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ABSTRACT

Cluster analysis of gene-wide expression data from DNA microarray hybridization studies
has proved to be a useful tool for identifying biologically relevant groupings of genes and
constructing gene regulatory networks. The motivation for considering mutual information
is its capacity to measure a general dependence among gene random variables. We propose
a novel clustering strategy based on minimizing mutual information among gene clusters.
Simulated annealing is employed to solve the optimization problem. Bootstrap techniques are
employed to get more accurate estimates of mutual information when the data sample size
is small. Moreover, we propose to combine the mutual information criterion and traditional
distance criteria such as the Euclidean distance and the fuzzy membership metric in design-
ing the clustering algorithm. The performances of the new clustering methods are compared
with those of some existing methods, using both synthesized data and experimental data. It
is seen that the clustering algorithm based on a combined metric of mutual information and
fuzzy membership achieves the best performance. The supplemental material is available at
www.gspsnap.tamu.edu/gspweb/zxb/glioma_zxb.

Key words: gene microarray, clustering, mutual information, simulated annealing, bootstrap
technique, K-means, fuzzy C-means.

1. INTRODUCTION

To understand the nature of cellular functions, it is necessary to study the behavior of genes
in a holistic (Akutsu et al., 2000; Debouck and Goodfellow, 1999; Huang, 1999; Kauffman, 1993;

Shmulevich et al., 2002) rather than in an individual manner because the expressions and activities of genes
are not isolated or independent of each other. Due to the large number of genes and the high complexity
of biological networks, clustering is a useful exploratory technique for the analysis of gene expression
data. Clustering has been used in a number of studies to obtain a global, unsupervised perspective on the
similarity of expression pro� les (Ben-Dor et al., 1999; Bittner et al., 2000; Claverie, 1998; Dougherty
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et al., 2002; Eisen et al., 1998; Iyer, 1999). A wide range of clustering algorithms has been proposed to
analyze gene expression data, including hierarchical clustering (Eisen et al., 1998), self-organizing maps
(Tamayo et al., 1999), K-means (Tavazoie et al., 1999), graph-theoretic approaches (Ben-Dor et al., 1999),
support vector machines (Brown et al., 2000) and fuzzy C-means (Dougherty et al., 2002). Successes in
application have been reported for many clustering approaches (Ghosh and Chinnaiyan, 2002; Horimoto
and Toh, 2001; Lukashin and Fuchs, 2001; Strehl and Ghosh, 2002; Xing and Karp, 2001; Yeung et al.,
2001) but so far no single method has emerged as the method of choice in the gene expression analysis
community.

In this paper, we develop a new gene clustering strategy based on minimizing the mutual information
among clusters. Pertinent to our approach is a study based on computing the mutual information for
all pairs of genes and then choosing a threshold of the mutual information to create clusters of genes
encompassing those with mutual information higher than the threshold (Butte and Hohane, 2000). These
have been similar treatments (Chen and Church, 2000; Friedman et al., 1999, 2000; D’Haeseleer et al.,
1999, 2000; Michaels et al., 1998). These works are based on pairwise mutual information (PMI) and thus
essentially only explore the marginal distributions of the multi-dimensional data. Our clustering strategy is
based on minimizing the mutual information of the variables among clusters, and hence it fully explores
the underlying joint probability distribution of the data. Bootstrap techniques (Zoubir and Boashash, 1998)
are employed to obtain more accurate estimates of the mutual information for the typically small sets of
data samples. Data are assumed to be truncated (Chen et al., 1997).

Mutual-information-based clustering minimizes the statistical correlation among clusters, whereas the
traditional K-means and fuzzy C-means algorithms minimize the total variance within different clusters.
It is natural to consider combining these two paradigms to obtain more effective clustering techniques. To
this end, we propose two clustering algorithms based on a combined mutual information and Euclidean
distance criterion and a combined mutual information and fuzzy membership criterion. The performances
of the new clustering methods are compared with that of some existing methods, using both synthesized
data and experimental data.

The rest of this paper is organized as follows. In Section 2, we formulate the new clustering strategy based
on mutual information minimization. We also discuss the bootstrap procedure for estimating the mutual
information from a small dataset, as well as the simulated annealing procedure for solving the corresponding
optimization problem. In Section 3, we propose two additional clustering methods based on combining the
mutual information metric and the conventional Euclidean distance or the fuzzy membership metric. In
Section 4, we provide performance comparisons of the above clustering methods using synthesized data.
In Section 5, we present clustering results on gene microarray measurement data. Section 6 contains the
conclusions.

2. GENE CLUSTERING VIA MUTUAL INFORMATION MINIMIZATION

In this section, we propose a new gene clustering method based on mutual information minimization.
We introduce the concepts of mutual information and normalized mutual information, discuss bootstrap
procedures for estimating the mutual information from a small dataset, introduce clustering based on pair-
wise mutual information, formulate the new clustering strategy based on mutual information minimization,
and present a simulated annealing algorithm for solving the corresponding optimization.

2.1. Mutual information

The motivation for considering mutual information is its capability to measure a general dependence
among random variables. Shannon’s information theory provides a suitable formalism for quantifying such
a concept. The entropy of a gene expression pattern is a measure of the uncertainty information content in
that pattern. Given a random vector X and its probability distribution P .X D xi/; i D 1; ¢ ¢ ¢ ; Nx , where
Nx is the number of possible values X can take, the entropy is de� ned as

H .X/
4D ¡

NxX

iD1

P .X D xi/ logP .X D xi/: (1)
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Higher entropy for gene variables means that their expression levels are more randomly distributed. The
joint entropy of X and Y is a measure of the uncertainty information between X and Y , and is de� ned by

H.X; Y /
4D ¡

NxX

iD1

NyX

jD1

P .X D xi ; Y D yj / logP .X D xi; Y D yj /; (2)

where Ny is the number of possible values Y can take. When certain variables are known and others are
not, the remaining uncertainty is measured by the conditional entropy

H .Y jX/
4D

NxX

iD1

P .X D xi/H .Y jX D xi/

D ¡
NxX

iD1

P .X D xi/

NyX

jD1

P .Y D yj jX D xi/ log P .Y D yj jX D xi/

D ¡
NxX

iD1

NyX

jD1

P .X D xi ; Y D yj / logP .Y D yj jX D xi/: (3)

The mutual information between X and Y is a measure of information about X (or Y ) contained in Y

(or X) and is given by

I .XI Y /
4D H .Y / ¡ H.XjY / D H .X/ ¡ H.Y jX/ (4)

D H .X/ C H.Y / ¡ H .X; Y / (5)

D
NxX

iD1

NyX

jD1

P .X D xi; Y D yj / log
P .X D xi; Y D yj /

P .X D xi/P .Y D yj /
: (6)

It is known that mutual information is always nonnegative, i.e., I .XI Y / ¸ 0 (Cover and Thomas, 1991).
Note that the mutual information de� ned in (4) is not normalized; and I .XI Y / can be quite small even

if X and Y are highly correlated since H .X/ and H .Y / may be small. Therefore, we normalize I .XI Y /

by the maximal entropy of each of the contributing sequences, giving a high value for highly correlated
sequences, independent of the individual entropy (Michaels et al., 1998):

NI .XI Y / D
I .XI Y /

maxfH .X/; H.Y /g
: (7)

Unlike the Euclidean distance, this measure also recognizes negatively and nonlinearly correlated data sets
as proximal (Michaels et al., 1998).

The probabilities in (6) can be estimated by the corresponding histograms, i.e.,

P .X D xi ; Y D yj / »D
#.xi; yj /

M
; (8)

P .X D xi/ »D
#.xi/

M
; (9)

P .Y D yj / »D
#.yj /

M
; (10)

where M is the total number of samples, and #.xi/ denotes the number of occurrences of xi .
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2.2. Mutual information estimation based on bootstrap

In practice, the sample size M is typically small, compared with the total number of possible values
Nx and Ny . In order to get a more accurate estimate of the mutual information, we resort to the bootstrap
technique (Zoubir and Boashash, 1998).

Let z D [z1; z2; ¢ ¢ ¢ ; zN ] denote the vector of N gene variables, where zi 2 f¡1; 0; 1g. Denote Z D
[z.1/; z.2/; ¢ ¢ ¢ ; z.M/] as M realizations (i.e., samples) of z. At each iteration of the bootstrap procedure,
M random draws are performed on Z, to form a “resample” Z¤ D

£
z¤.1/; z¤.2/; ¢ ¢ ¢ ; z¤.M/

¤
, and the

mutual information is computed based on the resample. The basic bootstrap method for estimating the
mutual information is summarized as follows.

Algorithm 1 (Basic bootstrap procedure for mutual information estimation).

² For n D 1; 2; ¢ ¢ ¢ ; P

—Resample: Draw a random sample Z¤
n of M values from Z;

—Calculate the estimated mutual information NIn based on the resample Z¤
n;

² Sort the bootstrap estimates NIn; n D 1; ¢ ¢ ¢ ; P , according to increasing order to obtain NIk1;
NIk2; ¢ ¢ ¢ ; NIkP

;
² The desired .1 ¡ ®/ 100% bootstrap con�dence interval is

¡ NIkp ; NIkq

¢
, where p D bP ®=2c and q D

P ¡ p C 1;
² The � nal estimated mutual information ONI is the mean of the mutual information values in the interval¡ NIkp

; NIkq

¢
.

We set ® D 0:05 and P D 1,000 in our simulations. According to Zoubir and Boashash (1998), Algorithm
1 can be substantially improved because the interval calculated is an interval with coverage less than the
nominal values (Robinson, 1988). Next we give a more sophisticated bootstrap algorithm that would lead
to a more accurate estimate of mutual information (Zoubir and Boashash, 1998).

Algorithm 2 (Percentile-t bootstrap technique for mutual information estimation).

² Calculate the mutual information NI based on initial sample Z;
² For n D 1; 2; ¢ ¢ ¢ ; P

—Resample: Draw a random sample Z¤
n of M values from Z;

—Calculate the estimated mutual information NIn based on the resample Z¤
n; use nested bootstrap to

estimate the standard deviation O¾n of NIn (i.e., estimate O¾n using bootstrap technique again). Then,
form

7n D
NIn ¡ NI

O¾n
: (11)

² Sort the bootstrap estimates 7n; n D 1; ¢ ¢ ¢ ; P , according to increasing order to obtain 7k1; 7k2 ; ¢ ¢ ¢ ; 7kP
;

and estimate the standard deviation O¾ from NI1; ¢ ¢ ¢ ; NIP .
² The desired .1 ¡ ®/ 100% bootstrap con�dence interval is

¡ NI ¡ O¾ 7kp
; NI ¡ O¾ 7kq

¢
, where p D bP ®=2c

and q D P ¡ p C 1.
² The � nal estimated mutual information ONI is the mean of the mutual information values in the interval¡ NI ¡ O¾ 7kp

; NI ¡ O¾ 7kq

¢
.

We set ® D 0:05 and P D 500 in our simulations for this algorithm. We perform 50 resamples for each
Z¤

n to estimate the standard deviation O¾n in the nested bootstrap step. Obviously, Algorithm 2 has a much
higher computational complexity than Algorithm 1.

Next, we introduce the clustering technique based on pairwise mutual information. Then we describe
our proposed method.

2.3. Clustering based on pairwise mutual information

Here we describe a threshold clustering algorithm based on pairwise mutual information (PMI). In Heyer
et al. (1999), a threshold clustering algorithm is developed using jackknife correlation. We apply this idea
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to the pairwise mutual information-based cluster analysis. The PMI works as follows: a candidate cluster
is formed by starting with the � rst gene and grouping the gene that has smallest mutual-information-based
distance with the target gene. The distance is de� ned as

d.XI Y / D 1 ¡ NI .XI Y / D 1 ¡
I .XI Y /

maxfH .X/; H.Y /g
: (12)

Each iteration adds the gene that has a minimal distance to the target gene to the cluster. The process
continues until no gene can be added without surpassing the distance threshold. A second candidate cluster
is formed by starting with the second gene and repeating the same procedure. Note that all genes are
made available to the second gene, that is, the genes from the � rst candidate cluster are not removed from
consideration. The process continues for all genes. The largest candidate cluster is selected and retained.
The genes in the largest candidate cluster are removed from the whole gene set, and the entire procedure is
repeated on the smaller gene set. For the prede� ned cluster number case, K in this study, when the number
of clusters reaches K , add all the remaining genes to the last cluster. In this algorithm, the threshold is
chosen as the mean of the distances of all gene pairs, or chosen empirically (Butte and Hohane, 2000).

2.4. Problem formulation

In this paper, we � x the number of clusters. Suppose we are to partition the set of gene variables into
K disjoint subsets as X1

S
X2 ¢ ¢ ¢

S
XK . The cost function is de� ned as the sum of pairwise mutual

information between any two subsets,

f .s/ D
X

i 6Dj

NI .XiI Xj /; (13)

where s denotes a particular partition scheme. The simulated annealing algorithm is employed to � nd an
optimal partition scheme such that the cost function attains the minimum, i.e.,

s¤ D arg min
s2S

f .s/; (14)

where S denotes the set of all possible K-partition schemes.

2.5. Optimization algorithm

We employ the simulated annealing algorithm (Aarts and Emile, 1989) to minimize the cost function of
(Eisen et al., 1998). The basic procedure involves a cooling procedure, in which a temperature parameter
starts out high and is gradually lowered until the system is frozen. At each temperature, the state is
perturbed many times, which avoids the limitation of being initialization dependent. The algorithm moves
to the next temperature in the schedule until the system reaches the thermal equilibrium at that temperature
on the basis of a decreasing energy cost function.

Let s0 and s1 denote two different K-partition schemes with cost values f .s0/ and f .s1/, respectively.
Then s1 is accepted from s0 according to the acceptance probability:

P faccept s1g D

8
><

>:

1; if f .s1/ · f .s0/;

exp

³
¡ [f .s1/ ¡ f .s0/]

T

´
; if f .s1/ > f .s0/;

(15)

where T 2 RC denotes the temperature parameter. Since the basic simulated annealing procedure suffers
from very slow convergence, we resort to a parallel annealing procedure (Ingber and Rosen, 1992). The
basic idea is to run a set of K partitions in parallel. The initial temperature parameter is set as 1, and this
parameter T is updated according to T Ã 0:85T .

To generate a new partition si ; i D 1; 2; ¢ ¢ ¢ ; K from the initial partition s0, we randomly select two
clusters from s0 and then randomly pick a gene variable from one cluster and put it in the other cluster.
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3. COMBINED MUTUAL-INFORMATION AND DISTANCE-BASED
CLUSTERING ALGORITHMS

The Euclidean distance measure can capture only positive correlations between temporal gene expres-
sion patterns, whereas mutual information can capture any correlative behavior (positive, negative, and
nonlinear) between expression time series (Michaels et al., 1998). When the sample size is large, the
mutual information can be estimated accurately, and then the mutual-information minimization clustering
exhibits optimality. However, in practice, the data sample size is small and mutual information estimation
is problematic. In order to enhance the clustering performance under such a condition, we propose to
combine the mutual information criterion and the traditional distance criterion in designing the clustering
algorithm.

3.1. Clustering based on combined mutual information and Euclidean distance metrics

Recall that in the K-means algorithm for clustering, associated with each gene i , we have an observation
vector yi D [yi.1/; yi.2/; ¢ ¢ ¢ ; yi.M/]; i D 1; 2; ¢ ¢ ¢ ; N . Suppose that the genes are partitioned into K

clusters, with centroids c1; c2; ¢ ¢ ¢ ; cK . Denote 1i;k as an indicator such that 1i;k D 1 if gene i belongs to
cluster k, and 1i;k D 0 otherwise. Then the objective function associated with a particular partition s is

g.s/ D
KX

kD1

NX

iD1

®®yi1i;k ¡ ck

®®2
: (16)

The K-means algorithm for clustering is as follows. Given a partition s (i.e., given the values f1i;kg), we
calculate the centroid of each cluster ck . We then reassign each y i to its nearest centroid to get a new
partition s¤. This procedure is repeated until there is no more change in the partition.

The mutual-information-basedclustering technique minimizes the statistical correlation between different
clusters while the traditional K-means algorithm minimizes the total variance within different clusters. Here
we propose to combine the two different objectives. The new objective function is given by

h.s/ D .1 ¡ ¸/
1
M

KX

kD1

NX

iD1

®®y i1i;k ¡ ck

®®2 C ¸
2

K2 ¡ K
f .s/; (17)

where 0 · ¸ · 1 is a weight factor to adjust the relative importance of the two criteria; f .s/ is de� ned in
(13); and 1=M and 2=.K2 ¡ K/ are normalization constants. The procedure for solving this optimization
problem is summarized as follows.

Algorithm 3 (Clustering based on combined mutual information and Euclidean distance). The
algorithm is the same as the simulated annealing algorithm introduced in Section 2 with the objective
function replaced by (17) and ck being the mean of the samples in the k-th cluster at each iteration.

3.2. Clustering based on combined mutual information and fuzzy membership metrics

The fuzzy C-means method is a variation of the K-means method in which each gene yi ; i D 1; 2; ¢ ¢ ¢ ; N

has a degree of membership ui;k .0 · ui;k · 1/ of belonging to each cluster k such that
PN

iD1 ui;k D
1; 1 · k · K . Randomly set the initial membership matrix U D .ui;k/N£K ; .ui;k 2 [0; 1]/, and calculate
the centroid of each cluster ck as

ck D

NX

iD1

ub
i;ky i

NX

iD1

ub
i;k

; k D 1; ¢ ¢ ¢ ; K; (18)
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where b > 1 (b D 2 in our simulations). The membership is calculated from the dataset by

ui;k D
®®y i ¡ ck

®® 1
1¡b

KX

jD1

®®y i ¡ cj

®® 1
1¡b

; i D 1; ¢ ¢ ¢ ; N; k D 1; ¢ ¢ ¢ ; K: (19)

Then the objective function associated with a particular partition s is

g.s/ D
NX

iD1

KX

kD1

ui;k

®®y i ¡ ck

®®2
: (20)

The fuzzy C-means algorithm for clustering is as follows. After determining the initial ui;k , ck and g.s/,
repeat (19), (18), and (20) until there is no more change in ui;k or g.s/. Denote Oki D arg max1·k·K ui;k .

We � nally assign yi to the Oki -th cluster.
Here we propose to combine the two metrics of mutual information and fuzzy membership. The new

objective function is given by

h.s/ D .1 ¡ ¸/
1
M

NX

iD1

KX

kD1

ui;k

®®y i ¡ ck

®®2 C ¸
2

K2 ¡ K
f .s/; (21)

where 0 · ¸ · 1 is a weight factor to adjust the relative importance of the two criteria. There are two kinds
of parameters affecting the objective function value, the fuzzy membership values ui;k; i D 1; ¢ ¢ ¢ ; N; k D
1; ¢ ¢ ¢ ; K , and the partition s. Note that here we keep N instead of K parallel partitions.

Algorithm 4 (Clustering based on combined mutual information and fuzzy membership).

² Initialization: Set initial temperature T D 1. Randomly select the initial partition s0, and compute the
cost h.s0/. Randomly set initial membership ui;k; 1 · i · N; 1 · k · K such that

PN
iD1 ui;k D 1.

² Repeat
for l D 1; ¢ ¢ ¢ ; 100

for 1 · i · N

generate s
.1/
i from s.0/; //Assume that gene i was originally (?)

// assigned to cluster r. We then random pick a cluster label j .j 6D i/,
// and assign gene i to cluster j , and exchange the values of ui;r and ui;j .
ck Ã

PN
iD1.ui;k/byi=

PN
iD1.ui;k/b (for all k D 1; ¢ ¢ ¢ ; K);

compute h.s
.1/
i /;

ui;k Ã
®®yi ¡ ck

®® 1
1¡b =

PK
jD1

®®y i ¡ cj

®® 1
1¡b ;

if h.s
.1/
i / · h.s.0// then accept s

.1/
i ;

elseif exp
± ¡

h
h.s

.1/
i /¡h.s.0//

i

T

²
> u » U [0;1/ then accept s

.1/
i ;

else accept s.0/; // The accepted partition denoted by s
.1/
i .

endfor
s.0/ D arg min1·i·N h.s

.1/
i /.

endfor
T Ã 0:85T ;

until T · 0:001.

Note that in step (?), we generate s
.1/
i from s.0/.
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4. CLUSTERING PERFORMANCE ON SIMULATED DATA

In this section, we test the performance of several clustering algorithms using simulated data. The
algorithms under consideration include

² K-means algorithm;
² Fuzzy C-means algorithm;
² Clustering algorithm based on mutual information (MI) minimization discussed in Section 2;
² Clustering algorithm based on the combined metric of mutual information and Euclidean distance (MIK)

discussed in Section 3.1;
² Clustering algorithm based on the combined metric of mutual information and fuzzy membership distance

(MIF) discussed in Section 3.2;
² Hierarchical clustering algorithm: single linkage clustering algorithm;
² Biclustering algorithm (a node-deletion algorithm proposed by Chen and Church [2000]).
² Threshold clustering algorithm based on pairwise mutual information (PMI) explained in Section 2.

Numerous cluster measures based on the sample points have been proposed (Halkidi et al., 2001; Jain
et al., 1999). Many of these are based on spatial separation, an exception being the � gure of merit (FOM),
which is based on the consistency of clusters when leaving a point out (Yeung et al., 2001). Since our
interest is solely with algorithm accuracy, in this paper we measure performance by the percentage of points
placed into correct clusters (Dougherty et al., 2002). Performance analysis on synthetic data is critical
because only in this way do we have ground truth (true clusters) from which to measure performance
deviation.

Example 1

In this example, we assume there are four binary random variables x1; x2; x3; x4 such that their joint
distribution satis� es

p.x1; x2; x3; x4/ D p.x1; x2/p.x3; x4/; (22)

where p.¢/ follows a Bernoulli distribution. Hence, the two clusters are .x1; x2/ and .x3; x4/. The proba-
bilities used in the Bernoulli distribution are 1=2n for each state, where n is the number of variables. In
the � rst simulation, we vary the sample size M and perform the cluster analysis using the above eight
algorithms. The results are the average of 100 simulations. The value of ¸ is set as 0.5 empirically in this
paper. Since the mutual information estimation will become imprecise with an increasing number of gene
variables, ¸ should become small to decrease the effect from the imprecise mutual information. Table 1
and Fig. 1 show the clustering results using different sample sizes. It is seen that the MI method always
outperforms the fuzzy C-means, the K-means, the linkage, the biclustering, and the pairwise MI methods.
The combined mutual-information and fuzzy membership-based clustering algorithm has the best clustering
accuracy. The MIK method has similar performance as the MI method. The MI-based clustering methods
become more accurate as the sample size increases, whereas the fuzzy C-means, the K-means, the linkage,

Table 1. Clustering Results for Example 1 for Different Sample Sizes

Clustering algorithms
Sample
size (M) Fuzzy MI MIK MIF K-means PMI Linkage Biclustering

10 0.7225 0.7600 0.7500 0.7825 0.7175 0.7175 0.7150 0.7000
30 0.7425 0.7850 0.7950 0.8225 0.7025 0.7750 0.7325 0.7400
50 0.7525 0.8375 0.8275 0.8550 0.6925 0.8200 0.7550 0.7335
80 0.7570 0.8400 0.8400 0.8650 0.6975 0.8300 0.7625 0.7475

100 0.7600 0.8625 0.8325 0.8725 0.7175 0.8500 0.7675 0.7550
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FIG. 1. The recognition accuracy comparisons of eight clustering algorithms for example 1. The x-axis denotes the
sample size, and the y-axis denotes the percentage of correct clustering.

and the biclustering algorithm are insensitive to the sample size. Note that the biclustering algorithm is the
algorithm 1 (single node deletion) proposed by Chen and Church (2000), where the parameter ± (maximum
acceptable mean squared residue score) is set as 0:1.

Next, we � x the sample size to M D 30 and compare the seven clustering algorithms (not including
the biclustering algorithm since it is for two-cluster clustering) under different numbers of variables and
clusters as in Table 2. The data are generated according to

p.X1; X2; ¢ ¢ ¢ ; XK / D p.X1/p.X2/ ¢ ¢ ¢ p.XK /; (23)

where X1; X2; ¢ ¢ ¢ ; XK are the K clusters. The MI method outperforms the fuzzy C-means, the K-means,
the linkage, and the pairwise MI methods. The MIK method has a similar performance as the MI method.
Again, the combined MIF clustering algorithm has the best performance.

Note that algorithm performances degrade substantially as the number of genes increases. This is to be
expected and can be signi� cantly recti� ed by replicating experiments (Dougherty et al., 2002). The degree
of degradation depends on the distributions governing the data according to (23). Performance holds up
better for fuzzy C-means if the distributions are separated and their variances small and holds up better
for mutual-information clustering if the mutual information within the individual distributions is high in
comparison to the mutual information between individual distributions.

Table 2. Clustering Results for Example 1 (M D 30)

Clustering algorithms
.N/ .K/

No. genes No. clusters Fuzzy MI MIK MIF K-means PMI Linkage

4 2 0.7425 0.7850 0.7950 0.8225 0.7025 0.7750 0.7325
10 5 0.5280 0.6520 0.5770 0.6950 0.5190 0.4840 0.3180
50 5 0.3440 0.3540 0.4500 0.4700 0.3300 0.3020 0.2260



156 ZHOU ET AL.

Example 2

In this example, associated with each gene xi , we have M observations xi
4D [xi.1/; xi.2/; ¢ ¢ ¢ ; xi.M/]T ,

which is the quantized version of a continuous random vector zi
4D [zi.1/; zi.2/; ¢ ¢ ¢ ; zi.M/]T . The vector

zi is generated in the following way: if xi belongs to the k-th cluster, then

zi » N .¹k; 6k/; (24)

where ¹i
4D [¹i1; ¹i2; ¢ ¢ ¢ ; ¹iM ]T is called a template (Dougherty et al., 2002) and

6k
4D

2

666666664

1 ¾ 2
k ¢ ¢ ¢ ¾ 2

k ¾ 2
k

¾ 2
k 1 ¢ ¢ ¢ ¾ 2

k ¾ 2
k

:::
:::

: : :
:::

¾ 2
k ¾ 2

k ¢ ¢ ¢ 1 ¾ 2
k

¾ 2
k ¾ 2

k ¢ ¢ ¢ ¾ 2
k 1

3

777777775

M£M

; (25)

where ¾ 2
k < 1. In the simulations, we set

2

66666664

uT
1

¹T
2

¹T
3

¹T
4

¹T
5

3

77777775

D

2

666664

0 0 ¢ ¢ ¢ 0 0
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and ¾ 2
1 D ¾ 2

2 D ¢ ¢ ¢ D ¾ 2
K D ¾ 2.

First, the clustering performance under different numbers of genes and clusters is given in Table 3, for
¾ 2 D 0:9 and M D 30. In the � rst case, where there are N D 4 genes and K D 2 clusters, the performance
of the MI method is much better than the fuzzy C-means, the linkage, and the K-means methods, and
the MIF method has the best performance. With an increased number of variables and clusters, the MI
method is slightly better than the fuzzy C-means, but the MIF method still has the best performance. The
K-means, the linkage, and the PMI methods have the worst performances.

In Table 4 and Fig. 2, the clustering performance under different values of ¾ 2 is shown with N D 4; K D
2, and M D 30. When ¾ 2 D 0, the fuzzy C-means method has the best performance and the MI method
is worse than the fuzzy C-means, the linkage, the biclustering, the MIK, and the MIF methods. With an
increased ¾ 2, the performance of the MI method becomes better, and the fuzzy C-means method becomes
worse. When ¾ 2 ¸ 0:3, the MI method outperforms the fuzzy C-means. It is interesting to note that the
combined MIF clustering algorithm has the best performance except for case ¾ 2 D 0. When ¾ 2 D 0,
the data are completely uncorrelated, and therefore the mutual information criterion is not effective in
clustering them.

Next, the clustering performance under different numbers of genes and clusters is given in Table 5, for
¾ 2 D 0:1 and M D 30. In the � rst case, where there are N D 4 genes and K D 2 clusters, the performance

Table 3. Clustering Results for Example 2 (¾2 D 0:9; M D 30)

Clustering algorithms
N K

No. genes No. clusters Fuzzy MI MIK MIF K-means PMI Linkage

4 2 0.7525 0.9150 0.7900 0.9950 0.7650 0.7075 0.7535
10 5 0.6000 0.6100 0.5500 0.6400 0.5800 0.5200 0.3600
50 5 0.3460 0.4631 0.4200 0.4800 0.3320 0.2920 0.2494
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Table 4. Clustering Results for Example 2 (K D 2; M D 30; N D 4)

Clustering algorithms

¾ 2 Fuzzy MI MIK MIF K-means PMI Linkage Biclustering

0.0 0.9175 0.7500 0.8375 0.8425 0.6925 0.6850 0.8850 0.7600
0.1 0.8350 0.7425 0.7975 0.8775 0.7475 0.6800 0.8325 0.7050
0.2 0.8125 0.7750 0.7975 0.8925 0.7450 0.6875 0.8125 0.6925
0.3 0.8075 0.8100 0.7900 0.8975 0.7675 0.6825 0.8100 0.6850
0.4 0.8050 0.8225 0.7875 0.9050 0.7775 0.6850 0.7850 0.6850
0.5 0.7800 0.8250 0.7825 0.9075 0.7525 0.6825 0.7825 0.6700
0.6 0.7800 0.8450 0.7825 0.9075 0.7500 0.6675 0.7750 0.6675
0.7 0.7725 0.8525 0.7850 0.9275 0.7525 0.6775 0.7675 0.6675
0.8 0.7700 0.9000 0.7950 0.9375 0.7575 0.7025 0.7625 0.6550
0.9 0.7525 0.9150 0.7900 0.9450 0.7650 0.7075 0.7535 0.6475
0.95 0.7125 0.9200 0.8050 0.9500 0.7350 0.7175 0.7500 0.6450

FIG. 2. The recognition accuracy comparisons of eight clustering algorithms for example 2 with sample size being
30. The x-axis denotes datasets with different variances de� ned in (25), and the y-axis denotes the percentage of
correct clustering.

Table 5. Clustering Results for Example 2 (¾2 D 0:1; M D 30)

Clustering algorithms
N K

No. genes No. clusters Fuzzy MI MIK MIF K-means PMI Linkage

4 2 0.8350 0.7425 0.7975 0.8775 0.7475 0.6800 0.8325
10 5 0.6600 0.5700 0.5800 0.6300 0.5100 0.4000 0.3430
50 5 0.4000 0.3380 0.3780 0.3800 0.4440 0.3580 0.2208
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of the MI method is much better than the fuzzy C-means and K-means methods, and the MIF method has
the best performance. With increased numbers of variables and clusters, the MI method is slightly better
than the fuzzy C-means, but the MIF method still has the best performance. The K-means and the PMI
methods have the worst performance.

5. EXPERIMENTAL ANALYSIS

We have applied the clustering algorithms to binarized expression data for 597 genes derived from 26
human glioma surgical tissue samples (Fuller et al., 1999). The original expression data is adjusted by com-
bining genes possessing the same binarized expression pro� les (Shmulevich and Zhang, 2002). The adjusted
set has 526 genes. Both the original and reduced sets are available at gspsnap.tamu.edu/gspweb/zxb/glioma_
zxb/glioma_web.htm, along with the clusters determined by the algorithms. Owing to the size of the gene
set and the computational requirements of the algorithms (in particular, simulated annealing), parallel
implementations have been developed and run on the NIH Beowulf Cluster.

The effect of combining the fuzzy and MI clustering criteria can be seen in Fig. 3, which shows (a) the
binary pro� les for the adjusted gene set (red D C1, green D 0), (b) the fuzzy C-means clusters, and (c) the
MIF clusters. Essentially, two small clusters were broken out from fuzzy C-means clusters to become
new clusters in the MIF clustering. The twelve-gene and � ve-gene clusters are listed in Tables 6 and 7,
respectively. While these new clusters were not separated by the fuzzy C-means criterion, their internal
mutual information was suf� ciently high relative to their mutual information with the original clusters that
the combined algorithm separated them out. While the number of genes changed between the fuzzy C-means

FIG. 3. Dendrogram for fuzzy C-means clustering and MIF clustering: the left one-(a) the binary pro� les for the
adjusted gene set (red D C1, green D 0), the middle one-(b) the fuzzy C-means clusters, and the right one-(c) the
MIF clusters.
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Table 6. The Cluster with Twelve Genes

Index no. of genes Gene description (name)

42 Tight junction protein 1 (TJP1); zonula occludens (ZO1)
76 Retinoblastoma-associated protein 1 (RB1)

159 Gene 159 interferon regulatory factor 1 (IRF1)
189 Tumor necrosis factor receptor 1-associated death domain protein
224 Caspase 4 (CASP4); CASP5; ICH2 cysteine protease
235 DNA polymerase alpha catalytic subunit (POLA)
270 Basic transcription factor 2 44-kDa subunit (BTF2p44)
286 Transcriptional repressor NF-X1
290 Transcription factor relB; I-rel
299 45-kDa nuclear factor (NF45)
343 Interferon alpha/beta/omega receptor subunit 1
406 Corticotropin-releasing factor receptor 1 (CRFR; CRF1) and (CRHR1)

Table 7. The Cluster with Five Genes

Index no. of genes Gene description (name)

109 Activating transcription factor 2 (ATF2); CREBP1; HB16
248 DNA topoisomerase I (TOP1)
305 Homeobox protein D3 (HOXD3); HOX4A
317 90-kDa TATA (TAF3C); transcription factor TFIIIB 90-kDa subunit (TFIIIB90)
325 Transcription factor HTF4; TCF12; E-box-binding protein HEB

and MIF algorithms is small, the error decrease is not insigni� cant. The MIF error from the objective
function of Equation (21) goes from 2.013 for the fuzzy C-means clustering to 1.084 for the MIF clustering.
The clustering results of the other methods are available at gspsnap.tamu.edu/gspweb/zxb/glioma_zxb (user:
gspweb; passwd: gsplab). The clustering results using MIK are similar to the results using the fuzzy
C-means clustering method. Some genes in different clusters are listed in the above web site. The MIK
error from the objective function of Equation (17) goes from 2.013 for the fuzzy C-means clustering to
0.908 for the MIK clustering. Compared with the MIF and MIK algorithms, the MI and PMI methods give
quite different clustering results. This is to be expected since they depend only on mutual information, not
a weighted combination of mutual information and Euclidean distance factors.

6. CONCLUSIONS

In this study, we have proposed a novel clustering strategy based on minimizing mutual information
among gene clusters. Simulated annealing was employed to solve the optimization problem. Bootstrap
techniques were employed to get more accurate estimation of mutual information when the data sample
size is small. Moreover, we proposed to combine the mutual information criterion and traditional distance
criteria, such as the Euclidean distance and the fuzzy membership metric, in designing the clustering
algorithm. The performance of the new clustering methods has been compared with that of some existing
methods, using both synthesized data and experimental data. The clustering algorithm based on a combined
metric of mutual information and fuzzy membership has achieved the best performance.

Note that the clustering algorithm (named “cluster ensembles”) of combining multiple partitions (Strehl
and Ghosh, 2002) is quite different from our methods. There, given a dataset, assume there are different
partitions (say, obtained by some clustering algorithms); then the cluster ensembles method is to � nd a
partition of the dataset that is an optimal combination of the different partitions. The mutual information
de� ned in cluster ensembles is based on different partitions, and it just depends on the numbers of elements
in the clusters of the partitions.
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