awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

Lesson 3

Signals:

When a process terminates abnormally, it usually tries to send a signal indicating what went wrong. C
programs can trap these for diagnostics.

Software interrupts: Stop executing the main program, activate the program that deals with the event
and then return to the execution of the program. The program that handles the interrupt should be
relatively short.

In Unix there are 31signals. Each process has algorithms associated with each signal. Each process has
a table with 31 entries. Each entry contains the function that needs to be done for each signal. Most of
the functions, by default, kills the process after the signal (void f() { exit() }). Some of the signals
create a core file, in which they save the memory image and some other data (in a binary form), which
enable to analyze and to know why the process was terminated.

The process can change the signal table (write other functions to handle certain signals):

The default action for each signal is one of the following:
1. Terminate the process.

2. Create a core image and then terminate the process.
3. Stop the process.

4. Discard the signal.

SYNOPSIS
#include <signal.h>

void *signal(int sig_num, func());
void (*func)(sig)

DESCRIPTION

Except for the SIGKILL and SIGSTOP signals, the signal() function allows for a signal to be caught,
to be ignored, or to generate an interrupt (if you try to do signal(SIGKILL, func); it will execute the
default handler for SIGKILL and not func). The signals are defined in the file <signal.h>. Some of
them are listed below:

Name Default Action Description No.
SIGHUP terminate process hang up 1
SIGINT terminate process interrupt program 2
SIGQUIT create core image quit program 3
SIGILL create core image illegal instruction 4
SIGFPE create core image floating-point exception 8
SIGKILL terminate process kill program (cannot be caught or ignored)9
SIGBUS create core image bus error 10
SIGSEGV create core image segmentation violation 11
SIGSYS create core image system call given invalid argument 12
SIGPIPE terminate process write on a pipe with no reader 13
SIGALRM terminate process real-time timer expired 14
SIGSTOP stop process stop (cannot be caught or ignored) 17
SIGCONT continue process continue a stopped process 19
SIGCHLD discard signal child status has changed 20
SIGUSRI1 terminate process User defined signal 1 30
SIGUSR2 terminate process User defined signal 2 31

e The func procedure allows a user to choose the action upon receipt of a signal.

e To set the default action of the signal to occur as listed above, func should be SIG DFL. A
SIG_DFL resets the default action.

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

e Blocking Signals:

1) SIG_IGN:

To ignore the signal func should be SIG_IGN. This will cause subsequent instances of the signal to be
ignored and pending instances to be discarded. If SIG_IGN is not used, further occurrences of the
signal are automatically blocked and func is called. The handled signal is unblocked with the function
returns and the process continues from where it left off when the signal occurred.

Example:

/I signal SIGILL is ignored (blocked). The signal remains ignored even after calling it.

signal(4, SIG_IGN);

// returning to the default handler:

signal(4, SIG_DFL);

2) sigblock: With this function we just block the signal, without changing the handler of it. When we
unblock it we return to the handler function of the signal.

SYNOPSIS
#include <signal.h>

int sigblock(int mask);
int sigmask(int signum);

DESCRIPTION

sigblock() adds the signals specified in mask to the set of signals currently being blocked from
delivery. Signals are blocked if the corresponding bit in mask is a 1;

the macro sigmask() is provided to construct the mask for a given signum.

It is not possible to block SIGKILL or SIGSTOP.

RETURN VALUES
The previous set of masked signals is returned.

Example:
sigblock(sigmask(2)); // blocking signal SIGINT

sigblock(sigmask(2) | sigmask(4)); // blocking signals SIGINT and SIGILL
sigblock(0); // unblock all signals

After a signal has been delivered to the handler func(), the handler returns to its default. In order
to keep func() all the time, we need to call signal() again infunc(), for example:
main()

{

signal(3, &func);

void func()

{
signal(3, &func);

}

When a process, which has installed signal handlers forks, the child process inherits the signals. All
caught signals may be reset to their default action by a call to the exceve function; ignored signals
remain ignored.

Usually when a process receives signal during a system call, the process continues the system call
execution until it finishes and only then handles the signal. read, wait, open and wait de stop upon
receiving a signal. For them the return value is -1 and errno = EINTR.

You cannot "stack" signals. In case 2 or more of the same signal are received = only the last one is
handled.

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

RETURN VALUES
The previous action is returned on a successful call (a pointer to the handler function).
Otherwise, -1 is returned and the global variable errno is set to indicate the error.

Sources of Interrupts:
1. Kernel: The kernel sends signal to process when:
a. Illegal command (for example, division by 0 = FPE signal)
b. Illegal address (SEGV)
2. Shell: Using kill command from the shell:
% kill -signal pid for example: % kill -11 1000 // sending SEGV signal to pid 1000
3. Processes: Process can send signal to another process using the kill system call:

SYNOPSIS
#include <sys/types.h>
#include <signal.h>

int kill(pidt pid, int sig);

DESCRIPTION

The kill() function sends the signal given by sig to pid, a process or a group of processes. Sig may be
one of the signals or it may be 0, in which case error checking is performed but no signal is actually
sent. This can be used to check the validity of pid.

For a process to have permission to send a signal to a process designated by pid, the real or effective
user ID of the receiving process must match that of the sending process or the user must have
appropriate privileges. A single exception is the signal SIGCONT, which may always be sent to any
descendant of the current process.

If pid is greater than zero: Sig is sent to the process whose ID is equal to pid.

If pid is zero: Sig is sent to all processes whose group ID is equal to the process group ID of the
sender, and for which the process has permission.

If pid is -1: If the user has superuser privileges, the signal is sent to all processes excluding system
processes and the process sending the signal. If the user is not the super user, the signal is sent to all
processes with the same uid as the user excluding the process sending the signal. No error is returned if
any process could be signaled.

If the process number is negative but not -1, the signal is sent to all processes whose process group ID
is equal to the absolute value of the process number.

RETURN VALUES
Upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

Summation: A process can:

1. Determine what to do upon receiving a signal (using default action or defining functions).
2. Ignore signals (continue the execution of the process).

3. Send signals to other processes.

A process can send a signal to itself, for example:
1) raise:

SYNOPSIS

#include <signal.h>

int raise(int sig);

DESCRIPTION
The raise() function sends the signal sig to the current process. It's equivalent to: kill(getpid(), sig);

RETURN VALUES
Upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned and the global variable errno is set to indicate the error.

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

2) abort:
SYNOPSIS
#include <stdlib.h>

void abort(void);

DESCRIPTION
The abort() function causes abnormal program termination to occur, unless the signal SIGABRT is
being caught and the signal handler does not return. It's equivalent to: raise(SIGABRT),

RETURN VALUES
The abort function never returns.

pause: stop until a signal.

SYNOPSIS
#include <unistd.h>

int pause(void);

DESCRIPTION

The pause() function forces a process to pause until a signal is received from either the kill function or
an interval timer. Upon termination of a signal handler started during a pause(), the pause() call will
return. If the signal causes termination of the calling process, pause() does not return.

RETURN VALUES
Always returns -1 and errno equals EINTR (the call was interrupted).

alarm: set signal timer alarm

SYNOPSIS
#include <unistd.h>

unsigned int alarm(unsigned int seconds);

DESCRIPTION

The alarm() function instructs the alarm clock of the calling process to send the signal SIGALRM to
the calling process after the number of real time seconds have elapsed.

Alarm requests are not stacked; successive calls reset the alarm clock of the calling process.

If sec is 0, any previously made alarm request is canceled.

For example:

alarm(20);

alarm(5);

will generate signal after 5 seconds.

The fork() function sets the alarm clock of a new process to 0. A process created by the exec family
of routines inherits the time left on the old process's alarm clock.

RETURN VALUES
The alarm() function returns the amount of time previously remaining in the alarm clock of the
calling process.

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

Examples:
Kernel Interrupts:
(sig3_1.c)
#include <sys/types.h>
main()
{
int* a=NULL;
*a=35;
}
1>gcc-osigl 3 1.c
2 >sigl

Segmentation fault (core dumped)
// the process terminated due to segmentation violation and a core file was generated.

(sig3_2.c)
#include <signal.h>

void trap();

main()

{
int *a=NULL;
signal(SIGSEGV, &trap);
*a=35;

}

void trap()

{
printf("segmentation fault trapped!\n");
exit(1);

H

1 > gce -0 sig2 sig3 2.c

2 > sig2

segmentation fault trapped!

(sig3_3.c)
main()

{

}

1 > gce -0 sig3 sig3 3.c
2 >sig3

Floating exception

int a=1/0;

(sig3_4.c)
#include <signal.h>

void handle();

main()
{
inta=>5;
signal(SIGFPE, &handle);
a=1/0;
exit(0);

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

void handle()

{
printf("FPE signal trapped!\n");

exit(1);
i
1 > gce -0 sigd sig3_4.c
2 > sigd
FPE signal trapped!

Shell Interrupts:

(sig3 5.c)
void trap();

main()

{
signal(11, &trap);
while(1);

H

void trap()

{
printf("segmentation fault trapped!\n");
exit(1);

}

2 > gce -0 sigh sig3 S.c

3>sigs &

[17 32036

4 > kill -SEGV 32036 /= kill -11 32036
segmentation fault trapped!

[1] Exit1 sig5

Interrupts from process:

(sig3_6.c)
#include <signal.h>
void trap();

main()
{
int pid, *a = NULL;
signal(SIGSEGYV, &trap);
pid = getpid();
kill(pid, SIGSEGV); // the process sends signal to itself
// equivalents to: raise(SIGSEGV);
exit(0);
H

void trap()

printf("segmentation fault trapped!\n");
exit(1);

}

2 > gce -0 sigh sig3_6.c

3 > sigb

segmentation fault trapped!

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

(sig3 7.c)
#include <signal.h>
main()

sigblock(sigmask(SIGSEGV));
while(1);

H

2 > gce -0 sig7 sig3_7.c

3>sig7 &

[17 32580

4 > jobs

[1] + Running sig7

5> kill -SEGV 32580

6 > jobs

[1] + Running sig7 // the process still runs since we blocked SIGSEGV

7 > kill -KILL 32580

4 > jobs

[1] Killed sig7

More Examples:
(sig3_8.c)
#include <signal.h>

void father function();

main()
{
pid_t pid;
ints;
if (fork() == 0)
{ // child process
pid = getppid();
kill(pid, SIGUSR1);
H
else // parent process
{
signal(SIGUSR1, &father function);
wait(&s);
H
H
void father function()
{
printf("I heard you my poor son\n");
exit(1);
H

1 > gce -0 sig8 sig3_8.c
2 > repeat 10 sig8

I heard you my poor son
I heard you my poor son
I heard you my poor son
User signal 1

User signal 1

User signal 1

User signal 1

User signal 1

User signal 1

User signal 1

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

(sig3_9.c)
#include <signal.h>

void son_function();

main()
{
pid_t pid;
int s;
if ((pid = fork()) ==0) // child process
{
signal(SIGUSR1, &son_function);
while(1);
else // parent process
kill(pid, SIGUSR1);
wait(&s);
H
H
void son_function()
{
printf("I heard you my poor father\n");
exit(1);
}

3> gcc -0 sig9 sig3 9.c

4 > repeat 5 sig9

I heard you my poor father
I heard you my poor father
I heard you my poor father
User signal 1

User signal 1

(sig3_10.c)
#include <signal.h>

void father function();

main()
{
pid_t pid;
ints;
signal(SIGUSR1, &father function);
if (fork() == 0)
{ // child process
pid = getppid();
kill(pid, SIGUSR1);
H
else // parent process
wait(&s);
H
void father function()
{
printf("I heard you my poor son\n");
exit(1);
H

5> gcc -0 sigl0sig3 10.c
6 > sigl0
I heard you my poor son

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

(sig3_11.c)
#include <signal.h>

void funct()

{
printf("haha\n");
exit(1);

H

main()

{
int sig=SIGSEGV;
char *a;
signal(sig, &funct);
signal(sig, SIG_DFL);
*a=0;

H

7 >gce -o sigll sigll.c

8 >sigll

Segmentation fault (core dumped) // default behavior

(sig3_12.c)
#include <signal.h>

void funct()

{
printf("haha\n");
exit(1);

}

main()

{
int sig=SIGSEGV,

signal(sig, SIG_IGN);

while(1);
H

9 >gcc -0 sigl2 sigl2.c
10 >sigl2 &

[1720355

11 >kill -SEGV 20355
12 >kill -KILL 20355
[1] Killed sigl2

