22 mn 1 Tiny http://www.cs.biu.ac.il/~linraz //f 4>

D'aAvYnn Nniiuv;70' 221X

INI'aI7135021 p'aynna vin'wa ninan .1:1 wy'y

DIDINN NIYNNYA QYW [ND'T2 0750 DX 1I2WN2 NNRY X Instruction Set D Tanwd
NI'0'02 NIAI71I1DL 3 NIXINI AWNN NIDIYNA

NN 07 transistor count-ni devices-n niN'nn :Integrated Circuit Logic Technology .1
TINA 'O'R 91X (Ju?) "9NWn cycle time :Semiconductor DRAM .2

I'0'RA 19NWN nw2 AT NNnna 07T disk density 2102an 7o T nirarzinou .3

:awnnn wix'a .2
722 ey ni'iye an> - 'vnn nin'in NX 20Tn BogoMips-n .Linux 'vna nwixa 7w nTn BogoMips
Ny

(1) _MHz oy
BogoMips

.AWNNN ¥ response time-n NLPN ZnI0NN

ExTime(Y) Performance(X)
ExTime(X) Performance(Y)

(2)

:Amdahl j71n
W DX NN YIXA7 INXK YIND QYN W'Y ARYIND 0YIXN] 119'wn NdWn7 wnwn Amdahl 7in

2NN 'vn NIty

2I9'WN 197 DWINAN NNv'? 19N WNKRY? (performance) 0'yix\an 7w on'n :Speedup

T, .(9'wn 19Y) N9wh nxn IR P7nn v nta (T,
(3) Fo= T JDMIEAN NIDNA 19WY NX1 MIX 7700 7w YIXan 1 'ont 77nn :F,
old .enhanced execution-n YI¥2 Ay 9'wN S,

Mipan vivan at T,y
TN YINan A1 T,

(4) Tyew =Tota((I-Fe)+g—€)

e

T
(5) Speedup =21 — !

F
new (I'Fe)+S76

e

nIn 7w CPU nt3"no

(6) Tepy =LY _ 0pyy Cycles) - (Clock Cycle Time)
Clock Rate
ICxCPI
7) Tepy = ———" = [C x CPI x Clock Cycle Ti
(7) TPy = ook Rage ~ 1€ CP1 > Clock Cyele Time

.(6) NXwNa n'mNN TR DX 7"Tan%)X DWIXAN DX 19W71"ny ,7ni?

n
(8) CPU Cycles = ZCPli xIC;
i=1

:npaIT
.Speedup = 1 n"72n € 72T DIW DM9wN X7 NI ,S. =1 DX
.19102'X N'N' Speedup-n¥ MNIN X7 0T ,01'N2 INYN NIYYY7 0'NY7¥N i LS, = © ox

22 mn 2 Tiny http://www.cs.biu.ac.il/~linraz /// 4>

:D'"71a7n 0'72YN0 Amdahl NNOIN7 9on WIN'Y

INIY 77n7 71 Speedup NIWY? N1 NMNTO Y¥A7 [NIY NNdI 730 NIWYY? [NIY NIYYa Nnd W' DX
T NEN 72N niwy?

S xinw nwan 9w ontn 27nin oF,

.0'9'0INY D'TAYNN 190N :S,

2VIXn AT DX ['0EN7 1T 19¥7 'XTD NN

Clock Rate | CPI Instruction Count
X n'nin
X X TN
X X Instruction Set
X X X
X N'171200

DLX miopuIX ..1:2 W'y
WY NITIPD VO ,NITNNN 7Y NIZIYD ,NINXP AWNN NITIE9A [''9INA NIdAIoN NI7Ive oy awnn CISC
.DMAaIXR vyn ,overhead ,nwwixa :awa (VAX)

!RISC

AN Ny € o' 32 - TR 7712 RN DT 7D NI i 3 wr DLX-Y

.0'0"2 5 "y avim MAIX 73 .32 — 71T T KN DM2IRD 190N

(4 7w n'7193) N'wao 71932 [IND'TAN K72/anda data-n 70 .4 7w 27190 TN XD ATIRO N7NNN

I-Type Instruction:

31 26 | 25 21 120 16 | 15 0

OP-Code rs rd immediate

R-Type Instruction:

31 26 | 25 21120 16 | 15 11|10 615 0

OP-Code s rt rd shamt func

J-Type Instruction:

31 26 | 25 0

OP-Code jump offset

:NPAT? NITIZ9
Data Transfer: 1b, 1h, lw, 1d, sd, movd.

ALU Instructions: add, addi, addui, sub, mult, div, and, or, xor, lhi, sll, srl, sra, seq, sne, slt, sgt.
Control Instructions: beqz, bnez, j, jr, jal, jalr, trap, rfe.
FP Instructions: addd, addf, subd, divd, multd, multf, cvtd2f, cvtf2d, eqd, Itd, led.
lw 15, o(r3) // r5 € addr[r3 + offset].
sw 8(r3), r5 // [r3 + 8] € 5.
AT
int a[5], *pa;
pa= &a[2];// 4 7w 27190 TN NN y*axnn
*pa=5;
pa =2 + (char *)&a[2]; / 4-2 X1 2-2 'nNn y'a¥nn Nyd
*pa =5; // segmentation — D'OY |71 Y'A¥N1 YNNWN? D'0MN
1201 nooin aligned |0 NITIRONY NTAIVN
JO'N1Jalon NIt € unaligned DA YW9KN Intel

0'00'7 11X NN DT DN 77221 pipeline 7y 0Ty "1 RISC .branch/jump "NX y'om >"11 nop
[P7 .DNX DMATA X7 pipeline-n O7IX ,NDIN2 WNR YORY? vant X branch-a "Diwa?" nrt
1% K7W nmipn7 y1an X7 1 branch-n NN W' nop-2 D'YNNYN

.Datapath-n n1an— 2 w'w — 4 'ny

272n0X7 C n'1oin pian — 2 'y — 5-4 'ny

22 qinn 3 Tiny http.://www.cs.biu.ac.il/~linraz /// 4>

DLX NMOgLUIIX :3 W'y

Datapath — 3 wy'w — 2 'ny
.cycles 5 IN 4 A\nX7 y¥xann? nTIo 727 "'worn DLX-n 7w datapath-n
VY NiN'y9? awnnn AT DX 0'P7NN |1N210 7w nwa 77aa

‘0w S
Stage Memory Reference Register — Register ALU Register — Imm Branch
ALU
IF IR € MEM[PC]
NPC €< PC+4
ID A € Regs[IRy;, . »s]
B € Regs[IR 6, .. 2]
Imm € ((IR;¢) ##' IRy, .15 //sign extension
EX ALUOut € A + Imm ALUOut € A func B ALUOUT < A op Imm ALUOUT < NPC + Imm
Cond< Aop0
MEM (for loads) if (cond)
LMD €< Mem[ALUOut] PC < ALUOut
(for stores) else
Mem[ALUOut] € B PC € NPC
pmaw cond oy branch 2y
nTipon) ALU-n Yo o'9%
[(mwinnn nxan
NPC =PC + 4-7 nnx
WB (for loads) Regs[IR;; ;5] € ALUOut | Regs[IR}q 0] € ALUOut

,,,,,

RegS[lR16 20] < LMD

NN NTIRon NRN nstruction Fetch — IF

.DMAIRNN 0N NO'YY nstruction Decode / Register Fetch — ID
JDI'oNNAX NI7we vixa :Execute / Address Calculation — EX
N7 ARNR/NAMD :Memory Access — MEM

IR 0'anD :Write Back — WB

:Pipelining :4 WY'Y
pipelining doesn't help latency of a single task, it helps throughput of an entire workload.
:Pipeline — 3 ww'w — 3 'ny

DTN DN ITE AT D270 DN NPI7Y AN DR D'NRIZ VIXAN 17002 DNAT 2 no'on N (Pipeline

.N'0'0an
.RT 112y 210 X7 nt € latency WI* ;jnon
a0 throughput-n pn:

iy latch-n 7w 0790 .IYY7 TNRN D'NOIT DRI D'NORN DYAIRRN D'aMn 0w (latch) Q% 722
X7 07p0 (WUN NNWO qIo TV V797 19N YA IMIXKA V7PN TR (WY NS q10) VN'R W'Y yaid

.NINwn
.TNX ALU-n nir nfne chip-n M2 superscalar
:Hazards

:Hazards — 3 myw — 5-4 'ny
JINN [IYY 'O 75 NNKR NTIR9 YXANN YXINN1 271 770 121y 720 hazards "2 *“78' 'R pipeline-a

:0'"71won 210 3
:(Structural) 12n A1

NTIPD XNjP7 X (1YW Nnwo D1 pY Structural Hazard < NITIpo71 DRIM7 QRIYN [ND'T W' QUKD
(data nxmMP) N2'T7 N W 4-0 IYWUn NN'WOI 019N memory port-nN [IVY NNWwo 71 < ndfTan
.N71V9N NIX Y¥IA7 "I |IVW NN'WO NNIN D'ARYN 2'90N 'R € 4-n job-n 7w na'Md7 nwna pa v 17'NI

JINN NN'Wo1 DYO 70 4-n NTIZON VIN NN N Istalls ;N9

LORNP7 7R DY DYON IRWA 17'REL,NAMOYT D T nivann 20%-> 0 pw Ty [INnen

Dimronn 20%-32 1 yxann i store 7n load w'wd 1 niwann v nid

22 qinn 4 Tiny http.://www.cs.biu.ac.il/~linraz //f 4

ITIR971 011M17 7191 cache W'w 7721 2" 12 NI X7 Nt 71wonn n%w awnna [:nwn

:(data) D12ina .2

.Data Hazard < 12wIN NTN 1WNW 197 MAIK 7W Y2 wnNNWN? 11X TWURD

NnaT?

add rl, 12, r3 // the value of r1 is computed at the 3™ cycle, but only written in the 5™ cycle (WB).
sub r4, r1, r3 // need to use rl in the 31 cycle.

Data Hazards — 4 wy'w — 3-1 'ny
TV 17¢ YN — AIRD M7 0101 X7 TIY I 071X ,3-0 NN'Yon 9101 11D yiT rl YW vnw 27 ol
.datapath-n Nx ¥ N1 .ALU-2
TN DX RNpP7 [N An'yon qioa € 1197w mux-7 0101 ALU-n 7w 0790 forwarding :jnnosn
.(stalls X77 NNO) pTIVAN
2wun?% Joad NITIO N1AY X7 D7IX ,0MAINQ DTUNANMIN DAY 11V 210 [INNON
Iw rl, 0(r2) // the value of r1 is known at the end of the 4™ cycle.

sub r4, rl, 3 // the value of rl is needed at the beginning of the 3™ cycle.
[pw forwarding "y N7 NX WN97 TWOK 'R .3-n nn'wyo1 ALU NTIpo "y K71 4-n nn'wod 71 v rl X
.YIN XIN 1AW 2IW'NN 197 0t X7 TIV wn

DITIRON 75 712y NNX [Iyw 'y 7w stall (jano

Control Hazards — 4 2wy'w — 4-3 'ny

4-n nnwoa 1 N'wya X7 IN DTPNN NX'OR7 'RKINN DXN Nj7'Tan branch NnTIgo v :Control Hazards
i i i i i

?3-stage stalls DmMw ?NITIZ9N INY NX 7710 DAWNN 2T TV D'WIY NN

Y1977 11X X7 yTw TV Avnwn nwwa (0 j1nno

DX .7'70 yIx-an NX 0'2'wnn 71 (predict branch not taken) n*jpnn X7 branch-nw "o'wnin” ;1 jn9
TIX D'WXINI L NITIPON 7w YIX'AN NX D'j7'091 'TX D"'PNN7 1X KINW 0'RN branch-n 7w njp'1an pm
NIX 7021 Y197 11X DX 'TR X7 IR YIDF7 11X DX YT 3-0 nnwwoaw 1D .(delay slot |82 'K) nx'opn
DIV 111'W X7 TIV ,QND1 K7 Ty [IN] X DY pipeline-aw nn NX 71 7027 ¥ DXV — NYXIY NITIRoN
.(nop-7 71pw) 0 12X write-back "'y nwy' 11'wn .(JN>'77 namd IR Write Back n'n X7 Ty pw) 71T
WY Nnin'ws 3 17090 ,NXT NNIY7 72X

stall D¥ya 0151 DY 7D [IvW Nin'wo 3 7w TO9N 'TX branch X'n N'W'w/N'wmn n'21y9 722 y¥Imnaw |1
.branch-n n'vanw stalls-n 1901 NX |'0ZN7 NXM .NIMDINYT 7V192

NN 2
Dia ,nyd .((PC + 4) + offset) nx'97n TY' NX awNnY? :1T'ponw qon ALU n'o'omn :awnna e .1
[IV& NN'WD 79 n'nwn) W' TR N'7xn branch-n DX .NNXK NA'W9D 71 NdN 1YW Nin'ys 3 nipnY
.0NIN AN WAITE 210N [INND (1100 .NNX
MNX Y ,U¥A7 NIY D1 ND Y L,n'7ve n'vxan Tan RISC rawnn aMa branch delay slot .2
.branch-n

:branch target address cache-n '97 Y1977 11X DX WN1 :N90N NU'Y
‘cache-n N12N

address target
NTIZ9N 7w namdn aIv'nn

X471 (cache-n '97) nx'opn NAMd nn D'WTI' D DRI cache-1 Y'oIn pe-n DX D' T2 branch o'RNY vana
.0y Ty awn7 11X
.UTNN DY9 72 Awn% Mx K71 branch-n N 01T 71 NIXI7 Y DTN ANy

|DINQY K'N NNINN .NINNXD QY92 ITN NTIR92 N'WY N DNIT 1AW cache W' tbranch prediction
predict taken WN21 NT '971 I'WYIY NA YI9PN DX A1 DTIR ITN NTIZ92 N¥O7 ON |2 NAXNN W' '00'VVO
.predict untaken IX

NKR DTIE9N N7 ANI00N DNIT DI'019]

:Exceptions 15 WYy

.pipeline DY NIILZVIINA N'IDINN V7NN exceptions-1 7907 MNI' NWf

D'"NONY? exceptions-7 NNIAW NTIPON 197w NITIZON 727 NINNIA - exceptions-n DX :precise exceptions
[P nn 1T AThY? [N1] .nanwin X7 7"a0 nTIRon ANKY NITIRoN 7D 07K

22 inn 5 Tiny http://www.cs.biu.ac.il/~linraz /// 4>

.(DEC’s Alpha awnna :7wn?%) nn"pnn X7 precise exceptions 7¥ NN TANN DX :imprecise exceptions
[debugging miwy? nwjr ,n7 'R DwTI' X7 — overflow :7wn']

:DLX pipeline-2 NI'n'7 0"1YyY exceptions-n '110

Pipeline Stage Possible Exception

IF Page fault on fetch =

DY N7 |'"TY NN 72K ,ININ 1XYW [ND'T7 NRDINNN YO R'An7 XD
Segmentation fault = '7In X7 Dipn - NIV QT 'RY D17 nw2
Memory protection = execute only XInW text XIN@F7 |1'01 ,7wn?

ID Undefined or illegal op-code.
71N X7 NIN op-code-N DN exceptions W' .exceptions |'N DAXY DMAIND 7W NP

EX Arithmetic exception.

MEM Page fault on data
Segmentation fault
Memory protection

WB None.

5wy - 6-4 'ny

:Loop Unrolling

JINN [IVY NN'Y91 NIYXIANN NITIRON W YyXIinnn 190nn NX 7'Tan7 1"ny unrolling-2 wnnwn? N1
150N 7Y TINKN NIX 'OPN7 NNVNA DMYD 1DoN NR7I7N 912 IR 0'795wnN :loop unrolling-a |I'van
10907 1"y TIPN NIT'N' 7Y ATITNY? 20 NI 090N 21 “loop housekeeping”-7 n'wTpnw nmysn
.00 D'wIy X7 DN stalls-n

.(pipeline-7 210) NI'72EN7? NINMWOKR INI' KIXNY? [N loop unrolling ™"y

Instruction Level Parallelism 26 y'y
pipeline *72 y¥xann'? NnI70'w NITIRO RIXNT? NI017 11X NNl NNTO [9INA NAIDN TI Y¥A7 MIXI2 OX
dependencies-7 17 D'w7 17X D7IN .(7'27N2) N'VI7IN'O NIN'ION NITIPO Y¥A7 DA NI017 N1 .hazards

X2"apna yyann NImpo nnon DYy NIMpon |2

:ILP-7 niy"onv ni'i'7n 1o 3 n'n"jz

:D"PNN D'RAN D'RKINNN TNXR DX 1 NTIR92 data dependent X' j nTIP9 Data Dependencies .1
.M NYNNYN j NTIPOW NXRXIN NP'9N 1 NTIRS .X

.1 NTIP92 data dependent X'n k nTI91 k nTI92 data dependent X'n j NTIPD X .2

['K 72X ,(name) [IND'TA DI INIXA IX MAIX NN DNIYNNWA NITIRD 2 YWRD Name Dependencies .2
N7 1Mwn TN name-nw NITIRoN |12 (flow of data) n'aim1 Nt
SN 0T Y¥AY? NV D "INN"Y 0NAIK NINY D1wn register rewriting 'y

W' "' 91X .branch NTIP97 DXNNA NITIPON 1TO NX WAl M7 NI :Control Dependencies .3
.M 2w NN 7y vt

:Basic Dynamic Branch Prediction

6 JIMn NNX NTIRO A% NN 15yn DR Nnn Npan D n) LILP ane 7% oivnwe 735
.branch NnTIPo X0 NITIRO

branch history \X branch prediction buffer X'n TnI'"2 NVIYON dynamic branch prediction-n Nu'w
[N2'TN .ATIPON ¥ branch-n NAIND 7¢ DAINNNN D'V'AN DN 12 D'OPTI'RNY |0 |ND'T YOy :table
210 NI IT'N 7277 [N D' NI ONKY DX X7 IN NINNKY? Y¥I N1 branch-n DR "y 011 7N
.0'01 4-3-> DONXN DIYD 0FTAYNN 2N

2 awnn 72w nrnwn NN X7 D branch-n 7w N2IMDN DX INW? wnwn branch target buffer-n
.oy

132 Performance :6 W'y - 3-2 'ny

:Superscalar

.01 64 o) V1 32 XNP7 DIEN2

.MPNY W ,N11NNY 7j7 — [NIX y¥27 0ronl pipeline-7 nr71j79 2 0'0'1dn |IYW NN'yo 701

(ixan neri'7n M7 NP DR My) NN 'Y K77 0T DR YXAY71 M TIR DNR'? N1 superscalar-a
WTN TN NN X7 N’ implicit parallelism €

.NT DX AW TN (VLIW (Very Large Instruction Word)

22 qinn 6 Tiny http.://www.cs.biu.ac.il/~linraz /// 4>

UTN 1TNN)X € ATIRON DX y¥ani NITY? nTigon NX 77nn ,(0'01a 128 7wun?) ndNK nTIpo N
.explicit parallelism — 72702 Y27 N NN YT ANT'A'ODIR NIYYT VTI'W TN IX

JI'72pn = NNK N2 NNXR NTIRon N ovyan < 1-n jup CPI-n pnwa

22 mn 7 Tiny http://www.cs.biu.ac.il/~linraz /// 4>

:Pentium Pro - [IUX1 10XN
The goal: exceed the performance of the 100MHz Pentium processor.

The Pentium processor’s pipelined implementation uses 5 stages to extract high throughput. The
Pentium Pro processor moves to a decoupled, 12-stage, superpipelined implementation, trading less
work per pipestage for more stages (Pentium 4 is 20-stage pipelined). The Pentium Pro processor
reduced its pipestage time by 33%, compared with a Pentium processor, which means the Pentium Pro
processor can have a 33% higher clock speed than a Pentium processor.

The Pentium processor’s superscalar microarchitecture has an ability to execute 2 instructions per
clock. The new approach used by Pentium Pro processor removes the constraint of linear instruction
sequencing between the traditional “fetch” and “execute” phases, and opens up a wide instruction
window using an instruction pool. This approach allows the “execute” phase of the Pentium Pro
processor to have much more visibility into the program’s instruction stream so that better scheduling
may take place. It requires the instruction “fetch/decode” phase of the Pentium Pro processor to be
much more intelligent in terms of predicting program flow. Optimized scheduling requires the
fundamental “execute” phase to be replaced by decoupled “dispatch/execute” and “retire” phases. This
allows instructions to be started in any order but always be completed in the original program order.

The Pentium Pro processor is implemented as 3 independent engines that communicate using an
instruction pool:

|
"l{

What is the fundamental problem to solve?

Example:
rl € mem[r0]

R2€rl+12
€ r5+1
r6 € 16 —13

The 1% instruction causes cache miss. The CPU stalls while waiting for the data = under-utilized.

To avoid this memory latency problem the Pentium Pro processor “looks-ahead” into its instruction
pool at subsequent instructions and will do useful work rather than be stalled. In the above example,
instruction 2 will not be executed since it depends upon the result of instruction 1. However, both
instructions 3 and 4 can be executed. Since we must maintain the original program order, the results of
instructions 3 and 4 are stored back in the instruction pool awaiting in-order retirement = Instructions
are executed out of order.

Dynamic Execution technology can be summarized as optimally adjusting instruction execution by
predicting program flow, analyzing the program’s dataflow graph to choose the best order to execute

the instructions, then having the ability to speculatively execute instructions in the preferred order.

The Pentium Pro processor pipeline:

22 inn 8 Tiny http://www.cs.biu.ac.il/~linraz /// 4>

Fetch/Decode Unit: An in-order unit that takes as input the user program instruction stream from
the instruction cache and decodes them into a series of micro-operations that represent the
dataflow of that instruction stream. The program pre-fetch is itself speculative.

Dispatch/Execute unit. An out-of-order unit that accepts the dataflow stream, schedules execution
of the micro-operations s.t. data dependencies and resource availability and temporarily stores the
results of these speculative executions.

Retire unit: An in-order unit that knows how and when to commit (“retire”) the temporary,
speculative results to permanent architectural state.

Bus Interface unit. A partially ordered unit responsible for connecting the 3 internal units to the
real world.

Py

)

http.://www.cs.biu.ac.il/~linraz /// 4

22 imn 9 Tiny

..q||.|l...._.-

22 qmn 10 Tiny http.://www.cs.biu.ac.il/~linraz /// 4>

:Pentium 4 — 1Y 1XnN
Processor Architecture refers to the instruction set, registers and memory-resident data structures.
Processor Micro-architecture refers to implementation of a processor architecture in silicon.

What determines true processor performance?

Performance = MHz x IPC

Performance can be improved by increasing frequency, IPC or optimally both. Frequency is a function
of both the manufacturing process and the micro-architecture. At a given clock frequency, the IPC is a
function of processor micro-architecture and the specific application being executed. Increasing either
frequency or IPC and holding the other close to constant with the prior generation can still achieve a
significantly higher level of performance.

It is also possible to increase performance by reducing the number of instructions that it takes to
execute the specific task being measured (Single Instruction Multiple Data).

Integer and basic office productivity applicationstend to have many branches in the code that are
difficult to predict, thus reducing overall IPC potential.

Floating point and multimedia applications tend to have branches that are very predictable and thus
naturally have a higher average IPC potential.

The Pentium 4 processor uses out-of-order speculative execution and superscalar execution. In Pentium

4 processor a hyper-pipelined technology (20-stage) was implemented, where the depth of the

pipeline was doubled from that of the P6 micro-architectural generation (Pentium 3). This deeper

pipeline delivers significantly higher levels of frequency. The design effort focused on the following:

e Minimizing the penalty associated with branchmis-predicts:
The micro-architecture takes advantage of out-of-order, speculative execution. This is where the
processor routinely uses an internal branch prediction algorithm to predict the result of branches in
the program code and then speculatively executes instructions down the predicted code branch. If
the processer mis-predicts a branch, all the speculatively executed instructions must be flushed
from the processor pipeline in order to restart the instruction execution down the correct program
branch. On more deeply pipelined designs, more instructions must be flushed from the pipeline,
resulting in a longer recovery time from a branch mis-predict = applications that have many,
difficult to predict, branches will tend to have a lower average IPC.

e Keeping the high frequency execution units busy (vs. sitting idle)

¢ Reducing the number of instructions needed to complete a task or program
Many applications often perform repetitive operations on large sets of data. Further, the data sets
involved in these operations tend to be small values that can be represented with a small number of
bits. These two observations can be combined to improve application performance by both
compactly representing data sets and by implementing instructions that can operate in these
compact data sets (Single Instruction Multiple Data) = reducing the overall number of instructions
that a program is required to execute.

Using Advanced Dynamic Execution (as in the previous article).

22 qmnn 11 Tiny http.://www.cs.biu.ac.il/~linraz ,/// 4

Pentium(r) 4 Processor Architectural Block Diagram

- Dynamic Branch
{ Predictor: 4098 entries

Instruction Decoder

r

Micro Code ;
ROM/ Execution Trace Cache

12,000 yOPs

Allocate Resources / Rename Registers
¥ I I ;

Inteqger/Floating Point pOP Que Mermor P Cuele

Micro
Instruction
Sequencer

it integer Schedulers, H oating Poini Scheduler
SlowlInt | Fastint | Fastint | Memory FFGen | FF Mem

m—re o T Y v (2 v
Integer Register File | Floating Point Register Fllur'

Slow ALU

BTB — Branch target buffer: In this table you can find all the addresses to where a branch will or could
be made.

AGU — Address generation unit: This unit is responsible for the data from or to the correct address to
either be loaded or stored. Absolute addressing in programs is only used in rare exceptions. As soon as
you've got arrays of data the program code is using indirect addressing, keeping the 'AGUs' busy.

Pentium(r) Il Processor Architectural Block Diagram

System Bus Instruction Cache 16 Kbyte, 4-way | Dynamic Branch
32 entry TLB Fredictor: 512 entries|

FetehiDecode
Control

Static Branch
Predictor

Micro Code ROM /
Micro Instruction
Sequencer

Architectural

Integer/FP Register Register File

Renama & Allocator

Reservation Station (20 Entries)

AGU | AGU |

Store Load
Address Address

Linit Linit

Memory Order Buffer
12 entry store, 16 entry load

Reorder Buffer
{40 entries)

22 qnn 12 Tiny http.://www.cs.biu.ac.il/~linraz ,/// 4

Athlon Processor Architectural Block Diagram

Predecode Branch
Cache Prediction Table

Fmgf:t':f'm '—" 3-Way %86 Instruction Decoders

Instruction Control Unit {7T2-entry)

Z2-way, B4KB Instruction Cache
24-entry L1 TLB/256-ontry L2 TLE

Integer Scheduler (15-entry] FPU Stack Map / Rename I

Bus
Interface L
Unit | L2 Cache

FPU Scheduler [36-artry)

133 MHz | L2
Dual ; Cache
Pumped] Controller

Bd-bit .
21 GEf= Load ! Store Gueue Unit

2wy, 64KEB Data Cache
LATLE 286 anty L2

‘ System Interface

Pentium 3 has 10-stage pipeline, Athlon has 11, and Pentium 4 has 20.

The reason for the longer pipeline is Intel's wish of Pentium 4 to deliver highest clock rates. The
smaller or shorter each pipeline stage, the fewer transistors or 'gates' it needs and the faster it is able to
run. However, there is also one big disadvantage to long pipelines. As soon as it turns out at the end of
the pipeline that the software will branch to an address that was not predicted, the whole pipeline needs
to be flushed and refilled. The longer the pipeline the more 'in-flight' instructions will be lost and the
longer it takes until the pipeline is filled again.

Pentium 4 pipeline can keep up to 126 instructions 'in-flight', amongst them up to 48 load and 24 store
operations. The improved trace cache branch prediction unit described above is supposed to ensure that
flushes of this long pipeline are only rare occasions.

The stuff that happens in the trace cache, as mentioned above, only represents the first five stages of
the pipeline of Pentium 4. What follows is:

Allocate resources

Register renaming

Write into the pOP queue
Write into the schedulers and compute dependencies
Dispatch pOPs to their execution units
Read register file (to ensure that the correct ones of the 128 all-purpose register files are used

as the register(s) for the actual instruction)

After that comes the actual execution of the pOP.

The Rapid Execution Engine:

\ s 4

Fhul [SSE!
FAdd|SSEZ2

Slow ALU

Complex MMX

Inst,

The basic parts of the 'Rapid Execution Engine' are the two 'double-pumped' ALUs and AGUs. Each of
the four is said to be clocked with double the processors clock, because they can receive a pOP every
half clock. Simple pOPs that can be processed by the Rapid Execution Engine are executed in half a
clock, which is obviously a very good thing.

The story looks a lot different for the instructions that cannot be processed by the rapid execution units.
Those instructions or pOPs need to use the one and only 'Slow ALU', which is not 'double pumped'.
The majority of instructions need to use this path. However, the majority of code actually consists of

22 7inn 13 Tiny http://www.cs.biu.ac.il/~linraz /// 4>

the most simple 'AND', 'OR', 'XOR', 'ADD', instructions, making Intel's 'Rapid Execution
Engine'-design sensible though not particularly amazing.
Things look worse if you have a look at the red boxes, which represent the FPU-part of Pentium 4.

SSE2 - The New Double Precision Streaming SIMD Extensions

To conclude this epic piece about Pentium 4's internal architecture I need not forget to mention SSE2.
144 new instructions are finally enabling everything that SSE was expected to be in the first place. The
128-bit of packed data, which could only be in form of four single-precision floating-point values

under SSE can now be operated in all of the following options:

4 single precision FP values (SSE)

2 double precision FP values (SSE2)
16 byte values (SSE2)

8 word values (SSE2)

4 double word values (SSE2)

2 quad word values (SSE2)

1 128-bit integer value (SSE2)

The options are vast and the usefulness undoubted.

Feature AMD Athlon™ | Pentium® III Pentium® 4
Processor

Operations per clock cycle 9 5 6

Integer pipelines 3 2 4

Floating point pipelines 3 1 2

Full x86 decoders 3 1 1

L1 cache size 128KB 32KB 12k pop + 8KB Data Cache

L2 cache size

256KB on-chip

256KB on-chip

256KB on-chip

Total on-chip full-speed cache 384KB 288KB 264KB + 12k pop

Total effective on-chip full-speed cache 384KB 256KB 256KB - 12k pop
(exclusive) (inclusive) (inclusive)

System bus speed 200 MHz to 100MHz or 400MHz

266MHz 133MHz

3D enhancement instructions Enhanced SSE SSE2
3DNow!™

Single-precision FP SIMD Yes Yes Yes

4 FP operations per clock Yes Yes Yes

Cache/prefetch controls Yes Yes Yes

Streaming controls Yes Yes Yes

DSP/comm extensions Yes No Yes

ROB 72 42 126

22 qinn 14 Tny

http.://www.cs.biu.ac.il/~linraz /// 4

Crusoe - Transmeta '"¢J'"7¥ 1IXN

The Crusoe processor solutions consist of a hardware engine logically surrounded by a software layer.
The engine is a very long instruction word (VLIW) CPU capable of executing up to 4 operations in
each clock cycle. It has been designed purely for fast low-power implementation using conventional
CMOS fabrication. The software layer is called Code Morphing software because it dynamically
“morphs” x86 instructions into VLIW instructions. In other words, the Transmeta designers have
judiciously rendered some functions in hardware and some in software, according to the product design
goals and constraints.

The Transmeta designers have decoupled the x86 instruction set architecture from the underlying
processor hardware, which allows this hardware to be very different from a conventional x86
implementation. For the same reason, the underlying hardware can be changed radically without
affecting legacy x86 software: each new CPU design only requires a new version of the Code
Morphing software to translate x86 instructions to the new CPU’s native instruction set.

The Code Morphing software offers opportunities to improve performance without altering the
underlying hardware.

Transmeta created a very simple, high performance, VLIW engine with 2 integer units, a floating point
unit, a memory (load/store) unit and a branch unit. A Crusoe processor long instruction word, called a
molecule, can be 64 bits or 128 bits long and contain up to 4 RISC-like instructions, called atoms. All
atoms within a molecule are executed in parallel, and the molecule format directly determines how
atoms get routed to functional units. Molecules are executed in order, so there is no complex
out-of-order hardware. To keep the processor running at full speed, molecules are packed as fully as

possible with atoms. " 128-bit molecule -
FALDLD ADD LI BROCC
L 1 Y L4
Floaring-Paint Inreger Load/Store Branch
Lnit ALLI#0 Lt Lt

Figure 1. A molecule can contain up to four atoms, which are executed in parallel.

Superscalar out-of-order x86 processors, such as the Pentium 2 and Pentium 3 processors, also have
multiple functional units that can execute RISC-like operations (micro-ops) in parallel. The hardware
these designs use to translate x86 instructions into micro-ops and schedule (dispatch) the micro-ops to
make best use of the functional units:

x86 Instructions

Superscalar . . / \ In-Order
\‘ Decode Tran.s:]at:.' Micro-ops DJs-pa‘cr_'h —”’: Functional \t Retire
Units Units Uit [Units |_~*| Unit

Figure 2. Conventional superscalar out-of-order CPUs use hardware
to create and dispatch micro-ops that can execute in parallel.

Since the dispatch unit reorders the micro-ops as required to keep the functional units busy, a separate
piece of hardware, the in-order retire unit, is needed to effectively reconstruct the order of the original
x86 instructions, and ensure that they take effect in proper order.

Code Morphing Software

22 inn 15 Tiny http://www.cs.biu.ac.il/~linraz /// 4>

The code morphing software’s function is to translate instructions from one instruction set architecture
(x86 target ISA) into instructions for the VLIW engine that the Crusoe processor uses. The code
morphing software is the only piece of software that is written into the Crusoe processors Code
Morphing component. The Code Morphing software resides in a 512kb flash chip and this is the first
thing to be loaded. The code morphing software can translate an entire batch of x86 instructions at
once, the resulting translation is stored into a translation cache. Once translated an instruction does not
have to be translate again. The Crusoe translation cache, including the code morphing code, is in a
separate memory area that is inaccessible to x86 code. At initialization time the code morphing
software copies itself from ROM to DRAM because of faster access times when in DRAM compared
to ROM.

As with most caching techniques,

the code morphing software takes

advantage of "locality of VLIW CPU
reference." It does this by reusing
translated instructions that already
reside within its translation cache.
When a translation is made the
processor does not know how
much of the translated code will
be of use to it. Most frequently

Code Morphing Software

BIOZ, Operating System et

executed code has to be given
priority over, say, an instruction
that is only executed once. The
code morphing software has a
number of different modes that it
can use to get the best translation
results. These modes include interpretation (slow, but has no translation overhead) through translation
with straightforward code generation, all the way to vastly optimized code. This type takes the longest
to generate, but runs faster. Feedback from the code morphing software determines the type of
translation mode that will be used. Code Morphing Software collects data from previous executions of
instructions and uses this history to predict future execution patterns and prepare for them. Code
information such as block execution frequencies and branch history is calculated. This data is used to
decide what to optimize and translate.

The flexibility of the software translation approach comes at a price: the processor has to dedicate some
of its cycles to running the Code Morphing software, cycles that a conventional x86 processor could
use to execute application code.

Decoding and Scheduling:

Conventional x86 superscalar processors fetch x86 binary instructions from memory and decode them
into micro-operations, which are then reordered by out-of-order dispatch hardware and fed to the
functional units for parallel execution.

In contrast, Code Morphing can translate an entire group of x86 instructions at once, creating a
translation, whereas a superscalar x86 translates single instructions in isolation. Moreover, while a
traditional x86 translates each x86 instruction every time it is executed, Transmeta’s software translates
instructions once, saving the resulting translation in a framslation cache. The next time the (now
translated) x86 code is executed, the system skips the translation step and directly executes the existing
translated code.

Caching:
The translation cache, along with the Code Morphing code, resides in a separate memory space that is

inaccessible to x86 code. The Code Morphing software’s technique of reusing translations takes
advantage of “locality of reference”. As an application executes, Code Morphing “learns” more about
the program and improves it so it will execute faster and faster.

Filtering: (idea: code that the program executes very often should be optimized as best as can be)

In typical applications, a very small fraction of the application’s code (often less than 10%) accounts
for more than 95% of execution time. Therefore, the translation system needs to choose carefully how
much effort to spend on translating and optimizing a given piece of x86 code. The Code Morphing
software includes in its arsenal a wide choice of execution modes for x86 code, ranging from

22 7inn 16 Tiny http://www.cs.biu.ac.il/~linraz /// 4>

interpretation (which has no translation overhead at all, but executes x86 code more slowly), through
translation using very simple-minded code generation, all the way to highly optimized code (which
takes longest to generate, but which runs fastest once translated).

Prediction and path selection: (idea: statistics by branch)

The translator adds code whose sole purpose is to collect information such as block execution
frequencies, or branch history. This data can be later used to decide when and what to optimize and
translate. For example, if a given conditional x86 branch is highly biased (e.g., usually taken), the
system can likewise bias its optimizations to favor the most frequently taken path. Alternatively, for
more balanced branches (taken as often as not, for example), the translator can decide to speculatively
execute code from both paths and select the correct result later. Analogously, knowing how often a
piece of x86 code is executed helps decide how much to try to optimize that code.

Example:

A. addl %eax, (%esp) // load data from stack, add to %eax
B. addl %ebx, (%esp) // load data from stack, add to %ebx
C. movl %esi, (%ebp) // load %esi from memory

D. subl %ecx, 5 // subtract 5 from %ecx

First: translating the x86 instructions to simple sequence of atoms:

1d %r30, [%esp] // load from stack, into temporary
add.c %eax, %eax, %r30 // add to %eax, set condition codes.
1d %$r31, [%esp]

add.c %ebx, %ebx, %r3l

1d %esi, [%ebp]

sub.c %ecx, %ecx, 5

oQww®» P

Second: the optimizer applies well-known compiler optimizations to the code, such as: (a) common
subexpression elimination, (b) loop invariant removal, or (c¢) dead code elimination:

1d %$r30, [%esp] // load from stack only once
add %eax, %eax, 5%r30
add %ebx, %ebx, %r30 // reuse data loaded earlier

1d %esi, [%ebp]
sub.c %ecx, %ecx, 5

Third: the scheduler reorders the remaining atoms and groups them into individual molecules. This
process is similar to what out-of-order processors do in their dispatch hardware:

1. 1d %r30, [%esp]l: sub.c %ecx, %ecx, 5

2. 1d %esi, [%ebpl; add %eax, %eax, 5%r30; add %ebx, %ebx, %r30

2 important points to observe:

Though the molecules are executed in-order by the hardware, they perform the work of the
original x86 instructions out of order.

The molecule explicitly encode the instruction level parallelism, hence they can be executed
by a simple VLIW engine.

Exceptions and speculation:

In the x86 ISA, exceptions are precise: when one instruction causes an exception, all instructions
preceding it must complete before the exception is reported and none of the subsequent instructions
may complete. In the translation the ordering of the instructions might be different thus we might
already execute code and by that to violate the rules of the precise exceptions. Out-of-order processors
also have this problem. They employ complex hardware mechanisms to delay or undo the effects of
micro-ops that have been executed “too soon”.

The Crusoe solution: all registers holding x86 state are shadowed, i.c. there exists 2 copies of each
register, a working and a shadow copy. Normal atoms only update the working copy of the register.
When execution reaches the end of a translation without encountering an exception, a special commit
operation copies all working registers into their corresponding shadow registers. If any x86-level
exception occurs inside the translation, the runtime system undoes the effects of all molecules executed
since the start of the translation. This is done via a roellback operation which copies the shadow register

22 inn 17 Tiny http://www.cs.biu.ac.il/~linraz /// 4>

values back into the working registers. At this point, the Code Morphing software re-executes the x86
instructions conservatively, i.e. in their original program order, to determine the actual location of the
exception.

Alias hardware:

When the translator moves a load operation ahead of store operation, it converts the load into a
load-and-protect and the store into a store-under-alias-mask. In the unlikely event that the store
operation overwrites the previously loaded data, the processor raises an exception and the runtime
system can take corrective action. Using this mechanism it is always safe to reorder memory loads and
stores. The alias hardware can also help eliminating redundant load/store atoms.

LongRun power management:

Adjusting the power consumption without turning the processor off by adjusting the clock frequency
on the fly. The Code Morphing can also adjust the Crusoe processor’s voltage on the fly (since at a
lower operating frequency, a lower voltage can be used).

Example: If we need only 200MHz out of the 700MHz we have, then we decrease the clock (instead of
700 to 200) and now, since we’re working on a lower clock = we can decrease the voltage (P = KCV?,
whereas P = the chip’s power [790n], C = clock [MHz], V = voltage)

Note: Crusoe processor is efficient in caching: we divide the code to blocks and put the blocks in the
cache. Every time we get to a block already translated, we jump to the code. Since it is done in the
software we can take a bigger window to optimize.

Advantages of the Code Morphing software:
The Code Morphing software provides the Crusoe processor with unprecedented flexibility by
implementing the complexities of a traditional microprocessor in software. This results in the following
advantages over conventional x86 processors:

Traditional x86 Processors Crusoe Processor with Code Morphing software

Translates single instructions one at time |Translates an entire group of x86 instructions at once

Translates each x86 instruction every time|Translates instructions once, saving the resultant translation in
it is encountered a cache for re-use

Much of the processor functionality is implemented in

Full of complex, power-hungry transistors software — less logic transistors, less power

22 qnn 18 Tiny http.://www.cs.biu.ac.il/~linraz /// 4>

.Understanding the IA-64 Architecture 2'V'20 MIXNA

Today’s architecture challenges:

Sequential semantics of the ISA

Low instruction level parallelism (ILP)
Unpredictable branches, memory dependencies
Ever increasing memory latency

Limited resources (registers, memory addresses)
Procedure call, loop pipelining overhead.

IA-64 overcomes these challenges:

Sequentially inherent in traditional architecture.
Complex hardware needed to (re)extract ILP.
Limited ILP available within basic blocks.
Branches make extracting ILP difficult.
Memory dependencies further limit ILP.

Sequential semantics — The problem:

A program is a sequence of instructions. There’s implied order for the execution of the instructions
and potential dependence from instruction to instruction. However, high performance needs parallel
execution and parallel execution needs independent instructions, thus: independent instructions must
be (re)discovered.

The compiler knows the available parallelism, but has no “vocabulary” to express it = Hardware must
(re)discover parallelism (= complex hardware needed to (re)extract ILP).

In IA-64:

Program is a sequence of parallel instructions groups. There’s implied order of instructions groups.
There’s no dependence between instructions within the group = independent instructions are explicitly
indicated.

The compiler knows the available parallelism, and now has the “vocabulary” to express it - Hardware
easily exploits the parallelism.

Low instructions level parallelism — The problem:
Branches — frequent; code block — small. Wider machines need more parallel instructions = need to
exploit ILP across branches.

Branch unpredictability — The problem:
Branches alter the “sequence” of instructions. ILP must be extracted across branches. Branch
prediction has limitations:

e Not perfect, performance penalty when wrong.

e Need to speculatively execute instructions that can fault.

e Need to defer exceptions on speculative operations = more book keeping overhead hardware.

In 14-64:
Prediction is done by transferring control flow to data flow = prediction removes/reduces branches
and enables and enhances ILP.
Unpredictable branches are removed - misprediction penalties are eliminated.
ILP within the basic block increases = both “then” and “else” are executed in parallel.
Wider machines are better utilized.
Each instruction contains three 7-bit GPR register fields (128 integer + 128 floating point registers).
Register set (integer vs. floating point) is determined by instruction.
1A-64 compilers will have to be even smarter than RISC compilers:
e Must attach predicates to conditional branches to aid in speculative execution.
e Must analyze potential parallelism to set template bits appropriately.
e Must check for loads from memory and insert speculative load instruction earlier in stream
and replace normal load with speculative check instruction.

[A-64 instructions are fixed length — about 40 bits long.
Instructions can be out-of-order and they can originate from different paths of a branch.

22 7inn 19 Tiny http://www.cs.biu.ac.il/~linraz /// 4>

Branch prediction enables chip to execute parallel branches speculatively and discard unneeded results.

Memory dependencies — The problem:
Loads are usually at the top of a chain of instructions. ILP extraction requires moving these loads.

Memory latency — The problem:
Need to distance loads from their uses.

Resource constraints — The problem:

1. Small register space —> limits compilers ability to “express” parallelism and creates false
dependencies (can be overcome by renaming).

2. Shared resources: condition flags, control registers and etc. It forces dependencies on otherwise
independent instructions.

3. Floating point resources.

Loop optimization overhead — The problem:

Loops are a common source of good ILP. Unrolling/Pipelining exploit this ILP. Prologue/Epilogue
cause code expansion. Unrolling causes more code expansion and thus limits the applicability of these
techniques.

22 7inn 20 Tiny http://www.cs.biu.ac.il/~linraz //f 4>

-[2'Tn No>wn

AWONR! MDA 720 ' nirn'? 715t CPU-n
NI'n7 1Y bandwidth-n nirnwn 72 Niwpan N ovph DR

memory referen07

nstructions bytes per reference x IPC/Clock cycle

NTIZO 1AV 1N2'TZ D'WA D'YD NNnd
|N2'T7 D'waIY DY 75 0'971IW 0'NA Nnd

N1 WNNWIY N2 '1D'0 W' € NINNKY? DRIN DTN NWANWN DX (temporal locality) jpta nirnin
ANpaay

YNNWYIY NIaa '1D'0 W' € MINNKY DM DTN NYNNWN OX (spatial locality) anna nirnijn
.(0yna 7wn) 0'dYW DnimI

2T NOI'N

Upper
Registers
Cache
Memory
Disk Lower

nimipnt (NNNKY? DN'Y7R NYAIY D'RI72 DNIY) DIt Dimipn winm 'y owixan o' Cache
.Nnin2a yyian cache-n 7101 .(0'pI72% (N2t NI7N) nfanan

w') D'N'M D'Pi7a 7w niTR' 0w cache-n M2 .02 32 Ik 16 7w p'pI7a? no'Ta NR DyP7nn
.state, address tag and data w* 12w block frame-2 n'w 0'17an NX .(AnNn 7w alignment
:2-% 0'77nn address tag-n NX

.block-n nx |"oxn —tag .1

.block-n M2 nijp'n — offset .2

-hit — 225 X¥n1 W tag-n DX DPTA NDT7 NWA Ny
TRl miss — NINX

J¥' 7172 0'9'7Nn

.JN2'TAN WTNN pI72n DX 073N

.cache-1 1720 NX DY

717201 NXINAN N7'n IR DTN

rwivo

.0'ma 16 771122 cache block frame 17 W' :nnAIT

Iw $4, 0x128

NN D'7pn TR — X7 DX .(0x128 mod 16 = 0x128 & Oxfffffff0) cache-a x¥n1 0x120 tag DX D'pTIA
‘block-n

state tag data

valid 0x120 oxffffffff, Ox1, 0x7, 0x3
.$4-2 mix naonxni 0x7 nx CPU-7 on'tnn 271 offset-n X0 (8) 'nia an'n inn
Iw $5, 0x124
.CPU-7 0x1 nx W' o1'Tnn p71,]3 ?cache-2 X¥n1 0x120 tag ox D' T2

mean access = cache access + miss ratio * main memory access
50) ox7 anir 50 '9 TIAY' NT cache "2 NXT NNIYY? .TNX cycle WAIT cache-nn 1IN NN DX [NRAIT
.mean access = 1 + 0.01 * 50 = 1.5 2TX |IN2'T7 NWA7 11X DNZnnn TNX TINKAL (cycles

:NNTAN
Ax"7 Maw n'mamn aTnn — block

.cache-2 x¥n1 71720 — hit

.(working set > cache size) cache-1 XN¥n1 X7 1720 — miss
.miss-7 NINNIAWY NIYAN TINK — miss ratio

22 7inn 21 Tiny http://www.cs.biu.ac.il/~linraz //f 4>

.cache-7 nwn A1 — hit time
.CPU-7 1i7an nxan + cache-a 172 9"7nin7 npi7w ntn — miss penalty

:Block Placement
OpPTI'RNYW b-1 a XA X DX AN 7'y g’ frame 722 nirn% 721> p1i7an fully associative o
Y7 TNR Y1907 172 cache-a ARwA7 071D T'AN DN L,NNT DNYY
2N wen'? X nyo 7 [jnon
TN ,NNT DN7W OPTI'RNW b-1 a XIZ IR DX :TA72 TNX frame-7 0101 172N direct mapped o
.0N N97NN NYIY AT 7D X
.T272 NNR xR 0101 217aN Iset associative ®

?(1100) 12 2 ' |87 :npaiT

Block Number Block Numbei Block Number
234567 0123 567

Set Set Set Set

o 1 2 3
1) Fully Associative 2) Set Associative 3) Direct Mapped
Sully associative
tag (block #) offset
Oxal2 - tag = block # = al, offset = 2.
Iset associative
tag index offset

N
)

"N OPTINRN 7712 P71 NIXIAR 4 XD W' NNK NXAPA 70 DY 70 opTINR D

:direct mapped

tag index offset

.cache-n 1M DINN NX TN index-n .'9'¥90 DIN7 v'an cache line '
.block #n NX DYINN OPTI'RNI tag-ni D'V 3 W2 N OPTI'RN 710 NNAIma
Oxal2 - al =10100 001 - tag = block # = al = 20, offset =2, index = 1

Block Number Block Number Block Number 2cache-2 7172 D'XXIN)'X
01234567 01234567 01234567 tag-n NNIWN @

Jookup nx'xn? "ram wion e
validbit-nnpma e

?12 172 NN XXM 'X N0AIT

X¥N'N7? 210" pi'7an fully associative-2
Set Set Set Set INIX XI¥NY7 D'¥N 12NIRIENAIND 792
0o 1 2 3 NININ N Y € NNK (VY TNwoa
1Y € (7apna N T TWONYT D)

JATONIYION [MD'T

1 1 1
2 2 2)
3 7y n'7>non direct mapped-1

T T [i

1) Fully Associative 2) Set Associative 3) Direct Mapped

22 7inn 22 Tiny http://www.cs.biu.ac.il/~linraz //f 4>

?miss-n NNXIND 0'9'7nN 2172 DTN
Nnant nimipn? “mrosik — LRU .1
AN viwe LRU md 210 vynd — “mimn .2
MmN 91X 01Nl most recently used-n NX DAaply — NMRU — Not Most Recently Used .3
.DINKNN
.(offline) "nIxn DN DYD TV wnnwa AW pi7an NX 0'9'7nn — (Belady’s Algorithm) '7nrooix .4

:miss-n 'a10

.cache-n "a10 757 NNT 1727 NUWKRIN NWRAL (miss in infinite cache=) compulsory .1

X21ITa 7'90n 1'R cache-n YWRD NI I(miss in fully associative cache =) capacity .2

2 ww nirnY? o fully associative N'Rw cache 11y rwn? iomn now 7721 nip conflict .3
.conflict misses N1VZN € 'XIOK N7TAN .0 TI'R INIXT D'WANY working set-1 NN

N9 .(D'Tayn NNd7 qnIYNn [N2'T W' 1WKD) DINR D'Tavnn invalidations Ay NI icoherence .4
2w cache-2 MXYNIW NAIMDY 7Y ANDIYW YA .9niwn bus 72V KIN [N2'TN ‘memory snooping
TIX 702 NIN 1T NAUNDYT 17U AIRAN DY D71 DT DR NRNL,097 ['TRN WD AWNNN ,"IYN QUNnn
.T2'72 write through-7 210 snooping-n .|IN2'TNN NITN INIX X'l cache-1 DIzMN

:cache-n 77112

:cache-n 7w (tag-n 7'721> X'7) D'1Man [I0NK 7712 RN cache-n 7712
NI AT DN X7 20N 21ma 7T e
N 210 TN X7ATONE MY e

.0"0NP 0717002 YNA NIFNY7 WY nwant N foR €< m Cache
.DTRIN T NI 970N AIWN YT'A ;210 (AT Difipn 7¥n X7 € 7 oy Cache

.tag overhead W' ;n'ann NIMipn 210 D'7¥In X7 € " jop 712 :block size
W'Y DT 2V TN DTRIN 97010 YN YT ;NIXING X7 YT NNAyvn w' € 7 71ma 71
Jop DI 7w 7710 "90n

.miss rate NIND :larger associativity :Associativity
.'nn hit time 3"T2 ;N1 N2 NIy :smaller associativity

VN2 "2'0ORN YN AT 7aR miss ratio NIND ' direct mapped cache NnIvY7 set associative cache-2
Ant!

NI'O'R NN 271 7D NIYYI X7 NIAND O7IX .tag-n NIRNWN DY 72702 NIwya NIk Write Policies
AN

?1N2'TN NX 01DTYN DRN S hit W IwURD

.write-through (store-through) < |2

.write-back (store-in, copy-back) € N7

?cache-2 7172 DY ,misses W' TWND
.write-allocate (usually with write-back) € |2
.no-write-allocate (usually with write-through) € X%7

:Write back
172 097NN P NDITA DTV e
NN [IDTY X977 0'97NnIn 071 0'pI7aw D L dirty bit-a D'wnnun e
traffic/reference = fy, x missx B o
.0"71Ta caches-7 traffic nino w* o
.12 cache-7 nxand pwW write through-n ANt 7'y write back

:Write through

.02 DA DTN DTY e

PTIVA NITA MNMY. e

traffic/reference = f,ies ®

.cache-n 7w performance-2 NI7N 'R o
N2'MON .NIAMDY K71 NIRRT 2'09KR NI cache-n .|1N2'T7 D'ANID |N2'TN 7w coherence NIty [INNDY
.cycles N2 NI N1

