awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

Lesson 2

fork: create a new process. The new process (child process) is almost an exact copy of the calling
process (parent process). In this method we create an hierarchy structure for the processes, which is
similar to the files structure in Unix. The root node of this tree is the process, which is the execution of
the init program (pid = 1), is the ancestor of all the system and user processes.

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

The fork command copies all of the process (the code = the program, the data = global variables, the
stack = automatic variable [local variables in the function] and the program counter).
The new process has a different pid and its ppid is the same as the pid of the calling process.

RETURN VALUES

Upon successful completion, fork() returns a value of 0 to the child process and returns the process ID
of the child process to the parent process.

Otherwise, a value of -1 is returned to the parent process, no child process is created, and the global
variable errno is set to indicate the error.

Note: If the process has open files and performs fork(), then any change in the read/write head in any
process will entail the same change in the other processes, since the read/write head is shared for all
processes because it is managed by the system.

process id = process id =

Example: (2_17.¢c)

#include <sys/types.h> 1000 1200

i{nt main() text text
pid_t pid; data data
int i, i=5 i=5
1=5; pid = 1200 pid=0
pid = fork();
i+t

printf("%d", i); just after the fork()

}

Output: 66, but it is unknown which process printed the first 6, since it depends on the CPU the system
gave to each process (race condition).

Note that in the child process there are some lines that are never being executed (all the lines before the
fork). In the above example 3 lines are not executed in the child process.

Examples:
(2. 2c)
#include <sys/types.h>

main()
{
pid_t pid;
pid = fork();
if (pid ==0)
printf("\nI'm the child process");
else if (pid > 0)
printf("\nI'm the parent process. My child pid is %d", pid);
else
perror("error in fork");

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

(2_3.c)
#include <sys/types.h>

main()
{
pid_t pid;
inti=>5;
pid = fork();
if (pid == 0) // child process
i+t
printf("%d", 1);
H

Output: 56 or 65

(2_4.c)
#include <sys/types.h>

main()
{
pid_t pid;
if ((pid = fork()) == 0)
printf("1");
else
printf("2");
printf("3");
H

Output: 2133 or 1233 or 2313 or 1323 (3312 is not possible)

(2_5.c)
main()

if (fork() == 0) State of a process:
while(1); O - Running.
else S - Sleeping (process is waiting for an event to complete).
while(1); R - Runnable (process is on run queue).
} Z - Zombie (process terminated and parent not waiting)

1 > gec -0 examplel 2 5.c T - Stopped.
2 > examplel &
[1] 7580
3>ps-l

UID PID PPID NI STAT TT TIME COMMAND
8385 4709 4705 20 S pts/0 0:01 -tcsh
8385 7580 4709 20 R pts/0 0:21 examplel
8385 7581 7580 20 R pts/0 0:22 examplel
4 > kill -KILL %1

[1] Killed examplel
The leaves represent the living processes.
(2—_6'0) When i = 2, there are 4 live processes. @
main() Afterwards, the parent dies and all the 3 \ 10668
{ ot remaining processes moves to init.
int i;

for (i=0; i< 3; i++) 10669
if (fork() == 0)
while(1);
§
1 > gce -0 example2 2_6.c
2 > example2
3>ps-l

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

UID PID PPID NI STAT TT TIME COMMAND
8385 4709 4705 20 S pts/0 0:01 -tcsh

4 > ps -al

UID PID PPID NI STAT TT TIME COMMAND
8385 4709 4705 20 S pts/0 0:01 -tcsh
8385 10668 1 20 RO pts/0 0:12 example?
8385 10669 1 20 RO pts/0 0:14 example2
8385 10670 1 20 RO pts/0 0:13 example?2
5 >kill -KILL 10668 10669 10670

(2_7.c)

main()

if (fork() !=0)
while(1);
}
2 > gce -0 example3 2 7.c
3 > example3 &

[1] 11499

4>ps-al

UID PID PPID NI STAT TT TIME COMMAND
8385 11500 11499 0 Z 0:00 <defunct>

8385 4709 4705 20 S pts/0 0:01 -tcsh
8385 11499 4709 20 R pts/0 0:44 example3
4 > kill -KILL %1

[1] Killed example3

wait, waitpid, waitd, wait3: wait for process termination.

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status);
pid_t waitpid(pid_t wpid, int *status, int options); // wait for a specific pid

#include <sys/types.h>
#include <time.h>
#include <sys/resource.h>
#include <sys/wait.h>

pid_t wait3(int *status, int options, struct rusage *rusage);,
pid_t waitd(pid_t wpid, int *status, int options, struct rusage *rusage);

DESCRIPTION

The wait() function suspends execution of its calling process until stafus information is available for a
terminated child process, or a signal is received. If there are more than one child process then wait

returns when any of the child process finishes.

On return from a successful wait() call, the stafus area contains termination information about the
process that exited (if the value of status is 0 = program terminated with no errors).

The wait4() call provides a more general interface for programs that need to wait for certain child
processes, that need resource utilization statistics accumulated by child processes, or that require

options. The other wait functions are implemented using wait4().

The wpid parameter specifies the set of child processes for which to wait:
If wpid is -1, the call waits for any child process.

If wpid is 0, the call waits for any child process in the process group of the caller.
If wpid is greater than zero, the call waits for the process with process id wpid.
If wpid is less than -1, the call waits for any process whose process group id equals the

absolute value of wpid.

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

The options parameter contains the bitwise OR of any of the following options:
e The WNOHANG option is used to indicate that the call should not block if there are no
processes that wish to report status.
When the WNOHANG option is specified and no processes wish to report status, wait4()
returns a process id of 0.

e The WUNTRACED is used in order to wait also for children which are stopped, and
whose status has not been reported.

The waitpid() call is identical to wait4() with an rusage value of zero. The wait3() call is the same as
wait4() with a wpid value of -1.

The following macros may be used to test the manner of exit of the process.
WIFEXITED(status) True if the child exited normally.
WIFSIGNALED(status) True if the process terminated due to receipt of a signal.
WEXITSTATUS(status) Returns the return code of the process (the least significant eight
bits of the return code).
WIFSTOPPED(status) returns true if the child process which caused the return is currently
stopped; this is only possible if the call was done using WUNTRACED.
WSTOPSIG(status) returns the number of the signal which caused the child to stop. This
macro can only be evaluated if WIFSTOPPED returned non-zero.

If rusage is not NULL, the struct rusage as defined in <sys/resource.h> it points to will be filled with
accounting information:
struct rusage {

struct timeval ru_utime; /* user time used */

struct timeval ru_stime; /* system time used */

long ru_majflt; /* page faults */
long ru_nswap; /* swaps */

long ru_nsignals; /* signals received */

}s

(For more information use: man getrusage)

RETURN VALUES

If wait() returns due to a stopped or terminated child process, the process ID of the child is returned to
the calling process. Otherwise, a value of -1 is returned and errno is set to indicate the error.

If wait4(), wait3() or waitpid() returns due to a stopped or terminated child process, the process ID of
the child is returned to the calling process. If there are no children not previously awaited, -1 is returned
with errno set to [ECHILD]. Otherwise, if WNOHANG is specified and there are no stopped or exited
children, 0 is returned. If an error is detected or a caught signal aborts the call, a value of -1 is returned
and errno is set to indicate the error.

wait waits only for one child. In order to wait for all children processes:
while (wait(&status) !=-1)

E

Examples:
(2_8.c)
#include <sys/types.h>

main()
{
pid_t pid;
int stat;
if ((pid = fork()) == 0)
printf("1"); // child process

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

else // parent process

{

wait(&stat);
printf("2");

}

Output: 12 (21 is not possible).

(2_9.c)
main()
{ . .
nt1,s;
for (i=1;1<=3;it+)
if (fork() == 0)

while(1);
else
if 1==3)
wait(&s);

H
1 > gce -0 example4 2 9.c
2 > example4 &
[1] 13422
4>ps-l
UID PID PPID NI STAT TT TIME COMMAND
8385 4709 4705 20 R pts/0 0:02 -tcsh
8385 13422 4709 20 s pts/0 0:00 exampled
8385 13423 13422 20 R pts/0 0:05 exampled
8385 13425 13422 20 R pts/0 0:05 exampled
8385 13426 13422 20 R pts/0 0:04 exampled

5 > kill -KILL %1
[1] Killed -exampled

(2_17.c)
main()

{

int status;
pid_t pid, pidl, pid2;

if ((pid1 = fork()) == 0)
printf("in child 1\n");

else
if ((pid2 = fork()) == 0)
printf("in child 2\n");
else
{
pid = wait(&status);
if (pid == pid1)
printf("child 1 finished\n");
if (pid == pid2)
printf("child 2 finished\n");
H
H
(2_18.c)
main()
{ .
int status;

pid_t pid, pidl, pid2;

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

if ((pid1 = fork()) == 0)
printf("in child 1\n");

else
if ((pid2 = fork()) == 0)
printf("in child 2\n");
else
{
pid = wait(&status);
pid = wait(&status);
if (pid == pid1)
printf("child 1 finished\n");
if (pid == pid2)
printf("child 2 finished\n");
H
H
(2_19.c)
main()
{ .
int status;
pid_tpid_a, pid b, pidl, pid2;
if ((pid1 = fork()) == 0)
printf("in child 1\n");
else
if ((pid2 = fork()) == 0)
printf("in child 2\n");
else
{
pid_a = wait(&status);
if (pid_a == pidl)
printf("child 1 finished\n");
if (pid_a == pid2)
printf("child 2 finished\n");
pid_b = wait(&status);
if (pid_b == pidl)
printf("child 1 finished\n");
if (pid_b == pid2)
printf("child 2 finished\n");
H
H

What happens if the child terminated before the parent process did wait()?

When a process terminates the system releases all of its resources (variables and PC), except for the
termination information of the process, i.c., the process is empty of content but there is still a pid and
termination information = the process is a zombie. The process will be freed only when the parent
process does wait().

If the parent process terminates before the child process then the child process becomes an orphan
process (child of the init process). The init process executes all the time a wait loop. This will
eventually free the orphan process without collecting the termination information.

execl, execlp, execle, exect, execv, execvp: execute a file. These functions replace the content of the
program with a new program that will run from its beginning with its variables. The function doesn't
create a new process, it just replaces the current executing program.

SYNOPSIS
#include <unistd.h>

extern char **environ,

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

Receives the arguments as a NULL terminated list:
int execl(const char *path, const char *arg0, const char *argl, ..., const char *argn, NULL);
int execlp(const char *file, const char *arg0, const char *argl, ..., const char *argn, NULL);

Receives the arguments as an arguments' array:
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);

Specifies environment:
int execle(const char *path, const char *arg, ..., char *const envp[]);

The path can be absolute or relative. The program needs to be executed must have execute permission.

DESCRIPTION

The exec family of functions replaces the current process image with a new process image.

The initial argument for these functions is the pathname of a file which is to be executed.

The first argument of the argv list/array, by convention, should point to the file name associated with
the file being executed. The list of arguments must be terminated by a NULL pointer.

The execle()function also specify the environment of the executed process by following the NULL
pointer that terminates the list of arguments in the parameter list or the pointer to the argv array with an
additional parameter. This additional parameter is an array of pointers to null-terminated strings and
must be terminated by a NULL pointer. For example:

char* env _1list[] = { "SOURCE=MYDATA", "TARGET=OUTPUT", "lines=65",
NULL};
execle("myprog", "myprog", "ARG1", "ARG2", NULL, env_list);

In this example, myprog will be found if it exists in the current working directory. The environment
for the invoked program consists of the three environment variables SOURCE, TARGET and lines.

The other functions take the environment for the new process image from the external variable environ
in the current process.

The functions execlp() and execvp() will duplicate the actions of the shell in searching for an
executable file if the specified file name does not contain a slash "/" character. The search path is the
path specified in the environment by "PATH" variable. If this variable isn't specified, the default path
"/bin:/usr/bin:" is used.

RETURN VALUES
If any of the exec functions returns, an error will have occurred. The return value is -1, and the global
variable errno will be set to indicate the error.

Examples:

(2_70.¢) - compiled to "progl"

#include <sys/types.h>

int main()

{
printf("1");
execl("prog2", "prog2", NULL);
printf("11");

H

(2_11.¢) - compiled to "prog2"
int main()

{

h
% progl

printf("2");

Output:
12

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

The command ps will show that the executing program at first is progl (pid = 1000) and afterwards
prog2 (pid =1000).

When prog2 terminates the process terminates (there is no return back to the program progl).

Only if the exec! fails will the output be "111".

(2_12.c)
#include <sys/types.h>
main()
{
execl("/bin/cal", "cal", "5", "1999", NULL); // executing the command % cal 5 1999
/* equivalents to:
char *const ar[] = {"cal", "5", "1999", NULL};
execv("/bin/cal", ar);
*/
perror("execl failed");

}

(2_13.c)
#include <sys/types.h>
main() /* assuming program "fork4" doesn't exist */

{

int stat;

if (fork() == 0) {
execl("/u/usr/fork4", "fork4", NULL); // fails
printf("1");

else {
wait(&stat); // waiting for child's termination
printf("2");

}

Output: 12

(2_14.c)
#include <sys/types.h>
main() /* assuming program "fork5" doesn't exist */

{

int stat;

if (fork() == 0) {
execl("/u/usr/fork5", "fork5", NULL);
printf("1");
exit(1);

else {
wait(&stat);
printf("2");
if (stat !=0) //
printf("3");

}

Output: 123

awnnn W7 NZ7nnn ,[7'X-12 NV'01AIX
n7von ni>wn 88-288

(2_15.c)
#include <sys/types.h>
main()
{
if (fork() == 0) {
execl("/u/usr/ensof", "ensof", NULL); // the program "ensof": while(1);

exit(1);
H
else
while(1);
}
2 > gce -0 example5 2 _15.¢ example5
3 > example5 &
[1] 15202 @
4> ps exampleSux,;,u ensof
PID TT STAT TIME COMMAND Q
4709 pts/0 S 0:02 -tcsh
15202 pts/0 R 0:01 exampleb
15203 pts/0 R 0:01 ensof
5>kill -KILL %1 example6
[1] Killed -exampleb
(2_16.c) parent Q child
#include <sys/types.h> O
main() child
{ int s; parento4>
if (fork() == 0)
execl("/u/usr/example6", "example6", NULL);
else
wait(&s);
; > gce -0 example6 2_16.c Numerous processes will be created (how many - depends on how
3 > example6 many resources the system gives us).
Eventually fork() will fail and return -1. We then go to the else block
where we do wait. Since this process has no child (fork failed) wait
fails and the process terminates.
Then, in a chain reaction, all other processes will do wait, and finally
we will remain with 0 processes.
getpid(): get process id

getppid(): get parent process id

#include <sys/types.h>
#include <unistd.h>

pid_t getpid(void);
pid_t getppid(void);

