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Abstract

A graph-based clustering method is proposed to cluster protein sequences into families, which
automatically improves clusters of the conventional single linkage clustering method. Our approach
formulates sequence clustering problem as a kind of graph partitioning problem in a weighted
linkage graph, which vertices correspond to sequences, edges correspond to higher similarities than
given threshold and are weighted by their similarities. The effectiveness of our method is shown
in comparison with InterPro families in all mouse proteins in SWISS-PROT. The result clusters
match to InterPro families much better than the single linkage clustering method. 77% of proteins
in InterPro families are classified into appropriate clusters.
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1 Introduction

The number of protein sequences in public databases grows rapidly with the progress of experimental
technologies in molecular biology and large genome projects recently. The large size of sequence data
makes it difficult to know relationships among a large set of sequences. It is widely used to cluster
large data into meaningful or manageable groups [1, 2]. A number of clustering methods for molecular
sequences based on sequence similarities with their homologues, which is computed by homology
search programs such as BLAST [3] and FASTA [4], have been proposed [5, 6, 7|. Identification
of protein families by clustering based on sequence similarity is a traditional problem in molecular
biology. Genome-scale sequence clustering is important as a basis of functional, structural, or other
additional analyses.

InterPro [8] is an integrated resource for protein families, domains and sites. Its entries are linked
from proteins in SWISS-PROT database [9], which is one of the most annotated protein databases. In
InterPro, families are denoted by widely used protein signature databases, such as Pfam [10], PRINTS
[11], PROSITE [12], ProDom [13], and SMART [14]. These databases have their own vital tools for
classifying novel sequences into their entries. Such tools owe to the different strengths and weaknesses
of their underlying analysis methods. It implies that there may remain members of known protein
families and novel families.

One of the most widely used clustering methods is the single linkage clustering [15, 16]. It is a kind
of hierarchical clustering, and its cluster relationships can be represented by a rooted tree which is also
called dendrogram. A cluster is produced by cutting edges of the dendrogram with a threshold. Each
family has a different threshold of similarity that is the most appropriate, because there are many
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Figure 1: An example of a linkage graph. A vertex corresponds to a sequence, a thick edge denotes
high similarity between two sequences in its both end points, and a thin edge denotes low similarity.
Absence of edges between any two vertices denotes that the similarity between them is lower than a
given threshold. Regions surrounded by broken line denotes distinct clusters.

variations in diverged level or length of sequences. The single linkage clustering method is known
as to produce an accurate family in many cases when an appropriate threshold is given. There is a
difficulty to give such a threshold for each family. Application of only one threshold for all clusters
would produce many too small clusters and a few large clusters.

There is another problem in the single linkage clustering that a sequence may be more similar
to the other family member than some members of the same family by chance. Such situation is
shown in Figure 1, which could happen because sequence similarities are not metric. It is a weighted
linkage graph, which vertices correspond to sequences, edges correspond to higher similarities than
given threshold and are weighted by their similarities. Sequence v is more similar to just one member
of left cluster rather than right cluster members. It can be thought that v is similar to the left cluster
member in residues except for conserved residues in the left cluster, and share conserved residues
with the right cluster members. Thus it would be better that v belongs to the right cluster, in which
member sequences are moderately similar to v. However, v is classified in the left cluster by the single
linkage clustering because of the most similar sequence.

To cope with the two issues, employment of a linkage graph is essentially effective because it enables
us to cluster in consideration of not only similarities between members in just a cluster but in the
others. A clustering method based on a linkage graph was proposed to classify multi-domain structure
sequences [7], using an unweighted linkage graph, which clusters would overlap each other because of
the nature of multi-domain sequences. Although domain-based clustering is very important problem
recently, we are not concerned here with it. Our aim of this paper is to classify sequences into protein
families more accurately. In our approach, clustering sequences into protein families is formulated as a
kind of graph partitioning problem of a weighted linkage graph. In a connected graph there is a set of
edges whose removal disconnects it, which is called cut and its weight is defined as the sum of cut edge
weights. Graph partitioning with the minimum cut weight into distinct non-empty sets of vertices
is employed to cluster mRNA expression data [17]. Computation of the minimum cut in a weighted
graph needs polynomial time and does not need any initial partitions. Graph partitioning with the
minimum cut weight into balancing distinct two sets is known as an NP-complete problem [18]. One
of the best known heuristic algorithms is the Kernighan-Lin algorithm [19]. It is a simple local descent
algorithm, which works well to improve an already reasonable initial partition. It swaps two vertices
in distinct sets, iteratively. Each iteration takes O(|N|?) time (| N| is the number of vertices). A more
complicated and efficient implementation, which takes O(|E|) time per iteration (| E| is the number of
edges), was proposed by Fiduccia and Mattheyses (the FM algorithm [20]). It can classify sequences
into accurate families if an appropriate balancing parameter or the number of each family members is
given. There is a difficulty to give the parameter before each family is identified.

Based on the FM algorithm, we propose a graph partitioning algorithm without the balancing
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parameter of clusters, which uses the first minimal cut weight as a criterion of partitioning and may
produce an empty set in some cases. Our sequence clustering method applies the graph partitioning
algorithm to an initial partition, which is produced by the single linkage clustering, iteratively.

In Section 3, our clustering method is applied to all mouse protein sequences in SWISS-PROT [9]
and the result is compared with InterPro [8] families, for demonstration of its effectiveness.

2 Method

2.1 Preliminaries

Definition 1 Given a set of sequences Seq = {seq;|l < i < n}, and their pairwise similarities
Sim = {s(z,y)|z,y € Seq, s(x,y) > 0}, and a threshold c. A weighted linkage graph is an undirected
graph, defined as G = (V, E,Wg), V = {v;|1 <i < n}, E = {(vi,v))| vi,v; € V, s(seq;,seq;) > c},
Wg = {s(vi,v;) = s(seqi, seq;)| (vi,vj) € E}.

Definition 2 A bipartitioning of a set V is P = (A, B) such that A CV, B =V — A. Hereafter we
refer to bipartioning as partitioning.

Definition 3 Given a weighted linkage graph G = (V, E, Wg) and a partitioning P = (A, B). A cut
is a set of edges interconnecting A and B, defined as

cut = {(z,y)| (z,y) € E, x € A, y € B}
And cut weight of (A, B) is defined as

cut_weight(A, B) = Z s(x,y)
(z,y)€cut

Definition 4 Given a weighted linkage graph G = (V, E,Wg) and a partition P = (A, B). The gain
of a vertex a € A is defined as

gain(a) = Z w(a,b) — Z w(a,a) (1)

beB a’€A,a’#a

Conversely, for b € B,

gain(b) = Z w(a,b) — Z w(b, b (2)

acA b EB,b'#b
gain(a) means a decrease of the cut weight when a moves from A to B, i.e., the following equation
holds:
gain(a) = cut_weight(A, B) — cut_weight(A — {a}, BU {a})

Note that eq. (1) and eq. (2) imply that a movement of v between A and B changes the gains of just
vertices adjacent to v, not all gains.

Definition 5 Given a set of sequences Seq and their pairwise similarities Sim. The similarity of two
clusters P and @ is defined as s(P, Q) = max{s(z,y)|x € P, y € Q}. A SL tree (Single Linkage tree,
or dendrogram) is computed as follows. A set of clusters SC' is used.

Step 1. Make n singleton clusters and produce n nodes corresponding to the singleton clusters.

Step 2. Repeatly to merge the most similar two clusters P and ) and produce node m, of
which children are nodes corresponding to P and ), until a single cluster remains.
The merged cluster of P and @ is referred as SLC(m), and s(P, Q) as the similarity
at node m.



96 Kawaji et al.

2.2 Graph Partitioning Algorithm

Our method aims to improve partitioning of a connected weighted linkage graph from an initial one
into a partitioning which does not divide any families, in this section. The FM algorithm would make
a good partition when an appropriate balancing parameter is given, because it makes a cluster in
which the number of members is appropriate and the members are moderately similar to each other
by making partitioning with a minimal cut weight. However, such a balancing parameter can not be
given before clustering.

We designed a graph-partitioning algorithm to produce a partition with a minimal cut weight from
an initial one, without any balancing parameters. The FM algorithm repeats ‘one-pass improvement’,
which searches for a partitioning with the minimum cut weight while all vertices are moved from one
set to the other, keeping the balance of the two sets. Removal of the balancing parameter from the FM
algorithm produces a partition with an empty set and a set of all members necessarily, because there
is always a partition with the minimum cut weight, 0, in search space of the algorithm. It implies that
limitation of search space enables us to produce a partition with non-empty sets in some cases.

Our graph partitioning algorithm is described below. A weighted linkage graph W LG = (V, E, Wg),
which is expressed in the adjacency list representation, and an initial partition (A, B) are given. Gains
of vertex v;, gain[i](1 < i < |V]), a list of vertices P, and a list of gains G = {g1, g2, ...}, are used as
working area.

(1) repeat

(2) P:={},G:={}, GAIN :=0.

(3) Compute gainli] for all vertices.

(4) repeat

(5) Select an unmarked vertex v; having the highest gain, and mark v;.
(6) Append v; to the last of P, and gainli] to the last of G.

(7) Update the gains of v; and vertices adjacent to v;, as if v; had been moved.
(8) until All vertices are marked.

9) Find k such that 3% | g; is the first maximal value.

(10)  if Si,9:>0

(11) then

(12) Move vertices {p1, ..., px} to the other set of (A, B)

(13) until Y5, <0

Figure 2 shows an example of a process ‘one-pass improvement’, from (2) to (12) in the algorithm.
After initialization in (2), a vertex ¢ with the highest gain is marked and appended to P, and its gain
is appended to G. The gains of ¢, e, f and b are updated, as if ¢ had been moved. Such processes
are iterated until all vertices are marked. And k = 2 is selected as the first maximal value Zle Gi
which corresponds to a partition with the first minimal cut weight, and vertices ¢ and d are moved.
The partitioning algorithm returns a solution consisting of an empty set and a set of all vertices in
some cases. Such situation is regarded that it should not be partitioned. It gives a criterion of the
number of clusters as described in Section 2.3. It is important to note that the cut weight is decreased
necessarily in one-pass improvement. It implies that the algorithm stops for any input, because the
cut weight must be more than zero.

We do not use special data structure, such as a bucket list. It enables the FM algorithm to select
an unmarked vertex with the highest gain in constant time, and to be executed in O(|E|) time per
iteration. It is only possible by restriction of the degree of vertices in a graph to a constant value.
Thus, the computational time of the selection of the highest gain vertex takes O(|V]) time, because
gains of vertices adjacent to moved vertices are updated per iteration of inside repeat, the number
is |V] in the worst cases. Thus, our graph partitioning algorithm takes O(|V|?) time per one-pass
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Figure 2: An example of ‘one-pass improvement’ in graph partitioning process. For simplicity, all
edges are weighted by 1. Only a partition with the first maximal > g; are selected in practice.

improvement iteration. The number of one-pass improvement iterations is very small and near to
constant in practice. The result of application to all mouse proteins is shown in Section 3. With
regard to memory used in the computation, an adjacency list of W LG, which uses the largest space,
takes O(|V| + |E|) space.

2.3 Iterative Graph Partitioning

The graph partitioning algorithm presented in the previous section produce two clusters, one of which
may be empty in some cases. Its iterative applications are needed in order to produce more than
two clusters. In addition, a reasonable initial partitioning should be given for applying the algorithm
because it improves the initial one. To cope with these problems, we took an approach based on a
dendrogram produced by the single linkage clustering method, a SL tree. It is based on our assump-
tion that a single linkage cluster with the highest threshold is included by or resemble in a protein
family, and reasonable as an initial partition to be improved. Giving priority to cluster groups whose
members have high similarities to each other enables us to cluster without consideration of various
similarity thresholds depending families. Our algorithm to iterate partitioning is described bellow. A
connected weighted graph W LG = (V, E,Wg) is given. SLT is used as a SL tree of WLG, and N is
used as a list of SLT nodes except for leaves and the root in descending order of their similarities. In
addition, (A, B) is used as a working area of a partition of V.

1)
(2) while there exist any nodes in N.
(3) Remove n from the head of N.
(4) Improve an initial partition (SLC(n),V — SLC(n)) into (A, B)

using our graph partitioning algorithm described in Section 2.2.
if cut_weight(SLC(n),V — SLC(n)) > cut_weight(A, B), A# ¢,B # ¢
then

Make SLT for WLG, and N for SLT.

N

)
)
) Output A as a cluster.
8) Delete vertices in A and their adjacent edges from W LG.
) Update SLT for new WLG, and N for new SLT.
0
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Weighted linkage graph SL tree

Output a cluster
{cfa.hij.k

Figure 3: An example of a weighted linkage graph and its SL tree, assuming that a similarity between
g and f is the highest in all vertex pairs.

An example of clustering process is showed in Figure 3. Taking a node of SLT from the head
of N, and we make the initial partition ({f,g},{a,b,c,d, e, h,i,j,k}). One of the two sets, {f, g},
is a single linkage cluster, which similarity is the highest in N. The partition is improved into
({c, f,9,h,1,7,k},{a,b,e,d}). The improved set, {c, f,g,h,i,j,k}, is outputted as a cluster of our
algorithm. Vertices in the cluster and their adjacent edges in W LG are removed, and SLT and N are
updated for the next iteration.

Each iteration process removes a node from N, and the number of iteration is | N|, equal to |V|—2,
in the worst case. These processes are iterated until there are not any nodes in N. An adjacency list
of WLT and SLT, which uses the largest space, takes O(|V |+ |E|) space.

2.4 Sequence Clustering Method

The iterative graph partitioning method described in Section 2.3 should be applied to a connected
weighted linkage graph. Thus, our method of sequence clustering is described as follows:

1. Compute homologues of all sequences by homology search.

2. Construct a weighted linkage graph with a sequence similarity threshold ¢, and divide it into
connected components.

3. Apply the iterative graph partitioning method to each connected components.

3 Results

For evaluation of our method, all mouse proteins in SWISS-PROT, Release 39.17 of 27-Apr-2001,
was used, which includes 4,482 entries. the BLAST program was executed for each protein against
all with e-value threshold 0.1. Our clustering method using a graph partitioning algorithm, hereafter
we refer to it as CGP, was applied to the mouse proteins with bit score 33 as a threshold. It made
374 clusters, which include three or more protein sequences. There are 3,415 distinct proteins (about
76%) of all. In addition, the single linkage clustering method was applied to the same data using bit
score 33 and 100 as a threshold. It made 126 and 242 clusters, which included three or more protein
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Figure 4: The number of the InterPro families and matching rate with their match. A figure in
brackets indicates a threshold used in the single linkage clustering.

sequences, with 3,632 (about 81%) and 3,225 (72%) proteins respectively. Their results were compared
with the InterPro cross-references in the SWISS-PROT entries. 4,033 proteins have cross-references
to 1,369 InterPro entries. Only InterPro families, not domain or repeats, with three or more members
in the mouse proteins was extracted from 1,369 InterPro entries. As a result, 2,147 (48%) of all mouse
proteins have cross-references to 294 InterPro families. There are 549 proteins belonging to two or
more InterPro families, because of their overlapping.

As an example of clustering results, we focus on the serine proteases, trypsin family (IPR001254).
It matches to the largest clusters, 2,920 members and 185 members, in the single linkage clustering
with bit score 33 and 100 as thresholds, respectively. The cluster with a threshold 33 include not
only the family but also the others. The cluster with a threshold 100 misses three members of the
family, complement factor B (P04186), complement C2 (P21180), mast cell protease 3 (P21843),
while a cluster of the CGP method overlaps the family completely. It indicates that the CGP method
classified the serine proteases, trypsin family accurately, which is impossible to be classified by the
single linkage clustering method. To compare a set of clusters with InterPro families, matching rate is
defined as |[FNC|/|FUC], in which F is a family and C is a cluster. A cluster C' is referred to match
to F' when C has the highest matching rate in all clusters made by a clustering method, conversely a
family F' as match to C' when F' has the highest matching rate in families. Figure 3 shows the number
of InterPro families and their matching rate of their matches in three result of clustering. It implies
that the matching rates with the CGP clusters match to the InterPro families much better than with
the single linkage clustering method if its threshold is changed. There are 124 (42%) of the InterPro
families with matching rate higher than 0.9 in the CGP clusters.

There are some overlapping families in the InterPro, it is difficult to compare InterPro families and
the CGP clusters directly. Thus we call F' and C matching pair in both directions when F' matches
to C, and C' matches to F. There are 213 matching pair in both directions, which are 72% of all
294 InterPro families. The 213 families and CGP clusters include distinct 1,928 and 2,242 sequences,
respectively. The number of sequences shared in matching pair is 1,644. It means the CGP method
classified 77% of 2,174 sequences in InterPro families into appropriate clusters. Table 2 shows the
detail of matching pairs with matching rate 0.5 or more. They are selected such that members of a
cluster could belong to its match family with high probabilities. 186 clusters (87%) of matching pairs
in both directions have matching rate 0.5 or more. In Table 2, false positive means a cluster sequence
which is not included by its match family and is included by the others. Sequences not included by
any families are referred to NF, Not in any Families. NF sequences could be candidate members of
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Table 1: Relations of matching pairs in both directions. F' and C' mean an InterPro family and a CGP
cluster of matching pair, respectively. *This number includes some redundant sequences because the

InterPro families overlap each other. The total number of distinct proteins in F' is 1,928.

No. of No. of proteins No. of No. of

F(or C) | shared by F and C | proteins in F' | proteins in C
F=0C | 110 (52%) 680 (41%) 680 (34%) | 630 (30%)
FcO| 34(16%) 287 (17%) 287 (14%) | 716 (32%)
FoC | 43 (20%) 434 (26%) 615 (31%) | 434 (19%)
F#£C | 26 (12%) 243 (15%) 414 (21%) | 417 (19%)
Total 213 1644 1996* 2247

Table 2: Relations of matching pairs in both directions with matching rate 0.5 or more. F and C
are the same meaning to Table 1. FP means False Positives, sequences included by C N F and any
InterPro families except for F. FN means False Negatives, sequences included by F N C. NF means
Not in any Families, sequences not included by any families. TThis number includes some redundant
sequences because the InterPro families overlap each other. The total number of distinct proteins in
F and FN are 1,759 and 206 respectively.

No. of No. of proteins No. of No. of No. of | No. of | No. of

F(or C) | in both F and C | proteins in F' | proteins in C' | FP FN NF
F=C | 110 (59%) 680 (44%) 680 (38%) 680 (41%) 0 0 0
FccC| 27 (15%) 256 (16%) 256 (14%) 332 (14%) 25 0 51
F>C | 37 (20%) 402 (26%) 518 (29%) 402 (24%) 0 116 0
F#C | 12 (6%) 215 (14%) 328 (18%) 252 (15%) 9 113 28
Total 186 1553 17821 1666 34 2297 79

the match family.

Our implementation was executed on Compaq AlphaStation XP1000 (CPU: Alpha 21264 500MHz).
277 connected components were produced by dividing a whole data with threshold 33 as pre-processing,
which takes a few seconds. The largest component have 2,839 vertices and 62,704 edges in its
weighted linkage graph. Our clustering algorithm for the large set components takes 1,039 seconds
and 7.9Mbytes memory. Computation for the second or the other components take very few time and
memory. Table 3 shows the number of one-pass improvement iteration (outside repeat of our graph
partitioning algorithm) and the number of graph partitioning for the largest connected components
and the sum of all components. It reveals that the number of one-pass improvement iteration is less
than five in most cases. This implies that the iteration of the one-pass improvement does not increase
the time complexity too much.

4 Conclusion

A graph-based clustering method was proposed to cluster protein sequences into families using a
weighted linkage graph based on sequence similarity. It improves the single linkage clusters auto-
matically using a graph partitioning algorithm, which uses a heuristic of the FM algorithm. The
effectiveness of our method was shown by comparison with InterPro families in all mouse proteins in
SWISS-PROT. The time complexity of our method takes O(]V|3) time, granted that the number of
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Table 3: Relations between the numbers of one-pass improvement iteration (outside repeat of the
graph partitioning algorithm) and the graph partitioning,.

No. of partitioning No. of partitioning
No. of one-pass improvement | (for the largest connected components) | (for all connected components)

1 82 85

2 1,767 1,958

3 171 179

4 16 2

6 1 2

13 1 1

one-pass improvement iteration is constant. The result was computed in about twenty minutes for
the mouse protein sets. If the time complexity is improved and a guideline for a threshold used in
construction of a weighted linkage graph is given, it enables us to manage a huge set of proteins easily
such as all proteins of more species.
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