awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

Lesson 7

TCP/1P:

TCP/IP enables communication between processes on different computers/networks.

Every computer that is connected to the internet has an IP address that is anchored in the TCP/IP (for
example: 132.70.1.4). Every computer has communication entries called ports.

TCP/IP enables to set up a stream between a process on computer A and a process on computer B. This
stream enables the transfer of data (like pipe). The communication is bi-directional (can read and write
to the stream). Usually, one end is the server and the other end is the client.

Sockets:

The sockets enable the communication between processes on the same computer or on different
computers that are connected to the Internet. Basically, sockets are a way to speak to other programs
using Unix file descriptors.

Definition: A socket is one endpoint of a two-way communication link between two programs running

on the network. A socket is bound to a port number so that the TCP layer can identify the application
that data is destined to be sent.

Using Sockets:
Data Structures:

int sd; // socket descriptor

struct in_addr

{
unsigned long s _addr; / s_addr contains the IP of the computer (32 bit long, or 4 bytes)
H
sturct sockaddr
{
unsigned short sa_family; // address family: AF _xxx
char sa_data[14]; // computer's address and port number
H

sa_family: there are two ways to communicate: AF_INET (communication across the net - what will be
used in class) and AF_UNIX (local communication on the same computer).

We can use the following struct instead:

struct sockaddr_in

{
short int sin_family; // like sa_family above. We'll use AF_INET
unsigned short int sin_port; // port number - Network Byte Order!
struct in_addr sin_addr; // computer's address (internet address) - Network Byte Order!
unsigned char sin_zero[8]; // for alignments - same size as struct sockaddr
}
sin_port: If 0 - chooses in unused port at random.
sin_addr: IfINADDR_ANY it uses the local address of the computer.
sin_zero: Used to enable conversion between struct sockaddr in* and struct sockaddr*.

sin_zero should be set to all zeros.

Note: there are two byte orderings: most significant byte ("Network Byte Order"), or least significant
byte. Some machines store their numbers internally in Network Byte Order, and some don't. Some of
the numbers must be in Network Byte Order and not in Host Byte Order. Then, it must be converted.

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

To do this we can use:

unsigned long htonl(unsigned long hostlong); // host to network long (32 bits)
unsigned short htons(unsigned short hostshort); // host to network short (16 bits)
unsigned long ntohl(unsigned long netlong); // network to host long

unsigned short ntohs(unsigned short netshort); // network to host short

Reamrk:

Unix doesn't work with an IP address in the form of 4 decimal number (for example: 132.70.1.4). The
IP addresses are saved in a in_addr_t structure. There's a function that converts IP address in the form
of 4 decimal numbers to in_addr_t structure:

#include <arpa/inet.h>

in_addr tinet addr(const char *ip address); /* return -1 in failure. Upon success - returns the address
in Network Byte Order */

For example:

sockaddr in in;
in.sin addr.s_addr = inet addr("132.70.1.4");

Client-Server model:
One process which job is to give the service and waits for connections, and other clients that connect to
the server and ask for services. The client is the initiator of the connection.

If a computer runs several servers (ftp, http, ...), when a client wants to connect to the ftp server on that
computer it first needs to connect to the computer's IP and then to connect to the desired server. How?
Each address in TCP/IP model contains internal address as well - port. Every port is an integer number.
Ports 1-1024 are system ports and should not be used by programs.

IP address is a 32 bit unsigned integer. The port is a 16 bit unsigned integer.

So, when a client wants to connect to a server it needs to specify IP address and a port number.

The Server:

The server has a socket that is associated to a certain port. The server process sends and receives the

data from the socket.

1. socket: defines the socket from which read/write will be done.

2. bind: associates the socket to a specific port.

3. listen: makes it possible to start accepting connections to the server. This command also defines
how many "call waiting" is possible (usually it is defined to 5, i.e., the first request will be
accepted and if another 4 are requesting in the same type - they will be blocked until we finish the
connection process of the first client. However, if a 6 client requests connection it will get a
"connection refused" message).

4. accept: accepts a connection. This command blocks the process until some client asks for services.

5. read/write.

6. close: closes the socket.

How the server can handle several clients?

The server will play the role of an operation: the clients will connect to it. The accept commands return
a new socket that the server doesn't use. So the server will use fork and the "child" server will use the
socket and will handle all the communication with this client.

In general, only the connection operations are done with the main socket, and all the other read/write
actions are done using other sockets that are returned by accept.

The Client:

1. socket: defines the socket.

2. connect: the command receives IP address and port number and it initiates a connection from the
socket to the process located at (IP, port). We don't need to define the port number from which the
socket of the client connects since we don't need it. The OS decides from which port to connect.

3. read/write

4. close.

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

After the connection, both sides can read (receive) or write (send) data. This is done by read or recv,
and write or send:

ret = read(sd, buf, len); // read data from the socket to the buffer
ret = recv(sd, buf, len, flag); // if flag == 0 it's just like read
ret = write(sd, buf, len); // write data from the buffer to the socket

1/0 Multiplexing:

Using select() enables multiplexing several I/O channels. It enables to serve many clients using one
process, even if each request takes a lot of time. It also enables server to listen for incoming
connections as well as keep reading from the connections it already has.

You have to use select() since accept() and recv() block until data is ready...

Detailed Information:

SYNOPSIS
#include <sys/socket.h>

int socket(int format, int type, int protocol);

DESCRIPTION

socket() allocates a new socket.

format is either AF_INET or AF_UNIX. We'll always use AF_INET.

type is either SOCK_STREAM (for connection oriented communication, for example: TCP. Think of
connection-oriented communication as a felephone line) or SOCK DGRAM (for connection-less
oriented communication, for example: UDP. Think of connectionless-oriented communication as
sending mail). We'll always use SOCK_STREAM.

protocol is the protocol the socket will use. It's usually always O (and then it is by the default
definitions: SOCK_STREAM uses TCP, and SOCK_DGRAM uses UDP);

RETURN VALUES
Upon successful return the socket descriptor is returned. Otherwise, -1 is returned.

Some explanation about SOCK STREAM and SOCK_DGRAM: (taken from Beej's guide)

Stream sockets are reliable 2-way connected communication streams (the system takes care of errors).
If you output 2 items into the socket in the order "1, 2", they will arrive in the order "1, 2" at the
opposite end. They will also be error free. This is achieved using the TCP protocol. Stream sockets are
used in telnet programs, web browsers,

Datagram sockets are unreliable: if you send a datagram, it may arrive. It may arrive out-of-order. It
may not arrive at all. If it arrivers, the data within the packet will be error free. Datagram sockets use
UDP protocol. As opposed to stream sockets, you do not need to maintain an open connection. You
just build a packet, slap an IP header on it with destination information, and send it out.

SYNOPSIS
int bind(int sd, struct sockaddr *sock addr, int addr_len);

DESCRIPTION
bind() connects to the socket sd the port in sock_addr. addr_len is the size of struct sockaddr. sd is the
socket descriptor socket returns and the sock_addr struct needs to be initialized before this call.

RETURN VALUES
0 upon success, -1 upon failure.

Example: (taken from Beej's guide)
#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define MYPORT 3490

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

main()

int sockfd;
struct sockaddr in my_addr;

sockfd = socket(AF_INET, SOCK_STREAM, 0); // do some error checking!

my_addr.sin_family = AF_INET; // host byte order
my_addr.sin_port = htons(MYPORT); // short, network byte order
my_addr.sin_addr.s_addr = inet_addr("132.70.1.4");

memset(&(my_addr.sin_zero), "0, 8); // zero the rest of the struct

// don't forget your error checking for bind
bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr));

}

SYNOPSIS
int listen(int sd, int backlog);

DESCRIPTION

listen() defines the size backlog of the waiting queue of processes that want to open a connection with
the server. That is, the number of connections allowed on the incoming queue (incoming connections
are going to wait on the queue until you accept() them).

sd is the socket descriptor returned by socket().

RETURN VALUES
0 upon success, -1 upon failure.

SYNOPSIS
int accept(int sd, void *client_addr, int *addr_len);

DESCRIPTION

accept() is done by the server. accept() causes to wait on the socket for incoming connection. The
address of the process who sent the connection request is saved in client _addr. addr len is a pointer to
the size of client addr.

sd is the listening socket descriptor.

In connection oriented communication the server doesn't usually need to know that address of the client
and we can write NULL in the last 2 fields.

RETURN VALUES
Upon successful return, a new socket descriptor is returned. This sd will be used for communication
only with the process who initiated the connection. Otherwise, -1 is returned.

Note: After accept() you have 2 sd's. The original one is still listening on the port and the newly created
one is ready to send() and recv().

Example: (taken from Beej's guide)
#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define MYPORT 3490 // the port users will be connecting to
#define BACKLOG 10 // how many pending connections queue will hold

main()

{

int sockfd, new_fd; // listen on sockfd, new connection on new_fd
struct sockadd_in my_addr; / my address information

}

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

struct sockadd_in their_addr; // connector's address information
int sin_size;

sockfd = socket(AF_INET, SOCK_STREAM, 0); // do some error checking!

my_addr.sin_family = AF_INET; // host byte order
my_addr.sin_port = htons(MYPORT); // short, network byte order
my_addr.sin_addr.s addr = INADDR ANY:; // auto-fill with my IP
memset(&(my_addr.sin_zero), "0, 8); // zero the rest of the struct

// don't forget your error checking for connect
bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr));
listen(sockfd, BACKLOG);

sin_size = sizeof(struct sockaddr_in);
new_fd = accept(sockfd, (struct sockaddr *)&their addr, &sin_size);

SYNOPSIS
int connect(int sd, struct sockaddr *serv_addr, int addr len);

DESCRIPTION

connect() is done by the client. connect() tries to connect to the server serv_addr which contains the
destination port and IP address. addr len is the size of struct sockaddr. sd is the socket descriptor
returned from socket().

RETURN VALUES
Upon successful return, 0 is returned. Otherwise, -1 is returned.

Example: (taken from Beej's guide)
#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define DEST_IP "132.70.1.4"
#define DEST_PORT 3490

main()

{

int sockfd;
struct sockadd_in dest_addr;

sockfd = socket(AF_INET, SOCK_STREAM, 0); // do some error checking!

dest_addr.sin_family = AF_INET; // host byte order

dest _addr.sin_port = htons(DEST PORT); // short, network byte order
dest addr.sin_addr.s_addr = inet addr(DEST _IP);

memset(&(dest _addr.sin_zero), "\0', 8); // zero the rest of the struct

// don't forget your error checking for connect
connect(sockfd, (struct sockaddr *)&dest addr, sizeof(struct sockaddr));

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

SYNOPSIS
int select(int max_fd plus _one, fd_set *readfds, fd_set writefds, fd_set *exceptfds, struct timeval *timeout);

DESCRIPTION

select() is given 3 arguments of type fd set. Each one represents a group of file descriptors which
select() monitors. The fourth argument represents time duration. After this time the function must
return. If it's NULL the call isn't limited in time.

When calling select() the readfds group must contain file descriptors from which we want to read; the
writefds group must contain file descriptors to which we want to write; the execptfds need to contain
file descriptors that we want to know of exceptions or errors in.

If you don't care waiting for a certain set, you can pass an empty group using NULL.

The first argument, max_fd plus one, needs to be the highest number of descriptor in any of the
groups, plus 1.

For example:
If you want to see if you can read from stdin and some socket descriptor, sockfd, just add the file

descriptors 0 and sockfd to the set readfds. In this example will set max_fd plus one to be equals to
sockfd + 1 (which is definitely higher than stdin - 0).

When select() returns, readfds will be modified to reflect which of the file descriptors you selected is
ready for reading. You can test it using FD_ISSET.

To manage the file descriptors group we can use 4 macros:
FD_CLR(int fd, fd_set *set); // remove a descriptor from the group
FD_ISSET(int fd, fd_set *set); // check if a descriptor is in the group
FD_SET(int fd, fd_set *set); // add a descriptor to the group
FD _ZERO(fd_set *set); // nullifying (clear) the file descriptor group.

RETRUN VALUES

When the function returns every one of the groups contain a subgroup of descriptors that we can read
from, write to, or had errors.

The return value of the function represents the number of descriptors that are ready in the 3 groups.

0 is returned if the function returned due to timeout and if no file is ready.

-1 is returned upon error.

Example: (taken from Beej's guide)
#include <stdio.h>

#include <sys/time.h>

#include <sys/types.h>

#include <unistd.h>

#define STDIN 0 // fd for stdin

int main() // the following code waits 2.5 seconds for something to appear on stdin
{

struct timeval tv;

fd set readfds;

tv.tv_sec = 2;

tv.tv_usec = 500000; // micro-secs

FD ZERO(&readfds);
FD_SET(STDIN, &readfds);

/I don't care about writefds and exceptfds
select(STDIN + 1, &readfds, NULL, NULL, &tv);

if (FD_ISSET(STDIN, &readfds))
printf("A key was pressed!\n");
else
printf("Timed out\n");

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

SYNOPSIS
struct hostent *gethostbyname(const char *hostname);

struct hostent {
char *h_name; // official name of the host
char **h_aliases; // a NULL-terminated array of alternate names for the host
int h_addrtype; // the type of address being returned; usually AF_INET
int h_length; // the length of the address in bytes
char **h addr_list; /* a zero-terminated array of network addresses for host. Host
addresses are in Network Byte Order. */

H
#define h_addr h_addr list[0] // the first address in h_addr_list.

DESCRIPTION
gethostbyname() is used to find the address of the computer by its name.

RETURN VALUES
Upon successful return, the function returns a pointer to a structure that describes the desired computer.
Otherwise, NULL is returned and the global variable & _errno is set to indicate the error.

Example:

if ((hp = gethostbyname (argv[1l])) == NULL)
{
herror ("gethostbyname") ;
exit (1) ;
}
printf ("Connection information: \n");
printf ("host name: %$s\n", hp->h name);
printf ("IP address: %s\n", inet ntoa(* ((struct in_addr *)hp->h addr)));

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

size_t recv(int sd, void *buf, size t length, int flags);

DESCRIPTION

sd is the socket from which we read the information. buf is to where to read the information. length is

how many bytes to read.

flags influence on the way the data is read. It is formed by or'ing one or more of the values:

1. MSG_PEEK: the process can "peek" at the information without really receiving it.

2. MSG_OOB: ignores regular information and only receives "out of band" information, for example:
interrupt signals.

3. MSG_WAITALL: recv() will end only when the whole requested data is available (blocked).

If flag is 0 it behaves like read().

RETURN VALUES
Upon successful return, the function returns the number of bytes read. Otherwise, -1 is returned.
If recv() returns 0 it means that the remote side has closed the connection.

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

size_t send(int sd, const void *msg, size t length, int flags);

DESCRIPTION

sd is the socket to which we send the information. msg is from where to send the information. length is
how many bytes to send.

flags influence on the way the data is sent. It is formed by or'ing one or more of the values:

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

1. MSG_OOB: send only "out of band" information.

2. MSG_DONTROUTE: the message will be sent ignoring routing conditions of the protocol. It
usually means that the message will be sent using the most direct route and not necessarily the
fastest one.

If flag is 0 it behaves like write().

RETURN VALUES
Upon successful return, the function returns the number of bytes read. Otherwise, -1 is returned.

Important:
e Ifaprocess tries to write or send information to a closed socket a SIGPIPE signal will be returned.

e If read or recv returns 0 it means we got to EOF and thus to the end of the connection. That's why
it's important to check the return value of those functions.

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

size_t sendto(int sd, const void *msg, size t length, int flags, const struct sockaddr *to, int tolen);

DESCRIPTION

Like send() with the following additions:

to is a pointer to a struct sockaddr which contains the destination IP address and port.
tolen is set to sizeof(struct sockaddr).

RETURN VALUES
Upon successful return, the function returns the number of bytes actually sent. Otherwise, -1 is
returned.

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

size_t recvfrom(int sd, const void *buf, size t length, int flags, struct sockaddr *from, int *fromlen);

DESCRIPTION

Like recv() with the following additions:

from is a pointer to a local struct sockaddr that will be filled with the IP address and port of the
origination machine.

fromlen is pointer to local int that should be initialized to sizeof{struct sockaddr). When the function
returns, fromlen will contain the length of the address actually stored in from.

RETURN VALUES
Upon successful return, the function returns the number of bytes actually received. Otherwise, -1 is
returned.

SYNOPSIS
int close(int sd);

DESCRIPTION
closes the connection.

RETURN VALUES
Upon successful return, 0 is returned. Otherwise, -1 is returned.

compilation: gcc -Isocket -Insl -o my_server server.c (same for client)

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

Note: bind() might fail and return "Address already in use". That's because a socket that was connected
is still hanging around in the kernel, and it's hogging the port. You can either wait for it to clear, or
allow your program to reuse it by writing:

char yes ="'1";
if (setsockopt(listener, SOL_SOCKET, SO REUSEADDR, &yes, sizeof(int))) == -1)

perror("setsockopt");
exit(1);

server.c

OO\ DN W~

[T ==y
AW = OO

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

/* server process */
#include <ctype.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <signal.h>

#define PORTNUM 2000 // the port clients will be connecting to
#define BACKLOG 10 // how many pending connections queue will hold

void catcher(int sig);
int ns; // new socket from accept

main(int argc, char* argv[])

{

int s; // the main socket
char c;
struct sockaddr_in server = {AF_INET, PORTNUM, INADDR ANY};

/* another option:

server.sin_family = AF INET;

server.sin_port = htons(PORTNUM);

server.sin_addr.s_addr = htonl(INADDR ANY); / my IP

bzero(&(server.sin_zero), 8); // the function bzero zeroes out a buffer of the specified length
*/

signal(SIGPIPE, catcher); // to catch a death of a client
signal(SIGCHLD, catcher); // to wait for finished child (avoiding zombies)
signal(SIGTERM, catcher); // to free the ports that we've used when program terminates

// create a socket
if ((s =socket(AF_INET, SOCK_STREAM, 0)) <0)
{
perror("socket");
exit(1);
}

// bind the socket to an address
if (bind(s, (struct sockaddr*)&server, sizeof(server)) < 0)
{
perror("bind");
exit(1);
}

// start listening for incoming connections
if (listen(s, BACKLOG) < 0)

{
perror("listen");
exit(1);

b

for (;3)

{

// accept a connection
if ((ns = accept(s, NULL, NULL)) <0)
{

perror("accept");

continue;

10

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

59 }
60
61 switch (fork()) // spawn a child to deal with the connection
62 {
63 case -1:
64 perror("fork");
65 break;
66 case 0: // child: send and receive information to/from the client
67 while (recv(ns, &c, 1, 0) > 0)
68 {
69 ¢ = toupper(c);
70
71 if (send(ns, &c, 1, 0) <0)
72 {
73 perror("send");
74 exit(1);
75 }
76 }
77 close(ns);
78 exit(0);
79 default: // parent
80 printf("got connection\n");
81 }
82 // at parent: close ns and continue in the loop
83 close(ns);
84 }
85 exit(0);
86 }
87
88 void catcher(int sig)
89 {
90 switch (sig)
91 {
92 case SIGCHLD:
93 signal(SIGCHLD, catcher); // to catch future children
94 printf("client is done\n");
95 wait(NULL);
96 break;
97 case SIGPIPE:
98 printf("client died\n");
99 close(ns);
100 exit(0);
101 case SIGTERM:
102 exit(0);
103 }
104 }

line 83: We want that when the child closes ns the client will receive EOF. If there is still a process that
didn't close ns this won't happen. That's why the parent needs to close ns as well.

line 92: When trying to write to a socket that the client closed = broken pipe.

11

client.c

OO\ DN W~

—
[e>lNe}

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

/* client process */
#include <stdio.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

main(int argc, cha *argv[])

{

ints;

char c;

struct sockaddr_in sa;
struct hostent *hp;
int port;

if (arge !=3)

fprintf(stderr, "Usage: %s server port\n", argv[0]);
exit(-1);
}

if ((hp = gethostbyname(argv[1])) == NULL)
{
fprintf(stderr, "%s: Invalid host name\n", argv[1]);
/* better use:
herror("gethostbyname");
*/
exit(-1);
}

port = atoi(argv[2]);

if (port < 1024)

{
fprintf(stderr, "%s: Invalid port number\n", argv[1]);
exit(1);

b

bzero(&(sa.sin_zero), 8);

sa.sin_family = AF _INET;

becopy(hp -> h_addr, &sa.sin_addr.s_addr, hp -> h_length);
/* another option: if the IP of the server is known we can use:
sa.sin_addr.s_addr = inet_addr("1.2.3.4");

*/

sa.sin_port = port;

// create a socket
if ((s = socket(AF_INET, SOCK_STREAM, 0)) <0)
{
perror("socket");
exit(1);
}

// connect socket to servers'
if (connect(s, (struct sockaddr *)&sa, sizeof(sa)) < 0)

12

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

56 {

57 perror("connect");

58 exit(1);

59 }

60

61 while ((c = getchar()) != EOF) // send and receive information to/from the server
62 {

63 if (send(s, &c, 1, 0) <0)

64 {

65 perror("send");

66 exit(1);

67 }

68

69 switch(recv(s, &c, 1, 0))

70 {

71 case -1:

72 perror("recv");
73 exit(1);

74 case 0:

75 fprintf(stderr, "server died\n");
76 close(s);

77 exit(1);

78 default:

79 putchar(c);

80 }

81 }

82 close(s);

83 exit(0);

84 }

line 40: using bcopy() to copy the IP address to the appropriate place in the sa strcuture
hp -> h_addr: the field in hAp where the IP address resides.

&sa.sin_addr.s_addr: the copy destination (the address field in sa).

hp->h_length: how many bytes to copy.

bcopy copies a specified number of bytes from a source to a target buffer.

The bcopy and bzero functions are functions dealing with arrays of bytes.

Running Example:

1 > gcc server.c -lxnet -o server

2 > gcc client.c -lxnet -o client

3 > server & // running the server in background

[1] 28525

4 > client sunlight 2000 // running the client with the

computer name and port number
got connection
abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Have a nice day

HAVE A NICE DAY

~D // sending EOF

client done

5 > client sunlight 2000
got connection

server still working
SERVER STILL WORKING

~“D

client done

6 > Jjobs

[1] + Running server
7 > kill -9 %1

[1] Killed server

13

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

Example: (taken from Beej's guide)

This program acts like a simple multi-user chat server. Start it running in one window, then telnet to it
(telnet hostname 9034) from multiple other windows. When you type something in one telnet session,
it should appear in all the others.

selectserver.c
1 #include <stdio.h>
2 #include <stdilb.h>
3 #include <string.h>
4 #include <unistd.h>
5 #include <sys/types.h>
6 #include <sys/socket.h>
7 #include <netinet/in.h>
8 #include <arpa/inet.h>
9
10 #define PORT 9034 // port we're listening on
11
12 int main()
13 {
14 fd set master; // master file descriptor list
15 fd setread fds; //temp file descriptor list for select()
16 struct sockaddr_in myaddr; // server address
17 struct sockaddr_in remoteaddr; // client address
18 int fdmax; // maximum file descriptor number
19 int listener; // listening socket descriptor
20 int newfd; /I newly accept()ed socket descriptor
21 char buf[256]; // buffer for client data
22 charyes ='1"; // for setsockopt() SO REUSEADDR, below
23 int addrlen;
24 inti, j;
25
26 FD_ZERO(&master); // clear master and temp sets
27 FD ZERO(&read fds);
28
29 /I get the listener
30 if ((listener = socket(AF _INET, SOCK_STREAM, 0)) ==-1) {
31 perror("socket");
32 exit(1);
33 }
34
35 //'lose the pesky "address already in use" error message
36 if (setsockopt(listener, SOL__SOCKET, SO_REUSEADDR, &yes, sizeof(int)) == -1) {
37 perror("setsockopt");
38 exit(1);
39 }
40
41 // bind
42 myaddr.sin_family = AF _INET;
43 myaddr.sin_addr.s addr=INADDR ANY;
44 myaddr.sin_port = htons(PORT);
45 memset(&(myaddr.sin_zero), "\0', 8);
46 if (bind(listener, (struct sockaddr *)&myaddr, sizeof(myaddr)) == -1) {
47 perror("bind");
48 exit(1);
49 }
50
51 // listen
52 if (listen(listener, 10) ==-1) {

14

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
&9
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

perror("listen");
exit(1);
b

// add the listener to the master set
FD_SET(listener, &master);

// keep track of the biggest file descriptor
fdmax = listener; // so far, it's this one

// main loop
for (5 5) {
read_fds = master; // copy it
if (select(fdmax + 1, &read fds, NULL, NULL, NULL) ==-1) {
perror("select");
exit(1);
b

// run through the existing connections looking for data to read
for (i = 0; 1 <= fdmax; i++) {
if (FD_ISSET(i, read_fds)) { // we got one!!
if (1 == listener) {
// handle new connections
addrlen = sizeof(remoteaddr);
if ((newfd = accept(listener, (struct sockaddr *) &remoteaddr, &addrlen)) == -1) {
perror("accept");
} else {
FD_SET(newfd, &master); // add to master set
if (newfd > fdmax) // keep track of the maximum
fdmax = newfd;
printf("'selectserver: new connection from %s on socket %d\n",
inet ntoa(remotaddr.sin_addr), newfd);
}
} else {
// handle data from a client
if (nbytes = recv(i, buf, sizeof(buf, 0)) <= 0) {
// got error or connection closed by client
if (nbytes == 0) {
// connection closed
printf("'selectserver: socket %d hung up\n", 1);
} else {
perror("recv");

}
close(i); // bye!
FD CLR(i, &master); / remover from master set
} else {
// ' we got some data from a client
for (j = 0; j <= fdmax; j++) {
// send to everyone!
if (FD_ISSET(j, &master)) {
// except the listener and ourselves
if (j !=listener && j!=1) {
if (send(j, buf, nbytes, 0) == -1) {
perror("send")
}

}
} // end if - FD_ISSET
} // end for - j
} // end else - recv
} // end else - i == listener

15

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

113 } // end if - FD_ISSET
114 } // end for - 1 <= fdmax
115 } // end for (; ;)

116 }// end main

Explanation:
There are 2 file descriptor sets: master and read fds. master holds all the socket descriptors that are

currently connected, as well as the socket descriptor that is listening for new connections.

We need 2 sets because select() actually changes the set you pass into it to reflect which sockets are
ready to read. Since there is a need to keep track of the connections from one call of select() to the next,
it must be stored somewhere. At the last minute, we copy the master into the read fds and then call
select().

Note that every time a new connection is made you need to add it to the master set, and every time a
connection closes, you have to remove it from the master set.

We check to see when the listener socket is ready to read. When it is, it means we have a new
connection pending, and we accept() it and add it to the master set. Similarly, when a client connection
is ready to read, and recv() returns 0, we know the client has closed the connection, and we must
remove it from the master set.

If the client recv() returns non-zero, then some data has been received. So we get it and then go through
the master list and send that data to all the rest of the connected clients.

16

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

Client-Server - Using Threads instead of fork() - Exampels:

A standard socket server should listen on a socket port and, when a message arrives, fork a process to
service the request. Since a fork() system call would be used in a nonthreaded program, any
communication between the parent and child would have to be done through some sort of interprocess
communication.

We can replace the fork() call with a thr_create() call. Doing so offers a few advantages: thr _create()
can create a thread much faster than a fork() could create a new process, and any communication
between the "server" and the new thread can be done with common variables. This technique makes
the implementation of the socket server much easier to understand and should also make it respond
much faster to incoming requests.

The server program first sets up all the needed socket information. This is the basic setup for most
socket servers. The server then enters an endless loop, waiting to service a socket port. When a
message is sent to the socket port, the server wakes up and creates a new thread to handle the request.
Notice that the server creates the new thread as a detached thread and also passes the socket
descriptor as an argument to the new thread.

The newly created thread can then read or write, in any fashion it wants, to the socket descriptor that
was passed to it. At this point the server could be creating a new thread or waiting for the next message
to arrive. The key is that the server thread does not care what happens to the new thread after it creates
1it.

Example:
In this example (taken from the Threaded Primer book by Daniel Berg and Bill Lewis), the created

thread reads from the socket descriptor and then increments a global variable. This global variable
keeps track of the number of requests that were made to the server. Notice that a mutex lock is used to
protect access to the shared global variable. The lock is needed because many threads might try to
increment the same variable at the same time. The mutex lock provides serial access to the shared
variable. See how easy it is to share information among the new threads! If each of the threads were a
process, then a significant effort would have to be made to share this information among the processes.
The client piece of the example sends a given number of messages to the server. This client code could
also be run from different machines by multiple users, thus increasing the need for concurrency in the
Server process.

soc_server.c:

1 #define REENTRANT
2 #include <stdio.h>
3 #include <sys/types.h>
4 #include <sys/socket.h>
5 #include <netinet/in.h>
6 #include <string.h>
7 #include <sys/uio.h>
8 #include <unistd.h>
9 #include <pthread.h>
10
11 /* the TCP port that is used for this example */
12 #define TCP_PORT 6500
13
14 /* function prototypes and global variables */
15 void *do_chld(void *);
16
17 mutex_t lock;
18 int service_count;
19
20 main()
21
22 int sockfd, newsockfd, clilen;
23 struct sockaddr in cli_addr, serv_addr;
24 pthread t chld_thr;
25

17

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

}
/*

*/

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

if((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)

{

fprintf(stderr,"server: can't open stream socket\n");

exit(1);
b

memset((char *) &serv_addr, 0, sizeof(serv_addr));

serv_addr.sin_family = AF_INET;

serv_addr.sin_addr.s addr = htonl(INADDR ANY);
serv_addr.sin_port = htons(TCP_PORT);

if(bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)

fprintf(stderr,"server: can't bind local address\n");

exit(0);
b

/* set the level of thread concurrency we desire */

thr_setconcurrency(5);

listen(sockfd, 5);

for(;;){

clilen = sizeof(cli_addr);

newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &clilen);

if(newsockfd < 0)
{

fprintf(stderr,"server: accept error\n");

exit(0);
b

/* create a new thread to process the incomming request */
thr_create(NULL, 0, do_chld, (void *) newsockfd, THR_DETACHED, &chld_thr)

/* the server is now free to accept another socket request */

}

return(0);

This is the routine that is executed from a new thread

void *do_chld(void *arg)

{

int mysocfd = (int) arg;
char data[100];
int 1;

printf("'Child thread [%d]: Socket number = %d\n", thr_self(), mysocfd);

/* read from the given socket */
read(mysocfd, data, 40);

printf("Child thread [%d]: My data = %s\n", thr_self(), data);

/* simulate some processing */
for (i=0;i<1000000*thr_self();i++);

18

>

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

86 printf("Child [%d]: Done Processing...\n", thr_self());
87

88 /* use a mutex to update the global service counter */
89 mutex_lock(&lock);

90 service_count++;

91 mutex_unlock(&lock);

92

93 printf("'Child thread [%d]: The total sockets served = %d\n", thr_self(), service count);
94

95 /* close the socket and exit this thread */

96 close(mysocfd);

97 thr_exit((void *)0);

98 }

soc_client.c:

1 #include <stdio.h>
2 #include <sys/types.h>
3 #include <sys/socket.h>
4 #include <netinet/in.h>
5 #include <arpa/inet.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <stdlib.h>
9
10 #define TCP_PORT 6500
11 #define SERV_HOST ADDR "11.22.33.44"
12
13 main(int argc, char **argv)
14 |
15 int 1, sockfd, ntimes = 1;
16 struct sockaddr_in serv_addr;
17 char buf[40];
18
19 memset((char *) &serv_addr, 0, sizeof(serv_addr));
20 serv_addr.sin_family = AF _INET;
21 serv_addr.sin_addr.s_addr = inet_addr(SERV_HOST_ ADDR);
22 serv_addr.sin_port = htons(TCP_PORT);
23
24 if (argec == 2)
25 ntimes = atoi(argv[2]);
26
27 for (i=0; i < ntimes; i++) {
28 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
29 {
30 perror("clientsoc: can't open stream socket");
31 exit(0);
32 }
33
34 if (connect(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)
35 {
36 perror("clientsoc: can't connect to server");
37 exit(0);
38 }
39
40 printf("sending segment %d\n", 1);
41 sprintf(buf, "DATA SEGMENT %d", 1);
42 write(sockfd, buf, strlen(buf));
43 close(sockfd);
44 }

19

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

45 return(0);
46 }

select-example.c: (http://joda.cis.temple.edu/~ingargio/old/cis307s96/readings/unix3.html)
The third is a simple program where a process reads fixed size messages from two pipes. You should

terminate the program from the terminal with a CONTROL-C.

1 #include <sys/types.h>
2 #include <sys/time.h>
3 #include <unistd.h>
4 #include <stdio.h>
5 #define MAXLINE 12
6
7 int main(void)
8 A
9 int i, m,n;
10 int fd1[2]; /* pipe for communications from childl to parent */
11 int fd2[2]; /* pipe for communications from child2 to parent */
12 pid_t pid;
13 char line[MAXLINE];
14 fd set readset;
15 static struct timeval timeout;
16
17 if (pipe(fd1) < 0) {
18 perror("pipel");
19 exit(1);
20 }
21 if (pipe(fd2) < 0) {
22 perror("pipe2");
23 exit(1);
24 }
25
26 /* child1 */
27 if ((pid = fork()) <0) {
28 perror("fork1");
29 exit(1);
30 }
31 else if (pid == 0) {
32 close(fd1[0]);
33 while (1) {
34 write(fd1[1], "from child1\n", MAXLINE);
35 sleep(1);
36 }
37 exit(0);
38 }
39
40 /* child2 */
41 if ((pid = fork()) <0) {
42 perror("fork2");
43 exit(1);
44 }
45 else if (pid ==0) {
46 close(fd2[0]);
47 while (1) {
48 write(fd2[1], "from child2\n", MAXLINE);
49 sleep(1.3);
50 }
51 exit(0);
52 }

20

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

53 /* parent */

54 close(fd1[1]);

55 close(fd2[1]);

56 m =1+ ((fd1[0]<fd2[0])?fd2[0]:fd1[0]); /*Max # of objs to wait for*/
57 FD_ ZERO(&readset);

58 while (1) {

59 FD_SET(fd1[0], &readset);

60 FD_SET(fd2[0], &readset);

61 if (select(m,&readset, NULL,NULL,NULL) < 0) {
62 perror("select");

63 exit(1);

64 }

65

66 if (FD_ISSET(fd1[0], &readset)) {

67 n =read(fd1[0], line, MAXLINE);
68 write(STDOUT_FILENO, line, n);
69 }

70

71 if (FD_ISSET(fd2[0], &readset)) {

72 n = read(fd2[0], line, MAXLINE);
73 write(STDOUT_FILENO, line, n);
74 }

75 }

76 exit(0);

77}

21

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

Appendix: Connection Oriented Sequence:

Server
socket()
h 4
bind
0 Client
¥
listen() socket()
accept(
connect()
,
read() r write()
write() » read()

22

