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New quantitative methods are applied to the 135 human mitochondrial sequences from the Vigilant et al. data 
set. General problems in analyzing large numbers of short sequences are discussed, and an improved strategy is 
suggested. A key feature is to focus not on individual trees but on the general “landscape” of trees. Over 1,000 
searches were made from random starting trees with only one tree (a local optimum) being retained each time, 
thereby ensuring optima were found independently. A new tree comparison metric was developed that is unaffected 
by rearrangements of trees around many very short internal edges. Use of this metric showed that downweighting 
hypervariable sites revealed more evolutionary structure than studies that weighted all sites equally. Our results 
are consistent with convergence toward a global optimum. Crucial features are that the best optima show very 
strong regional differentiation, a common group of 49 African sequences is found in all the best optima, and the 
best optima contain the 16 !Kung sequences in a separate group of San people. The other 86 sequences form a 
heterogeneous mixture of Africans, Europeans, Australopapuans, and Asians. Thus all major human lineages occur 
in Africa, but only a subset occurs in the rest of the world. The existence of these African-only groups strongly 
contradicts multiregional theories for the origin of Homo sapiens that require widespread migration and interbreeding 
over the entire range of H. erectus. Only when the multiregional model is rejected is it appropriate to consider the 
root, based on a single locus, to be the center of origin of a population (otherwise different loci could give alternative 
geographic positions for the root). For this data, several methods locate the root within the group of 49 African 
sequences and are thus consistent with the recent African origin of H. sapiens. We demonstrate that the time of 
the last common ancestor cannot be the time of major expansion in human numbers, and our results are thus 
also consistent with recent models that differentiate between the last common ancestor, expansion out of Africa, 
and the major expansion in human populations. Such a two-phase model is consistent with a wide range of 
molecular and archeological evidence. 

Introduction 

The “out-of-Africa” (or “mitochondrial Eve”) hy- 
pothesis for the origins of modern humans (Homo sap- 
iens sapiens) is a bold idea that has attracted considerable 
attention since being proposed in its present form (Cann 
et al. 1987). The hypothesis can be considered in four 
largely independent parts (Di Rienzo and Wilson 199 1; 
Wilson et al. 199 1) : 

H 1: the most recent common ancestor of H. sapiens 
sapiens lived about 200,000 yr ago; 

H2: H. sapiens sapiens arose from H. erectus in a single 
region; 
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H3: 

H4: 

Africa is the most probable region for this transition; 
and 
there was later a spread out from Africa, eventually 
replacing earlier Homo groups. 

We have called these the “when,” “who,” “where,” 
and “how” questions (Waddell and Penny 1995). These 
hypotheses were initially put forward to explain obser- 
vations such as the higher genetic diversity in mito- 
chondria from African populations (Greenberg et al. 
1983; Johnson et al. 1983), the evolutionary tree derived 
from RFLP (restriction fragment length polymor- 
phisms) data (Cann et al. 1987 ), and the diversity among 
nuclear allele frequencies (Nei and Roychoudhury 
1982). The hypotheses received support from an inde- 
pendent analysis of fossil and subfossil human remains 
(Stringer and Andrews 1988), particularly from the lack 
of objective evidence for intermediates between Nean- 
derthals and modern H. sapiens. More recently, mito- 
chondrial DNA (mtDNA) sequences from 135 individ- 
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uals were suggested to support the overall hypothesis 
(Vigilant et al. 1991). 

However, these more recent results (Vigilant et al. 
199 1) have led to a variety of criticisms (Goldman and 
Barton 1992; Hedges et al. 1992; Maddison et al. 1992; 
Templeton 1992, 1993; Thorne and Wolpoff 1992) par- 
ticularly resulting from the difficulties of analyzing large 
numbers of sequences. Some of the criticism has not 
specified which aspect of the overall hypothesis is dis- 
puted, but two themes are apparent. One line of ques- 
tioning (Thorne and Wolpoff 1992) has been against 
H 1, the recent date of the common ancestor of all living 
humans; the other theme (Goldman and Barton 1992; 
Hedges et al. 1992; Maddison et al. 1992; Templeton 
1992, 1993) appears to accept HI and questions the 
strength of support for H3, the African location. The 
lack of analysis of the logical structure of the overall 
hypothesis has made it difficult to know precisely which 
aspect is being questioned. This is compounded by con- 
centrating on the mtDNA and ignoring the prior work 
that stimulated the hypotheses. 

The first line of questioning is from those who prefer 
the “multiregional” model ( Wolpoff et al. 1984) for the 
origin of H. sapiens, itself a bold hypothesis (Popper 
1959). (Hereafter we restrict the name Homo sapiens 
to modern humans and do not consider directly rela- 
tionships to other groups such as Neanderthals.) This 
multiregional model suggests that H. sapiens evolved 
during the last million years from H. erectus over the 
full range of this species (Africa, Europe, and Asia). 
Under this model, each of the many mutations crucial 
to the development of H. sapiens must have either oc- 
curred in parallel in different parts of the earth (by some 
unknown mechanism) or arisen just once and then 
spread over the three continents by virtue of a high rate 
of selection, migration, and interbreeding. This latter 
version we will call the “universal migration” or “pan- 
mixis” version of the multiregional theory, and it is a 
testable theory. 

A problem with the multiregional model has been 
the difficulty in formulating a quantitative model of 
mutation and migration, though recently Thorne et al. 
( 1993 ) proposed some qualitative models. Supporters 
of the multiregional model generally work with mor- 
phological data where it is difficult to get agreement on 
cladistic features of skulls and to define a genetic model 
of morphological change for quantitative testing. It is 
not yet possible to relate differences in skull morphology 
to specific genetic differences. Indeed, in some cases 
(Leamy 1993) a high morphological variability (between 
the left and right sides of the skull) may reflect a low 
genetic diversity from inbreeding rather than indicate 
high genetic diversity, as might be expected from “first 

principles.” However, we show here that the universal 
migration or panmixis variant of the multiregional 
model is subject to tests by using DNA sequences. Thus 
it is a useful scientific model (sensu Popper 1959). 

The second line of criticism (Goldman and Barton 
1992; Hedges et al. 1992; Maddison et al. 1992; Tem- 
pleton 1992, 1993) questions the analysis of the sequence 
data, specifically the statistical significance of the results. 
We agree with the criticisms to the extent that the original 
analysis was inadequate. The problem is not with the 
experimentalists who are both collecting the data and 
putting forward challenging hypotheses but rather with 
the theorists who have not developed and tested appro- 
priate methods for a quantitative analysis with large 
number of sequences. As such, the criticisms are more 
a reflection of the analytical techniques available than 
of the hypotheses (both out-of-Africa and multire- 
gional). The major challenge for theorists is to provide 
better methods applicable to large data sets. Our aim is 
to develop some new techniques for analyzing large 
numbers of sequences and then test these on the human 
mtDNA data set (Vigilant et al. 199 1) . In order to do 
this, we first describe the problems we see in analyzing 
large data sets and then propose a strategy to solve them. 
In developing this strategy, several new techniques are 
described. 

Background: Problems and Strategies 

Well-known problems for any quantitative analysis 
of a large number of sequences (especially of short se- 
quences) include the following. 

Pl. Large number of trees. The number of potential 

P2 . 

phylogenetic trees grows exponentially with the 
number of taxa, t. For t = 135 taxa there are - 1O265 
rooted binary trees (compared with about 10” el- 
ementary particles in the entire universe). This 
limits the study to computationally efficient (Penny 
et al. 1992) methods for evaluating each tree. Only 
heuristic methods (in the operations research sense) 
can be used for searching the “tree space.” There 
are (t-3) internal edges ( 132 in this case) on any 
tree, and we consider these as separate parameters 
of the model to be estimated. (We use a mathe- 
matical terminology for trees consisting of nodes 
connected by internodes or edges; Penny et al. 
1992.) 
Limited range of tree values. This problem is best 
illustrated with the parsimony (minimal-length) tree 
selection criterion where the lengths of trees for these 
data is of the order - 10 3. So, by an elementary 
counting argument, the number of trees of any 
length must average - 10264. Although far fewer 
trees are expected near the global optimum, there 
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may still be billions of trees of minimal length, 
making “the best tree found” of unknown signifi- 
cance until more information is available. 
Short sequences and equivalent trees. Each binary 
tree has more internal edges (t-3 = 132) than par- 
simony sites for this data. Therefore, even the best 
trees are expected to have some internal edges of 
zero parsimony length, and these edges can be con- 
tracted to give a nonbinary tree. Consequently, large 
numbers of apparently different trees of the same 
length are simply rearrangements around internal 
edges of the tree that are not supported directly by 
any nucleotide substitutions. 
Nonindependence of trees. Heuristic search methods 
traverse the tree space by making slight modifica- 
tions to existing trees; consequently, the trees found 
in a single search are not independent. Standard 
methods for representing common features in the 
trees (such as various forms of consensus) do not, 
therefore, represent the overall structure of the so- 
lution space. 
Many local optima (Hendy et al. 1988; Maddison 
199 1). Our preliminary work (unpublished data) 
using simplistic searches from random starting trees 
found an extraordinary number of local optima over 
100 steps longer than the shortest trees, even for 
only half the sequences. Hence heuristic methods 
such as simple hill climbing (with or without steep- 
est ascent) are not expected to perform well with 
random starting trees, though more advanced pro- 
grams include mechanisms for escaping from local 
optima. 
Locating the root. The position of the root is vital 
for hypothesis H3. In order to locate the biological 
root of a tree, one requires additional information 
(Farris 1972; Penny 1976; Steel et al., 1993) such 
as an outgroup, an assumption of equal rates (the 
molecular clock), or an assumption of the nucleo- 
tide frequency at the root. If the outgroup is too 
distant, it can distort the underlying unrooted tree, 
even with five taxa and equal rates (Hendy and 
Penny 1989). Outgroups also have a biased ten- 
dency to join the unrooted tree at edges with two 
or more substitutions (Hendy et al. 1980). 
Sites evolve at dz@rent rates. Seldom do all positions 
evolve at the same rate; mtDNA include a small 
number of positions that are hypervariable in that 
they have changed more frequently than expected 
for all sites changing at equal rates (see, e.g., Wakeley 
1993). Such sites tend to mask more informative 
sites that change more slowly (Hendy et al. 1980; 
Kuhner and Felsenstein 1994). 
Rooting tree from a single genetic unit. Because the 
mtDNA does not recombine, it is inherited as a 
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single unit. However, under a multiregional model, 
the “last common ancestor” for each gene may have 
arisen in different parts of the earth. In this sense 
each gene could, in principle, indicate a different 
location for the root of the tree. Consequently, 
mtDNA, or any other gene, cannot be used to root 
the tree as a whole (i.e., the entire genome) unless 
the multiregional model can be excluded. 

P9. Unresolved tree. Because the tree is not fully resolved 
(i.e., is nonbinary), there can be marked differences 
in length from including, or excluding, a hyper- 
variable site. This makes it difficult to compare re- 
sults from different programs which may or may 
not include some sites, for example, depending on 
how programs handle sites with deletions. 

Given these problems, it is clear that newer methods 
of tree analysis would be necessary to make further 
progress in the study of human evolution (Wilson et al. 
199 1; Goldman and Barton 1992; Maddison et al. 1992; 
Ross 1992). There is now interest in studying the prop- 
erties of the set of trees close to the overall optimum 
(the landscape) rather than focusing on a single “best” 
tree (Hendy et al. 1988; Maddison 199 1; Page 1993). 
Our overall strategy, outlined below, included a mixture 
of using existing techniques and developing new tech- 
niques that we hope will be useful in other studies as 
well. 

Sl. 

s2. 

s3. 

Analyze the landscape. Our principal aim was to 
obtain information on the landscape of trees 
(Hendy et al. 1988; Maddison 199 1; Kauffman 
1993) that have been found independently and are 
close to the global optimum. This landscape con- 
sists of the trees, the distances between them (S5), 
a neighborhood for each tree, and a measure of 
how well each tree describes the data (S 11) . 
Heuristic search procedure. We used a new search 
procedure, the Great Deluge (also called threshold 
accepting) to locate optima in the landscape 
(Dueck 1990; Dueck and Scheuer 1990; D. Penny 
and M. Steel, unpublished data). It has proved 
useful for a variety of scientific applications as it 
is effective in escaping from local optima. As im- 
plemented here, the Great Deluge has both sto- 
chastic and deterministic phases. The stochastic 
phase is a random walk in the tree landscape ( S 1) , 
at each stage moving to any neighboring tree whose 
fit to the data lies above a constantly rising “wa- 
terline” (hence the name Great Deluge). The main 
advantage of the program was our ability to vary 
parameters in order to measure properties of the 
landscape. 
Restrictive de$nition of local optima. A tree is ac- 
cepted as a local optimum if the program has been 
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unable to find a tree at least equally good after 50 
iterations of the stochastic phase and cannot find 
a better tree after trying all (neighboring) alter- 
natives by three methods of changing the tree 
( crossovers [nearest neighbor interchange] ), cut 
and paste (subtree pruning and re-grafting), and 
taxon swapping (interchanging pairs of taxa) (D. 
Penny and M. Steel, unpublished data). (An ad- 
ditional test is required to prevent oscillating within 
a small subset of trees.) Using three methods of 
traversing the tree space reduces the arbitrariness 
from selecting any one of them, since the search 
space is different for each procedure (D. Penny 
and M. Steel, unpublished data). 
Independence of local optima. Each run began from 
a random tree, and only one local optimum was 
retained. This allows us to consider each optimum 
as being found independently, and using a random 
starting tree avoids the criticism (Goldman and 
Barton 1992) that with a random addition tree the 
order of addition of taxa could, in some unknown 
way, bias the results. 
A suitable tree comparison metric. On this data 
many trees differ only on rearrangements of edges 
with no implied substitutions (zero-length edges) 
and are effectively the same tree for this data. 
However, existing tree metrics (including parti- 
tions, path lengths, and quartets; Steel and Penny 
1993) give a range of values for these trees. We 
introduce a sites metric which compares the num- 
ber of substitutions required (Fitch 197 1) to fit 
each site (column) onto two trees T1 and T2. The 
distance is taken as either the sum over all sites of 
the absolute differences, 1 II -I2 1 (the linear form) 
or as the square root of the sum of squares of these 
differences (the quadratic form) where Zi is the par- 
simony length for a site on a specified tree, T. The 
linear form is related to techniques used for a dif- 
ferent problem (Templeton 1983; Prager and Wil- 
son 1988; Kishino and Hasegawa 1989), although 
a tree comparison metric comparing distance ma- 
trices (Lapointe and Legendre 1992) was the im- 
mediate stimulus for the sites metric. The sites 
metric is a true metric (rather than a pseudometric) 
only if two trees that have zero distance (the same 
parsimony lengths for every site) are regarded as 
equivalent trees; thus we focus initially on how the 
data fit the trees rather than on the trees themselves. 
Improved predictability by using the median tree. 
The median tree is a form of consensus tree 
(Penny et al. 1982; Barthelemy and McMorris 
1986; Swofford and Olsen 1990). Although trees 
of low parsimonv length are aenerallv better pre- 

s7. 

S8. 
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dictors than longer trees (Penny and Hendy 
1985), there are still a large number of trees of 
any parsimony length. The median tree is useful 
in identifying the best predictors among optima 
of a given length. 
Convergence of optima. Optima of a given par- 
simony length, L, were tested to determine 
whether the average intertree distance gets 
smaller as L decreases. If several unrelated major 
peaks of optimal trees existed, then this average 
distance should be large and stay positive; if there 
is only one major peak (albeit with many small 
side peaks), then the average distance between 
trees should converge toward zero, even if the 
DNA sequences are not long enough to resolve 
the global optimum. For this test we also ex- 
amined the distribution of distances between 
trees to search for dispersed subsets of optima. 
Locating the root by several methods. The meth- 
ods used have different rationales and require 
different conditions to be met in order to obtain 
the root. They are the standard outgroup method 
(Farris 1972) using a chimpanzee sequence, two 
forms of midpoint rooting (the edge of the tree 
with the longest average path length), splitting 
taxa into two disjoint subsets so as to minimize 
the largest within-group distances (GuCnoche et 
al. 199 1 ), and an ingroup method based on dat- 
ings of colonization of different continents 
(Bowcock et al. 199 1). 
Downweighting hypervariable sites. Hypervariable 
sites were detected in early runs when the distri- 
bution of rates at different sites did not fit the model 
of all sites evolving at the same rate. Downweight- 
ing these sites, and repeating the searches, led to a 
new set of local optima that are much more similar 
to each other (by the tree comparison metric). The 
lower weighting of hypervariable sites brings out 
more evolutionary information in the data while 
still allowing the faster-evolving sites to help resolve 
the fine structure of the tree. 
Homogeneity (or dispersion) of groups throughout 
the optima. Optima were analyzed for subtrees 
containing the largest number of people from any 
continent or ethnic group. If, for example, Euro- 
peans were scattered throughout the tree, then the 
largest subsets containing only Europeans would 
be quite small. The largest subset was first deter- 
mined for the four geographic groups-Africans, 
Asians, Australopapuans, and Europeans-and 
then for several subgroups of Africans. This allows 
a direct test of the multiregional model in that there 
should be no large groups exclusively found in any 
region. 



S I I. Parsimony was selected as the optimality criterion. 
It is necessary to use a “global” optimization cri- 
terion that considers all possible trees (Penny et 
al. 1992) rather than a local optimization method 
(such as neighbor joining) that always selects the 
same tree(s) for a data set. The choices were max- 
imum likelihood, parsimony, compatibility, closest 
tree, and deviations from additivity in observed 
distances. Parsimony was selected because its cal- 
culation, for a single tree with t taxa, requires order 
t time to calculate ( 0[ t] ); that is, it is linear with 
respect to the number of taxa. In addition, it now 
has some well-studied statistical distributions (Ar- 
chic and Felsenstein 1993; Steel 1993; Steel and 
Charleston 1995). A new property is described 
later. The main disadvantage of parsimony is a 
potential lack of consistency on sequences not cor- 
rected for multiple changes (Felsenstein 1978; 
Hendy and Penny 1989). (Parsimony is consistent 
if appropriate adjustments are made for multiple 
substitutions; Steel et al. 1993.) A test was made 
to estimate if this data set was in a range where 
uncorrected parsimony was likely to be inconsis- 
tent. Parsimony minimizes the number of muta- 
tions required to fit the data onto a tree, and con- 
sequently shorter trees (with fewer mutations) are 
preferred over longer trees. Maximum likelihood 
was not used as it has some undesirable mathe- 
matical properties; as yet it is far worse than linear, 
( 0[ t] ), to evaluate on a single tree, and there is 
no guarantee that current implementations will 
converge to the global optimum, even for a single 
tree of four taxa (Steel 1994). 

s12 A model consistent with many types of evidence 
was developed. A useful hypothesis or model 
(Popper 1959) should be consistent with a range 
of types of evidence, a “consilience of induction,” 
in the words of Whewell ( 1967, p. 469). A model 
should be consistent with data additional to that 
used to develop the model. In the present case, 
archeological and anthropological information is 
appropriate. 

The above strategies are used to reconsider the crit- 
icisms of previous studies; other questions are covered 
by Stoneking ( 1994). Given the above strategy and 
techniques, the first step was to determine some prop- 
erties of local optima. Our expectation, from an evolu- 
tionary model, is that optima will be much more similar 
to each other than to random trees and that better 
(shorter) optima will be more similar to each other than 
to worse (longer) optima. This is tested in the next sec- 
tion; if there is not considerable structure among the 
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optima, then no evolutionary conclusions are possible 
(Penny et al. 1982). 

Results 
Local Optima 

The first test involved 260 runs with all sites 
weighted equally (uniformly); the “equalw” or un- 
weighted data set. The result is 260 different local optima 
(trees). The parsimony algorithm is easily adjusted to 
parallel computation (Penny and Penny 1990)) but in 
this case only the simplest form of parallelism, running 
on different machines, was used. Each run consists of 
establishing an initial starting tree and then making a 
search through the space of all trees in an attempt to 
find a better tree. An arbitrary tree was selected at ran- 
dom (with all trees equally likely; Steel and Penny 1993) 
to start each run because although using “random ad- 
dition trees” (taxa added in random order but to the 
best position available) gives much shorter starting trees, 
we could not be sure if any structure in the resulting 
local optima was an artifact introduced by the starting 
trees (Goldman and Barton 1992). In the present case, 
each of the 260 local optima (table 1 a, equalW) were 
found independently. 

These 260 optima are significantly shorter than 
randomly selected trees. The left-hand portion of table 
1 b shows the average length and standard deviation of 
the random trees. Clearly, each of the 260 local optima 
are significantly shorter than random trees and, impor- 
tantly, are much more similar to each other than are 
random trees (right-hand side of table 1) . However, the 
260 optima still differ from each other, and a further 
test is whether any sites are genuinely hypervariable and 
masking some of the evolutionary information in the 
data. This can be tested by downweighting the hyper- 
variable sites and finding new optima which should be 
more similar to each other (i.e., further from random 
trees than optima from the unweighted data set). 

The shortest of the 260 trees was used to test for 
hypervariable sites, and, like previous authors (e.g., 
Wakeley 1993 ) , we found sites required widely different 
numbers of mutations to fit onto the tree. It is first nec- 
essary to determine whether this distribution is expected, 
or consistent with, the model where all sites were equally 
free to change (i.i.d.). The “lost Bealey theorem” (Steel 
et al. 1995) provides for the shortest tree an upper bound 
on the distribution of parsimony lengths at different sites, 
assuming that all sites free to change do so identically 
and independently (i.i.d., the Cavender-Farris model; 
Penny et al. 1992). These upper bounds on the numbers 
of sites with 0, 1, 2, 3, . . . , and so forth, changes will 
exhibit a Poisson-style rate of decay as the numbers of 
changes per site increases. The distribution, together with 
some additional calculations, are shown in figure 1. 
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For this data set there were 596 noninformative 
sites; 42 1 had no substitutions on the optimal tree, and 
75 sites required just a single substitution. The number 
of sites with two, three, or more changes (fig. 1) is much 
higher than predicted if all sites were free to vary; the 
results are thus inconsistent with the i.i.d. model since 
the upper bound provided by the theorem is strongly 
violated. We consider two modifications to the i.i.d. as- 
sumption. The first is that a proportion of sites are unable 
to change because of functional constraints but that other 
sites (the “effective sequence length”) behave identically 
as expected under i.i.d. A simple calculation gives the 
corresponding upper bounds on the distribution of 
lengths across sites for 300 and 32 1 invariant sites. These 
fit the observed distribution better, but still not satisfac- 
torily (fig. 1). For example, by assuming 300 invariant 
sites we can fit the expected distribution for one or two 
substitutions, but the observed tail of the distribution is 
still much higher than expected. Assuming 32 1 invariant 
sites is consistent for four substitutions. Varying the 
number of sites free to change does not, in itself, give a 
good fit between data and model. A second modification 
to the i.i.d. assumption is that a small number of “hy- 
pervariable” sites (perhaps a dozen or so) have evolved 
more rapidly than the others; they show more substi- 
tutions than expected if all sites changed at the same 
average rate. These combined features of functionally 

constant sites, plus some hypervariable sites, are a much 
better fit to the data, and we explore their effect. 

The problem that hypervariable sites cause when 
inferring trees is that they can overwhelm the slower- 
evolving sites (Hendy et al. 1980). Hendy et al.‘s ( 1980) 
paper summarizes a large body of work on establishing 
minimal-length trees by resolving incompatibilities be- 
tween sites. If hypervariable sites are downweighted, they 
can still help resolve the fine structure of the tree without 
overwhelming the more slowly evolving sites. The va- 
lidity of the new model can be tested by comparing the 
new optima found after giving these hypervariable sites 
a lower weighting. If a particular weighting scheme is 
valid (or at least closer to the real biological situation), 
then the best optima should be more similar to each 
other, and more dissimilar to random trees, than the 
260 optima in the unweighted data set (equalw). 

Reducing the Effect of Hypervariable Sites 

The sites that required the most substitutions for 
the unweighted data set were downweighted as follows. 
The 5% of sites requiring most substitutions were 
weighted as 0.4 (low weighting), the next 20% of sites 
weighted as 0.6 (medium weighting), and the remainder 
left unchanged at a weight of 1 .O (unweighted). These 
values allow two medium sites in agreement to count 
more than a single unweighted site and a medium and 

Table 1 
Parsimony Lengths and Distances between Trees for (a) Local Optima and (b) Random Trees 

a. LENGTHS OF LOCAL OPTIMA INTERTREE DISTANCES 

Data Set Average SD Shortest Number Linear + SD Quadratic -t SD Number 

EqualW . . . . 369.33 4.14 364.0 260 32.40 -+ 6.64 7.21 + 1.21 250 
SmallW . . . . . . 266.78 1.96 264.2 160 18.58 + 5.98 5.04 + 1.10 160 
MediumW . . . 253.64 1.58 251.6 580 18.93 I!I 5.54 5.08 f 1.04 580 
RandomW . . . 308.87 7.10 294.8 40 42.81 f 9.40 9.69 zk 2.04 40 

b. LENGTHS OF RANDOM TREES RANDOM TREE DISTANCES 

Data Set Average SD Shortest Number Linear + SD Quadratic + SD Number 

EqualW . . . . . 1,055.57 15.68 974 200,000 49.94 f 10.7 12.99 k 2.69 500 
SmallW . . . . . 767.29 10.59 708.4 200,000 49.80 f 10.5 12.94 I!I 2.75 500 
MediumW . . . . 744.03 10.33 684.2 200,000 50.32 Ifr 10.5 12.99 f 2.72 500 
RandomW . . . 900.03 29.34 778.8 200,000 50.42 + 10.5 13.17 + 2.75 500 

NOTE.-Table la presents a summary of the lengths of local optima and the distances between them under the two versions of the sites metric (“linear” and 
“quadratic”). The data sets are unweighted (equalw), and those with low weighting (smallw), medium weighting (mediumw), and random weighting (randomw, 
which has the same weights as mediumW but randomly reassigned among sites). The number of mutations required to fit each tree was determined using parsimony 
(Fitch 197 1). Local optima are for independent runs of the Great Deluge; each run searched at least lo5 trees. For comparisons, 200,000 random trees were generated 
with all binary trees equally likely (Steel and Penny 1993) for each of the four data sets, and a summary of the corresponding tree lengths and intertree distances is 
shown in the lower half of the table (b). The results show that for the four data sets, the local optima are significantly shorter than random trees; standard deviations 
for local optima decrease as weighting increases; lengths and variability of local optima for randomW are higher than those of mediumW; local optima are much 
more similar to each other than random trees; downweighting the hypervariable sites (smallW and mediumw) reduces the differences and the variability of local 
optima but not of random trees; and randomly reassigning weights (randomw) reverses both these last effects, but weighting does not affect the difference between 
random trees (a control). 
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A second step was then to extend the weightings to 
give sites with a medium number of substitutions a 
weighting of 0.8 and the two sites with only one purine 
and one pyrimidine (transversion substitutions) a 
weighting of 1.6. This is conservative compared with 
studies in which transversions are often weighted by up 
to 4- 10 times more than transitions. After 580 runs of 
the Great Deluge, this data set (“mediumW”) gave re- 
sults similar to smallW in that the optima are a similar 
distance apart and again much more similar to each 
other than for the unweighted data set (table 1 a). The 
distribution of lengths of the 580 trees from the 
mediumW data is shown in figure 2. Altogether there 
were 1,000 separate runs for the three data sets. The 
lengths of the optima are slightly less dispersed than for 
smallW (SD in table 1 a). Again the optima are much 
more similar to each other than for the unweighted data 
and little different than for smallW (table 1 a). Down- 
weighting the hypervariable sites is thus detecting more 
structure (nonrandomness) in the data. 

n observed distribution 

0 i.i.d. 

n 3CKl fixed sites + i.i.d. 

6 7 0 9 10 
Number of substitutions 

>12 

FE. I.-Numbers of substitutions per site on the optimal tree. 
The histogram shows first the observed numbers of sites requiring two 
or more changes on the best tree for the unweighted data set (equalw). 
Then upper bounds are predicted for how many sites will have a given 
number of substitutions on the optimal tree on the basis that 42 1 sites 
were constant, and 75 sites required just one substitution. The com- 
parison is done taking three values for the number of 421 constant 
sites that were invariant (unable to change state). The three cases con- 
sidered were no constrained sites (all sites free to vary), 300, then 32 1 
sites constrained not to vary. The first of these violates the upper bounds 
quite strongly; 300 sites constrained fits the observed frequency of sites 
up to two substitutions; 321 sites fits the observed number for four 
substitutions but not the number of sites with more substitutions. 
Varying only the number of sites free to vary cannot fit the observed 
distribution. These results demonstrate that not all sites are equally 
free to vary; consequently some hypervariable sites can mislead slower- 
evolving sites. 

low site in agreement to equal one unweighted site. This 
modified data set with the small amount of down- 
weighting is referred to as the “smallw” data set. This 
weighting is different from “weighted parsimony” (Hillis 
et al. 1994), where the weighting is on character state 
changes, not on nucleotide sites. With this differential 
weighting, we tested the prediction that downweighting 
would result in local optima becoming more similar to 
each other than with equal weighting. 

To test this prediction, we then ran the data set 
“smallw” 160 times through the Great Deluge search; 
results are shown in the second row of table 1 a and b. 
These new trees are again shorter than random trees for 
the same weighting. Because of the different weights, the 
lengths of the optima are not comparable with the un- 
weighted optima, but the distances between optima are. 
The important result is that optima found with this data 
set are indeed much more similar to each other than 
without weighting, approximately 19 as compared to 32 
when measured on the linear form of the sites metric 
(right-hand side of table 1 a). The conclusion is that the 
weighting is useful, and the optima can only be more 
similar if the weighting detects more structure (nonran- 
domness) in the data. As a control, the small amount 
of weighting does not change the similarity between ran- 
domly selected trees (right-hand side of table 1 b). 

It was considered possible that the increased simi- 
larity between optima from smallW and mediumW 
(compared to equalW) was in some unknown way an 
artifact of the lower weights. This seems unlikely as the 
random trees are still the same distance apart (table 1 b), 
but to check this possibility we made 40 Deluge runs 
with exactly the same weights as mediumW but with 
the weights randomly reassigned between sites for each 
run. This is data set “randomw.” The results show that 
randomly reassigning the weights leads to much longer 
trees, their lengths being many standard deviations 
longer than the original mediumW (table 1 a). In ad- 
dition, the local optima from randomW are not nearly 
as similar as either the weighted or unweighted data sets 
(table 1). Thus the increased similarity of trees from 
the small amount of weighting does not appear to be an 
artifact due to weighting; the downweighting is revealing 

60 1 
50 *. 

40 ** 
30 .. 

lengths of local optima 

FIG. 2.-Number of local optima versus lengths for 580 runs with 
the mediumW data set. The optimum with the shortest length (25 1.6) 
was found only once; seven optima one step longer (25 1.8) were found, 
and so forth. The most frequent class was trees of length 253.0 with 
54 optima. Although shorter optima are generally better predictors of 
behavior with other data (Penny and Hendy 1985), more consistent 
results are obtained 
for the optima. 

also considering the average consensus values 
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more evolutionary information. The original predic- 
tion-that the weighting does give much more similar 
optima than the unweighted data-is supported and 
consistent with earlier findings (Hendy et al. 1980). 

The conclusion of this section is that there is con- 
siderable structure among the optima, even though we 
have no guarantee of finding trees that are the global 
optima. The local optima are much shorter than random 
trees and, more importantly, much more similar to each 
other. Downweighting the hypervariable sites increases 
these effects. The next step is to compare the local optima 
themselves rather than comparing them to random trees. 
This will test the prediction that shorter optima should 
be more similar to each other than to longer optima. 

Landscape 

We require information on the distribution of these 
optima in the multidimensional space of trees. If the 
optima were scattered more or less randomly throughout 
the entire space of trees, then there would be no justi- 
fication for any evolutionary interpretation. An alter- 
native, expected under an evolutionary mechanism 
(stochastic change with divergence), is that the better 
optima are converging toward a single global optimum, 
even if the sequences were too short to allow the global 
optimum to be determined uniquely. With such short 
sequences we expect many internal edges of the tree to 
be unresolved, that is, to be of zero length (no muta- 
tions). Because of these zero-length edges, many rear- 
rangements of the tree will be possible. If the general 
conclusion about converging toward the global optimum 
were correct, then better optima should be more similar 
to each other than poorer optima (which require more 
mutations); shorter trees are expected to be more similar 
than longer trees. The distances between optima were 
measured using both forms of the sites metric and the 
results classified according to the lengths of the optima. 

For trees of a given length, distance values were 
compared with other optima of the same length, with 
better optima (requiring fewer mutations), and with 
poorer optima. The expectation was that if the better 
optima are converging toward a single solution, then the 
average distance between optima of a given length L will 
decrease as L decreases; optima of any given length L 
would be more similar to each other than to poorer op- 
tima (optima with a longer length, L); consequently, 
the distance from optima of a given length L to the av- 
erage of all poorer optima will increase as L increases; 
and, most strikingly, optima of a given length L will, on 
the average, be more similar to better optima than they 
are to themselves. The first prediction is perhaps the 
most important in that, if correct, the others are expected 
to follow. However, the final prediction-that trees at 
any optimality level are more similar to better optima 

than to themselves-is more striking and helps us un- 
derstand the overall landscape. 

All four predictions are supported (fig. 3 ) . Results 
for the 580 optima from “mediumW” (table 1) on both 
the linear and quadratic forms of the sites metric reveal 
that better optima (shorter lengths) are more similar to 
each other than are optima with larger lengths. Because 
the values of comparisons of optima of equal lengths 
are independent, a rank correlation test can be made, 
and the increase in similarity of shorter trees is highly 
significant. Most strikingly, optima of a given length are 
more similar to optima above them than they are to 
themselves. In addition, a weighted regression of tree 
length against independent distances between trees of a 
given length suggests that the points are curving down- 
ward as the tree length becomes shorter. For example, 
the probability of the coefficient of a square-root com- 
ponent in the regression was ~0.005, with or without 
exclusion of the data points for the two shortest sets of 
trees, lengths 25 1.8 and 252.0, respectively. This suggests 
that the shortest possible tree is close to the length of 
the best trees found in this study. However, we do not 
attempt to predict its length from the x intercept of a 
regression line because the residuals of the two shortest 
sets of trees are the largest and in opposite directions. 
We plotted the distribution of distances between trees 
as an additional test, and the resulting histogram showed 
no evidence for a bimodal distribution. 

Our simplified interpretation of the landscape from 
these results is shown in figure 4a and b. We imagine 
the landscape in three dimensions as a large volcano, 
with better optima near the top converging toward the 
global optimum. For reasons outlined later, we call this 
the Kilimanjaro landscape. 

3o T 

> 

PIG. 3.-Comparison of distance values between trees (sites metric) 
versus length of local optima. The X-axis is the parsimony length of 
the optima (see fig. 2). Values on the Y-axis are average distances under 
the sites metric (linear form) for optima of a given length, to optima 
of the same length (circles), to better optima (squares), to worse optima 
(diamonds). The most important points are that longer (worse) optima 
are more dissimilar than shorter optima and that optima are, on the 
average, more similar to better optima than to themselves. An inter- 
pretation of these results is shown in fig. 4. 
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a, two dimensional model 

- 

b, third dimension (length of optimum) added 

RG. 4.-Optima of different lengths converging. a, Model rep- 
resenting a “landscape” in two dimensions with the optima of shorter 
lengths being included within the range of those with longer lengths. 
The distance between two optima a and b of the same length can be 
greater than the maximum between a and any better optimum, for 
example, a to either c or d. Conversely, the maximum and average 
distance between a and optima at longer lengths, such as e, can be 
greater than the distances within the same level as a. In practice there 
are 120 sites (dimensions) contributing to the value for the sites metric, 
not just the two dimensions represented here. b, Representation in 
three dimensions, with the third dimension being the “height” of the 
optimum (which is not included in the value for comparisons under 
the sites metric). This represents the results of shorter optima “con- 
verging” to a single global optima, even though we may not have reached 
a global optimum. 

Thus there is considerable information in the op- 
timal trees, despite some earlier doubts (Goldman and 
Barton 1992; Templeton 1992, 1993) about the “sig- 
nificance” of the shorter trees. This structure allows evo- 
lutionary hypotheses to be tested. We need to determine 
whether the best optima distinguish between the out-of- 
Africa and the multiregional models. The prediction of 
the multiregional model we are testing here is the pan- 
mixis model; there was continued genetic intermixing 
of populations over the whole of Africa, Europe, and 
Asia in the early stages of evolution of Homo sapiens. 

Properties of the Best Trees 
We initially identified the 10 “best” optima: the 

shortest 8 plus 2 additional trees that were longer but 
excellent consensus (median) trees. In general, shorter 
trees are better predictors than longer trees (Penny and 
Hendy 1985), and so the shortest eight were included. 
Using tree comparison metrics as an additional criterion 
allows more information to be included. In this study 
there was only a single shortest tree (length 25 1.6)) but 
it was not the best median tree; five of the seven trees 
one step longer were better median trees. Indeed, 1 of 
the 54 trees of length 253.0 was a very good median tree 
even though, on the average, trees of this length were 
considerably worse than the shorter trees. Figure 4 is 
consistent with an occasional slightly longer tree still 
being central among the population of all local optima. 

Because of both the variation among trees reported 
previously (Vigilant et al. 199 1; Hedges et al. 1992; 
Templeton 1992, 1993) and the variation between trees 
at any one optimality level, we assumed initially there 
may not be much agreement on details of these 580 
local optima trees. For example, the positions for the 
!Kung and the single Naron sequence differed consid- 
erably in trees reported previously. Despite these reser- 
vations, we determined the largest cluster for each of 
the 10 trees that was made up exclusively of African, 
Asian, European, or Australopapuan (New Guinean plus 
one Australian sequence). We then extended this by 
finding the largest cluster allowing one, then two, and 
then three sequences from any other group. For example, 
we found the largest group of Asian sequences that had 
three non-Asian sequences. 

The most striking feature of this analysis (table 2) 
is the large size of an exclusively African group, partic- 
ularly when up to two additional sequences were allowed. 
All 10 best trees had the same 23 African sequences as 

Table 2 
Largest Numbers of Sequences in Continental 
and/or Ethnic Groups 

NO.FROM OTHER 
GROUPS 

No.1N 
GROUP GROUP 0 1 2 3 

African . . . . . . . . 
European . . . . . . . . 
Asian . . . . . 
Australopapuan . . 
!Kung . 
Afroamerican . . . 
East Pygmy . . 
Herero . . . 
West Pygmy . . 
Yoruban . . . 
Hadza . . . . . . . . 

78 23.0 5.0 47.0 0.6 
15 3.7 5.0 2.2 3.6 
17 4.3 5.4 7.5 8.0 
25 2.9 3.8 2.5 1.9 
16 10.0 16.0 0.0 0.0 
8 2.0 1.0 1.0 1.0 

15 9.0 3.0 0.0 3.6 
8 4.0 4.7 0.9 1.4 

14 8.8 0.0 11.6 7.2 
12 2.1 2.1 4.0 4.0 
4 0.0 2.9 0.0 0.1 

NOTE.-sequences were first grouped into four geographic classes (the first 
four groups listed) and their largest clusters found in each of the 10 best trees; 
results are averages for these trees. Clusters could consistent exclusively of members 
from a single group or have one to three sequences from any other group(s). All 
10 trees had the same cluster of 23 African sequences; the largest African cluster 
with one non-African sequence was five sequences (which implies the cluster of 
23 must join with a subtree containing two or more non-African sequences). The 
main features are the large African clusters is that groups outside this cluster of 
49 sequences are heterogeneous (more dispersed throughout the trees). The study 
was repeated by subdividing African sequences further into the seven groups 
listed next. The most striking feature is the large size of the !Kung group, in 
which all 16 sequences join together with the other San group, a single Naron 
sequence. The eastern and western Pygmies each form relatively large clusters 
on the trees but are more diverse overall. An important control is that the Af- 
roamericans do not form a single large cluster, reflecting the varied sources of 
their ancestors within Africa. The overall conclusion is that there cannot have 
been continued genetic interchange over the whole range of early Homo erectus/ 
Homo sapiens populations, thus contradicting multiregional models requiring 
high migration between continents. 
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the largest group and similarly had the same 47 African 
sequences plus two “Asian” sequences (numbers 23 and 
26; all numbers are those in the Vigilant data set). We 
refer to this as the “49 group.” The composition of this 
cluster of 49 was identical in every case (sequences l- 
48 plus 76, the single Naron sequence-a San group 
from southwest Africa [ Schapera 19601 similar to the 
!Kung). Two other large groups were eastern Pygmies 
and another of western Pygmies. An important internal 
control is that the sequences of Afroamericans are scat- 
tered among the Africa groups; they do not form any 
large groups. In contrast, there were no large clusters of 
other continental groups, and, more strikingly perhaps, 
allowing one to three members from outside the group 
did not lead to a large increase in the size of such clusters. 
In other words, allowing one to three immigrants scarcely 
increased the maximum group size. The study was re- 
peated for the next 15 trees of length 252.0 with virtually 
identical results. 

The large African grouping can be investigated fur- 
ther by considering smaller populations within it, and 
so the above analysis was repeated with the African se- 
quences subdivided into seven subpopulations (exclud- 
ing two groups of a single sequence each). The most 
striking feature of the results (table 2) is that the !Kung, 
together with the single Naron sequence (number 76), 
are united in all 10 trees (the Naron are a related group 
from southwest Africa; Schapera 1960). The results are 
highly significant. The probability that a randomly cho- 
sen binary tree (under all trees equiprobable; Steel and 
Penny 1993) has a given split of size k, n - k is 

b(k+l)* b(n-k+l) 

b(n) 
, where b(s) = (2s-5)!! 

(2s~5)!! = 1 l 3.5 . . . (2s-5). 

The probability that a pair of randomly chosen binary 
trees share at least one split of size k, n - k is bounded 
above by 

b(k+l)b(n-ki-1) 2 1 b(n) ’ 
Thus, given that these groups (the 17 !Kung + Naron 
sequences and the 49 group) were found in one tree, the 
probability of finding the same group in a second tree 
is < 10m2’ for 17 sequences and < 1 Om3’ for a group of 
49. There was certainly more common structure in the 
optima than we expected, and, even if have not reached 
the global optimum, we can predict many of its prop- 
erties. 

We consider that these results eliminate any “uni- 
versal migration” form of the multiregional model, a 
model that requires alleles to spread throughout the 
range of Homo erectus (Africa, Europe, and Asia). Note 
in particular that this conclusion is independent of which 
region of the world had the largest group; a very large 
Asian group of sequences that was not dispersed would 
lead to the same rejection of the multiregion model. A 
possible ad hoc modification would be to argue that Af- 
rica was different in that only males, not females, dis- 
persed. This would mean mitochondrial genes (mater- 
nally inherited) would disperse little, but nuclear alleles 
could spread more widely, albeit more slowly, than if 
both sexes dispersed. However, there is a large body of 
anthropological studies of social organization against 
such an ad hoc modification (Murdock 1960). Female 
dispersal between bands/ villages is, as in our nearest 
relatives, almost universal in humans. There are excep- 
tions in some agricultural groups with a strong matri- 
lineal emphasis (Murdock 1960). Male dispersal does 
occur occasionally, but it is even less common than nei- 
ther male nor female marrying outside the village (Mur- 
dock 1960), which would not aid genetic dispersal. 

The results from the best 25 trees were more striking 
than expected, but we still anticipated these groups would 
be quickly broken up as we searched longer optima. 
Nevertheless, we continued examining longer optima to 
test when either the 49 group, or the !Kung group, was 
broken up (either by including other sequences or losing 
some of the 49). The 35 trees of length 252.2 had the 
same patterns, though one of the trees included a single 
additional African sequence in the 49 group (number 
56, a Herero sequence). The study was then extended 
to the best 40% of optima (length 253.0). Indeed all the 
best 40% of trees have the same major groupings with 
occasionally ( ~2%) sequence 56 being included in the 
49 group. It appeared to be a lower cost to include some 
additional African sequences in the 49 group than to 
exclude any of them. Just one of the 47 trees of length 
253.4 had no partition with the full 49 sequences; it 
omitted sequences 24 and 25 (both Yoruban sequences). 
Essentially all the best 300 trees had the 49 grouping. 
The results of the !Kung + Naron are even more striking. 
In order to find a tree that did not have the full !Kung 
group, we had to go right down the tail of the distribution 
and a tree of length 258.0 which omitted two of the 
!Kung plus the Naron sequence from this group of 49. 

Identical results were found from the equivalent 
analyses on the 160 optima from the smallW data set, 
which is expected given that these optima are similar 
distances apart to the mediumW optima. With the un- 
weighted data set (equalW) the results are more diverse 
as would be expected from the optima being more scat- 
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tered. Nevertheless, about 40% of the best 62 optima 
have the group of 49, and another 20% either omit, or 
include, one additional sequence. Again, about two- 
thirds have the 16 !Kung sequences either grouped to- 
gether, or with one additional sequence, usually the Na- 
ron. The results emphasize that the downweighting is 
enhancing an evolutionary signal that is to some extent 
being masked by the rapidly evolving sites. Giving equal 
weighting to rapidly evolving sites results an occasional 
tree that would support almost any result. The high con- 
sistency of the results with smallW and mediumW is 
striking. Although we cannot guarantee how close we 
are to the global optima, this high consistency between 
local optima, particularly compared with earlier studies 
(Hedges et al. 1992; Templeton 1992, 1993)) supports 
the robustness of the conclusions. The !Kung grouping 
may also be of anthropological interest in that it supports 
a distinct group of southern African alleles consistent 
with a small group colonizing southern Africa in the last 
50,000- 100,000 yr ( Deacon 1992 ) . 

A comment is necessary on the two “Asian” se- 
quences in the Africa 49 group. The sequences are similar 
to other African sequences in the 49 group so they are 
not ancient lineages. In this case there is insufficient in- 
formation to distinguish between several explanations. 
We can expect (Waddell and Penny 1995 ) to find some 
modern African sequences within Asia as a result of an 
early slave trade into Asia. However, the two sequences 
are from people from Chinatown in San Francisco who 
describe themselves as Chinese-Americans. It is unclear 
whether these particular individuals have an Afro- 
american maternal lineage, given that there were Afro- 
americans living in Chinatown in the last century (M. 
Stoneking, personal communication). Given their close 
similarity to other sequences in the group (they are not 
ancient lineages), we will, for the purposes of rooting 
the tree and until further information is available, refer 
to the whole 49 group as African. 

It is now appropriate to reexamine the data in table 
2, particularly the African group as a whole. The largest 
exclusively Africa group has either 23 sequences, or 49 
when the other two sequences are included. This is in 
marked contrast to the size of the largest group, five, 
with one non-African sequence. (Clearly the group of 
23 must join with others to give the group of 49; oth- 
erwise a larger group of “African plus one other” would 
occur.) The number in the African group with one non- 
African sequence is very similar to the results for Eu- 
ropeans, Asians, and Australopapuans. The division is 
thus not African versus non-African sequences; rather, 
it is the group of 49 African sequences versus all others- 
the others including some African sequences. Such a 
distinction cannot be made when putting all Africans 

into a single group as is done with gene frequency data. 
This conclusion of an African group versus all other 
sequences is probably the central result of the whole re- 
analysis of the human mtDNA data. There is one large 
group of African sequences, and all other sequences (Af- 
rican, European, Asian, and Australopapuan) form a 
second major group. Recent results comparing European 
and African populations are in agreement (Pult et al. 
1994). 

The results of the size of African groups in the op- 
tima were perhaps the most unexpected part of the study 
and the most important in distinguishing between a 
multiregion / single-region origin of modern humans 
(hypothesis H2 ) . This analysis shows the importance of 
keeping just one tree from each run. Each tree has been 
found independently, and so expected properties of the 
global optimum can be determined. However, from the 
viewpoint of rejecting the multiregional model, the geo- 
graphic location of such a large group is immaterial. 
Even if the grouping had occurred elsewhere in the world, 
it would still be evidence against any model requiring 
panmixis. 

Root of the Trees 

As discussed earlier ( P8), a single “gene” cannot 
be used to locate the root of the tree for the whole genome 
until the multiregional model is excluded. But because 
the only testable version of that model appears excluded, 
we will estimate the position of the root and take its 
geographic position as our best estimate of the ancestral 
population. Several strategies are possible for rooting 
trees (Smith 1994)) and four have been considered for 
this data. The two main methods are outgroup and mid- 
point rooting. The use of a chimpanzee sequence as an 
outgroup has been used earlier, though not on these op- 
tima. The second approach, midpoint rooting, does not 
require an outgroup but does depend on approximately 
equal rates of evolution to estimate the position of the 
root. 

Two variants of midpoint rooting have been used. 
The usual one is to find the midpoint of the longest path 
between two taxa in the tree, the longest path version. 
This variation uses only a single path on the tree and as 
such is expected to be sensitive to both random sampling 
effects (resulting from short sequences) as well as to se- 
quencing errors. A more robust approach, also used here, 
is finding the edge of the tree with the longest average 
path length. Each edge of a tree partitions t taxa into 
subsets with x and t-x taxa. There are x(t-x) paths 
through each edge of the tree, and so the longest average 
path is expected to be a better estimate of the root than 
using only a single path. This is the all paths version of 
midpoint rooting. 
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Our reasoning is as follows. Let T be a binary phy- 
logenetic tree with weights on the edges representing the 
expected number of substitutions along it. The tree is 
rooted on one of the edges to give a root vertex p. The 
weight for any edge e is w(e) and for any pair of taxa i 
and j; the distance between them, d( i, j), is the sum of 
the weights of edges on the path between them. Under 
the molecular clock hypothesis, the distance d( p, I) from 
the root vertex p to any leaf 1 (taxon, or in this case a 
sequence) is expected to be constant for all leaves 1, and 
we call this value the height ho of 7’. For an edge e of T, 
let 6(e) be the average (over I E L, 1’ E L’) of d( I, I’), 
where (L, L’} is the bipartition of the set of leaves of T 
formed by deleting edge e. 

We arrive thus at proposition 1: Under the molec- 
ular clock hypothesis, 6(e) is uniquely maximized by 
the edge e of T, whose midpoint corresponds to the root 
p. A proof is given in the Appendix. 

A third method (Guenoche et al. 199 1) does not 
require a tree but partitions the taxa into two subsets in 
order to optimize a function of the pair-wise distances 
between all pairs of taxa. An efficient algorithm is avail- 
able for this problem (Guenoche et al. 199 1). Again, 
this partitioning into two subsets is a good estimate of 
the root as long as the lineages are evolving at similar 
rates. Finally, we examine results from a form of “in- 
group” or “subgroup” rooting by using estimates (in 
this case) from archeological evidence for the time of 
colonization of regions by modern humans (Bowcock 
et al. 199 1). Although the method is not “algorithmic” 
in the same way as the other approaches, it does allow 
useful checks. By estimating several divergence times 
within a tree and comparing these, we can check that 
the molecular clock is a good approximation and nar- 
rows down the position of the root so that a better es- 
timate is possible. 

The methods have different requirements for their 
validity. Outgroup rooting requires a good tree and se- 
quences from an outgroup but does not assume a mo- 
lecular clock. Midpoint rooting requires a good tree and 
depends on the molecular clock. The third method does 
not depend on a tree but partitions the taxa based solely 
on a matrix of genetic distances-it does assume a mo- 
lecular clock. If in-group rooting has several points in 
the tree where direction of change is established, there 
may be less sensitivity to small deviations from the as- 
sumptions. 

For the following reasons, a molecular clock is a 
reasonable assumption in studies such as this. The num- 
ber of neutral substitutions is proportional to both the 
proportion of mutations that are neutral and the overall 
mutation rate (which in turn depends on properties of 
enzymes). Within a short time scale we expect the pro- 

portion of neutral mutations to be the same and the 
properties of the enzymes involved in DNA synthesis 
and repair also to be the same. Both properties could 
change over long-term studies of different major lineages. 
Thus, although it is reasonable to assume equal rates of 
change for this data set, the conclusions do not depend 
on it. Overall, if methods give a similar answer, then we 
are more confident of the result-the position of the 
root has survived different tests. 

The results for the first method for estimating the 
root, outgroup rooting with the chimpanzee sequence, 
are quite striking; all 245 best optima have an African 
root. In this case an “African root” means both that on 
one side of the root all sequences are African and that 
at least one of the first branching points on the other 
side of the root is also exclusively African. Even more 
striking was that the second and third best positions for 
rooting the tree were also exclusively African. 

These results should be treated with care. Others 
(Hedges et al. 1992; Maddison et al. 1992) have already 
pointed out that using such a distant outgroup is a dif- 
ficulty. We agree with this in that a distant outgroup can 
lead to problems, even when the molecular clock is valid 
(Hendy and Penny 1989). This effect was minimized 
by determining the trees with the outgroup omitted, then 
adding the chimpanzee to all possible positions, and also 
by selecting the three best places for rooting the tree. In 
spite of these qualifications, the results are impressive, 
particularly as the African root was suggested for earlier 
data sets (Cann et al. 1987 ) . 

Similar results were found with both forms of mid- 
point rooting, the midpoint of the longest path in the 
tree (longest path), and the edge with the largest average 
path length ( all paths). Again, an African root was found 
in the 245 trees. The all-paths version gave an African 
root within the group 49 sequence; the single-path ver- 
sion gave an African root, but sometimes it was just 
outside this group, especially with the longer trees. 

The third approach used did not resolve the taxa 
clearly into two subsets because, although the first few 
steps were clear, there quickly became a large number 
of ties. From that point, decisions were arbitrary. The 
large number of ties is not unexpected with a small 
number of sites in relation to the number of entries in 
the pairwise distance matrix, a feature commented on 
earlier when selecting a tree comparison metric. The 
fourth approach, in group rooting, is discussed again 
later, and the tree shown later in figure 6 is consistent 
with the same root. The support for an African root is 
thus strong, given this data. 

Human Population Expansions 

The time of the last common ancestor of the human 
mitochondrial genome cannot also be the beginning of 
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the major expansion in numbers of early humans. Most 
calculations of the rate of the loss of alleles from a pop- 
ulation assume a constant average population size and 
are not applicable for a continuously expanding popu- 
lation. For reasons outlined below, a model of continued 
expansion is unlikely to lead to just one DNA sequence 
from the initial population remaining in the modern 
population. We consider a possible alternative with an 
early phase of constant average population size, followed 
later by an expansionary phase. 

In considering how many lineages of the mtDNA 
survive from an earlier population, we use the usual in- 
dependence assumptions common in branching theory 
(Arthreya and Ney 1972), and so the number of sur- 
viving lineages has a Poisson distribution. We show that 
the determining parameter (namely, the mean) depends 
critically on the dynamics of human expansion-from 
an initial, localized, founding group-to a much larger, 
geographically dispersed population. In particular, a 
uniform exponential rate of population growth (lower 
halfof fig. 5) leads to the survival of a larger number of 
maternal lineages than the two-phase model (fig. 5), 
even given the same initial and final populations and 
over the same time scale. 

To apply classical results from branching theory 
( Arthreya and Ney 1972)) we must assume that in any 
generation mothers independently leave a random 
number of female offspring, though the expected number 
offspring is not necessarily constant with time. We fur- 
ther assume that the spread of the mtDNA through the 
population was by standard stochastic processes; that is, 
the process was neutral (Kimura 1983; Nei 1987). This 
is reasonable given that mtDNA is only one part in 10 5 
of total DNA, it is not linked to nuclear genes, and there 
is no reason to suspect that improved mitochondrial 
function was responsible for the expansion of Homo 
sapiens numbers. 

A simple model-scenario l-takes a constant ex- 
pected rate of population increase per generation (the 
expected population thus grows exponentially by a con- 
stant percentage each generation). Let k denote the 
number of ancestral females in the founding population; 
N, the size of the final population; and, r, the number 
of generations over which this expansion occurred. A 
second model-scenario 2-starts from the same time 
and population but allows a two-phase behavior. For T1 
generations the population fluctuates about a mean (it 
has zero expected growth), and then for T2 generations 
the expected population grows, on the average, each 
generation by a constant percentage, which must be 
higher than the growth in scenario 1 because it gives rise 
to the same population value (N) but in half the time 
( T/2). It is this second model (fig. 5) that we can fit to 
the data. 

constant average 
population size 

<- logarithm of population size ,-> 

FIG. 5.-Two-stage model. The first stage is a constant average 
population size; then a second phase has an exponential expansion in 
population numbers. During the first phase of constant average pop- 
ulation size, there is a random loss of most of the neutral alleles present 
in the initial population. Once the population starts a continued ex- 
pansion, there is a much lower chance of random loss of alleles. The 
example shown here initially has 10 alleles, 7 of which are lost in the 
stationary phase and 2 more during the expansionary phase. However, 
for the calculations the human population started with a population 
that included 5,000 females. 

We assume that k, T1, and T2 are large (>50), k 
-c N, and ln(N/k)/T+ min{ 1, o’} where o2 denotes 
the variance of the offspring distribution. All of these 
assumptions are reasonable in the present setting and 
lead to proposition 2 (the proof is given in the Appen- 
dix): Under the above assumptions, the number of 
founding females whose maternal lineages survive T 
generations is given by a Poisson distribution of mean 
3L, where 

( 1) h > 2k ln(N/k)/027’, under scenario 1 (constant 
exponential growth) and 

(2) h < 2k/02T1, under scenario 2 (two-phase model). 

We use some estimated values based on earlier 
work; k = 5,000 (Hudson 1990; Takahata 1993), T 
= 200,000 yr / ( 20 yr /generation) = 10,000 generations 
(Waddell andPenny 1995), T1 = T2, N= 5 X 106, and 
take o2 = 1. The value k (number of females) is toward 
the lower estimate of Takahata ( 1993) and fits the model 
better. With these parameters, we obtain that h > 3 
ln( 10) = 7, under scenario 1, while h < 2 under scenario 
2. Thus, with a population expanding continually, we 
do not expect, under the parameters estimated earlier 
(Hudson 1990; Takahata 1993), for there to be just a 
single variant remaining in the population. Because the 
distribution has a Poisson distribution, the probability 
of observing just a single variant under scenario 1 is 
approximately 10p3. Thus, it is very unlikely that the 
last ancestor of human mtDNA occurred at the same 
time as the major expansion in human numbers. 
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Although these calculations are based on idealized 
assumptions, they suggest that a neutral allele fixed in 
the present human population must have arisen well 
before the major expansion of human numbers. Perhaps 
the main problem with the assumptions strengthens this 
conclusion-once the population spreads from a local- 
ized region, it is even less likely that all variants in an 
expanding population will be lost. 

This two-phase model (fig. 5) appears consistent 
with the data-a stationary phase when the average 
population size is constant and the number of mito- 
chondrial variants present in the original population was 
reduced, followed by a second expansionary phase when 
population numbers increase and a few final variants 
present from the beginning are lost. In addition, as dis- 
cussed earlier and later under in-group rooting, the times 
it gives are in reasonable agreement for the first anatom- 
ically modern humans outside Africa: approximately 
90,000 yr in the Near East ( Aitken and Valladas 1992; 
Schwartz and Grtin 1992) and approaching 60,000 yr 
for Australia (Roberts et al. 1990, 1994). It is possible 
to alter the estimates of early population size, and a 
smaller initial population size would support a smaller 
time period before expansion. However, these estimates 
(Hudson 1990; Takahata 1993) are based on genetic 
diversity in populations (particularly HLA) and so are 
constrained and not arbitrary. This emphasizes that, 
overall, models have to be consistent with a variety of 
types of data; a criticism of just one type of data lacks 
force if the original conclusion was based on several lines 
of evidence. 

Our calculations would not apply to a locus, such 
as HLA, where positive selection is expected (Takahata 
1993). In such cases the models predict, as is observed, 
that HLA diversity would predate by a long time the 
last common mtDNA ancestor. It is a major, but com- 
mon, misunderstanding to expect that all genes will 
converge to the same time and/or individual. Con- 
versely, results from the HLA locus (Klein et al. 1993), 
given frequency-dependent selection, do not contradict 
the present model. 

Some possible events could alter this conclusion. 
A hitchhiker event (a neutral allele closely linked with 
a gene which is increasing in frequency through positive 
selection) could occur. However, mitochondrial DNA 
is not linked to nuclear markers; although some early 
advantage through a sex-linked allele may be possible, 
there is no evidence for this more complex model. It is 
also desirable to know the equilibrium frequency of al- 
leles for a given mutation rate and population size and 
use this value rather than assuming all female members 
of the population have different mtDNA sequences. An- 
other alternative is a small effective bottleneck in pop- 

ulation size resulting from the chromosome fusion that 
formed human chromosome 2 (Seuanez 1979; Burrows 
1994). Because this is a unique event and the new, fused 
chromosome would initially have had no genetic vari- 
ation, it is desirable to measure the level of genetic vari- 
ation at the point of fusion for this chromosome. This 
chromosome fusion may have happened any time after 
the separation of Pan and Homo lineages and the level 
of diversity in modern populations should help identify 
the time the chromosome fusion occurred. Again, there 
is no evidence for such an event affecting frequencies of 
alleles of nuclear genes. The main conclusion we draw 
from this section is that the rapid expansion of human 
numbers must be more recent than the last common 
ancestor of any particular gene. 

Discussion 

Our searches have identified considerable evolu- 
tionary structure in the sequences; local optima are very 
much shorter than randomly selected trees, and these 
optima are much more similar than random trees. Some 
nucleotide positions are hypervariable; downweighting 
these results in the new optima being even more similar 
than with equal weighting (thus extracting more infor- 
mation from the data). There is strong support for the 
four related predictions on the average similarities of 
optima: the average similarity between optima increases 
with better optima (shorter-length trees); optima of any 
given length are more similar to each other than they 
are to poorer optima; similarly, better (shorter) optima 
of any given length are more similar to each other than 
optima of any longer length; and, most strikingly of all, 
optima of a given length L will, on the average, be more 
similar to better optima than they are to themselves. 
The distribution of distances between trees gives a uni- 
modal distribution. Taken together, all these results 
support the conclusion that the optima are converging 
to a single global optimum, albeit with multiple side 
peaks. 

A large cluster of 49 sequences is found repeatedly 
in the best optima, and such a large regional cluster is 
overwhelming evidence against the universal migration 
version of the multiregional model, which requires con- 
tinued genetic intermingling over the entire range of 
Homo erectus. The sequences appear to fall into two 
groups, one “exclusively African” with 49 sequences, 
the other a “general” group of Africans, Europeans, 
Asians, and Australopapuans ( 86 sequences). Thus, 
Europeans, Asians, and Australopapuans appear to be 
a subset of the diversity within Africa. An analogy is that 
sequences of Native Americans (or of Polynesians) are 
subsets of Asian lineages, and these Asian lineages are 
subsets of those occurring in Africa. The use of sequences 
detects the split within Africa between the exclusively 



Large Data Sets and Modern Human Origins 877 

African and the general groups, whereas the use of pop- 
ulation frequencies masks this split and finds only an 
African/non-African grouping (Nei and Roychoudhury 
1993). Only with significantly worse optima did the large 
African group, or its !Kung plus Naron subgroup, start 
to break up. This pattern contradicts any multiregional 
model that relies on migration and interbreeding over 
the whole range of H. erectus. 

The root of the tree is best placed within the African 
group of 49 sequences. This placement is supported by 
a variety of criteria that require different conditions to 
be met to identify the correct root. Because of the African 
location of the root and the convergence of shorter op- 
tima, we call this the Kilimanjaro landscape. However, 
the time of the last common ancestor of the mtDNA 
must be earlier than the time of expansion of human 
numbers. In order to fit the data, we suggest at least a 
two-stage model with much of the initial variation lost 
during the first phase of constant average population 
size, and then a phase of exponential growth. Overall 
there is strong support for all four aspects of the out-of- 
Africa model but contradiction of a crucial prediction 
(panmixis) of the multiregion model. 

By focusing on the general properties of the land- 
scape of all possible solutions (Kauffman 1993), we have 
been able to avoid the distraction of whether a particular 
tree is shorter than earlier studies. Because of the con- 
sistency of our results (for example, the !Kung, together 
with the Naron sequence, being united) we are confident 
that we have a very good representation of the underlying 
tree structure in the data. There has been too much con- 
cern with the absolute length of trees and not enough 
on the general properties (landscape) among optima. 
Perhaps we have contributed to this by showing that 
shorter trees are generally better predictors than longer 
trees ( Penny and Hendy 1985 ) . In the present study the 
single shortest tree was not as good a predictor of overall 
results as some trees one step longer. 

The deluge search strategy has been useful, and this 
quality is illustrated by the high consistency of the groups 
it finds (tables 1 and 2). Several ways of improving its 
current implementation were developed during the 
study, but these were not used so as to, maintain com- 
parability for the different data sets (equalW, smallW, 
and mediumW ). Although we now have some idea of 
the landscape in terms of the high numbers of local op- 
tima and their overall similarity (Penny et al. 1982; 
Hendy et al. 1988; Maddison 199 1; Steel 1993; D. Penny 
and M. Steel, unpublished data), we still need to know 
more on the pathways between optima (Page 1993) and 
how the optima would appear with alternative selection 
criteria-for example, maximum likelihood. 

The restriction of using random starting trees may 
not be necessary except when it is crucial to demonstrate 

there is no effect of starting position. Other programs, 
such as PAUP ( Swofford 1993 ) , are suitable for a similar 
study by retaining only one optimum per run, thus al- 
lowing an analysis of the landscape. We have found that 
using alternative methods of changing trees (different 
tree spaces; D. Steel and M. Penny, unpublished data) 
is particularly effective, and this option could also be 
incorporated, as could alternating stochastic and deter- 
ministic phases to the search strategy. 

Our analysis was carried out without drawing the 
trees to study them, both to prevent subjective bias and 
emphasize the objective nature of the analysis. However, 
we could not resist the temptation to examine one of 
the shortest trees, that shown in figure 6. It is one of the 
second shortest trees (L=25 1.8) and is the best consensus 
trees (averaged over both the linear and quadratic 
forms). It is drawn with zero-length edges contracted 
and so is shown as a nonbinary tree. After drawing the 
tree (using MacClade 3.1; Maddison and Maddison 
1992)) it became clear that most of the zero-length edges 
were outside the core group of 49 African sequences. 
The observation of many zero-length edges among 
groups outside Africa is significant from two aspects: it 
is in agreement with the two-phase model presented ear- 
lier (fig. 5)) and it explains the distribution of distance 
values used to infer a recent expansion (Rogers and 
Harpending 1992; Harpending et al. 1993 ) , particularly 
of populations outside of Africa. This agreement between 
the distribution of edge lengths in the optimal trees in 
this study with the distribution of distance values (Rogers 
and Harpending 1992) is encouraging and represents 
another case in which there is reinforcement between 
different approaches to analyzing this data set. 

Our results do not contribute any new information 
to the debate over the time of the last common ancestor 
of human mtDNA. Recent work (Hasegawa et al. 1993; 
Ruvolo et al. 1993) still favors a best estimate of about 
200,000 yr ago, but an estimate using three complete 
human mtDNA sequences is even more recent ( 145,000 
yr BP; Horai et al. 1995 ), thus reinforcing our conclusion 
(below) that more attention should be paid to the lower 
bound on the time estimates. For our model we have 
split this into two equal periods: 75,000- 100,000 yr for 
a constant average population size and 7 5 ,OOO- 100,000 
for the expansionary phase. These values will have quite 
high variances and also depend on estimates of the size 
of the population that included the common ancestor. 
These values need corroboration from other data but 
are encouraging in that models are becoming more pre- 
cise, include information from a wider range of disci- 
plines, and are potentially more testable ( Popper 1959). 
But until a similar study considers all the sources of 
variation as for human-chimpanzee times of divergence 
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(Waddell and Penny 1995)) we prefer to consider the 
two-phase model as a qualitative model. Griffiths and 
Tavare ( 1994a, 1994b) have recently extended coales- 
cence methods to expanding populations; which will 
improve our understanding of dates of human evolution. 
Their study of Nuu Chah Nulth people gave a more 
recent origin when expansion in population size was 
considered. An expansion, such as the Polynesians (Lum 
et al. 1994), would be another good test. 

Several investigators concentrate on the upper 
bound on the time of the last common mtDNA ancestor 
as one approach to testing a multiregional model; how- 
ever, there has been less focus on the lower bound, the 
most recent time possible for human expansion out of 
Africa. There is a rather loosely defined cultural-arche- 
ological model (the “cultural explosion” model) that 
favors a very recent major expansion in human numbers, 
even as recently as 40,000 yr ago (the 40,004 BC model; 
Noble and Davidson 199 1). This would be after the de- 
velopment of many modern artifacts and cultural attri- 
butes, including speech (as distinguished from language; 
Corballis 1993). Dates such as the colonization of Aus- 
tralia (at least 55,000 yr BP; Roberts et al. 1990, 1994) 
perhaps favor a somewhat earlier expansion (though it 
is not clear that these very early fossils have left descen- 
dants among modern populations). Our two-phase 
model, with an exponential increase in population 
numbers within the last 100,000 yr, including a slightly 
later expansion out-of-Africa, appears consistent with 
ideas of a recent expansion of modern humans (Noble 
and Davidson 199 1) . Despite earlier controversy (Cav- 
alli-Sforza 199 1)) it can be shown (by using a different 
tree comparison metric to the one used here) that trees 
from gene frequencies and languages are very similar 
(Penny et al. 1993). However, our results would also be 
consistent with a third, even more rapid, expansion 
which may have occurred after the initial expansion of 
H. sapiens out of Africa. 

Any useful hypothesis on the origins of H. sapiens 

needs to be consistent with a range of evidence, including 
nuclear and mitochondrial sequences, stochastic mech- 
anisms of mutation, other genetic data such as allele 
frequencies, archeological finds, times of arrival of H. 

FIG. 6.-A best local optimum tree. It was selected as being both 
one of the shortest trees and one of the median trees. AA, Afroamerican; 
Ai, Asian; Au, Australian; Ep, eastern Pygmy; Eu, European; Ha, Hadza; 
He, Herero; KU, !Kung; Na, Naron; NG, New Guinean; Wp, western 
Pygmy; Yo, Yoruban. The lengths of edges on the tree are proportional 
to the number of changes required, with the error bars indicating the 
range of possible lengths consistent with the minimal length. Edges of 
zero length have been collapsed, and so the tree is nonbinary. The 
scale is number of mutations. 
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sapiens in different regions, appearance of “modern” 
artifacts in the archeological record, and the similarity 
of trees from languages and genetic information (Cavalli- 
Sforza 199 1; Penny et al. 1993). We think a two- or 
three-phase model (fig. 5) is consistent with this wide 
range of classes of evidence, and the model is thus 
strengthened by such a “consilience of induction” 
( Whewell 1967 ) . Conversely, the multiregional model, 
apart from being contradicted by the evidence produced 
here, is weakened by being based on such a limited range 
of features. 

One piece of information not explained is the ap- 
parent morphological similarity between fossil H. erectus 
and modern H. sapiens in the same region (Thorne and 
Wolpoff 1992). We have already commented on the 
difficulty of quantitative genetic tests on morphological 
data. It may be that the authors of the multiregional 
model were just unlucky in that the similarities are only 
due to chance, but an alternative is that, even given a 
recent African origin of H. sapiens, there could have 
been some gene flow between H. erectus and H. sapiens 
in some regions. There is no evidence for this from the 
maternally inherited mtDNA, which is the expected di- 
rection of genetic movement (in chimpanzees and gor- 
illas [Pusey and Packer 19871, as well as for humans 
[ Schapera 19601, female transfer is the norm). However, 
the possibility needs to be tested with nuclear sequences 
(Bowcock et al. 1994). 

There are recent claims for fossil H. erectus in Java 
1.8 million yr ago (Swisher et al. 1994) and early H. 
sapiens in China 200,000 yr BP (Tiemei et al. 1994). 
The Java claim (Swisher et al. 1994) does not distinguish 
between the two main hypotheses in that both accept 
an early dispersal of H. erectus. The claim (Tiemei 1994) 
of early H. sapiens in China certainly would be anom- 
alous in being so early but, for a number of reasons, 
must still be treated with care until a full quantitative 
analysis of the morphological features is available. A 
recent quantitative analysis of morphological characters 
does favor a very recent expansion of humans from a 
single region (Waddle 1994). It is a long-standing prob- 
lem that it is not yet possible to determine directly 
whether a fossil group is ancestral to any extant group. 
Increasingly, models of human evolution must be con- 
sistent with a wide range of evidence: gene frequencies, 
DNA sequences, timing and distribution of fossils, ar- 
cheological findings, and languages. The time has gone 
when isolated fossil finds are sufficient to build theories 
of human origins, even though they are an essential 
component of any theory. It seems at times that there 
has scarcely been a fossil find that was not initially in- 
terpreted as a direct line to H. sapiens, but virtually none 
of the claims withstand further analysis. A qualitative 

attempt has been made to explain the genetic data 
(Thorne et al. 1993). We suggest that, having failed a 
major test in the present work (the universal migration 
version), the multiregional model cannot be taken se- 
riously until it makes a real attempt to produce a quan- 
titative model that accounts for the DNA sequence in- 
formation. In many respects the archeological evidence 
has been less subject to continued revisions than has 
paleontological data, and archeological data appear to 
be in better agreement with the DNA sequence data. 

To conclude, the out-of-Africa hypothesis has been 
subjected to numerous tests and is now the only hy- 
pothesis supported by a wide range of data. Alternatives 
such as the multiregional model fail crucial tests, in this 
case predicting gene dispersal over the whole range of 
human precursors. The support for the out-of-Africa 
hypothesis comes from mtDNA sequence and RFLP 
data, as well as from frequencies of nuclear alleles. It is 
consistent with much archeological work and the simi- 
larity of trees from genetics and languages. More work, 
particularly with nuclear sequence information, will 
clarify the hypotheses still further. We expect that in the 
next decade a fairly complete picture of human migra- 
tion over the last 100,000 yr will emerge. 

APPENDIX 
Proofs of the Propositions 
Proof of Proposition 1 

Clearly if an edge e contains the root, then 6(e) 
= 2ho. Now, suppose e does not contain the root p. In 
this case we may represent T as in figure 7 where r >, 1. 
For 0 d i d r + 1, let Lj denote the leaf set of Ti , L 
= Lo U L1 U . . . Ut,, L’ = L,+l, and hi = d(~,, li), 
where Zi E Li (by the molecular clock hypothesis, this 
value is the same for all choices of li from Li ). Then, 

RG. 7.-For this tree, the root p is the midpoint of an edge different 
to e, and so 6(e) is less 
1 in the Appendix). 

than maximal (refer to the proof of proposition 
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1 

S(e) = 1 L( 1 L’I .&;,,,, d(xJ’) 

(by the molecular clock hypothesis) 

<2ho, since hi < ho for i > 0, 

thereby completing the proof. 

Proof of Proposition 2 

By independence and the assumption that k is large, 
the distribution is Poisson. Thus we need only calculate 
h = kp( T), where p( T) is the probability that any in- 
dividual founding female has a surviving line after T 
generations. 

Consider first scenario 1. If l.t denotes the mean of 
the offspring distribution, then the expected value of N 
is kFr, so we may estimate u as (N/k)‘IT = exp[( I/ 
T)ln(N/k)] g 1 + ln(N/k)/T, since T 9 ln(k/N). 
Now, p(T) converges, in a monotonically decreasing 
fashion, to 1 - x, where x < 1 is the solution to the 
equation F(x) = x, in which F is the probability-gen- 
erating function for the offspring distribution (see Ar- 
threya and Ney 1972). Expanding F(z) as a power series 
about z = 1 gives F( I---E) = 1 - PE + 0.5a2( 02-u+u2) 
+ 0( Ed), so that the solution to the equation 1 - E 
= F( 1 --a), for E small, is given approximately by E 
g 2(lL-l)/02-p+cL2). 

Since p g 1 + ln(k/N)/T, and ln(k/N)/Tis small 
comparedtomin {1,02},wehavethatp(T)> 1 -x 
=& z 2 ln(N/k)/ To2. Since h = p( T)k, we have the 
required result. 

Considering scenario 2, p(T) < p( T,), and over 
the first T I generations, l_~. = 1, and so, by a well-known 
and classical result (see Arthreya and Ney 1972), p( T1 ) 
E 2/02T1, leading to the claimed bound for h. 
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Note Added in Proof 

The recent discovery in Africa (Zaire) of sophisti- 
cated tools about 90,000 yr BC (Yellen et al. 1995) is in 
agreement with the two-phase model developed here 
from DNA sequence data. These tools may be twice as 
old as equivalent ones from outside Africa, and so the 
times are consistent with expansion from Africa being 

considerably later than the time of the “last common 
ancestor.” The “cultural explosion” model may be more 
appropriate than those based on supposed changes in 
climatic conditions. 
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