each I ⊆ S, define an idempotent eI so that

Λ = {eI | I ⊆ S} ∪ {0}

and eI ∧ eK = eI∩K if I ∩K 6= φ, and zero otherwise. For eI ∈ Λ, define

JI = GeIG/ ∼

where xeIy ∼ ueIv if u−1x ∈ PI , vy
−1 ∈ P−

I and θ(u−1x) = θ(vy−1). Finally,
define

M =
⊔

I⊆S

JI t {0}.

We now define the multiplicative structure on M . Let a = xeIy and b =
seKt. Then

ab =

{
0 , if ys /∈ P−

I PK
xleI∩Kmt , if ys ∈ U

−
I lmUK , l ∈ LI , m ∈ LK .

It turns out that M is a monoid of Lie type with type map

λ : Λ→ 2S

defined by λ(eI) = I, λ(0) = S. Hence M is a canonical monoid.

The next problem is to quantify the extent to which a monoid of Lie type
is determined by its unit group G, and its type map λ : Λ → 2S . There is a
very satisfying answer ([85]), which we now describe.

Let M be a monoid of Lie type, and let J ∈ U. Define

KJ = {g ∈ G | geJ = eJg = eJ}.

Then KJ is a normal subgroup of LJ = P (e) ∩ P−(e). Let

K = {(J,KJ) | J ∈ U}.

Let M1 and M2 be monoids of Lie type with unit group G, and the same type
map λ. If K1 = K(M1) and K2 = K(M2), we say that

K1 ≥ K2

if for all J ∈ U, (K1)J ⊆ (K2)J .

Theorem 10.9. Let M be a monoid of Lie type with unit group G and type
map λ : Λ→ 2S.

a) M is completely determinied by (λ,K(M)).
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b) Let M1 and M2 be monoids of Lie type with the same unit group G and the
same type map λ. There is a morphism of monoids M1 →M2, extending
the identity map on Λ ∪G, if and only if K1 ≥ K2.

c) There is a largest monoid M+(λ) of type λ with KG = {1}. K(M+(λ)) =
{K+

J | J ∈ U}, where K+
J is the subgroup of LJ generated by all UH and

U−
H , where H ∈ U and H ≥ J . In particular, there is a unique morphism

M+(λ)→M , extending the identity on Λ∪G, for any monoid of Lie type
M with group G and type λ.

d) There is a smallest monoid M = M−(λ) of type λ with KG = {1}.
K(M−(λ)) = {K−

J | J ∈ U} where

K−
J =

⋂

g∈LJ ,J≥H

g(LH ∩ LJ)g−1.

In particular, there is a unique morphism M → M−(λ), extending the
identity on Λ ∪ G, for any monoid of Lie type M with group G and type
λ.

Parts a), b) and d) of Theorem 10.9 are proved in [85], and part c) is
proved in [86]. The reader should think of the type map here as determining
M to within a kind of “central extension of monoids”. In the geometric case,
it is entirely likely that the isomorphism classes of monoids of fixed type could
be organized into families of commutative semigroups.

A more refined description of K+
J and K−

J has since been given in Theorem
1.1 of [97]. In particular, both K+

J and K−
J have been identified in terms of

certain Levi subgroups of standard parabolics.
Let M be a finite monoid of Lie type. Let G be the group of units of

M , and let Λ be a cross-section lattice of M . Recall from § 2.3.1, the notion
of congruence on M . A congruence on M arising from a congruence on Λ is
called a discrete congruence. At the other extreme, a congruence on M that
arises from an idempotent separating homomorphism is called an idempotent
separating congruence. It is shown in [3] that any congruence on M , which is
the identity on G, factors as a discrete congruence followed by an idempotent
separating congruence.

10.5 Modular Representations of Finite Reductive
Monoids

In this section we consider reductive algebraic monoids M defined over a finite
field k = Fq. We readily obtain finite reductive monoids Mr, r ≥ 1, as follows.

Let Mr = M(Fqr ) be the finite monoid of Fqr -rational points of M . By
standard facts about finite fields and Galois groups (Chapter II, Section 4 of
[61]) there exists an Fq-automorphism σ : M −→ M of algebraic monoids
such that
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Mr = {x ∈M | σr(x) = x} .

Thus, Mr is a monoid of Lie type in the sense of § 10.4. Such monoids enjoy
many special properties.

In this section we describe a useful formula for the number |IR(Mr)| of
irreducible, modular representations of Mr. The basic problem here is to con-
sider the fomulas of the form

|IR(Mr)| = (qr − 1)

n∑

i=1

aiq
ri

where ai ∈ Z and is independent of r. Whenever this can be done, it is
particularly interesting to interpret the ai.

We now state the main result of [96]. This is the main reason we are able
to obtain so much information about irreducible modular representations of
finite monoids of Lie type. Let M be a finite monoid of Lie type with unit
group G of characteristic p.

Theorem 10.10. Suppose that ρ : M → End(V ) is an irreducible represen-
tation of M over Fp. Then ρ|G is irreducible.

Proof. First we consider the special case M = M(G), where M(G) is the
canonical monoid of Example 10.17 below. It is then possible to construct

∑

I⊆S

2|S\I|αI

inequivalent, irreducible M(G)-modules, each of which restricts to an irre-
ducible representation of G. Here, αI = |Hom(LI ,Fp)|, where LI is a Levi
factor of PI . On the other hand, the number of irreducible representations of
M(G) is

∑

I⊆S

∑

K⊆I

αK .

Since the two numbers above are equal, the theorem is true for M(G).
To get the result for any finite monoid M of Lie type we start with an

irreducible representation ρ : M −→ End(V ) over Fp. It is then possible
to construct an irreducible representation, as in Corollary 2.7 of [96], ρ :
M(G) −→ End(V ) such that ρ|G = ρ|G. Thus, the theorem is proved for M .

The reader is reminded here that there is rarely such a direct and appealing
relationship between the irreducible representations of a monoid and those of
its unit group.

Let M be a finite monoid of Lie type with unit group G. Let S be the
Coxeter-Dynkin diagram of G. Let U = U(M) be the set of regular J-classes
of M . It turns out that U is the set of two-sided G-orbits of M . Define GaG ≥
GbG if b ∈ MaM . In this way, U becomes a lattice. There is a cross-section
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of idempotents Λ = {eJ |J ∈ U} ⊆ E(M), such that J = GeJG and, for all
J1, J2 ∈ U, eJ1eJ2 = eJ2eJ1 = eJ1∧J2 . Then Λ is called a cross section lattice.
Furthermore, E(J) = {geJg

−1|g ∈ G}.
Recall from Definition 4.6 b), the type map:

λ : Λ→ 2S.

It is defined so that for all J ∈ U

P (eJ) = Pλ(J).

P (e) = CrG(e) =: {g ∈ G|ge = ege}, and PI ⊆ G denotes the parabolic
subgroup of type I as in Theorem 2.44.

Let M be a finite monoid of Lie type of characteristic p, and let ρ : M →
End(V ) be an irreducible representation of M defined over Fp. By the theory
of Munn and Ponizovskii [15], ρ determines an apex, Apex(ρ) ∈ U(M). By
definition Apex(ρ) is the unique smallest J-class J of M such that ρ(J) 6= 0.
But on the other hand, ρ|G is irreducible by Theorem 10.10 above, and so by
the theory of Richen [18] ρ|G is determined by its weight (I(ρ), χ(ρ)). In any
case, ρ : M → End(V ) determines the following data:

(i) J = Apex(ρ) ∈ U(M)
(ii) I = I(ρ) ∈ 2S

(iii) χ = χ(ρ) : PI → F
∗

p.

We consider the following two questions.

(a) Is ρ uniquely determined up to equivalence of representations by (J, I, χ)?

(b) What are the conditions on a triple (J, I, χ) with χ : PI → F
∗

p and J ∈
U(M), so that there exists an irreducible representation ρ of M with
(i) ρ|G of type (I, χ)
(ii) Apex(ρ) = J?

To answer these two questions we need some further notions about monoids
of Lie type. The reader should consult [84] for a detailed account of this theory
(notice however that in [84] monoids of Lie type are referred to as regular split
monoids). Also, the reader needs some familiarity with the representation
theory of finite semigroups. For this, the reader is referred to [15] or [119].

We now introduce some notation. This is mainly for convenience, and to
reassert the distinction between an idempotent and the J-class it represents.
Let Λ be a cross-section lattice and let e ∈ Λ. Then {e} = Λ∩J and CrG(e) =
Pλ(J), where λ(J) ⊆ S. If B ⊆ CrG(e) is a Borel subgroup and H = {g ∈
G|ge = e} then BH is a parabolic subgroup containing B.

Definition 10.11.
ν(J) ∈ 2S via BH = Pν(J).
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Notice that ν(J) = λ∗(e), where λ∗(e) is as defined in Definition 7.11. Notice
also that, if we let KJ = {g ∈ G|ge = eg = e}, then Pν(J) = BKJ . We
can now state the main theorem (in particular, answering questions a) and b)
above).

Theorem 10.12. Let I ∈ 2S and J ∈ U(M). Assume that ν(J) ⊆ I ⊆ λ(J).
Define

αI,J = {χ : LI → F
∗

q |χ(g) = χ(h) if eJg = eJh}.

Then there is a one-to-one correspondence between the irreducible representa-
tions of M and the set ⊔

I∈2S,J∈U(M)
ν(J)⊆I⊆λ(J)

αI,J .

Under this correspondence χ ∈ αI,J corresponds to the unique irreducible
representation ρ : M → End(M) such that

(i) Apex(ρ) = J
(ii) there is a line Y ⊆ V such that {g ∈ G|ρ(g)Y = Y } = PI

(iii) if g ∈ PI and y ∈ Y then ρ(g)(y) = χ(g)y.

Proof. Let ρ : M → End(V ) be irreducible with apex J ∈ U(M). Let J0 =
J ∪ {0}, with multiplication defined by

xy =

{
0 , if x = 0, y = 0 or xy /∈ J
xy , if xy ∈ J .

J0 is a completely 0-simple semigroup (see Definition 2.67) So by Munn-
Ponizovskii [15], V is also an irreducible J0-module; and by Theorem 10.10
above, for e ∈ E(J), e(V ) is an irreducible H(e)-module, where H(e) is the
unit group of eMe. But H(e) = eCG(e), and so e(V ) is also an irreducible
CG(e)-module. Now CG(e) ⊆ G is the Levi factor of Pλ(J) = CrG(e), and so it
is also a finite group of Lie type. Hence Richen’s theory applies to the CG(e)-
module e(V ). Thus, for any Borel subgroup B0 ⊆ CG(e) there exists a unique
line Y ⊆ e(V ) such that ρ(B0)Y = Y .

Let H = {g ∈ G|ρ(g)Y = Y }. One checks, as in [114], that H ⊆ CrG(e)
and H contains a Borel subgroup of G.

Observe that KJ ⊆ H , and so Pν(J) = BKJ ⊆ H ⊆ Pλ(J). So we can now
summarize the relevant properties of an irreducible representation ρ : M →
End(V ) with apex J ∈ U(M).

(a) Let H = {g ∈ G|ρ(g)Y = Y }. Then H = PI is parabolic and ν(J) ⊆ I ⊆
λ(J).

(b) If g ∈ KJ then ρ(g)y = y for all y ∈ Y .
(c) ρ|G is the irreducible representation of type (I, χ), where χ is defined via

ρ(g)(y) = χ(g)y for g ∈ LI .
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On the other hand, suppose that ρ′ : M → End(V ′) is an irreducible rep-
resentation with apex J and parabolic subgroup H ′ = PI with character χ.
Then by Richen’s results, (ρ′|CG(e), ρ′(e)(V )) ∼= (ρ|CG(e), ρ(e)(V )) since they
have the same (I, χ). But then by Munn-Ponizovskii, ρ and ρ′ are equivalent
because they come from the same irreducible representation of eMe. Thus,
the correspondence

ρ (I, J, χ)

is injective. To complete the proof, it remains only to be shown that all possible
invariants (I, J, χ) actually arise from irreducible representations of M . But
this is now a counting problem. It is easy to check, using Richen’s results,
that the number of irreducible representations of H(e) is

∑

ν(J)⊆I⊆λ(J)

|αI,J |.

Thus, by Munn-Ponizovskii, there are exactly
∑

J∈U(M)

∑

ν(J)⊆I⊆λ(J)

|αI,J |

irreducible representations of M . Hence the above correspondence must be
surjective. This concludes the proof.

Let x ∈Mr. We say that x is semisimple if

i) x is a unit in the monoid eMre for some idempotent e of Mr

ii) xk = e for some k with (k, q) = 1.

Let M ss
r = {x ∈ M ss

r | x is semisimple} and let M ss
r / ∼ denote the set of

conjugacy classes of semisimple elements of Mr.

Lemma 10.13. |IR(Mr)| = |M
ss
r / ∼ |.

Proof. By the theory of Munn and Ponizovskii [15],

|IR(Mr)| =
∑

e∈Λ

|IR(H(e))|,

where Hr(e) is the unit group of eMre. But from Theorem 42 of [124],
|IR(Hr(e))| = Hr(e)

ss/ ∼. Hence it suffices to see that two elements of Hr(e)
are Hr(e)-conjugate if and only if they are Gr-conjugate. But this is straight-
forward.

Let π : M → X be the adjoint quotient, as in Corollary 9.4. We need some
further assumptions to relate M ss

r / ∼ with X(Fqr).
Recall that a reductive monoid M is locally simply connected if, for

each e ∈ E(M), He has trivial divisor class group. See Definition 6.4.
We say that M is split over Fq if its unit group G is split over Fq in the

usual sense [133]. Recall that any M , defined over Fq, is split over Fqr for
some r > 0.
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Proposition 10.14. Let M be a lsc, reductive monoid defined over Fq.

a) The canonical map M ss
r / ∼−→ X(Fqr) is bijective for each r > 0.

b) |IR(Mr)| =
∑
e∈λ q

r(e)|H(e)ab(Fqr )| where r(e) is the semisimple rank of
H(e) and H(e)ab is the abelianization of H(e).

c) If M is split over Fq then |H(e)ab(Fqr )| = (qr − 1)a for some a ≥ 0.

Proof. From Corollary 9.4, X parametrizes G-conjugacy classes of semisim-
ple elements of M . But now we can apply Theorem 10.3 of [136]. This says
that, for each e ∈ Λ, (Hss(Fq)/ ∼) −→ X(Fq) is bijective. Combined with
Theorem 10.10 we obtain our result.

To prove b) one needs a careful calculation combining a) above, Richen’s
theory [18], Munn-Ponizovskii theory [15], and some basic results from [131].
See Theorem 4.2 of [114] for more details.

For c), first notice that |H(e)ab(Fqr)| is a factor of det(σ∗−1) using 6.1(d)
of [110]. But M is split so that det(σ∗ − 1) = (qr − 1)m, where m is the rank
of G.

We can now obtain very precise information relating {IR(Mr)} and X ,
for lsc monoids.

First, we recall a key definition (see Definition 7.9).
A reductive monoid M is J-irreducible if U(M) contains exactly one, min-

imal, nonzero J-class.

Theorem 10.15. Let M be lsc and split over Fq with adjoint quotient π :
M −→ X. Then

a) |IR(Mr)| = 1 = (qr − 1)
∑
i≥0 biq

ri for some integers bi independent of
r > 0;

b) if M is J-irreducible then

|IR(Mr)| − 1 = (qr − 1)
∑

i≥0

ai(q
r − 1)ri

where

ai =

∣∣∣∣
{

(I, e) ∈ 2S × Λ
ν(e) ⊆ I ⊆ λ(e)
|λ(e)\I| = i

}∣∣∣∣ ;

c) If M is J-irreducible then P(X) := (X\0)/K∗ =
⊔
e∈Λ\{0} Ce where Ce ∼=

Kbi . In particular, bi is the 2i-th Betti number of P(X).

Proof. For a) use Proposition 10.14 b) and c). For b) one needs Theorem 3.1 of
[114] which calculates |IR(M)| in terms of {(I, e) ∈ 2s×Λ | ν(e) ⊆ I ⊆ λ(e)}.
For c) notice that X =

⊔
e∈ΛH

ss(e)/ ∼. But from Theorem 1.6 of [110],

(Hss(e)/ ∼) = Kbe ×K∗. Now apply Theorem 2.59.

Notice that the cell decomposition in c) above can not be obtained by the
method of Birula-Bialynicki [4] and so one must use Theorem 2.59 to obtain
these Betti numbers.
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Example 10.16. Let M = Mn(K) where K = Fq. So Mr = Mn(Fqr ). Then,
by Munn-Ponizovskii [15],

|IR(Mr)| =

n∑

m=0

|IR(G`m(Fqr ))|

while, by Richen [18],

|IR(G`m(Fqr ))| = (qr − 1)qr(m−1) .

Thus

|IR(Mr)| = (qr − 1)

n−1∑

i=0

qri .

Hence

bi =

{
1 , i = 0, . . . , n− 1
0 , otherwise .

Plainly, bi is the 2i-th Betti number of P(X) = Pn−1.
But we can also write

|IR(G`m(Fqr ))| =

m−1∑

i=0

(
m− 1

i

)
(qr − 1)i+1 .

Hence

|IR(Mr)| − 1 =

n∑

m=1

|IR(G`m(Fqr ))|

=

n∑

i=0

(
n

i+ 1

)
(qr − 1)i+1 .

By 6.4b) we obtain the curious combinatorial formula

(
n

i+ 1

)
=

∣∣∣∣
{

(I, e) ∈ 2S × Λ
ν(e) ⊆ I ⊆ λ(e)
|λ(e)\I| = i

}∣∣∣∣ .

Example 10.17. In [96] the author and M. Putcha construct, for each group G
of Lie type, a certain canonical monoid M(G) having the following properties.

(a) G is the unit group of M(G).
(b) The type map λ : U(M(G))→ 2S of M(G) satisfies

(i) λ : U(M(G))\{0} → 2S is bijective
(ii) λ(Je ∧ Jf ) = λ(Je) ∩ λ(Jf ), where U(M(G)) has been identified with

a cross-section lattice Λ of M(G).
(c) For each e ∈ Λ, {g ∈ G|ge = eg = e} = {1}.
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By the results of [84], M(G) is determined up to isomorphism by these prop-
erties. This monoid also enjoys a number of other useful properties that were
important in the proof of Theorem 10.10. In any case, if J ∈ U(M(G)) then

by (c), ν(J) = φ. Furthermore, αI,J = Hom(LI ,F
∗

q) for any I ⊆ λ(J). So
αI,J is independent of J if it is non-empty.

Define, for any finite monoid M of Lie type,

IR(M) = {ρ : M → End(V )|ρ is irreducible}/ ∼

where “∼” denotes equivalence of representations. Thus, by Theorem 10.10,

|IR(M(G))| =
∑

I⊆λ(J)

|αI,J |

=
∑

I⊆S

∑

J∈U(S)

|αI,J |

=
∑

I⊆S

2|S\I|αI

where αI is the common value of |αI,J | for I ⊆ λ(J). This agrees with the
formula (1) in the proof of Theorem 2.2 of [96].

If G = S`n+1(Fq) then |S| = n and, for |I| = i, α(I) = (q − 1)n−i. Thus

|IR(M(G))| =
∑

I⊆S

2|S\I|α(I)

=

n∑

i=0

(
n
i

)
2n−i(q − 1)n−i

=
n∑

i=0

(
n
i

)
(2q − 2)n−i

= (2q − 1)n.

Notice that this corrects the calculation error of Example 2.3 of [96].

The reader might wonder if, for any reductive monoid M , there is a finite,
dominant morphism

ϕ : M ′ →M

of reductive monoids with M ′ a lsc monoid. In general this seems to be a
delicate problem. However, we do have some positive results.

If M is reductive and normal we denote by Cl(M) the divisor class group
of M . See § 2.1.3 for a summary of some of the main properties relevant to
our discussion.

Recall the following results from Theorem 6.7.
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Theorem 10.18. Let M be reductive and normal.

a) If Cl(M) = (0) then M is lsc.
b) If M\G is irreducible then Cl(M) is finite and there exists π : M ′ −→M ,

finite and dominant, such that Cl(M ′) = (0).

If M is a J-coirreducible monoid then the lattice of J-classes Λ ∼= U(M),
and the type map λ : Λ → 2S are both determined by λ(J) where J ∈
U(M)\{1} is the unique maximal element. Indeed, if λ(J) = I, then

Λ =

{
X ∈ 2S

no component of X is
contained in I

}
∪ {1}

where Λ\{1} is ordered by reverse inclusion and 1 ∈ Λ is the largest element.
Here, X corresponds to eX ∈ Λ. Furthermore, λ : Λ→ 2S is defined by

λ(X) = X tCI(X)

if X 6= φ or 1, and λ(φ) = I and λ(1) = S. Here, CI(X) = {α ∈ I|σασβ =
σβσα for all β ∈ X}. It follows from Definition 7.11 and Lemma 7.15 that
λ∗(eX) = X and λ∗(eX) = CI(X).

Theorem 10.19. Suppose that M is J-coirreducible of type I, split over Fq
and with Cl(M) = 0. Then

|IR(M)| =
∑

X∈Λ

q|CI(X)|(q − 1)|S\λ(X)| + q|S|(q − 1).

Proof. First notice that |S\X |−|CI(X)| = |S\λ(X)| since λ(X) = X∪CI(X)
is a disjoint union whenever no component of X lies in I. But then for each
X ∈ Λ, IR(H(ex)) = q|CI(X)|(q − 1)|S\λ(X)| since H(ex) has rank |S\X | and
semisimple rank |CI(X)|.

Theorem 10.20. Suppose that M is reductive, split over Fq and locally simply
connected. Then

|IR(M)| =

|S|+1∑

i=0

ai(q − 1)i

where ai = |{(I, J) ∈ 2S × U(M)|rank(J) − |I|+ |v(J)| = i}|.

Proof. Recalling Theorem 10.12 it suffices to prove that, given our assump-
tions on M, |αI,J | = (q− 1)i where i = rank(J)− |I|+ |ν(J)|. But αI,J is the
character group of LI\ν(J)(H(e)), the Levi subgroup of He of type I\ν(J).
This has rank equal to rank(J) and semisimple rank |I| − |ν(J)|. This yields
the formula for ai.
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10.6 Exercises

10.6.1 Weil Zeta Functions

Let X be a variety defined over the finite field Fq, and let

Z(X) = exp(
∑

r≥1

Nr
r
tr)

be its Weil zeta function.

1. Suppose there exist complex numbers α1, . . . , αs and β1, . . . , βt such that,
for all m ≥ 1,

Nm =

s∑

i=1

αmi −

t∑

j=1

βmj .

Show that

exp(
∑

r≥1

Nm
m

tm) =
Πt
j=1(1− βjt)

Πs
i=1(1− αit)

.

2. Show that if Z(X) = Πj≥0(1 − qjt)bj , then Z(X × Kn) = Πj≥0(1 −
qj+nt)bj .

3. Show that

Z(X ×K∗) =
Z(X ×K)

Z(X)
.

4. Letting Z(X) = Z(t), show that

Z(X × (K∗)n) = Πn
s=0Z(qst)(−1)n−s(n

s).

5. Recall that, if M is reductive and split over k = Fq, then M = tr∈RBrB
in such a way that, if BrB ∼= (K∗)r × K l, then (BrB)(k) ∼= (k∗)r × kl,
over k = Fq. Show that

Z(M) = Πm
k=0(1− q

kt)bk

where m = dim(M)− rank(M), and

bk =

N∑

r=0

k∑

l=k−r

(−1)r−k+l
(

r

k − l

)
νr,l

with
νr,l = |{r ∈ R | BrB ∼= (k∗)r × kl}|.
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10.6.2 Counting Modular Representations

1. Let M be J-irreducible, split over Fq, and locally simply connected. Write

|IR(M(Fq))| − 1 = (q − 1)
∑

i≥0

ai(q − 1)i

= (q − 1)
∑

i≥0

biq
i.

a) Show that ai = |{(I, e) ∈ 2S × Λ | λ∗(e) ⊆ I ⊆ λ(e)}|.
b) Show that bi = |Λi|, the number of G×G-orbits of rank i.
c) Show that ai = bi + (i+ 1)bi+1 + · · ·+

(
n
i

)
bn.
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Cellular Decomposition of Algebraic Monoids

The most commonly studied cell decompositions in algebraic geometry are
those of Bialynicki-Birula [4]. If S = K∗ acts on a smooth complete variety

X with finite fixed point set F ⊆ X , then X =
⊔

α∈F

Xα where Xα = {x ∈

X | lim
t→0

tx = α}. Furthermore, Xα is isomorphic to an affine space. We refer

to Xα as a BB-cell. If, further, a reductive group G acts on X extending the
action of S, we may assume (replacing S if necessary) that each Xα is stable
under the action of some Borel subgroup B of G with S ⊆ B. In case X is
a complete homogeneous space for G, each cell Xα turns out to consist of
exactly one B-orbit.

Let M be a semisimple monoid. That is, M is reductive, normal with zero
element and with one-dimensional center. Define

X = (M\{0})/K∗ .

Then X is projective and G×G acts on X by the rule (g, h) · [x] = [gxh−1].
Furthermore, any generic one-parameter subgroup S = K∗ ⊆ G × G has a
finite number of fixed points on X .

Each BB-cell on X is made up of a finite number of B × B-orbits. But
there is often no explicit algorithm for deciding how each BB-cell is made up
from the B ×B-orbits. On the other hand, we have explicitly identified these
B × B-orbits on M (or X) in Chapter 8. So what we need here is a more
direct definition, guided by the BB-procedure, that simply tells us how each
cell is made up from B ×B-orbits.

In this chapter, we define a notion that yields a decomposition of M\{0}
into a disjoint union of “monoids cells”. These cells are defined directly in
terms of Λ, B and R. We then explain how to use these monoid cells to obtain
an explicit decomposition of the “wonderful compactification” into a disjoint
union of affine space.

In the case where X is the wonderful compactification of the adjoint,
semisimple group G, this “BB-procedure” has been carried out in [21]. In
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fact, they obtain results for a more general class of wonderful compactifica-
tions. Let G be a semisimple algebraic group, and suppose that σ : G −→ G
is an involution (so that σ ◦ σ = idG) with H = {x ∈ G | σ(x) = x}. The
wonderful compactification of G/H (according to [21]) is the unique normal
G-equivariant compactification X of G/H obtained by considering an irre-
ducible representation ρ : G −→ G`(V ) of G with dim(V H) = 1 and with
highest weight in general position. Then let h ∈ V H be nonzero and define

X = ρ(G)[h] ⊆ P(V ),

the Zariski closure of the orbit of [h]. (See Section 2 of [21] for details.) In this
chapter we restrict our attention to the special case where the group is G×G
and σ : G×G −→ G×G is given by σ(g, h) = (h, g). It is easy to see that, in
this case, the G×G-variety (G×G)/H can be canonically identified with G
with its two-sided G-action.

Much important work has been accomplished since [21] appeared. In par-
ticular, Brion [12] obtains much information about the structure of X . Among

other things, he finds a BB-decomposition X =
⊔

x∈F

Cx from which he then

obtains a basis of the Chow ring of X of the form {By(x)B}x∈F . He also
identifies explicitly how each cell Cx is made up from B × B-orbits. Since
then, Springer [130] and Kato [46] have uncovered more geometry related to
this problem.

It appears that my cell decomposition agrees with the one of [12] (al-
though we have not actually verified this). The interested reader should con-
sult Brion’s paper, as well as those of Kato and Springer, for more information
on the B ×B-orbit closures and the Chow ring for X .

11.1 Monoid Cells

In this section we assume that M is a J-irreducible, reductive monoid as in
§ 7.3. Let B ⊆ G be a Borel subgroup with maximal torus T ⊆ B. Define

R1 = {x ∈ R | xT = Tx is one-dimensional},

the set of rank one elements of the Renner monoid. Our cells are canonically
indexed by R1.

Let r ∈ R1. Then there exist unique rank one idempotents e, f ∈ E1(T )
such that

r = erf.

We define the monoid cell Cr as follows:

Cr = {y ∈M | eBy = eBey ⊆ rB}.

The following results are easily obtained.
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a) M\{0} =
⊔

r∈R1

Cr.

b) Any BB-decomposition of (M\0)/K∗ coming from a 1−PSGK∗ ⊆ G×G
with finite fixed point set has exactly |R1| BB-cells.

So it is likely that these cells could be obtained from the BB-decomposition
of some regular 1− PSG K∗ ⊆ G×G.

Example 11.1. Let M = Mn(K) with B and T as usual. Then

R1 = {rij | 1 ≤ i, j ≤ n}

where rij is the elementary matrix (ast) with aij = 1 and ast = 0 for (s, t) 6=
(i, j). Then

Crij =



(apq) ∈Mn(K)

aij 6= 0
apq = 0 if p > i
apq = 0 if p = i and q < i





∼= Kn(i−1)+(n−j) ×K∗ .

Recall from Theorem 7.12, that the structure of any J-irreducible monoid
M is largely determined by J0 ⊆ S. Here

J0 = {s ∈ S | se = es(= e)},

where e ∈ Λ\{0} is the unique minimal element of Λ\{0}. We say that M is
a canonical monoid if J0 = φ. By 7.12 a),

µ : Λ\{0} −→ {I ⊆ S}

is an order-preserving bijection for any canonical monoid M . For I ⊆ S we
write eI = µ−1(I).

Proposition 11.2. a) Let x ∈ R. Then there exist unique u, v ∈ W and
eI ∈ Λ such that

i) x = ueIv, and
ii) I ⊆ {s ∈ S | `(us) > `(u)} := Iu.

b) For r = ueφv ∈ R1 define

Cr =

{
x = ueIv ∈ R

u, eI and v as in a)
I ⊆ Iu

}
.

Then Cr =
⊔

x∈Cr

BxB.

Proof. For a) we write x = weIy for some I ⊆ S and w, y ∈ W . By Theo-
rem 4.5 c), CI is unique. But from well-known results from Coxeter groups we
can write w = uc where c ∈ WI and `(us) > `(u) for any s ∈ I. But eIc = ceI .
So we write x = ueIv where v = cy.

We leave part b) to the reader, since it is not really needed in this survey.
Indeed, we can use Cr to define Cr.
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We refer to x = ueIv as the normal form for x.
We now determine the structure of each Cr. But first we determine how

the B ×B-orbits fit together.

Proposition 11.3. Let x ∈ R and write x = ueIv in normal form. Then

BxB = (Uu ∩ uU)(eIT )(vU ∩ U−v)
∼= (Uu ∩ uU)× eIT × (vU ∩ U−u)

Proof. Let e = eI . Since eB j Be we get eB = CB(e). Also we have vBv−1 =
(vBv−1 ∩B)(vBv−1 ∩ U−) (direct product). Then

evBv−1 = e(vBv−1 ∩B)(vBv−1 ∩ U−)

= V e(vBv−1 ∩ U−)

where V ⊆ (Cb(e) is some connected subgroup with T ⊆ V . Then we get

evB = V e(vB ∩ U−v). (∗)

We now look at Bue. Recall first that `(us) < `(u) for any s ∈ I. This is
the same as saying that CB(e) ⊆ u−1Bu ∩B. Thus

u−1Bue = (u−1Bu ∩B)e

since (u−1Bu ∩ U−)e = {e}. Thus

Bue = (Bu ∩ uB)e (∗∗)

Combining (*) and (**) we obtain that

u−1BuevB = (u−1Bu ∩B)e(V vB ∩ U−v)

= (u−1Bu ∩B)e(vB ∩ U−v)

since V ⊆ CB(e) ⊆ u−1Bu ∩B. Thus

BuevB = (Uu ∩ uU)(eT )(vU ∩ U−v) .

A calculation similar to the proof of Lemma 5.1 shows that this product is
direct. In characteristic p > 0, the product morphism is seen to be separable
by a local analysis of the torus action at the fixed point.

Proposition 11.3 tells us exactly why we have found the “correct” definiton
of cells.

Proposition 11.4. Let r = ueφv ∈ R1.

a) Cr ∼= (Uu ∩ uU)× Zu × (vU ∩ U−v) where Zu =
⊔

J⊆Iu

eIT .
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b) Zu/K
∗ ∼= Ki(u) where i(u) = |Iu|.

Proof. For b) we may assume that u = 1, since any other Zu is a T -orbit

closure in Z1 =
⊔

I⊆S

eIT . But one checks, as in Proposition 3.4 of [118], that

O(Z1/K
∗) = K[α−1

1 , . . . , α−1
s ] where S = {α1, . . . , αs}.

For a), we have by definition

Cr =
⊔

ueIv∈Cr

(Uu ∩ uU)(eIT )(vU ∩ U−v)

= (Uu ∩ uU)

(
⊔

ueIv∈Cr

eIT

)
(vU ∩ U−v) .

Theorem 11.5. Let r = ueφv ∈ R1. Then there is a bijective morphism

m : Knr −→ Cr/K
∗

where nr = `(w0)− `(u) + i(u) + `(σ). Here, w0 ∈ W is the longest element,
so that `(w0) = |Φ+|.

Proof. From 11.4 a), dim Cr = dim(Uu∩ uU) + dim(Zu) + dim(vU ∩U−v).
One checks that dim(Uu∩uU) = `(w0)−`(u) and that dim(vU∩U−v) = `(v).
From 11.4 b) dim(Zu) = i(u) + 1.

We can also consider the cell decomposition for each orbit closure. Let
I ⊆ S and define

XI = (GeIG\{0})/K∗ .

By [21] XI is a smooth spherical G × G-subvariety of X . We find a cell de-
composition of XI as follows.

Given r ∈ R1 and I ⊆ S define

CI,r = Cr ∩XI .

Clearly XI =
⊔

r∈R1

CI,r. But we can say more.

Theorem 11.6. Let r = ueφv ∈ R1. Then there is an isomorphism

m : KnI,r −→ CI,r

where nI,r = `(w0)− `(u) + |I ∩ Iu|+ `(v).

Proof. By inspection CI,r =
⊔

j⊆I∩Iu

BueJvB, and so

CI,r = (Uu ∩ uU)(ZI,u)(vU ∩ U
−v)

where ZI,u =
⊔

J⊆I∩In

eJT . Then the proof proceeds as in 11.4 and 11.5.
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If Y is a smooth projective algebraic variety with cell decomposition we
can calculate the Betti numbers of Y :

β2i(Y ) = the number of cells of (complex) dimension i.

Let
P (X, t) =

∑

i≥0

β2i(X)t2i

be the Poincaré polynomial of X .

Theorem 11.7.

P (XI , t) =

(
∑

u∈W

t2(`(w0)−`(u)+|Iu∩I|)

)(
∑

v∈W

t2
`(v)

)
.

This result is also obtained by DeConcini and Procesi in [21].
It appears that Springer has obtained the same cell decomposition in [130],

in his detailed study of the geometry of the B ×B-orbit closures of X .
Further results about X have been obtained by Kato [46]. In particular,

he obtains a kind of Borel-Weil theorem for X .
Since the appearance of [21], these same authors have continued the study

of these interesting spaces. In [22] they have described the rational cohomology
of X , as well the cohomology of many other spaces closely related to X . In [5]
(along with Bifet), they describe the rational cohomology ring of any complete
symmetric variety by generators and relators. See § 15.4 for a brief description
of these developments.

11.2 Exercises

Let W be a Weyl group with generating set S ⊆W , the set of simple involu-
tions, and let ∆ ⊆ Φ be the set of positive, simple roots.

1. For x ∈ W , define Ix = {α ∈ ∆ | l(sαx) = l(x) − 1} and Jx = {α ∈
∆ | l(xsα) = l(x)− 1}. Show that, for all x ∈ W , Ix = Jx−1 .

2. For a subset θ ⊆ S let w(θ) be the longest element of Coxeter group Wθ.
If x ∈ W , let wx = w(Ix). Show that, for all x ∈ W , x = wxx−, where
l(x) = l(wx) + l(x−).

3. For s ∈ S, y ∈ W , define

s ∗ y =

{
y , if l(sy) < l(y)
sy , if l(sy) > l(y) .

Show that ∗ defines on W the structure of a monoid with the following
properties:
a) w(θ) ∗ x = x if and only if θ ⊆ Ix
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b) x ∗ v = v if and only if x ∗ wv = wv ∗ x = wv.
4. Let x ∈ W and s ∈ S. Prove the following:

a) If l(xs) = l(x) + 1 then Ixs = Ix ∪ ({xsx−1} ∩ S).
b) If l(xs) = l(x)− 1 then Ix = Ixs ∪ ({xsx−1} ∩ S).
c) Ixs = Ix if and only if xsx−1 6∈ S.

5. Let x ∈ W . Prove that

|{x ∈ W | Ix = I}| =
∑

I⊆J

(−1)|J\I|
|W |

|WJ |
.

6. Show that, for I ⊆ S,

∑

x∈W, Ix=I

tl(x) =
∑

I⊆J

(−1)|J\I|tdim(G/PJ )P (J, t)

where P (J, t) =
∑
j≥0 dim(H2j(G/PJ ))tj is the Poincaré polynomial of

G/PJ .
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Conjugacy Classes

In this chapter we describe Putcha’s theory of conjugacy classes in a reductive
monoid. We can not do justice here to this truly remarkable development. So
we shall refer the reader to Putcha’s work [88, 89, 90] for the details of many
proofs. Our purpose here is to explain Putcha’s main results while describing
some of the key ideas of his proofs.

The basic idea here is to define, for each (e, σ) ∈ E(T ) × W , a subset
Me,σ ⊆M such that

a) any x ∈M is conjugate to some y ∈Me,σ for some (e, σ) ∈ E(T )×W
b) there is an explicit equivalence relation ∼ on Me,σ such that for a, b ∈

Me,σ, a ∼ b if and only if b = gag−1 for some g ∈ G.

On this basis we discuss some further refinement, especially the issue of

finding a minimal collection A = {(e, σ)} so that M =
⋃

(e,σ)∈A

gMe,σg
−1. The

key results here can be described using some finer structure theory of the
Renner monoid.

12.1 The Basic Conjugacy Theorem

LetM be a reductive monoid with zero element 0 ∈M and unit groupG ⊆M .
Let e ∈ E(T ) and σ ∈ W . For θ ∈W write

eθ = θ−1eθ ∈ E(T ) .

Define
Me,σ = eCG(eθ | θ ∈ 〈σ〉)σ .

Theorem 12.1. Let a ∈ M . Then a is conjugate to an element of Me,σ for
some e, σ.
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Proof. By the basic results of reductive monoids (Corollary 2.3 of [84]) there
is a maximal torus T1 ⊆ G and idempotents e, f ∈ E(T1) such that eRaLf .
Hence there exists θ = mT ∈ W such that eθ = f . Hence emHa. Thus
a ∈ eCG(e)m = eCG(e)θ. This is the beginning of an induction argument.
Inductively, assume that

a ∈ eCG(eθ
j

| j = 0, 1, . . . , k)θ

where k ≥ 0. One can then find b ∈ eCG(eθ
j

| j = 0, 1, . . . , k + 1)θ such that
a is conjugate to b, using Theorem 2.2 of [88].

Now we must determine the exact conditions for two elements of Me,σ to
be conjugate.

Fix e ∈ E(T ) and σ = nT ∈ W . Let

V = CG(eθ | θ ∈ 〈σ〉) .

Then V is reductive, T ⊆ V and V σ = V (where Xσ := n−1Xn). Let

Ṽe = {a ∈ V | ae = ea = e}

= T̃eVe ,

where T̃ = {t ∈ T | te = et = e }, and Ve ∈ V is the connected component of
the identity element of V .

Then Ṽe is a closed normal subgroup of V . Finally, let

Ω =
∏

θ∈〈σ〉

(Ṽe)
θ .

Then Ω is a closed, normal subgroup of V .

Definition 12.2. a) If x ∈ V let x∗ = nx−1n−1 ∈ V .
b) Let Ge,σ = V/Ω and define ζ : Me,σ −→ Ge,σ as follows: For a = evn ∈
Me,σ, v ∈ V , let

ζ(a) = vΩ ∈ Ge,σ .

Since Ṽe ⊆ Ω, ζ is well-defined.

Theorem 12.3. Let a, b ∈ Me,σ. Then a and b are conjugate in M if and
only if there exists x ∈ Ge,σ such that xζ(a)x∗ = ζ(b).

Proof. We refer the reader to Theorem 2.4 of [88] for an amazing display.

Example 12.4. If M = Mn(K) then the group Ge,σ is trivial if eσ is nipotent.
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Example 12.5. Let r ≥ 2 and define Jr =




0 1

· ·
·

1 0


. Define for n ≥ 2,

G0 =



A ∈ S`2n+1(K)

∣∣∣∣∣∣
At




1

J2n


A =




1 0

0 J2n





 .

Then G0 is the special orthogonal group of type Bn. Let G = G0K
∗ and

M = G ⊆M2n+1(K). Then

e =




0 0 0
0 In 0
0 0 0


 , f =




0 0 0
0 0 0
0 0 In


 ∈ E(M) .

If σ =

(
1 0
0 J2n

)
∈ W then eσ = f and (eσ)2 = 0. One can check that

Ge,σ ∼= PG`n(K) with ∗ : Ge,σ −→ Ge,σ defined by A 7−→ JnA
tJn.

Remark 12.6. Three important questions cry out for an answer here.

a) When is gMe,σg
−1 ∩Mf,τ 6= φ?

b) If gMe,σg
−1∩Mf,τ 6= φ, can we conclude that

⋃

g∈G

gMe,σg
−1 =

⋃

g∈G

gMf,τg
−1?

c) If eσ = eτ , how are Me,σ and Me,τ related?

12.2 Some Refinements

In this section we describe the results of [89]. We arrive at Putcha’s definitive
answers to the above three questions. Define

Ne,σ ⊆Me,σ

by

Ne,σ = eCG(Teθ | θ ∈ 〈σ〉)σ

= eCG(Geθ | θ ∈ 〈σ〉)Tσ

= eCG(Geθ | θ ∈ 〈σ〉)σ .

Clearly, Nπ
e,σ = Ne,σπ for π ∈ W (e). Let π ∈ We. Then π = mT for some

M ∈ Ge∩NG(T ). Let a ∈ Ne,σ. Then a = egn for some g ∈ CG (Geθ | θ ∈ 〈σ〉),
n ∈ NG(T ) with σ = nT . So for all i ≥ 0, nign−i ∈ CG(Ge) and so nign−i is
centralized by m. By induction on i,

(mn)ig(mn)−i = mnign−im−1 = nign−i ∈ CG(Ge) .
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Hence g ∈ CG(Geθ | θ ∈ 〈σ〉) and so

egn = emgn = egmn ∈ Ne,πσ .

We conclude that Ne,σ ⊆ Nn,πσ. Similarly, Ne,πσ ⊆ Ne,σ. So

Ne,σ = Ne,πσ for all π ∈We .

For this reason we write Neσ for Ne,σ. Hence Neσ depends only on the element
eσ of R.

Example 12.7. Let M = M5(K), and let

e =




1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




, σ =




0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1




, τ =




0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
1 0 0 0 0




.

Then

Me,σ =








0 0 a b 0
0 0 c d 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




∣∣∣∣∣∣∣∣∣∣

ad 6= bc





yet Me,τ =








0 0 a 0 0
0 0 0 b 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




∣∣∣∣∣∣∣∣∣∣

ab 6= 0




.

But also eσ = eτ and Me,τ = Neτ = Neσ.

Theorem 12.8. a) If r, s ∈ R and Nr ∩Ns 6= φ then Nr = Ns.
b) If δ ∈ CW (eθ | θ ∈ 〈σ〉) then Neδσ ⊆ Me,σ and Neδσ = Nπ

eσ for some
π ∈ CW (eθ | θ ∈ 〈σ〉).

c) Any element of Me,σ is conjugate to some element of Neσ.
d) The map ζ : Me,σ −→ Ge,σ remains surjective when restricted to Neσ ⊆
Me,σ.

Proof. See Theorem 2.3 of [89].

Putcha goes on to obtain the following spectacular result.

Theorem 12.9. The following are equivalent.

a) Some element of Me,σ is conjugate to an element of Me,θ.

b)
⋃

g∈G

gMe,σg
−1 =

⋃

g∈G

gMe,θg
−1.

c) There exists γ ∈W , with eθ conjugate to eγ in R, such that

⋂

i≥0

γiW (e)σ−i 6= φ .
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d) Nπ
eσ = Neθ for some π ∈ W (e).

This is nearly complete. The only thing remaining is to isolate the “best”
representative in each set



eτ ∈ R |

⋃

g∈G

gMe,σg
−1 =

⋃

g∈G

gMe,τg
−1



 .

This will be the main focus of the next section.

12.3 Putcha’s Decomposition and the Nilpotent Variety

In this section we determine a subset P ⊆ R such that

M =
⊔

r∈P

X(r) (∗)

where X(r) =
⋃

g∈G

gMe,σg
−1 for r = eσ ∈ R. We shall refer to (*) as the

Putcha decomposition of M . We also describe the order relation on P that
corresponds to the condition X(r) ⊆ X(s). This stunning development has
no analogue in group theory.

Recall now the Weyl group W and its set of Coxeter group generators
S ⊆W . For I ⊆ S define

DI = {g ∈ W | `(gw) = `(g) + `(w) for all w ∈WI}

D−1
I = {g ∈ W | `(wg) = `(w) + `(g) for all w ∈WI} .

Definition 12.10. Let x, y ∈ W . We say that x ≡I y if
⋂

i≥0

xiWIy
−1 6= φ.

Notice that ≡I is an equivalence relation on W . Also notice that

x ≡I wxs
−1 if w ∈WI ,

and

x ≡I ux if u ∈
⋂

i≥0

xiWIx
−i .

Proposition 12.11. Let x ∈ W . Then x ≡I y for some unique y ∈ D−1
I .

Furthermore, `(y) ≤ `(x).

Proof. Let
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x1 = x = w1y1 , w1 ∈ WI , y1 ∈ D
−1
I

x2 = y1w1 = w2y2 , w2 ∈ WI , y2 ∈ D
−1
I

...

Now xj+1 = yjwj = w−1
j (wjyi)wj = w−1

j xjwj . Hence by comments following
12.10, x1 ≡I x2 ≡I x3 ≡I . . . . Also,

`(xj+1) = `(yjwj) ≤ `(yj) + `(wj) = `(wjyj) = `(xj) .

Hence, for some N , `(xN ) = `(xN+1) = . . . . Since yj ∈ D
−1
I , we see by the

exchange condition that for, j ≥ N ,

yj+1 = yjuj, uj ∈WI

`(yj+1) = `(yj) + `(uj) .

In particular, `(yN ) ≤ `(yN+1) ≤ . . . . Hence, there exists k ≥ N such that

yk = yk+1 = . . . .

Letting y = yk we obtain, after some scrutiny,

y ≡I x

and
`(y) ≤ `(x) .

One then checks that this y is unique. See Proposition 1.1 of [90].

We now apply this to our situation. Let I ⊆ S. Then for any J ⊆ S

D−1
I ⊆ (D−1

I ∩DJ )WJ .

Thus, for any y ∈ D−1
I , we obtain from standard results that

WI ∩ yWJy
−1 is a standard parabolic subgroup of (W,S).

Hence
WI ∩ yWIy

−1 = WI , , I1 ⊆ I
WI ∩ yWI1y

−1 = WI2 , I2 ⊆ I1
WI ∩ yWI2y

−1 = WI3 , I3 ⊆ I2
...

Then let K = K0 C I, so that K is a union of some connected components of
I. Then, as above,

WI ∩ yWK0y
−1 = WK1 , K1 C I1

WI ∩ yWK1y
−1 = WK2 , K2 C I2

WI ∩ yWK2y
−1 = WK3 , K3 C I3

...

We arrive at our key definition.
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Definition 12.12. Suppose that I ⊆ S and K C I. Define

D∗
I (K) = {y ∈ D−1

I | y ∈ DKj for all j ≥ 0} .

Notice that D∗
I (φ) = D−1

I and D∗
I (I) = DI ∩D

−1
I .

The following corollary follows from Proposition 12.11. See Corollary 1.2
of [90].

Corollary 12.13. Let y ∈ D∗
I (K), z ∈WK and suppose that yz ≡I y

′ ∈ D−1
I .

Then `(y′) ≥ `(y). If further `(y′) = `(y), then y = y′.

We now return to conjugacy classes in M . Let e ∈ Λ, the cross-section
lattice. Then

W (e) = WI for I = λ(e) ⊆ S

W∗(e) = {x ∈ W | xe = ex = e} = WK for some K C I .

Define

D(e) = DI ,

D∗(e) = D∗
I (K)

De = DK .

Notice that

D∗(e) = D(e) ∩D(e)−1 if e ∈ Λ\{0} is minimal

and

D∗(e) = D(e)−1 if e ∈ Λ\{1} is maximal .

Let y ∈ D(e)−1, e ∈ Λ. Define, as before,

H = CG(zez−1 | z ∈ 〈y〉),

and let Me,y = eHy. Let

X(ey) =
⋃

g∈G

gMe,σg
−1 .

Theorem 12.14. Let e ∈ Λ.

a) If y ∈ D(e)−1 then

X(ey) =
⋃

g∈G

gBeyBg−1 .

b) GeG =
⊔

y∈D∗(e)

X(ey).
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Proof. For a) we refer the reader to Lemma 2.1 and Theorem 2.2 of [90]. For b)
let I = λ(e). If x ∈W then, by Proposition 12.11, x ≡I y for some y ∈ D(e)−1

with `(y) ≤ `(x). Thus, by Theorem 12.3 and Theorem 12.9, every element of
GeG is conjugate to an element of Me,σ for some y ∈ D(e)−1. Furthermore,
if y1, y2 ∈ D(e)−1 then X(ey1) = X(ey2) if and only if for some x ∈ W
ey1 ∼ ex in R and x ≡I y2. We write y1 ≈ y2 in this case. If y1 6≈ y2 then
by Theorem 12.9 X(ey1) ∩X(ey2) = φ. Assume that y is chosen so that `(y)
is minimal in the ≈ class of y. It turns out that y ∈ D∗(e). One then checks
that such a y is unique. This proves b).

Definition 12.15. Let P = {ey | e ∈ Λ, y ∈ D∗(e)}. Since P ⊂ R we define
a transitive relation 4 on R: 4 is generated by

a) r1 4 r2 if r1 ≤ r2 in the adherence order (see Definition 8.32)
b) if y ∈ D(e)−1 and x ∈W then eyx 4 xey.

It follows from Theorem 12.16 a) below that (P,4) is a partially ordered
set. We refer to (P,4) as the Putcha poset of M .

Theorem 12.16. a) (P,4) is a poset.

b) M =
⊔

r∈P

X(r).

c) If r1, r2 ∈ P then X(r1) ⊆ X(r2) iff r1 4 r2.

d) If r ∈ P then X(r) =
⊔

s4r

X(s).

Proof. b) follows from Theorem 12.14 b). For c) and d), let r ∈ R and define

Y (r) =
⋃

g∈G

gBrBg−1 .

It turns out that Y (r) = X(r) for any r ∈ P . Now G acts on Y (r) by
conjugation, while B stabilizes BrB under this action. Thus,

Y (r) =
⋃

g∈G

gBrBg−1 =
⋃

r′≤r

Y (r′)

since G/B is a complete variety.
From here one checks that b) and c) hold. For a) it remains to show that

if r1 4 r2 4 r1 then r1 = r2. But if r1 4 r2 4 r1 then X(r1) = X(r2) by c)
above. Hence X(r1) ∩X(r2) 6= φ. Thus, by 12.14 r1 = r2.

Very little is known about the set

Mnil = {x ∈M | xn = 0 for some n},

of “nullforms” of M , except perhaps that Mn ⊆ M is a closed subvariety of
M , invariant under the action of conjugation by G. However, by the results
above,
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Mnil =
⊔

r∈Pn

X(r),

where Pnil = {r ∈ P | rn = 0 for some n > 0}. Furthermore, the irreducible
components of Mnil are in one-to-one correspondence with the maximal ele-
ments of (Pnil,4).

Example 12.17. Let M be a J-irreducible monoid of type φ ⊆ S. Then by
Theorem 7.12,

λ : Λ\{0} −→ 2S

is a bijection. Such monoids are called canonical monoids [96]. In any case,
we write

Λ = {eX | X ⊆ S} ∪ {0} .

The set of maximal elements of Λ1 of Λ\{1} are indexed by S. Indeed,

Λ1 = {fs | s ∈ S}

where λ(fs) = S\{s}. If eXy ∈ Pn then y = s1 · · · · · s` where si ∈ S and
s1 /∈ X . Hence eXy ≤ fs1s1 and thus eXy 4 fs1s1. So we see that the set of
maximal elements of Pn is

{fss | s ∈ s} .

Thus the irreducible components of Mnil are

X(fss) =
⋃

g∈G

gMfs,sg
−1 .

Example 12.18. Let M = Mn(K). In this example we calculate the Putcha
decomposition and the Putcha poset for M. Now

M =
⊔

r∈P

X(r)

as in Theorem 12.16. One checks that for r ∈ P

X(r) = {a ∈M | rank (ai) = rank (ri) for all i > 0} .

Furthermore, the following are equivalent for r, s ∈ P :

i) r 4 s
ii) X(r) ⊆ X(s)
iii) rank (ri) ≤ rank (si) for all i ≥ 0.

For r ∈ P we can write

r =



Ir

Nr




where Ir is an identity matrix and Nr is nilpotent. Thus,
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P ∼=
⊔

m≤n

Πm

where Πm is the set of partitions of m. Here, Πm corresponds to {r ∈ P |
m = n− rank(Ir)} ⊆ P .

The order relation on P can be described as follows.
Let

α = (α1 ≥ α2 ≥ . . . ) in Πm

β = (β1 ≥ β2 ≥ . . . ) in Π` .

Then α 4 β if
n−m ≥ n− `

n−m+ α1 ≥ n− `+ β1

n−m+ α1 + α2 ≥ n− `+ β1 + β2

...

Each of these inequalities is a direct translation of the corresponding condition
from iii) above.
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The Centralizer of a Semisimple Element

13.1 Introduction

Let G be a simply connected algebraic group and let s ∈ G be a semisimple
element. It is well known that CG(s) = {g ∈ G | gs = sg} is a connected
subgroup of G which is uniquely determined up to conjugacy by a certain
subset of the extended Dynkin diagram of G.

If M is a reductive monoid with unit group G, the situation is more com-
plicated. Is CM (s) = Ms always irreducible? If not, can we still obtain some
numerical/combinatorial identification of these monoids? What sort of struc-
ture does the monoid Ms have?

The purpose of this chapter is to answer the above questions in detail, and
to supply some illustrative examples. The three main results are as follows.

Let B ⊆ G be a Borel subgroup with maximal torus T ⊆ B. Suppose that
s ∈ T and M is a reductive algebraic monoid with unit group G. Let

Gs = {g ∈ G | gs = sg}

Bs = {g ∈ B | gs = sg}

Ns = {x ∈ NG(T ) | xs = sx}

and define
Rs = Ns/T = {xT = Tx | x ∈ Ns} .

In this chapter we obtain the following results.

a) Ms =
⊔
x∈Rs

BsxBs.
b) Ms is a regular monoid.
c) Rs is a finite inverse monoid.
d) The following are equivalent:

i) Ms is irreducible
ii) Rs is unit regular.
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13.2 Main Results

Let M be a reductive monoid with unit group G. We assume throughout that
G is simply connected. This ensures that, for any semisimple element s of G,
CG(s) = {g ∈ G | sg = gs} is connected. So let B ⊆ G be a Borel subgroup
with maximal torus T ⊆ B. We may assume that s ∈ T .

We now establish our notation and recall the relevant background results.
Let

N ′ = {x ∈M | xT = Tx}.

Then N ′ = N = NG(T ) ⊆ M (Zariski closure) and R = {xT = Tx | x ∈ N}
is a finite inverse monoid with unit group W = NG(T )/T , the Weyl group. If
x, y ∈ N and x ≡ y in R then BxB = ByB. Hence BxB ⊆M is well-defined
for x ∈ R.

Recall from Theorem 8.8 that

M =
⊔

x∈R

BxB.

Our purpose here is to find an analogue of this result for

Ms = {x ∈M | xs = sx} .

So we let

Gs = {x ∈M | xs = sx} = CG(s)

Bs = CB(s)

Ns = CN (s)

Rs = {xT = Tx ∈ R | xT ∩Ns 6= φ} .

Notice that if xT ∩ Ns 6= φ then sxt = xts for t ∈ T . It follows easily that
xT ⊆ Ns. Indeed,

Rs = {xT ∈ R | xT ⊆ Ns} .

Lemma 13.1. Let r ∈ R. Then BrB ∼= rT ×Ka for some a ≥ 0.

Proof. Let V = {u ∈ U | urB ⊆ rB} where U ⊆ B is the unipotent part of B.
Then it follows easily that V = {u ∈ U | urB = rB} = {u ∈ U | urB = rB},
that V ⊆ U is closed, and that T ⊆ NG(V ). By Proposition 28.1 of [40],

V =
∏

Uα⊆V

Uα, where Uα ⊆ U is a root subgroup, α ∈ Φ+. Let X =
∏

Uα⊆U

Uα.

Then
X × V −→ U

(u, v) 7−→ xv

is an isomorphism Proposition 28.1 of [40] Thus,
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BrB = UTrB

= UrTB

= UrB

= XV rB

= XrB .

Thus ϕ : X × rB −→ BrB is surjective. But ϕ is also injective. Indeed,
suppose that xrb1 = yrb2. Then rb1 = x−1yrb2 and we obtain rB = x−1yrB.
Hence x−1y ∈ V , and so x−1y = v ∈ V . Thus xV = yV , and so x = y since
x× V ∼= U . Hence BrB ∼= X × rB.

Now let Z = {u ∈ U | rTu = rT }. As for V , Z =
∏

Uα⊆Z

Uα. Then let

Y =
∏

Uα*Z

Uα. As above, it follows that

rB = rTY ∼= rT × Y .

We conclude that
BrB ∼= X × rB ∼= X × rT × Y .

But X × Y ∼= ka for some a ≥ 0.

Lemma 13.2. There is a unique morphism of algebraic varieties
ψ : BrB → rT such that i is the inclusion, α is defined by α(x) = sxs−1, β
is induced from α and the following diagram commutes.

rT
i

−−−−→ BrB
ψ

−−−−→ rT

α

y α

y β

y

rT
i

−−−−→ BrB
ψ

−−−−→ rT

Furthermore, ψ ◦ i is an isomorphism.

Proof. Since BrB = X × rT × Y , define ψ(x, rt, y) = rt. Then ψ is unique
since it is the quotient morphism for the action U × U × BrB → BrB,
(u, v, x) 7→ uxv−1. The diagram commutes as long as β exists. But, for any
t ∈ T , s(UrtU)s−1 = UrtU .

Corollary 13.3. (BrB)s = {b1rb2 ∈ BrB | sb1rb2s
−1 = b1rb2}. Then

(BrB)s 6= φ⇔ (rT )s 6= φ .

Proof. Assume that (BrB)s 6= φ. Then ψ((BrB)s) 6= φ. But then (rT )s 6= φ
since ψ ◦ i is an int(s)-equivariant isomorphism. Conversely, if (rT )s 6= φ then
(rT )s ⊆ (BrB)s, and so (BrB)s 6= φ.
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Proposition 13.4.

(BrB)s =

{
φ if r /∈ Rs
BsrBs if r ∈ Rs.

Proof. If r /∈ Rs then (rT )s = φ by definition, and so (BrB)s = φ by
Corollary 13.3. Then let r ∈ Rs. We must show that (BrB)s = BsrBs.
Clearly, BsrBs ⊆ (BrB)s. In the proof of Lemma 13.1 we showed that
BrB = X × rT × Y . Then

(BrB)s = (X × rT × Y )s

= Xs × rT × Ys, since sXs−1 = X and sY s−1 = Y

⊆ BsrBs.

Theorem 13.5. Ms =
⊔

r∈Rs

BsrBs, a disjoint union.

Proof.

Ms = (
⊔

r∈R

BrB)s, by 8.8 ,

=
⊔

r∈Rs

(BrB)s

=
⊔

r∈Rs

BsrBs, by 13.4.

13.3 The Structure of Rs and Ms

In this section we examine in more detail Rs and Ms. But first we recall three
definitions from § 2.3. A semigroup S is regular if for any x ∈ S there exists
a ∈ S such that xax = x. Also S is unit regular if for any x ∈ S there exists
a unit a ∈ S such that xax = x. A semigroup S is inverse if for any x ∈ S
there is a unique x∗ ∈ S such that xx∗x = x and x∗xx∗ = x∗.

Proposition 13.6. Rs is a finite inverse monoid.

Proof. Rs ⊆ R, which is finite. Hence Rs is finite. Also, it is easily verified
that Rs is a semigroup of R. Therefore let x ∈ R0 and let r∗ ∈ R be the
unique inverse (in R) of r. Now srts−1 = rt for some t ∈ T . Thus st−1r∗s−1 =
(srts−1)∗ = (rt)∗ = t−1r∗, and so (r∗T )s = (Tr∗)s 6= φ, proving that r∗ ∈ Rs.

Proposition 13.7. Ms is a regular, algebraic monoid.

Proof. By Theorem 13.5 we have Ms =
⊔

r∈Rs

BsrBs. Clearly, Ms is a closed

submonoid of M . Now let x = b1rb2 ∈ Ms, where b1, b2 ∈ Bs and Rs. Define
a = b−1

2 r∗b−1
1 ∈ Ms where r∗ ∈ Rs is the unique inverse of r. A simple

calculation proves that xax = x and axa = a. Thus, Ms is regular.
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Theorem 13.8. The following are equivalent:

(a) Ms is irreducible;
(b) Rs is unit regular.

Proof. Recall that Ns = {x ∈ NG(T ) | xs = sx}. A simple calculation verifies
that Rs is unit regular iff Ns is unit regular.

Assume that Ms is irreducible. Then Ms = CG(s) (Zariski closure). Now
let r ∈ Rs, so that rs = sr and rT = Tr. But also we have r ∈ Ms. Hence
r ∈ NCG(s)(T ) and so Rs = NCG(s)(T ). The latter is unit regular by Theorem
13 of [81] and Theorem 7.3 of [82].

Conversely, assume that Ns is unit regular. Then if r ∈ Rs there exist
σ ∈ NCG(s)(T ) and e ∈ I(T ) = {f ∈ T | f2 = f} such that r = eσ. Now let
x ∈ Ms. Then x = b1rb2, for some r ∈ Ns and b1, b2 ∈ Bs. But r = eσ as
above, so that x = b1eσb2 ∈ BsTNCG(s)(T )Bs ⊆ CG(s). Thus Ms = CG(s).

13.4 Examples

Example 13.9. Let M = Mn(k) and let s ∈ M be semisimple. Then s is
conjugate to a matrix of the form



λ1In1 0

. . .

0 λsIns




where λi 6= λj if i 6= j, n1 ≥ · · · ≥ ns, and

m∑

j=1

nj = n. Then

Ms
∼=

m∏

i=1

Mni(k)

and

Rs ∼=







An1 0

. . .

0 Anm




∣∣∣∣∣∣∣

Ani is an ni × ni 0-1 matrix with
at most one nonzero entry in each
row or column.




.

For this M , any choice of s yields an irreducible Ms.

Example 13.10. Let ρ : S`2 × S`2 → G`6 be defined by

ρ(A,B) =

(
A⊗ tB−1 0

0 B

)
.

Let G1 = ρ(S`2 × S`2) and let G = {tg | t ∈ ZG`6, g ∈ G1}. Then
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M = G ⊆M6(k)

is a reductive algebraic monoid with unit group G and maximal torus closure

T =





wz = xy = rs
diag(w, x, y, z, r, s) r2 = xz

s2 = wy



 .

We can calculate E(T ) to obtain

E(T ) = {0, 1} ∪ {ei | i = 1, . . . , 8}

where

e1 = (1, 0, 0, 0, 0, 0) e5 = (1, 1, 0, 0, 0, 0)

e2 = (0, 1, 0, 0, 0, 0 e6 = (0, 0, 1, 1, 0, 0)

e3 = (0, 0, 1, 0, 0, 0) e7 = (1, 0, 1, 0, 0, 1)

e4 = (0, 0, 0, 1, 0, 0) e8 = (0, 1, 0, 1, 1, 0).

It follows from Theorem 10.7 of [82] that the partially ordered set {GxG | x ∈
G} is {0, J1, J2, J3, G}, where

J1 = Ge1G, J2 = Ge5G and J3 = Ge7G .

Furthermore, J3 > J1 and J2 > J1.
The Weyl group of G is W = {w1, w2, w3, w4} where

w1 =




1
1

1 0
1

0 1
1




= ρ

((
1 0

0 1

)
,

(
1 0

0 1

))

w2 =




0 1
−1 0

0

0 1
−1 0

0
0 1
−1 0




= ρ

((
1 0

0 1

)
,

(
0 1

−1 0

))

w3 =




0 1
−1

−1 0
0

1

0 0 1
−1 0




= ρ

((
0 1

−1 0

)
,

(
0 1

−1 0

))
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w4 =




0
−1 0

0 −1
−1 0

0 −1
0

0

0
1 0
0 1




= ρ

((
0 1

−1 0

)
,

(
1 0

0 1

))
.

Let s ∈ T ⊆ G be semisimple. Then

s = aρ(u, v)

where u = diag(α, α−1) and v = diag(β, β−1). Then

s = a diag(αβ−1, αβ, α−1β−1, α−1β, β, β−1).

After straightforward but tedious calculations, for example,

sw3s
−1 =




0 α2β−2

−α2β2

−α−2β−2 0
α−2β2 0

β2

0 −β−2




,

we arrive at the following possibilities for Rs.

Case 1: β = ±α, α = ±1.

Then Rs = R .

Case 2: β = ±α, α = ±i.

Then R3 = E(T ) ∪ {w3ej | j = 1, 2, . . . , 6} .

Case 3: β = ±α and α 6= ±1, ±i.

Then R3 = E(T ) ∪ {w3e1, w3e4} .

Case 3′: β = ±α−1, α 6= ±1, ±i gives a set Rs conjugate to the set Rs
considered in Case 3.

Case 4: β 6= ±α, α = ±1.

Then Rs = E(T ) ∪w4(E(T ) .

Case 4′: β 6= ±α−1, β = ±1 gives a set Rs conjugate to the set Rs considered
in Case 4.
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Case 5: β 6= ±α, β 6= ±α−1, α 6= ±1, β 6= ±1.

Then Rs = E(T ) .

In Case 1, Ms = M .
In Case 4 or Case 4′, Ms is irreducible with unit group k∗S`2.
In Case 5, Ms = T .
In Case 2, Case 3 and Case 3′, Ms is reducible.

Remark 13.11. The monoid Ms is not necessarily of the type discussed in
[85, 86] or § 10.4, unless of course it is irreducible. This leads to a number of
basic questions about Ms.

a) Which spherical varieties (for CG(s)×CG(s)) can occur as an irreducible
component of Ms? Are there any “new” ones?

b) Does the inverse monoid Rs satisfy some analogue of Tits’ axiom “sBx ⊆
BxB ∪BsxB if s ∈ S, x ∈ R”?

c) Is there an analogue of the type map λ : Λ→ 2S for Ms?



14

Combinatorics Related to Algebraic Monoids

In this section, we discuss some of the more striking combinatorial problems
that arise naturally in the study of reductive, algebraic monoids.

14.1 The Adherence Order on WeW

From Corollary 8.35 we have a combinatorial description of the adherence
ordering on R:

x ≤ y if BxB ⊆ ByB.

In this section we describe a refinement of those results when we restrict our
attention to the smaller poset (WeW,≤) for e ∈ Λ. The results of this section
are due to Putcha [92, 93, 94].

The monoid R has a presentation given by:

xe = ex, x ∈W (e)
xe = e = ex, x ∈W∗(e).

These relations are of course in addition to those for W and E(T ).
If σ ∈ R, then σ has a unique expression:

σ = xwey, e ∈ Λ, x ∈ D(e), w ∈ W ∗(e), y ∈ D(e)−1.

This is the normal form (Definition 8.34) of σ. The length l(σ) can be defined
(see [73], [105], [127]) as

l(σ) = l(x) + l(w) + l(e)− l(y)

where l(e) is the length of the longest element in D(e). This notion of length
agrees with the earlier Definition 8.17. If v0 and w0 are respectively the
longest elements in W (e) and W , then w0e and ev0w0 are respectively the
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maximum and minimum elements of WeW . Moreover the length function on
WeW agrees with the rank function on the graded poset WeW . Also by [73],
the length function is subadditive:

l(σθ) ≤ l(σ) + l(θ) for all σ, θ ∈ R.

Let σ = xwey, σ′ = x′w′e′y′ ∈ R be in standard form. Then by [73],

σ ≤ σ′ ⇔ e ≤ e′, xw ≤ x′w′u, u−1y′ ≤ y for some u ∈W (e ′)W∗(e).

This description of the order on R is somewhat unwieldly. A much more
useful description has been obtained by the Putcha in [92, 93], which we now
describe.

We begin with a description of the order on WeW , where e ∈ Λ. Let
I = λ(e) and K = λ∗(e). For w ∈ WI , let w = v0wv0, where v0 is the longest
element of WI . Let

WI,K = DI ×WI\K ×D
−1
I .

Let σ = (x,w, y), σ′ = (x′, w′, y′, ) ∈ WI,K . Define σ ≤ σ′ if w = w1w2w3

with l(w) = l(w1) + l(w2) + l(w3) such that

xw1 ≤ x
′, w2 ≤ w

′, w3y ≤ y
′.

Let W∗
I,K =WI,K as sets but with the above order changed to

xw1 ≤ x
′, w2 ≤ w

′, w3y ≤ y
′.

Note the subtle difference between these two orderings. The following result
is proved in [92].

Theorem 14.1. WeW is isomorphic to WI,K and the dual of WeW is iso-
morphic to W∗

I,K .

We notice that, in many cases, the poset WeW is isomorphic to its dual.
This is however not true in general. For instance this is not true of the poset
of 4 × 4 rank 3 partial permutation matrices. In general WeW is isomorphic
to its dual if no component of W ∗(e) is of type Al(l > 1), Dl(l odd) or E6.

The problem next is to extend the description of the order on the W ×W -
orbits to all of R. Let e, f ∈ Λ, e ≤ f . Let ze denote the longest element in
W∗(e). Let σ = xwey ∈WeW in standard form. Let

zey = uy1, u ∈W (f), y1 ∈ D(f)−1.

Define the projection,
ρe,f (σ) = x′fy1

where
x′ = min{xwu′|u′ ≤ u}.

Thus we have projection maps ρe,f : WeW →WfW , whenever e ≤ f .
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Example 14.2. Let M = M3(k),

e =




1 0 0
0 0 0
0 0 0


 , f =




1 0 0
0 1 0
0 0 0


 .

Then ρe,f : WeW →WfW is as in the Figure 14.1.

σ ρe,f (σ)[
1 0 0
0 0 0
0 0 0

] [
1 0 0
0 0 1
0 0 0

]

[
0 1 0
0 0 0
0 0 0

] [
0 1 0
0 0 1
0 0 0

]

[
0 0 1
0 0 0
0 0 0

] [
0 1 0
0 0 1
0 0 0

]

[
0 0 0
1 0 0
0 0 0

] [
0 0 1
1 0 0
0 0 0

]

[
0 0 0
0 1 0
0 0 0

] [
0 0 1
0 1 0
0 0 0

]

[
0 0 0
0 0 1
0 0 0

] [
0 1 0
0 0 1
0 0 0

]

[
0 0 0
0 0 0
1 0 0

] [
0 0 1
0 0 0
1 0 0

]

[
0 0 0
0 0 0
0 1 0

] [
0 0 1
0 0 0
0 1 0

]

[
0 0 0
0 0 0
0 0 1

] [
0 1 0
0 0 0
0 0 1

]

Fig. 14.1. The projection in Mn(K) from rank one to rank two.

The following result is proved in [92].

Theorem 14.3. (i) ρe,f : WeW →WfW is order preserving.

(ii) If σ ∈WeW, θ ∈WfW , then σ ≤ θ ⇔ ρe,f (σ) ≤ θ.

(iii) ρe,f is onto ⇔ λ∗(e) ⊆ λ∗(f).

(iv) ρe,f is one to one ⇔ λ(f) ⊆ λ(e).

Example 14.4. Let φ : Mn(K)→MN (K) be defined as

φ(A) = A⊗ ∧(A)⊗ ∧2 · · · ⊗ ∧n(A),

where
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N = Πn
r=1

(
n

r

)
.

Let M denote the Zariski closure of φ(Mn(K)) in MN(K). In this case, W is
the symmetric group on n letters with S = {(12), (23), . . . , (n− 1n)}. Then

Λ = {eI | I ⊆ S} ∪ {0}

with

eK ≤ eI if and only if K ⊆ I

and

λ(eI) = λ∗(eI) = I, λ∗(eI) = φ

for all I ⊆ S. Then by Theorem 14.3, ρeK ,eI is onto for K ⊆ I.

Example 14.5. Let φ : Mn(K)→MN (K) be defined as

φ(A) = A⊕ ∧(A) ⊕ ∧2 · · · ⊕ ∧n(A)

where N = 2n− 1. Let M denote the Zariski closure of φ(Mn(K) in MN(K).
Again W is the symmetric group on n letters with S = {(12), (23), . . . , (n −
1n)}. Then

Λ = {eI | I ⊆ S} ∪ {1}

with

eK ≤ eI if and only if K ⊆ I

and

λ(eI) = λ∗(eI) = I, λ∗(eI) = φ

for all I ⊆ S. Again by Theorem 14.3, ρeK ,eI is one to one for K ⊆ I.

If M is a canonical monoid as in Example 10.17, then Theorem 14.3 can
be used to show that R∗ = R\{0} is an Eulerian poset. This means that
the Möbius function µ on R∗ is given by

µ(x, y) = (−1)rkx+rky, forx ≤ y

Here rk is the rank function on the graded poset R∗. The problem of deter-
mining the Möbius function on R in general, remains open.
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14.2 Shellability and Stanley-Reisner Rings

Let P be a finite graded partially ordered set with a maximum element 1
and a minimum element 0. This means that all maximal chains in P have the
same length. Let ∆ denote the order complex of P . Thus ∆ is the simplicial
complex whose faces are chains in P . Then ∆ (or P ) is said to be shellable
if the maximal faces can be ordered F1, · · · , Fs such that, for i < j, there is a
maximal face Fk, k < j, such that Fi∩Fj ⊆ Fk∩Fj = Fj\{v} for some v ∈ P .
This is a topological condition implying that ∆ then has the homotopy type
of a wedge of spheres. Let A denote the commutative algebra (over a field)
generated by xα(α ∈ P ). For A = {a1, · · · , am} ⊆ P , let xA = xa1 · · ·xam . Let
I denote the ideal generated by xA, where A is not a face. Then F = A/I is
called the Stanley-Reisner ring of ∆ (or P ). Note that F is spanned by the
faces of∆. It is well known that, if ∆ is shellable, then F is a Cohen-MacAulay
ring, cf. [132].

A very useful method for checking the shellability of P has been developed
by Björner and Wachs [6]. For a, b ∈ P , write a→ b if a covers b (i.e. a > b and
there is no c such that a > c > b). The concept of lexicographic shellability,
introduced in [6], can be briefly described as follows. The edges of P are labeled
recursively starting from the top, whereby for a→ b the label depends on the
choice of a maximal chain from 1 to a. Fix a > b and a maximal chain from 1
to a. The labeling must be such that there exists a unique maximal chain from
a to b with increasing labels and so that this chain is lexicographically less
than any other maximal chain from a to b. It is shown in [6] that lexicographic
shellability implies shellability.

Proctor [80] and Björner and Wachs [6] have shown that the Weyl group
W , with respect to the Bruhat-Chevalley order, is lexicographically shellable.
It is also shown in [6] that DI is lexicographically shellable for any I ⊆ S.

The following result is due to Putcha [93, 94].

Theorem 14.6. Each W ×W -orbit WeW is lexicographically shellable, and
hence its Stanley-Reisner ring is Cohen-Macaulay. A maximal W ×W -orbit
is also Eulerian and hence its Stanley-Reisner ring is Gorenstein.

The problem of whether the Stanley-Reisner ring of R is always Cohen-
Macaulay, remains open.

14.3 Distribution of Products in Finite Monoids

In this section we consider the problem of distribution of products in a finite
monoid S. In our discussion we naturally arrive at formulas that are familiar
in enumerative combinatorics. This problem becomes particularly interesting
if S is a finite monoid of Lie type. We obtain explicit formulas for the monoid
Mn(Fq).



218 14 Combinatorics Related to Algebraic Monoids

Let S be a finite monoid and let a ∈ S. Consider,

Hn(a) = {(x1, . . . , xn) ∈ S
n | x1 · ... · xn = a}

for n > 0, and define
hn(a) = |Hn(a)| .

What can we say about the sequence {hn(a) | n > 0}? What special properties
does the power series

h(a) =
∑

n≥1

hn(a)t
n−1

possess? If a = bx, how are h(a) and h(b) related?
In this section we treat the above questions (and some others) systemati-

cally from a combinatorial viewpoint.

14.3.1 Properties of h(a)

Let S be a finite monoid and let a ∈ S. As above, we let

hn(a) =
∣∣{(x1, . . . , xn) ∈ S

n | x1 · ... · xn = a}
∣∣ .

For a, b ∈ S we write b ≥ a if a = bx for some x ∈ S. We define

R(b/a) = {x ∈ S | a = bx}

and

r(b/a) = |R(b/a)| .

Proposition 14.7. (i) h1(a) = 1 for any a ∈ S.

(ii) hn+1(a) =
∑

b≥a

r(b/a)hn(b) for any n > 1.

Proof. (i) is obvious.
For (ii) consider

{(x1, . . . , xn, xn+1 ∈ S
n+1

∣∣ x1 · ... · xn+1 = a}

=
⊔

b∈S

{
(x1, . . . , xn, xn+1) ∈ s

n+1 x1 · ... · xn+1 = a
x1 · ... · xn = b

}

∼=
⊔

b≥a

({
(x1, . . . , xn) ∈ Sn

∣∣ x1 · ... · xn = b
}
×R(b/a)

)
.

Hence Hn+1(a) =
⊔

b≥a

Hn(b)×R(b/a), and thus

hn+1(a) =
∣∣Hn+1(a)

∣∣ =
∑

b≥a

∣∣Hn(b)
∣∣ ∣∣r(b/a)

∣∣ =
∑

b≥a

hn(b)r(b/a) .
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Remark 14.8. One can deduce from this that

hn+1(a) =
∑

a=a0≤···≤an

r(an/an−1) · ... · r(a1/a0) for any a ∈ S .

For a, b ∈ S we write a ∼ b if aS = bS, i.e. if a ≤ b and b ≤ a. Then we
obtain from Proposition 14.7 that

h(a)− 1 =
∑

n≥1

hn+1(a)t
n =

∑

n≥1

t
∑

b≥a

r(b/a)hn(b)t
n−1 = t

∑

b≥a

r(b/a)h(b) .

Thus
h(a)− t

∑

b∼a

r(b/a)h(b) = 1 + t
∑

b>a

r(b/a)h(b) . (∗)

Define
Ca = 1 + t

∑

b>a

r(b/a)h(b),

and let
Ra = {b ∈ S | a ∼ b} .

If Ra = {a1, . . . , as} write Ci for Cai . Then from (∗) above

(1 − r(a1/a1)t)h(a1) − r(a2/a1)th(a2) − · · ·− r(as/a1)th(as) = C1

−r(a1/a2)th(a1) + (1− r(a1/a2)t)h(a2) − · · ·− r(as/a2)th(as) = C2

...
...

−r(a1/as)th(a1) − · · · − · · · + (1− r(as/as)t)h(as) = Cs.

Hence

(Is − tR)



h(a1)

...
h(as)


 =



C1

...
Cs


 (∗∗)

where

R =



r(a1/a1) r(a2/a1) . . .
r(a1/a2) r(a2/a2)

...


 .

But (Is − tR)−1 = 1
det(Is−tR) Adj(Is − tR) and so we obtain the following

result.

Theorem 14.9. For each ai ∈ Ra = {c|c ∼ a} = {a1, . . . , as}.

h(ai) =
1

det(Is − tR)

[
Pai + t

∑

b>ai

P (b/ai)h(b)

]

where
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R =



r(a1/a1) r(a2/a2) . . .
r(a1/a2) r(a2/a2)

...


 ,



Pa1

...
Pas


 = Adj(Is − tR)




1
...
1




and 

P (b/a1)

...
P (b/as)


 = Adj(Is − tR)



r(b/a1)

...
r(b/as)


 .

Proof. From (∗∗)

(Is − tR)



h(a1)

...
h(as)


 =




1 + t
∑

b>a1

r(b/a1)h(b)

...

1 + t
∑

b>as

r(b/as)h(b)




and so



h(a1)

...
h(as)


 = (Is − tR)−1




1 + t
∑

b>a1

r(b/a1)h(b)

...

1 + t
∑

b>as

r(b/as)h(b)




.

The result follows from straightforward calculation.

Suppose now that S has the property “a ∼ b⇒ a = b”. We then refer to S
as an R-trivial monoid. In this case, s = 1 for each a, and Is− tR = 1

1−r(a/a)t .

Then we obtain the following special case.

Corollary 14.10. Suppose that S is an R-trivial monoid. Then for any a ∈ S

h(a) =
1

1− r(a/a)t

(
1 + t

∑

b>a

r(b/a)h(b)

)
.

Example 14.11. Let S = J∪{0} be a completely 0-simple finite semigroup (not
usually a monoid, but hn is still defined). Then by the Rees representation
theorem

J = I ×G× Λ .

Here G is a finite group, and P : Λ × I −→ G ∪ {0} is the sandwich matrix.
Assume that
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|I| = k

|Λ| = `

|G| = m.

and suppose that

|{(λ, i) ∈ Λ× I | p(λ, i) = 0}| = α .

Then for any a ∈ J
hn(a) = [g(k`− α)]n−1 .

Hence

h(a) =
1

1− g(k`− α)t
.

Example 14.12. Let F = F (X) be the free monoid on the set X . If a ∈ F then
we can write

a = x1 · ... · xn

uniquely, with {xi} ⊆ X . Hence

{b ∈ F | b ≥ a} = {1, x1, x1x2, . . . , xi · ... · xn}

and
r(b/a) = 1 for any b ≥ a .

So, inductively,

h(a) =
1

1− t

(
1 + t

n−1∑

i=0

h(xi · ... · xi)

)

=
1

1− t

(
1 +

t

1− t
+ · · ·+

t

(1− t)n

)

=
1

(1− t)n+1
.

Remark 14.13. (i) Theorem 14.9 yields an upper bound to the poles of h(a)
in terms of the matrices

R(b) =



r(b1/b1 r(b2/b1) . . .
r(b1/b2) r(b2/b2)

...




where {b1, . . . , bs} = {x ∈ S | x ∼ b} and b ≥ a. I am not aware of any
example where the poles of h(a) are not reciprocals of integers.

(ii) One could apply the ideas of this section almost verbatim to finite cate-
gories.

Definition 14.14. A finite monoid S is called R-homogeneous if
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(i) r(a1/a2) = r(a3/a4) if a1 ∼ a2 ∼ a3 ∼ a4

(ii) r(b/a1) = r(b/a2) if b > a1 ∼ a2.

Theorem 14.15. Let S be a finite R-homogeneous monoid. Then for a ∈ S

h(a) =
1

1− sarat

(
1 + t

∑

b>a

r(b/a)h(b)

)

where r = ra = r(a/a) and sa = |{x ∈ S | x ∼ a}|.

Proof. Let {x ∈ S | x ∼ a} {a1, . . . , as} and define

R =



r(a1/a1) r(a2/a1) . . .
r(a1/a2) r(a1/a1)

...


 .

Then rank (R) = 1 and R2 = rsR (since r = r(ai/aj) for all i, j). Then R is
conjugate to

A =




rs
0 0

0
. . .

0


 .

Thus, det(I − tR) = det(I − tA) = 1− rst. Also

(I − tR)−1 = I + tR + t2R2 + . . .

= I + tR + t2rsR + t3(rs)2R+ . . .

= I + tR(I + rst+ (rst)2 + (rst)3 + . . . )

= I +
t

1− rst
R .

Thus adj(I − tR) = (1− rst)I + tR. Hence, by calculation,

Adj(I − tR)




1
...
1


 =




1
...
1




and

Adj(I − tR)



r(b/a1)

...
r(b/as)


 = r(b/a)




1
...
1




since r(b/ai) = r(b/aj). Thus, by Theorem 14.9,

h(a) =
1

1− rst

(
1 + t

∑

b>a

r(b/a)h(b)

)
.
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Example 14.16. Let S be a finite monoid such that if a ∼ a′ then a′ = ag for
some invertible element g ∈ S (say g ∈ G(S)). Hence if a1 ∼ a2 ∼ a3 ∼ a4

then

(i) R(a4/a3) = k−1R(a2/a1)h if a3 = a1h and a4 = a2k
(ii) R(b/a′) = R(b/a)g if b > a and a′ = ag.

It follows that S is R-homogeneous.
The finite monoids of Lie type are a class of finite monoids which satisfy

the R-homogeneous property (because of the above property). It would be
interesting to obtain detailed information about h(a) in for such monoids. See
Example 14.3.2 below for a particular case.

Example 14.17. A finite monoid S that is not R-homogeneous.
Let

i =




1 0 0
0 1 0
0 0 1


 , c =




1 0 0
0 0 0
0 0 0


 , f =




1 1 0
0 0 0
0 0 0


 , x =




1 0 0
0 0 0
0 1 0


 .

Then S = {I, e, f, x} is a finite monoid with e ∼ f < x. But

R(x/e) = {e, x}

and
R(x/f) = {f}.

Thus, r(x/e) = 2 6= r(x/f) = 1. So by (ii) of Definition 14.14, S is not
R-homogeneous.

14.3.2 Example

In this example we consider the example S = Mn(Fq) in detail, where Fq is
the field with q elements.

Let a ∈ S. Then, for some g, h ∈ G(S),

gah = ei =




1
. . . 0

1
0

0
. . .

0




for some 0 ≤ i ≤ a (where i = rank (ei)). It follows easily that

r(a/a) = r(ei/ei) =
∣∣{x ∈ S | ei = eiX}

∣∣ .

An elementary calculation verifies that
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ri = r(ei/ei) = qn(n−i) .

Next we need to find

si =
∣∣{b ∈ S | b ∼ ei}

∣∣ =
∣∣eiG`n(Fq)

∣∣ .

Another simple calculation yields

si = (qn − 1)(qn − q) · ... · (qn − qn−1) .

Hence
siri = qn(n−i)(qn − 1)(qn − q) · ... · (qn − qn−1) .

Notice that siri 6= sjrj if i 6= j. Thus by 3.4 above, α is semisimple, and so

min(α) = X

n∏

i=0

(X − qn(n−i)(qn − 1) · ... · (qn − qn−1))

and

D =

n∏

i=0

(1− qn(n−i)(qn − 1) · ... · (qn − qn−1)X).

Furthermore, by Theorem 14.15,

h(ei) =
1

1− risit

(
1 + t

∑

b>ei

r(b/ei)h(b)

)
.

We use this to find an explicit formula of the form

h(ei) =
1

1− risit


1 + t

∑

j>i

Ai h(ei)


 .

We first calculate

r(b/ei) =
∣∣{x ∈ S | bx = ei}

∣∣ .

Suppose that bx = ei. Then

{x | bx = ei} = x+ {y | by = 0} .

Thus r(b/ei) = qd where d = dimFq({y|by = 0}). An elementary calculation
shows that d = n(n−j), where j = rank(b). To find the sought after formulas,
it remains to find

∣∣∣∣
{
b ∈ S

bx = ei for some x
rank(b) = j

}∣∣∣∣ for each j > i .

Thus we define
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Xj =

{
b ∈ S

bx = ei for some x and
rank (b) = j

}
for each j > i .

Define
Pi = {g ∈ G

∣∣ gei = eig ei}

where
G = G`n(Fq) .

Notice also that
PiXjG = Xj for all j > i .

After a little calculation we conclude the following.
Let

Rn =



A ∈Mn(Fq)

A is a 01 matrix with at most one
nonzero entry in each row or col-
umn



 .

and let
Xj = {r ∈ Rn

∣∣ ei ∈ rRn, rank (r) = j} .

Then
Xj = PiXj G .

Now
X =:

⋃

j>i

Xj =
⋃

e∈E(X)

eW

and after a little more calculation we obtain

X = CW (ei)Λ(X)W

where W ⊆ Rn is the unit group and

Λ(X) = {ei+1, ei+2, . . . , en = 1} .

Thus,
Xj = PiejG

and

X =

n⋃

j=i+1

Xj .

But ∣∣Xj

∣∣ = (qj − 1) · ... · (qj − qj−1)

[
u
j

]

q

[
n− i
j − i

]

q

where [
n
j

]

q

=
(qn − 1) · ... · (q − 1)

[(qj − 1) · ... · (q − 1)][(qn−k − 1) · ... · (q − 1)]
.
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Hence

h(ei) =
1

1− risit

(
1 + t

∑

b>ei

r(b/ei)h(b)

)

=
1

1− risit


1 + t

n∑

j=i+1

∑

b>ei

rank (b)=j

r(b/ei)h(b)




=
1

1− risit


1 + t

n∑

j=i+1

qn(n−j)

∣∣∣∣
{
b
bx = ei for some x rank
(b) = j

}∣∣∣∣ h(b)




=


1 + t

n∑

j=i+1

qn(n−j)(qj − 1) · ... · (qj − qj−1)

[
n
j

]

q

[
n− i
j − i

]

q

h(ej)




1− qn(n−i)(qn − 1) · ... · (q − 1)t
.

14.4 Exercises

1. Let M = Mn(K), Rn = NG(T ) ⊆M and Rn = R/T . Let rn = |Rn|.
a) Prove that r0 = 1, r1 = 2 and rn = 2nrn−1 − (n− 1)2rn−2 for n ≥ 2.

b) Let r(x) =
∑∞
n=0

rn

n! x
n. Prove that r′(x)

r(x) = 2−x
(1−x)2 .

c) Show that r(x) = ex/(1−x)

1−x .
See [8].
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Survey of Related Developments

In this chapter we describe several results that are directly related to the
theory of algebraic monoids. In each case we find some other areas of algebra
coming into play. Although many of these technical issues are beyond the
scope of this survey, we hope to provide the reader with an overview of some
of the more striking related developments.

15.1 Complex Representation of Finite Reductive
Monoids

As is well known, a finite group G has the property that every finite dimen-
sional complex representation of G is completely reducible. The situation for
finite monoids is entirely different and not nearly so well understood. Indeed,
there is no effective characterization of finite monoids whose complex repre-
sentations are all completely reducible. Until recently, it was not known that
C[Mn(Fq)] is a semisimple algebra.

The following result was made possible by the theory of reductive monoids.
It is due to Okninski and Putcha [67].

Theorem 15.1. Let M be a finite monoid of Lie type. Then the monoid al-
gebra C[M ] is semisimple.

Recall that a monoid of Lie type is a regular monoid M generated by
idempotents and units, whose unit group is a group of Lie type. These monoids
are defined to satisfy a number of axioms relating to the BN -pair structure
of G to the idempotents of M . See Theorem 10.4. In particular, any finite
reductive monoid is a finite monoid of Lie type. The model example here is
Mn(Fq).

Corollary 15.2. Let M be as in the theorem. Then C[Mn(Fq)] is a semisimple
algebra.
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This result was also obtained independently by Kovacs [49].
As a consequence of their approach to Theorem 15.1, the authors obtain

the following important corollary.

Corollary 15.3. Any complex irreducible representation of M is induced from
some irreducible representation ρ : P → G`n(C) of a parabolic subgroup P ⊆
G with Ru(P ) ⊆ Ker(ρ).

The proof combines two opposing strategies.

a) Harish-Chandra’s theory of cuspidal representations,
b) reduction to certain monoids of the form M = G ∪GeG ∪ {0}.

In a subsequent paper [68] the authors turn the tables. They assume that
M is a finite monoid with unit groupG and zero element 0 ∈M , and semisim-
ple monoid algebra C[M ]. From this, they obtain a relative notion of M -
cuspidal irreducible representations for G. Harish-Chandra’s theory is then
recovered as the special case where G is a finite group of Lie type and M is a
canonical monoid [96]. See also §8.3 of [66].

15.2 Finite Semigroups and Highest Weight Categories

Recall from § 2.3.1 that a monoid S is regular if, for any x ∈ S, there exists
a ∈ S such that xax = x. For such a semigroup, it is easy to see that there is
an idempotent in each J-class of S. In fact, x is in the J-class of the idempotent
xa. Thus,

S =
⊔

J∈U(S)

J.

This may seem like a facile curiosity, imitating the much studied situation in
ring theory (the one attributed to von Neumann). However, there is some-
thing of greater significance here, which was first discovered by Putcha [91].
It turns out that the complex monoid algebra of a finite regular monoid is a
quasihereditary algebra.

Definition 15.4. Let A be a finite dimensional algebra over K. Then A is
quasihereditary if there is a chain of ideals (called a hereditary chain)

0 = I0 ⊆ I1 ⊆ · · · ⊆ Ir = A

such that, for j = 1, . . . , r,

a) Ij/Ij−1 is a projective A/Ij−1-module,
b) I2

j = Ij ,
c) IjRIj ⊆ Ij−1, where R is the radical of A.
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It turns out that this is equivalent to the property that Rep(A) is a highest
weight category (see Theorem 9.10 for a good illustration, and [16] for the
seminal paper). In the remainder of this section we indicate how to construct a
hereditary chain of ideals for the monoid algebra of a finite regular semigroup.
We also show how this brings about the corresponding structure of a highest
weight category. To define a highest weight category one needs simple objects,
standard objects and a weight poset.

Then let M be a finite regular monoid, and let U denote the poset of (reg-
ular) J-classes of M . If e ∈ E(J), we write HJ for the H-class of e. By the
theory of Munn-Ponizovskii [15], the set Irr(M) of irreducible complex rep-
resentations of M is in one-to-one correspondence with the set of irreducible
representations of the various HJ :

Irr(M) =
⊔

J∈U

Irr(HJ ).

This identification is obtained as follows. Let L = L(θ) be an irreducible
complex M -module. Then there exists a unique J-class J ∈ U such that

a) J · L 6= 0,
b) J ′ · L = 0 for all J ′ 6≥ J .

If e ∈ E(J) is an idempotent, then e · L is an irreducible HJ -module. We say
that

θ < θ′

if J ′ ⊆ MJM . Then (Irr(M), <) is the weight poset of simple objects. Now
for each θ ∈ Irr(HJ ) there is a primitive idempotent eθ ∈ C[M ] such that
eθ < eJ and L(θ) ∼= C[M ]eθ/Reθ, where R is the radical of C[M ]. Define

∆(θ) = C[J ]eθ.

Here ({∆(θ)|θ ∈ Irr(M)} is the set of standard objects. The following theorem
is due to Putcha (Theorem 2.1 of [91]).

Theorem 15.5. Let M be a finite regular monoid.

a) Then the category of finite-dimensional C[M ]-modules is a highest weight
category.

b) C[M ] is a quasihereditary algebra.

The proof of Theorem 15.5 amounts to constructing a hereditary chain as in
Definition 15.4. But it turns out that there is a canonical such chain. Let
U1 = {J | the minimal J-class}, U2 = {J | J covers J1}, and so on, so that

Um = {J | J covers some K in Um−1}.

Thus define
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J1 = ∪J∈U1J

J2 = ∪J∈U2J

J3 = ∪J∈U3J

...

Let Ii = C[Ji], a two-sided ideal of C[M ], so that Ir = C[M ] for some r > 0.
Consider

0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Ir.

It turns out that this is the desired (canonical) hereditary chain.

15.3 Singularities of G-embeddings

It has been known for some time that any normal, spherical variety X has
rational singularities in characteristic zero. The essential idea here is contained
in [76], where the proof is given for the affine case. The result for general
spherical varieties then follows easily from the affine case using basic local-
global arguements from [13] or [36].

Furthermore, one can show that the reduction mod p of X is Frobenius
split for large p. This is the best known method for obtaining geometric results
about singularities in characteristic p > 0.

Definition 15.6. Assume that charK = p > 0. If X is an algebraic variety
over K, denote by F : OX → F∗OX the absolute Frobenius morphism of X.
We say that X is Frobenius split if there is a map σ ∈ HomOX (F∗OX ,OX)
such that σ ◦ F is the identity on OX .

Rittatore obtains the following result in [122].

Theorem 15.7. Any normal G-embedding X is Frobenius split.

By a G-embedding we mean a G×G-variety, (X,x) with dense orbit (G×
G) · x such that (G×G)x = {(g, h) ∈ G×G | g = h}.

Corollary 15.8. Any normal G-embedding X has rational singularities. In
particular, it is a Cohen-Macaulay variety.

Rittatore derives Theorem 15.7, first for the “wonderful” G-embedding
and then derives the general case by using resolution of singularities. Notice
that any reductive monoid is a G-embedding. Furthermore, the wonderful
G-embedding is directly related to the canonical monoids ([96]) with group
G.

In the other direction, Popov has shown in [77], that the Kraft-Procesi
conjecture (to the effect that the normalization of any reductive group orbit
closure has rational singularities, [50]) is false. He shows that such singularities
may even be non-Cohen-Macaulay.



15.4 Cohomology of G-embeddings 231

15.4 Cohomology of G-embeddings

LetX be a complete, nonsingularG-embedding over C. Assume also that there
is a birational G ×G morphism from X to the canonical compactification of
G. Assume also that K = C, the complex numbers. Let K ⊆ G be a maximal,
compact subgroup in the classical topology, and let Z ⊆ X be the closure of
a maximal torus T ⊆ G. Assume that TK ⊆ T ∩K ⊆ K is a maximal torus
of K. Since KTK = G and KZK is compact, we obtain

X = KZK.

Thus, we obtain a surjective, real analytic morphism

π : (K ×K)×Tk×TK Z −→ X

since Z is TK × TK-stable. Let

U = (K ×K)×Tk×TK Z .

The Weyl group W acts naturally on U, and π is constant on the W -orbits.
Thus, W acts on H∗(U; Q) and we obtain a ring homomorphism

π∗ : H∗(X ; Q) −→ H∗(U; Q)W .

See [22] for details.

Theorem 15.9. π∗ : H∗(X ; Q) −→ H∗(U; Q)W is an isomorphism of rings.

Theorem 15.9 is due to DeConcini and Procesi [22]. They also compute
H∗(U; Q) in [22] by extending some work of Danilov [19]. Notice that there is
a fibration

U −→ K/TK ×K/TK

with fibre Z. Thus U may be regarded as a “relative” torus embedding.
In [5] these same authors (along with Bifet) describe the rational coho-

mology ring of any complete symmetric variety by generators and relators.
The authors first introduce a more general notion. A regular embedding
is a smooth algebraic variety X on which a connected affine algebraic group
G acts with finitely many orbits. Every orbit closure is smooth and is the
transverse intersection of the codimension one orbit closures which contain it.
Moreover, the isotropy group of any x ∈ X must have a dense orbit in the nor-
mal space to the orbit G · x ⊆ X . Examples of projective regular embeddings
can often be obtained from semisimple algebraic monoids M with zero, such
that M\{0} is smooth. The authors then determine the G-equivariant rational
cohomology algebra H∗

G(X) of any regular embedding X , by associating with
X a “Stanley-Reisner system” (a generalization of the Stanley-Reisner algebra
associated with a simplicial complex). Using this construction, they construct
an algebra which turns out to be H∗

G(X). If X is also compact, the coho-
mology ring H∗(X) can be obtained as the quotient of H∗

G(X) by a certain
regular sequence consisting of generators of H∗

G({∗}), the one point G-space.
For X a torus embedding, one recovers the Jurkiewicz-Danilov presentation
of H∗(X) as discussed by Danilov in [19].
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15.5 Horospherical Varieties

Definition 15.10. An embedding X of G/H is called horospherical if H con-
tains a maximal unipotent subgroup of G.

Horospherical embeddings were first looked at systematically by Popov
and Vinberg in [79]. They obtained the fundamental correspondence between
the poset of orbits and the poset of faces of the corresponding polyhedral
cone. They also characterized normal and factorial horospherical embeddings.
The results of [78] and [79] were cited by Luna and Vust (in their seminal
paper [56]) as a major catalyst in the development of the theory of spherical
embeddings. A partial generalization to the nonaffine case was carried out by
Pauer in [70, 71].

The technique of “horospherical degeneration” [76] has since become an
important method in the study of spherical varieties [1, 142].

15.6 Monoids associated with Kac-Moody Groups

In [43] Kac and Peterson start with a Kac-Moody Lie algebra g and construct
a groupG, the associated Kac-Moody group. In [50] they introduce an algebra,
the algebra of strongly regular functions on G.

Let F be an algebraically closed field of characteristic zero, and let g be
a Lie algebra defined over F. Assuming that g comes from a symmetrizable,
generalized Cartan matrix, they define (in [50]) the algebra F[G] of strongly
regular functions on G. They show that

F[G] =
⊕

λ∈P+

L∗(λ)⊗ L(λ)

where P+ is the set of dominant weights of the weight lattice P . Since each
L(Λ) is integrable they obtain

j : G ⊆ Specm(F[G]),

the space of codimension one ideals of F[G]. However, j is not surjective unless
g is finite dimensional.

About the same time (1983), Slodowy [125] suggested that there should ex-
ist a some kind of partial compactification G ⊆ Specm(F[G]) whose structure
might significantly help in the study of the deformation of certain singularities.
He conjectured that

G = GTG

and he also anticipated the structure of T . Peterson suggested that G might
actually be a monoid.

Since then, Mokler [58, 59] approached these problems systematically. He
first constructs a monoid
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Ĝ ⊆ End

(
⊕

Λ∈P+

L(Λ)

)

directly, using the set of faces F = {R ⊆ X} of the Tits cone X , to define
projections

e(R) :
⊕

Λ∈P+

L(Λ) −→
⊕

Λ∈P+

L(Λ).

Ĝ is then the submonoid of End

(
⊕

Λ∈P+

L(Λ)

)
generated by G∪ {e(R) | R ∈

F}. He then proves [58] that

Ĝ = G ⊆ End(⊕L(Λ))

the closure being taken in the sense of elementary, infinite dimensional, al-
gebraic geometry (section 3 of [58]). He also obtains some decisive structural
information about G.

Induced by its action on X , the Weyl group W acts on the face lattice F

of X . A face R = R(Θ) of X is called special if the relative interior of R
meets the closed fundamental chamber C of X . (The situation is similar to
what we encountered in § 7.2.) Let I be the set of vertices of the underlying
Dynkin diagam of G. Then each special face of X corresponds to a subset of
I for which the associated Dynkin subdiagram is either empty, or has only
components of infinite type.

Theorem 15.11.
Ĝ =

⊔

R special

Ge(R)G .

For the proof see Proposition 2.26 of [58].
Mokler continues his work in [59] by further investigating the structure of

Specm(F[G]). In [60], he obtains results generalizing the work of [105, 112, 73].

In particular, he determines the generalized Bruhat decomposition on M̂ and
the length function on Ŵ .





References

1. I. V. Arzhantsev, Contractions of affine spherical manifolds, Mat. Sb.
190(1999), 3-22.

2. M. F. Atiyah and I. G. MacDonald, “Commutative algebra”, Addison-Wesley,
London, 1969.

3. M. K. Augustine, Congruences of monoids of Lie type In “Monoids and semi-
groups with applications”, held at Berkeley, 1989, 324-333, World Sci. Pub-
lishing, River Edge, NJ, 1991.

4. A. Bialynicki-Birula, Some theorems on actions of algebraic groups, Annals
of Math. 98(1973), 480-497.

5. E. Bifet, C. De Concini, C. Procesi, Cohomology of regular embeddings, Ad-
vances in Math. 82(1990), 1-34.

6. A. Björner, M. Wachs, Bruhat order of Coxeter groups and shellability, Ad-
vances in Math. 43(1982), 87-100.

7. A. Borel, Linear algebraic groups, Graduate Texts in Mathematics 126,
Springer-Verlag, New York, 1991.

8. D. Borwein, S. Rankin, L. Renner, Enumeration of injective partial transfor-
mations, Discrete Math. 73(1989), 291-296.

9. M. Brion, Quelques propriétés des espaces homogènes sphériques,
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68. J. Okñinski, M. S. Putcha, Parabolic subgroups and cuspidal representations
of finite monoids, Int. J. Alg. Comp. 1(1991), 33-47.

69. A. Onishchik and E. Vinberg, “Lie groups and algebraic groups”, Springer
Verlag, 1990.

70. F. Pauer, Normale Einbettungen von G/U, Math. Ann. 257(1981), 371-396.
71. F. Pauer, Glatte Einbettungen von G/U, Math. Ann. 262(1983), 421-429.
72. E. A. Pennell, Generalized Bruhat order on reductive monoids, Ph. D. Thesis,

North Carolina State University, Raleigh, 1995.
73. E. A. Pennell, M. S. Putcha, L. E. Renner, Analogue of the Bruhat-Chevalley

order for reductive monoids, Journal of Algebra 196(1997), 339-368.
74. V. L. Popov, Stability criterion for the action of a semisimple group on a

factorial manifold, Izv. Akad. Nauk. USSR 34(1973), 527-535.
75. V. L. Popov, Picard groups of homogeneous spaces of linear algebraic groups

and one-dimensional homogeneous vector bundles, Math. USSR-Izv. 8(1974),
301-327.

76. V. L. Popov, Contraction of the actions of reductive algebraic groups, Math.
USSR Sbornik, 58(1987), 311-368.

77. V. L. Popov, Singularities of closures of orbits, Israel Math. Conf. Proc. vol.
7, Amer. Math. Soc., 1993, 133–141

78. V. L. Popov, Quasihomogeneous affine algebraic varieties of the group SL(2),
Math. USSR-Izv. 4(1973), 793-831.

79. V. L. Popov, E. B. Vinberg, On a class of quasihomogeneous affine varieties,
Math. USSR-Izv. 6(1972), 743-758.

80. R. A. Proctor, Classical Bruhat orders and lexicographic shallabillity, Journal
of Algebra 77(1982), 104-126.

81. M. S. Putcha, Green’s relations on a connected algebraic monoid, Linear and
Multilinear Algebra 12(1982), 37-50.

82. M. S. Putcha, “Linear algebraic monoids”, Cambridge University Press, 1988.
83. M. S. Putcha, Determinant functions on algebraic monoids, Comm. in Alg.

11(1983), 695-710.
84. M. S. Putcha, Regular linear algebraic monoids, Trans. Amer. Math. Soc.

290(1985), 615-626.
85. M. S. Putcha, Monoids on groups with BN pair, Journal of Algebra 120(1989),

139-169.
86. M. S. Putcha, Classification of monoids of Lie type, Journal of Algebra,

120(1994), 636-662.
87. M. S. Putcha, Monoid Hecke algebras, Trans. Amer Math. Soc. 349(1997),

3517-3534.
88. M. S. Putcha, Conjugacy classes in algebraic monoids, Teans. Amer. Math.

Soc. 303(1987), 529-540.
89. M. S. Putcha, Conjugacy classes in algebraic monoids II, Can. J. of Math.

46(1994), 648-661.



References 239

90. M. S. Putcha, Conjugacy classes and nilpotent variety of a reductive monoid,
Can. J. of Math. 50(1998), 829-844.

91. M. S. Putcha, Complex representations of finite monoids. II. Highest weight
categories and quivers, Journal of Algebra 205(1998), 53-76.

92. M. S. Putcha, Shellability in reductive monoids, Trans. Amer. Math. Soc.
354(2002), 413-426.

93. M. S. Putcha, Bruhat-Chevalley order in reductive monoids, to appear.
94. M. S. Putcha, Shellability in reductive monoids II, to appear.
95. M. S. Putcha, L. E. Renner, The system of idempotents and lattice of J-classes

of reductive algebraic monoids, Journal of Algebra 116(1988), 385-399.
96. M. S. Putcha, L. E. Renner, The canonical compactification of a finite group

of Lie type, Trans. Amer. Math. Soc. 337(1993), 305-319.
97. M. S. Putcha, L. E. Renner, Morphisms and duality of monoids of Lie type,

Journal of Algebra 184(1996), 1025-1040.
98. M. S. Putcha, L. E. Renner, The orbit structure of 2-reducible algebraic

monoids, J. Alg. Comb., to appear.
99. L. E. Renner, “Automorphism groups of minimal algebras” UBC Thesis, 1978.

100. L. E. Renner, “Algebraic monoids”, UBC Thesis, Vancouver, 1982.
101. L. E. Renner, Quasi-affine algebraic monoids, Semigroup Forum, 30(1984),

167-176.
102. L. E. Renner, Reductive monoids are von Neumann regular, Journal of Alge-

bra 93(1985), 237-245.
103. L. E. Renner, Classification of semisimple rank-one monoids, Trans. Amer.

Math. Soc. 287(1985), 457-473.
104. L. E. Renner, Classification of semisimple algebraic monoids, Trans. Amer.

Math. Soc. 292(1985), 193-223.
105. L. E. Renner, Analogue of the Bruhat decomposition for algebraic monoids,

Journal of Algebra 101(1986), 303-338.
106. L. E. Renner, Connected algebraic monoids, Semigroup Forum 36(1987),365-

369.
107. L. E. Renner, Conjugacy classes of semisimple elements and irreducible rep-

resentations of algebraic monoids, Comm. in Alg. 16(1988), 1933-1943.
108. L. E. Renner, Completely regular algebraic monoids, J. Pure and Appl. Alg.

59(1989), 291-298.
109. L. E. Renner, Classification of semisimple varieties, Journal of Algebra

122(1989), 275-287.
110. L. E. Renner, Finite monoids of Lie type, in “Monoids and semigroups with

applications”, J. Rhodes Ed., World Scientific(1991), 278-287.
111. L. E. Renner,The homotopy types of retracts of a fixed space, J. Pure Appl.

Alg. 69(1991), 295-299.
112. L. E. Renner, Analogue of the Bruhat decomposition for algebraic monoids

II: the length function and the trichotomy, Journal of Algebra 175(1995),
697-714.

113. L. E. Renner, The blocks of solvable algebraic monoids, Journal of Algebra
188(1997), 272-291.

114. L. E. Renner, Modular representations of finite monoids of Lie type, J. of
Pure and Appl. Alg. 138(1999), 279-296.

115. L. E. Renner, Distribution of products in finite monoids I: Combinatorics,
International Journal of Algebra and Computation 9(1999), 693-708.



240 References

116. L. E. Renner, Distribution of products in finite monoids II: Algebra, Interna-
tional Journal of Algebra and Computation 9(1999), 709-720.

117. L. E. Renner, Regular algebraic monoids, Semigroup Forum 63(2001), 107-
113.

118. L. E. Renner, An explicit cell decomposition of the canonical compactification
of an algebraic group, Can. Math. Bull., 46(2003), 140-148.

119. J. Rhodes, Characters and complexity of finite semigroups, J. of Comb. The-
ory 6(1969), 67-85.
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