awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

Lesson 6

Threads and Svynchronization:

Using notes from:
http://www.csl.mtu.edu/cs4411.ck/www/NOTES/threads/ and the Technion.

When to use threads?

1. When the program does tasks that do not depend on one another.
2. Servers who need to serve many requests/connections.

3. Parallel computations/algorithms.

As you've learnt in class, Solaris uses a hybrid approach: combining user level threads with kernel level
threads.

Using Threads:

e Compilation: gcc -Ithread prog.c

e #include <thread.h>

e Many of the routines include many arguments. In many cases you can/should use the default
values for the arguments, which are generally NULL or 0.

Creation of a thread: thr_create:
int thr_create(void *stack base, size t stack size, void *(*start_func)(void *), void *arg, long flags,
thread_t * ID);

Calling thr_create() will create a child thread which will execute concurrently with the parent thread
(i.e., the caller) and other threads created by the parent thread. A newly created thread shares all of the
calling process' global data with the other threads in this process; however, it has its own set of
attributes and private execution stack. The new thread inherits the calling thread's signal mask,
possibly, and scheduling priority.

The following is the meaning of each argument:

e Function start func() is called and run as a thread. Function start func() has only one
argument, a pointer to void and returns a pointer to void.

e arg is a pointer to void and is supplied to function start_func() as its argument. Thus, if you
want to send a pointer to a object whose type is not veid, you need to cast that pointer to a
pointer to void. Then, in function start_func(), you should cast the pointer of the argument
back to a pointer to the original type. If more than one argument needs to be passed to
start_func, the arguments can be packed into a structure, and the address of that structure can
be passed to arg.

e ID is a pointer to a variable of type thread t. *ID is where the new thread's system ID is
stored. The ID is only valid within the calling process.

e thr_create() returns an integer. Any non-zero value indicates that an error has occurred and in
this case no thread is created.

With thr_create(), the new thread will use the stack starting at the address specified by stack base and
continuing for stack size bytes. If stack base is NULL then thr_create() allocates a stack for the new
thread with at least stack size bytes. If stack size is zero, then a default size is used.

The lifetime of a thread begins with the successful return from thr_create(), which calls start_func() and
ends with either:

o the normal completion of start_func(),

o the normal completion of the main thread (the whole process terminats),

o the return from an explicit call to thr_exit(), or

o the conclusion of the calling process (exit()).

RETURN VALUES
0 indicates a successful return and a non-zero value indicates an error.

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

USAGE

int thr create(
NULL, /* use this default */
0, /* use this default */
void * (*start func) (void *), /* thread funct */
void *arg, /* argument passed to start func() */
0, /* use default */

thread t *ID); /* use NULL works fine */

Termination of a thread: thr_exit:
SYNOPSIS
#include <thread.h>

size_t status;
void thr_exit(void *status);

After the termination of a thread, the memory and its execution become unavailable.

Do not use exit() to terminate a thread or the main program. Otherwise, the whole program,
including all threads the main program has, terminates.

Waiting for a thread completion: thr_join:
int thr_join(thread_t target thread, thread t *departed, void **status);

In many cases, a thread has to wait until some other threads terminate.

The thr_join() function suspend processing of the calling thread until the target target_thread (the 6"
argument in thr_create) completes. target thread must be a member of the current process.

Several threads cannot wait for the same thread to complete; one thread will complete successfully and
the others will terminate with an error of ESRCH.

If thr_join() is reached before the completion of the indicated thread, the caller waits until the
completion of the indicated thread. After this, the caller executes its next statement.

If thr_join() is reached after the completion of the indicated thread, nothing will happen to the caller
and the caller executes its next statement.

If a thr_join() call returns successfully with a non-null status argument, the value passed to thr_exit()
by the terminating thread will be placed in the location referenced by status.

If the target target thread ID is 0, thr join() waits for any undetached thread in the process to
terminate.

If departed is not NULL, it points to a location that is set to the ID of the terminated thread if thr join()
returns successfully.

RETURN VALUES
If successful, thr_join() would return 0; otherwise, an error number is returned to indicate the error.

NOTES
Using thr_join() in the following syntax,
while (thr_join(NULL, NULL, NULL) == 0);
will wait for the termination of all other undetached and non-daemon threads; after which, EDEADLK
will be returned.

USAGE
int thr join(
thread t wait for, /* thread we are waiting */
0, /* 0 is fine with use */
voilid **status); /* status in thr create() */

Yielding the control of execution: thr_yield:
void thr_yield(void);

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

thr_yield() causes the current thread to yield its execution in favor of another thread with the same or
greater priority.It is equivalent to say that the calling thread is put back to the ready queue and a thread
from the ready queue is picked as the candidate for execution. Note that it is possible that the calling
thread is picked if the ready queue is empty when thr_yield() is called.

Since the calling thread is temporarily suspended, one may consider it entering a "sleeping" state for an
unspecified period. In this way, it "simulates" sleep().

Get calling thread's ID: thr_self:
SYNOPSIS

#include <thread.h>

thread_t thr_self(void);

Global Variables:

All threads and the main program run in the same address space allocated to the main program. This
implies that names declared as external (global) can be accessed by all threads. However, names
declared local to a function are still local to that function. If a variable is shared by threads, it is very
difficult to predict its value. In other words, the behavior of a multithreaded program is dynamic.

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

Examples:
(thread6_l.c)

#include <stdio.h>
#include <thread.h>

void *count(void *JunkPTR)

{
int *valuePTR = (int *) JunkPTR; /* convert to integer ptr. */
int value = *valuePTR; /* then take the value */
printf("Child: value = %d\n", value);

H

int main(void)

{
thread t ID1, ID2; /* for thread IDs */
int vl=1; /* argument for the 1st thr */
int v2=2; /* argument for the 2nd thr */
thr _create(NULL, 0, count, (void *) (&vl), 0, &ID1);
thr_create(NULL, 0, count, (void *) (&v2), 0, &ID2);
printf("Parent\n");
sleep(2); /* why is sleep() here? */

H

The above program creates two threads, each of which is a copy of function count().

The sixth argument can be a NULL if we do not care about the ID of the created thread. If we do want
the ID, the sixth argument must be a pointer to a variable of type thread_t. In the above example, ID1
stores the thread ID of the first thread.

count() receives a pointer to void. To retrieve the value passed by this pointer, the argument,
JunkPTR must be first converted back to the right type. In this case, it is a pointer to int.

If the thread creations are successful, we have three threads running: (1) the main program, (2) the first
copy of count() and the second copy of count().

After creating two copies of count(), the main program displays a message and sleeps for two seconds.
Note that sleep() is a Unix system call. But, why is a call to sleep() required here? Can we remove it?
Well, we cannot remove this sleep(). Since the two copies of count() are child threads of the main
program which is the parent. If parent exits, all of its child threads exit as well. Thus, if sleep() is not
there and if the main runs faster than any one copy of count(), it is possible that before count() can
display anything, the main program exits. As a result, you won't see anything displayed from count().
Therefore, the call to sleep() here is to delay the main program a little until the messages from copies of
count() can be displayed.

Using sleep() is definitely not a good practice. A better way to do this is with thr_join().

The following diagram shows the three concurrently executing threads, one parent (i.e., the main
program) and two children (i.e., the two copies of count()).

main = parent

—= Count() ————= Child 1
value=1

— Count() ——— Child 2

(thread6 2.c) value =2

#include <thread.h>
#include <sys/wait.h>

void *Task(void *Junk)
{

thr_exit((void *) 5);

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

int main(void)

{
thread t TaskID;
size t TaskStatus;
thr_create(NULL,0,Task,(void *) NULL,0,&TaskID);
thr_join(TaskID, 0, (void *) &TaskStatus);
printf(" Thread %d exited with status %d\n", TaskID, TaskStatus);
H

1 > gcc -lthread -o thread6-2 thread6 2.c
2 > thread6-2
Thread 4 exited with status 5

If thr_join() in the main program is reached before Task() terminates, the main program waits there
until Task() completes. Then, the execution of main resumes:

Main L J——
Task()

On the other hand, if Task() has already terminated when the main program reaches thr_join(), there is
nothing to "join" and the main program proceeds:

Main -

Task() ——me

(thread6_3.c)
#include <thread.h>
#include <stdio.h>

#define MAX ITERATION 200

void *ThreadA(void *DontNeedIt)
{

int i

for (i=1;1<= MAX ITERATION; i++)
printf("Thread A speaking: iteration %d\n", 1);
thr_exit(NULL);
}

void *ThreadB(void *DontNeedlt)
{

int i

for (i=1;1<=MAX ITERATION; i++)
printf(" Thread B speaking: iteration %d\n", 1);
thr_exit(NULL);
H

int main(void)

{
thread t FirstThread, SecondThread;

size t StatusFromA, StatusFromB;

thr _create(NULL, 0, ThreadA, (void *) NULL, 0, &FirstThread);

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

thr _create(NULL, 0, ThreadB, (void *) NULL, 0, &SecondThread);

thr_join(FirstThread, 0, (void *) &StatusFromA);
thr_join(SecondThread, 0, (void *) &StatusFromB);

}

(thread6_4.c)

#define REENTRANT /* basic 3-lines for threads */
#include <pthread.h>

#include <thread.h>

#define NUM_THREADS 5
#define SLEEP_TIME 10

void *sleeping(void *); /* thread routine */
int i;

thread t tid[NUM_THREADS]; /* array of thread IDs */

int main(int argc, char *argv[])

{
for (1=0;1<NUM_THREADS; i++)
thr_create(NULL, 0, sleeping, (void *)SLEEP_TIME, 0, &tid[i]);
while (thr_join(NULL, NULL, NULL) == 0)
printf("main() reporting that all %d threads have terminated\n", i);
} /* main */

void *sleeping(void *arg)

{
int sleep_time = (int)arg;
printf("thread %d sleeping %d seconds ...\n", thr_self(), sleep_time);
sleep(sleep_time);
printf("\nthread %d awakening\n", thr_self());
return (NULL);
H

If main() had not waited for the completion of the other threads (using thr join()), it would have
continued to process concurrently until it reached the end of its routine and the entire process would
have exited prematurely.

Output:
thread 4 sleeping 10 seconds ...

thread 5 sleeping 10 seconds ...
thread 6 sleeping 10 seconds ...
thread 7 sleeping 10 seconds ...
thread 8 sleeping 10 seconds ...
thread 5 awakening
thread 4 awakening
thread 6 awakening

thread 7 awakening

thread 8 awakening
main() reporting that all 5 threads have terminated

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX

n'7von ni>wn 88-288

Running many threads that share a global:

The following program creates many threads running concurrently. All of them share the same global
counter variable. Of these many threads, one of them is a counting thread that keeps increasing the
counter, while all the others keep retrieving and displaying the value of the shared counter.

(thread6 5.c)
#include <stdio.h>
#include <stdlib.h>
#include <thread.h>

#define MAX_THREADS 10
// global (shared) variables:
int MaxlIteration;

int Counter = 0;

void *Display(void *ID)

{
int *intPTR = (int *) ID;
int MyID = *intPTR;
int i

for (i=1; i <= Maxlteration/2; i++)
printf("Thread %d reporting --> %d\n", MyID, Counter);
printf("Thread %d is done....\n", MyID);
thr_exit(0);
H

void *Counting(void *ID)
{

int i

while (1) { /* this is an infinite loop */
Counter++;
if (Counter % 10 == 0)

}

printf("\t\tFrom Counting(): counter = %d\n", Counter);

}

int main(int arge, char *argv[])
{
thread t ID[MAX THREADS];
size t Status;
int NoThreads, i, No[]MAX THREADS];

NoThreads = atoi(argv[1]);
Maxlteration = atoi(argv[2]);

thr_create(NULL, 0, Counting, (void *) NULL, 0, NULL);
for (1= 0; i <NoThreads; i++) {

printf("Parent: about to create thread %d\n", 1);

No[i] =1;

Output Example:
% thread6 522

Parent: about to create thread 0

Parent: about to create thread 1
From Counting(): counter = 10
From Counting(): counter = 20
From Counting(): counter = 30
From Counting(): counter = 40

From Counting(): counter = 4640
From Counting(): counter = 4650
Thread 0 reporting --> 4540
Thread 0 is done....
From Counting(): counter = 4660
From Counting(): counter = 4670
Thread 1 reporting --> 4540
Thread 1 is done....
From Counting(): counter = 4680
From Counting(): counter = 4690
From Counting(): counter = 4700

From Counting(): counter = 4910
From Counting(): counter = 4920
From Counting(): counter = 4930

thr_create(NULL, 0, Display, (void *) (&(No[i])), 0, &(ID[i]));

h
for (i = 0; i < NoThreads; i++)
thr_join(ID[i], 0, (void *) &Status);
}

main program just waits for the completion of all display threads. Note that the counting thread has an
infinite loop. Note that once the main exits, the whole program, including the counting thread, exits.

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

This program looks straightforward. But, it has a subtle problem. Consider the loop for creating all
display threads, which is repeated below:
for (i=0; 1 < NoThreads; i++) {
printf("Parent: about to create thread %d\n", 1);
Noli] =1;
thr_create(NULL, 0, Display, (void *) (&(No[i])), 0, &(ID[i]));
H
Why is an array No[] used in the call to thr_create()? Could we just use a variable? In fact, we cannot
use a variable. This is because before the newly created thread takes the value of i, the for loop could
come back and increases the value of i. As a result, the newly created thread will receive an incorrect
value. This is why an array rather than a variable is used in the call.

(thread6_10.c)
#include <thread.h>
#include <sys/wait.h>

typedef struct
{

int id;
char name[10];
} customers;

void *Display(void *cust)

{
customers *d_cust = (customers *) cust;
printf("customer id: %d, name: %s\n", d_cust->id, d_cust->name);
}
int main(void)
{
thread t TaskID;
customers cust;
// initialize data
cust.id = 123;
strepy(cust.name,"none");
// create thread
thr_create(NULL,0,Display,&cust,0,&TaskID);
// wait till thread completes
thr_join(TaskID, 0, NULL);
§

1 > gcc -lthread -o thread6-10 thread6 10.c
2 > thread6-10
customer id: 123, name: none

Note the differences:

1 > cat thread.c

#include <thread.h>
#include <sys/types.h>

void *sleeping(void *DontNeedlt);

main()

{
thr_create(NULL, 0, sleeping, NULL, 0, NULL);
thr_join(NULL, NULL, NULL);
printf("main done\n");

}

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

void *sleeping (void *DontNeedIt)

sleep(20);

printf("sleeping done\n");

}

2 > gcc -Ithread -o threadExample thread.c

3 > threadExample &
[17 24255
4>ps-l

F UID PID PPID
8 8385 22112 22107
8 8385 24255 22112

sleeping done
main done
[1] Exitl

%sC PRI NI SZ RSS WCHAN S TT
0 48 20 2536 2216 auth knc S pts/10 0:00 -tcsh
0 58 20 1136 928 E Syslim S pts/10 0:00 a.out

threadExample

Only one pid, as opposed to:

5 > cat process.c
#include <sys/types.h>
main()

fork();
sleep(20);

printf("sleeping done\n");

}

6 > gcc -0 processExample process.c

7 > processExample &
[1725199
8>ps-l

F UID PID PPID %C PRI NI SZ RSS WCHAN S TT
48 20 2536 2216 auth knc S pts/10 0:00
48 20 864 568 auth knc S pts/10 0:00
58 20 864 536 auth knc S pts/10 0:00

8 8385 22112 22107
8 8385 25199 22112
8 8385 25200 25199

sleeping done
sleeping done

[1] Exitl

two pid's.

a.out

TIME

TIME COMMAND

COMMAND

-tcsh
processExample
processExample

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

Synchronization:

Problem:
The thread library doesn't provide any mechanism for synchronization between the threads.

Example (taken from Berg and Lewis):
(thread6 6.c)

#include <stdio.h>

#include <thread.h>

int int_val[5];

/* threaded routine */
void *add_to_value(void *arg)

{
int inval = (int) arg;
int i;
for (= 0; 1 < 10000; i++)
int_val[i % 5] += inval; /* !!! changing global array without synchronization */
return (NULL);
H
main()
{
int i;
/* initialize the data */
for 1=0;1<5;it++)
int_val[i] = 0;
for 1=0;1<5;it++)
thr_create(NULL, 0, add_to_value, (void *)(2 * i), THR_ BOUND, NULL);
/* wait till all threads have finished */
for i=0;1<5;it+)
thr_join(0, 0, 0);
/* print the results */
printf("final values...\n");
for 1=0;1<5;it++)
printf("integer value [%d] =\t %d\n", i, int_val[i]);
return(0);
H

1 > gce -lthread -o example6 thread6 _6.c
2 > repeat 3 example6

final values final values final values

integer value [0] = 34374 integer value [0] = 34276 integer value [0] = 34274
integer value [1]= 39180 integer value [1]= 39444 integer value [1]= 39280
integer value [2] = 35454 integer value [2] = 35850 integer value [2]= 35514
integer value [3]= 37464 integer value [3]= 37710 integer value [3]= 37664
integer value [4]= 35078 integer value [4]= 35276 integer value [4] = 34768

Solution:
Since all the threads belong to a single process they all have access to the global variables. Thus, we
need to prevent collisions when accessing data = need for synchronization = using locks. All the

10

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

threads, which use the locks, need to cooperate. The kernel doesn't prevent illegal access in case of a
lock that wasn't checked or was checked but the checked value was disregarded.

1. Mutex Locks:

Mutex lock enable only one thread to hold the lock. All the other threads which try to hold the lock will
be blocked until the lock is released = only one thread will be at the critical section at a time.

Mutex locks are the fastest and the most efficient in aspect of memory than all other synchronization
mechanisms.

SYNOPSIS

#include <thread.h>

#include <synch.h>

int mutex_init(mutex t *mp, int type, void * arg);
int mutex_lock(mutex t *mp);

int mutex_trylock(mutex t *mp);

int mutex_unlock(mutex_t *mp);

int mutex_destroy(mutex_t *mp);

DESCRIPTION

All mutexes must be global. A successful call for a mutex lock via mutex lock() will cause another
thread that is also trying to lock the same mutex to block until the owner thread unlocks it via
mutex_unlock().mutex_trylock() is the same as mutex lock(), except that if the mutex object
referenced by mp is locked (by any thread, including the current thread), the call returns immediately
with an error.

Threads within the same process or within other processes can share mutexes.

Creation of a mutex lock is done using mutex_init() and they are freed using mutex_destroy(). Only the
thread which holds the lock can free it.

Multiple threads must not initialize the same mutex simultaneously. A mutex lock must not be
reinitialized while other threads might be using it.

USAGE

#include <synch.h>

mutex t Lock;

int mutex init(
mutex t *Lock, /* pointer to a lock */
USYNC THREAD, /* use this */

(void *) NULL); /* always use this */

The second parameter, type, can be either:
e USYNC THREAD: means that the mutex can synchronize threads only in this process (arg is
ignored).
e USYNC PROCESS: means that the mutex can synchronize threads in this process and other
processes (arg is ignored).

Example: (¢hread6_7.c)
#include <thread.h>
#include <sys/types.h>

mutex_t m;
int count;

/* using mutex to ensure that the update of count is done atomically. return new value */
int increment_count()

{

int value;
mutex_lock(&m);

value = count++;
mutex_unlock(&m);

11

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

return value;

}

/* using mutex to ensure that the memory is synchronized while accessing count */
int get _count()

int c;

mutex_lock(&m);

¢ = count;
mutex_unlock(&m);
return c;

main()

mutex_init(&m, USYNC THREAD, NULL);
... // threads executing increment count and get count
mutex_destroy(&m);

}
Question:

Why not write increment _count() like this:
int increment_value()

{
int value;
mutex_lock(&m);
count++ ;
mutex_unlock(&m);
return count;
H

Suppose the increment_value() was called when the value of count is 2. Then, the value of count is
changed to 3. At this moment, we would expect increment_count() returns 3. Unfortunately, it may
not be the case. Before executing the return statement, another thread calls increment_count() and
has the value of count changed. So the call to increment_count() will not return 3 but some other
unexpected values. This is why the new counter value is immediately saved to value, which is returned.

Note:

1. If'there are several threads locked on a mutex, after the mutex is released, the scheduling policy of
the OS.

2. As opposed to semaphores, mutex has ownership, i.e., only the thread who locked the mutex can
release it (whereas in semaphores, every thread can increase/decrease the value of the semaphore).

3. Ifaprocess that locked the mutex try to lock it again before releasing it, it will be deadlocked.

2. Counting Semaphores:
#include <synch.h>

int sema_init(sema_t *sp, unsigned int count, int type, void *arg);
int sema_wait(sema_t *sp);

int sema_trywait(sema_t *sp);

int sema_post(sema_t *sp);

int sema_destroy(sema_t *sp); // free semaphore

12

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

Creating and Initializing Semaphores:sema_init()
#include <synch.h>

sema_t Semaphore;

int sema init(

sema_t *Semaphore,

unsigned int value, // can't get negative values

USYNC THREAD, /* use this */

(void *) NULL /* default */

) i
A call to sema_init() will initialize the given semaphore with the specified value (the second
argument).

The function returns 0 if successful.

As a good programming practice, a semaphore should be initialized once at the very beginning of your
program and before the threads which use it are created.

Example:
sema_t Semaphore;
int count = 1;

sema init (&Semaphore, count, USYNC THREAD, NULL);

Semaphore Wait (decreasing semaphore value):sema_wait():

#include <synch.h>

sema_t Semaphore;
int sema wait(sema t *Semaphore);

If the semaphore counter is zero, the calling thread is blocked.
If the semaphore counter is greater than zero, the counter is subtracted by 1 (atomically) and the calling

thread continues.

The function returns 0 if successful.

Semaphore Signal (Increasing semaphore value): sema_post():

#include <synch.h>

sema_t Semaphore;
int sema post(sema t *Semaphore);

If there are any threads blocked on the semaphore, one is released.
When no threads are blocked, the counter is increased by one.

The function returns 0 if successful.

In addition to be used as locks, semaphores can block the execution of a thread until it is notified by
other threads (bound buffer, alternate execution and etc.).

sema_trywait():
#include <synch.h>

sema_t Semaphore;
int sema trywait(sema t *Semaphore);

sema_trywait() atomically decrements the semaphore count pointed by Semaphore, if the count is
greater than zero. Otherwise, it returns an error.

The function returns 0 if successful.

13

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX

n'7von ni>wn 88-288

Example: (thread6_8.c)

Protecting a shared counter:

The following program creates a number of threads running concurrently. All of them share the same
global counter variable. They lock the counter and update and display the value of the counter. The
lock mechanism is done by a semaphore. This shows the first use of semaphores: a lock!

#include <stdio.h>

#include <stdlib.h>
#include <thread.h>
#include <synch.h>

#define NO_THREADS 5
sema_t Lock; /* the protecting semaphore */

int

Counter, Max_Run; /* the shared counter */

void *Counting(void *voidPTR)

{

}

int *intPTR = (int *) voidPTR;
int Name = *intPTR;
int i

printf("Thread %d started\n", Name);
for (i=0; i <Max_Run; it++) {

thr_yield(); /* rest for unspecified time*/
sema_wait(&Lock); /* enter critical section */
Counter++; /* do updating and printing */

printf("Thread %d reports: new counter value = %d\n",
Name, Counter);
sema_post(&Lock); /* leaving critical section */

}
printf("Thread %d ends\n", Name);
thr_exit(0);

int main(int argc, char *argv[])

{

thread t ID[NO THREADS]; /* thread IDs */
size t StatusfNO THREADS]; /* thread status */
int ArgumentNO_THREADS]; /* thread argument */
int i

Max_Run = atoi(argv[1]);

printf("Parent started ...\n");

Counter = 0;

Output Example:
% thread6_8 2

Parent started ...

Parent is about to create 5 threads
Thread 0 started

Thread 1 started

Thread 2 started

Thread 3 started

Thread 4 started

Thread 0 reports: new counter value = 1
Thread 1 reports: new counter value = 2
Thread 2 reports: new counter value =3
Thread 3 reports: new counter value = 4
Thread 4 reports: new counter value = 5
Thread 0 reports: new counter value = 6
Thread 0 ends

Thread 1 reports: new counter value =7
Thread 1 ends

Thread 2 reports: new counter value = 8
Thread 2 ends

Thread 3 reports: new counter value =9
Thread 3 ends

Thread 4 reports: new counter value = 10
Thread 4 ends

Parent found thread 0 done

Parent found thread 1 done

Parent found thread 2 done

Parent found thread 3 done

Parent found thread 4 done

Parent exits ...

sema_init(&Lock, 1, USYNC THREAD, (void *) NULL); /* init sem. */

printf("Parent is about to create %d threads\n", NO_THREADS);

for (1=0;1<NO_THREADS; i++) { /* create all threads */
Argument[i] = i;

thr_create(NULL, 0, Counting, (void *) &(Argument[i]), 0, (void *) &(ID[i]));

}

for (i=0;1<NO_THREADS; i++) { /* wait for all threads */
thr_join(ID[i], 0, (void *) &(Status[i]));
printf("'Parent found thread %d done\n", i);

b

14

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

printf("Parent exits ...\n");

}

Since the semaphore will be used by all threads, it is declared as a global variable. Because only one
thread is allowed in the critical section that protects the counter, the initial value of Lock is 1. Note that
this is done before any thread starts.

For each thread, it iterates Max_Run times. In each iteration, this thread yields the control of execution
to other threads. This is very similar to sleep for an unspecified time. When this thread is rescheduled
to run, it tries to enter the critical section with sema_wait(). If it succeeds, the value of the counter is
increased by one and the new value is displayed. Finally, it exits the critical section with sema_post()
and goes back for the next iteration.

More examples:
http://www.csl.mtu.edu/cs4411.ck/www/NOTES/threads/buffer.html

3. Reader/Writer Locks:

Reader/Writer locks enable reading of protected object by several threads concurrently. They also
enable for only one thread to write when no other thread is reading.

Reader/Writer locks are useful for protection of data that is often read and written occasionally. Many
threads can have simultaneous read-only access to data, while only one thread can have write access at
any given time.

int rwlock_init(rwlock t *rwlp, int type, void * arg);
int rwlock destroy(rwlock t *rwlp);

int rw_rdlock(rwlock t *rwlp);

int rw_wrlock(rwlock t *rwlp);

int rw_unlock(rwlock t *rwlp);

int rw_tryrdlock(rwlock t *rwlp);

int rw_trywrlock(rwlock t *rwlp);

Creation: rwlock_init():
Readers/writer locks must be initialized prior to use. fype can be either USYNC PROCESS or
USYNC THREAD. We'll always use USYNC THREAD. arg is currently not used.

Example:
rwlock t rwlp;

rwlock init(&rwlp, USYNC THREAD, NULL);
Freed: rwlock_destroy().

Get read lock: rw_rdlock():

Gets a read lock on the readers/writer lock pointed to by rwip. If the readers/writer lock is currently
locked for writing, the calling thread blocks until the write lock is freed. Multiple threads may
simultaneously hold a read lock on a readers/writer lock.

rw_tryrdlock():
Trys to get a read lock on the readers/writer lock pointed to by rwip. If the readers/writer lock is locked
for writing, it returns an error; otherwise, the read lock is acquired.

Get write lock: rw_wrlock():

Gets a write lock on the readers/writer lock pointed to by rwip. If the readers/writer lock is currently
locked for reading or writing, the calling thread blocks until all the read and write locks are freed. At
any given time, only one thread may have a write lock on a readers/writer lock.

rw_trywrlock():

Trys to get a write lock on the readers/writer lock pointed to by rwip. If the readers/writer lock is
currently locked for reading or writing, it returns an error.

15

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

Free lock: rw_unlock()

Unlocks a readers/writer lock pointed to by rwip, if the readers/writer lock is locked and the calling
thread holds the lock for either reading or writing. One of the other threads that is waiting for the
readers/writer lock to be freed will be unblocked.

If the calling thread does not hold the lock for either reading or writing, no error status is returned, and
the behavior of the program is unknown.

Note:

If multiple threads are waiting for a readers/writer lock, the acquisition order is random by default.
However, some implementations may bias acquisition order to avoid depriving writers. The current
implementation favors writers over readers.

Example: (thread6_9.c)

/* many threads can read the balance, but only one thread can change it */
#include <thread.h>

#include <synch.h>

rwlock t account lock;
float checking balance = 100;
float saving_balance = 100;

float get balance();
void transfer checking to saving(float amount);

main()

{
rwlock _init(&account lock, 0, NULL);
printf("%f", get balance());
transfer _checking to saving(5);
rwlock _destroy(&account_lock);

H

float get balance()
float bal;
rw_rdlock(&account_lock);

bal = checking_balance + saving_balance;
rw_unlock(&account_lock);

return bal;

H

void transfer checking to saving(float amount)

{
rw_wrlock(&account _lock);
checking balance = checking_balance - amount;
saving_balance = saving_balance + amount;
rw_unlock(&account_lock);

H

16

