3. [12 pts] Here is an attempted solution to the 2-process mutual exclusion problem. Processes PO and P1 share three
boolean variables, csFree, x0, and x1, all initially true. In addition to the usual atomicity assumption of the
mutual exclusion problem, assume that each of the if-statements A3 and B3 is executed atomically.
PO executes

do forever {

Al: NCS;
A2: while x0 do {
A3: if csFree then
{ csFree := FALSE; x0 := FALSE };
}s
Ad: CS;
A5: csFree := TRUE; x0 := TRUE ;

}
P1 executes
do forever {

Bl: NCS;
B2: while x1 do {
B3: if csFree then
{ csFree := FALSE; x1 := FALSE };
}s
B4: CS;
B5: csFree := TRUE; x1 := TRUE ;

}
For each of the following properties, say whether or not the algorithm satisfies the property. If your answer is yes,
give a proof that covers all possible executions. If your answer is no, give a counter-example execution.

a.

Safety property: At most one process is in its CS.

Progress property: For each process, if the process is hungry then it eventually eats provided
that no process stays eating forever and everything other than NCS is executed with weak
fairness.

Answer:

3 [12 pts]. Solution

Part a [6 points].

Safety property holds.

Proof
Let Z0 denote "(PO at A2 with x0=FALSE) or (PO at CS) or (PO in CS) or (PO at A5)". Define Z1 symetrically
(i.e., Z0 with PO, x0, Ai, replaced by P1, x1, Bi). It suffices to show that at any time Z0 and Z1 cannot both be
true.
Consider the first time t1 that Z0 and Z1 both are both true.
Suppose at t1, Z0 becomes true and Z1 was already true. Then at t1, csFree was TRUE, PO executed A3, and
csFree became FALSE. And at some time t2 (< tl), csFree was TRUE, P1 executed B3, and csFree became
FALSE. Thus csFree became TRUE between t2 and t1. Thus PO executed AS between t2 and t1 (P1 could not
have executed B5 since Z1 holds between t2 and t1). But then Z0 and Z1 held at time t2, contradicting the
assumption that t1 was the first such time.
The symetric argument holds if at t1, Z1 becomes true and Z0 was already true.

End of proof

COMMON MISTAKES:
o A common mistake is to show that if PO enters CS at time t1, then PI cannot enter CS until PO leaves CS.

This does not account for the case where P1 may already be in CS at tl.
o To treat "P0 enters CS" to be the same as the execution of A3 with csFree=TRUE, whereas the former is
actually the execution of A2 with x0=FALSE. Similarly with P1.

Part b [6 points].

Progress does not hold.

Counter-example execution (each entry signifies execution of the statement):
Al, A2, A3, A4, Bl, B2, B3, B2, A5, Al, A2, A3, A4, B1l, B2, B3, B2,



Here, P1 is hungry for ever even though PO does not stay in CS forever and PO and P1 execute with weak fairness

1. [9 pts] Below are the arrival and service times (in seconds) for a stream of jobs arriving to a queue. Service times
are known to the scheduler.

arrival service
Jl 0 12
J2 2 8
J3 3 4
J4 7 9

This repeats every 35 seconds [i.e. J5 arrives at 35 with service 12,
J6 arrives at 37 with service 8, etc.]

For FCFS discipline, determine the average response time, the maximum number of jobs in
the system at any time, and the average number of jobs in the system.

Repeat part (a) for SJFP (i.e. Shortest Job First Preemptive) discipline.

Repeat part (a) but with the server replaced by a server that is 10% slower; that is, if the old
server required 10 s to serve a customer, the new server requires 11 s to serve that customer.

2. [9 pts] Implement binary semaphores in terms of counting semaphores. Do not use any other synchronization
constructs. For constructs other than semaphores, assume only read/write atomicity and weak fairness progress.
Your solution must be less than 30 lines and have no busy waiting. Elegance counts.
3. [8 pts] Consider an operating system that provides user processes with the following message-passing service:
e Send(pid, m): send message m to process pid. Blocks until process pid is at a corresponding receive.
e Receive(pid, m): receive message m from process pid. Blocks until process pid is at a corresponding send.
e Iftwo processes are at corresponding send and receive, then the communication eventually takes place.
The following questions are with regard to processes using the message-passing service. Give brief and precise
answers. Irrelevant material will cost you points.

a.

Explain how processes (using the message-passing service) can become deadlocked.

Does it makes sense for the OS to provide a deadlock prevention method. If yes, describe one
such method.

Does it makes sense for the OS to provide a deadlock avoidance method. If yes, describe one
such method.

Does it makes sense for the OS to provide a deadlock detection/recovery method. If yes,
describe one such method.

4. [4 pts] Consider a computer system where processes can have user-level threads. The cpu scheduler uses
two-level round-robin as follows: A ready process is either in level A or level B. A-processes are served in
round-robin order. B-processes are served in round-robin order but only when only when there are no A-processes.
A A-process that accumulates more than 20 milliseconds of cpu time becomes a B-process. A B-process remains so
until it stops being ready (i.e. ready or running).



Suppose the system has a set of processes that access a shared data structure using critical sections That is, the
processes share a semaphore mutex initially 1, and every access is preceded by P(mutex) and succeeded by
V(mutex).

Is it possible for the cpu scheduling and the processes to interact in a way that severely degrades the performance.
Explain briefly?

Answers:
Below, Queue shows the sequence of (job, remaining service time) entries in order of their service, with the head
(job being served) at the left.

Event Time NumJobs Queue
0- 0 ()
Jl arrives 0+ 1 (J1, 12)
J2 arrives 2 2 (J1, 10), (J2, 8)
J3 arrives 3 3 (J1r, 9), (Jz, 8), (J3, 4)
J4 arrives 7 4 (J1r, 5), (Jz2, 8), ((J3, 4), (J4, 9)
Jl leaves 12 3 (J2, 8), (J3, 4), (J4, 9)
J2 leaves 20 2 (J3, 4), (J4, 9)
J3 leaves 24 1 (J4, 9)
J4 leaves 33 0 ()

Response time of Jl1 = 12 - 0 = 12
non " ".J2 =20 - 2 =18
non " " J3 =24 - 3 =21
non " " J4 = 33 - 7 =26

Average Response Time = (1/4) (12 + 18 + 21 + 26) = 77/4
Maximum Number of Jobs at any time = 4
Average Number of Jobs = (1/35)[(33 -0) + (24-2) + (20-3) + (12-7)] = 77/35

[This last metric is more easily obtained by Little's Law:
AverageNumberOfJobs = AverageResponseTime * Throughput (= 4/35) = 77/35
]

Part b. [3 pts]

Event Time NumJobs Queue
0- 0 ()
Jl arrives 0+ 1 (J1, 12)
2- 1 (J1, 10)
J2 arrives 2+ 2 (J2, 8), (J1, 10)
3- 2 (J2, 7), (J1, 10)
J3 arrives 3+ 3 (J3, 4), (Jz2, 7), (J1, 10)
7= 3 (J3, 0+), ((J2, 7), (J1, 10)

J3 leaves,

J4 arrives 7+ 3 (Jz2, 7), (J4, 9), (J1, 10)
J2 leaves 14 2 (J4, 9), (J1, 10

J4 leaves 23 1 (J1, 10)

J1l leaves 33 0 ()

Response time of J1 = 33 - 0 = 33
non " " g2 =14 - 2 = 12
non " " J3 = 7 - 3 = 4
non " " J4 =23 - 7 =16

Average Response Time = (1/4) (33 + 12 + 4 + 16) = 65/4
Maximum Number of Jobs at any time = 3 (or 4 for an instant)

Average Number of Jobs = 65/35 (easy from Little's Law)



Part c. [3 pts]

With the above server, 33 seconds of work enters every 35 seconds. If the service times are increased by 10%, then
36.3 (=33 + 3.3) seconds of work would enter every 35 seconds. In the long term, the queue would blow up and
average response time, max number of customers, average number of customers would all be unbounded (or
infinity).

GRADING: For parts a and b, roughly I point for the individual response times and 2 points for the rest. For part c,
all or nothing.

2 [9 pts]. Solution

Below, Vb() and Pb() to denote V and P ops on a binary semaphore, and V() and P() to denote the operations on a
counting semaphore.
Declaration of binary semaphore S is implemented as
record S {
integer val initially the value of S ; // value of S

CountingSemaphore wait initially 0 ; // process stuck at Pb(S) waits
here

integer waitCount initially 0 ; // number of processes stuck on
wait

CountingSemaphore mutex initially 1 ; // to protect val and waitCount

}
Pb(S) is implemented as
Pb (S) {
P( S.mutex );
if ( S.val = 0 )
then { S.waitCount ++ ;
V( S.mutex );
P( S.wait );
}
else { S.val := 0 ;
V( S.mutex );
}
}
Vb(S) is implemented as
Vb (S) |
P( S.mutex );
if ( S.waitCount > 0 )
then { S.waitCount -- ;
V( S.mutex ); // can be moved to after P(S.wait) in Pb(S)
}
else { S.val =1 ;
V( S.mutex );
}
}
A variation is to combine val and waitCount in the usual way.
GRADING: Roughly 3 points for each part (variables definition, Pb(S), Vb(S)). -3 points if the approach is correct
but the solution does not work completely.
Grievious errors leading to a max score of 0 or 1 [or 2 if the approach was otherwise correct]: using other
synchronization constructs or busy waiting [0 points]; treating binary semaphore as just a counting semaphore
initialized to either 0 or 1 [1 point]; subjecting a semaphore to operations other than P and V [1 point]; subjecting
a non-semaphore variable to P or V operation [1 point].

3 [8 pts]. Solution

Part a. [2 pts]

A set of two processes, i and j, becomes deadlocked if either

11s at Send(j,.) and j is at Send(i,.), or
11s at Receive(j,.) and j is at Receive(i,.).

A set of three or more processes, il, i2, i3, ..., iN, become deadlocked if



il is at Send/Receive(i2,.),
12 is at Send/Receive(i3,.),

iN is at Send/Receive(il,.)

Part b. [2 pts]

It does not make sense for the OS to do deadlock prevention. Deadlock prevention would mean constraining when a
process can do a send or a receive. Because the OS has no idea of the application. such constraints would be
meaningless.

Part c. [2 pts]

It does not make sense for the OS to do deadlock avoidance. Deadlock avoidance would mean constraining when a
send or receive returns. But this depends entirely on the peer user process, and not on any resource controlled by the
OS. (Equivalently, deadlock avoidance and deadlock prevention result in the same set of "resource-allocation"
states.)

Part d. [2 pts]

It does make sense for the OS to do deadlock detection/recovery. The OS can detect the presence of a deadlock by
searching for a cycle as described in part a. This search can be initiated periodically or whenever a process calls a
send or receive operation. Upon finding such a cycle, it can terminate all the processes involved in the cycle (or do
appropriate exception handling if defined).

GRADING: Mostly all or nothing for each part. A common mistake was to redefine the semantics of the send and
receive primitive.

4 [4 pts]. Solution

The only way for the interaction between the cpu scheduling and the critical section activity to cause performance
degradation is if the system can enter the situation where a B-process has grabbed mutex [is in the critical section]
and runs very slowly because of A-processes. This degrades the performance of all processes contending for the
critical section.

Case 1: If the P operations are implemented without busy waiting, then the A-processes are not contending for the
critical section, i.e., not be waiting on P(mutex). In this case, only processes waiting at P(mutex) are degraded by the
extra slowness of the process holding mutex.

Case 2: If the P operations are implemented with busy waiting, then A-process can be waiting on P(mutex). In this
case, none of the waiting or eating processes can make progress. This devastates the performance.

GRADING: 4 points for cases 1 and 2. 2 points for case I only.



