BNF/EBNF:

BNF — Recursive:

BNF (which is an acronym for Backus Naur Form) was invented in 1960 and used in the formal
description of Algol-60.

The meta-symbols of BNF are:

= meaning "is defined as"

| meaning "or"

<> angle brackets used to surround category names. e.g., <program>, <expression>, <S>

The angle brackets distinguish syntax rules names (also called non-terminal symbols) from terminal
symbols which are written exactly as they are to be represented.

Example of terminals: WHILE,(, 3.

The empty string is written as <empty>

A BNF rule defining a nonterminal has the form:
nonterminal ::= sequence_of alternatives consisting of strings of terminals or nonterminals separated
by the meta-symbol |
For example, the BNF production for a mini-language is:
<program=> ::= program
<declaration_sequence>
begin
<statements_sequence>
end ;
This shows that a mini-language program consists of the keyword "program" followed by the
declaration sequence, then the keyword "begin" and the statements sequence, finally the keyword "end"
and a semicolon.

EBNF (Extended BNF) — Iterative
e There’s a dot ‘.” at the end of the line.

e Parentheses, (and), represent grouping,

e optional items are enclosed in meta symbols [and], example:

<if statement> ::= if <boolean_expression> then
<Statement sequence>
[else
<statement _sequence> |
end if ;

e repetitive items (zero or more times) are enclosed in meta symbols { and }, example:

<identifier> ::= <letter> { <letter> | <digit> }
this rule is equivalent to the recursive rule:
<identifier> ::= <letter> |
<identifier> [<letter> | <digit> |

e terminals are surrounded by quotes (") to distinguish them from meta-symbols, example:

<statement sequence> ::= <statement> { ";" <statement> }

Here is the definition of EBNF expressed in EBNF:

syntax = {rule }.

rule = identifier "::=" expression.

expression = term { "|" term }.

term = factor { factor }.

factor = identifier | quoted_symbol | ”(*“ expression “)”|"[" expression "]"|"{" expression "}".

identifier = letter { letter | digit }.
quoted_symbol — nnn { any_character } mm.

BNF Example:

<program> ::= BEGIN <statement-seq> END
<statement-seq> ::= <statement>

<statement-seq> ::= <statement> ; <statement-seq>
<statement> ::= <while-statement>

<statement> ::= <for-statement>

<statement> ::= <empty>

<which-statement> ::= WHILE <expression> DO <statement-seq> END
<expression> ::= <factor>

<expression> ::= <factor> AND <factor>
<expression> ::= <factor> OR <factor>

<factor> ::= (<expression>)

<factor> ::= <variable>

<for-statement> ::= ...

<variable> ::= ...

EBNF Examples:
Program = “BEGIN” Statement-seq “END”.

Statement-seq = Statement [“;” Statement-seq].

Statement = [While-statement | For-statement].

While-statement = “WHILE” Expression “DO” Statement-seq “END”.
Expression = Factor { (“AND" | “OR”) Factor }.

Factor = *(* Expression ‘)’ | Variable.

For-statement = ...

Variable = ...

ident = letter {letter | digit}.

number = integer | real.

integer = digit {digit} | digit {hexDigit} "H".

real = digit {digit} "." {digit} [ScaleFactor].
ScaleFactor = ("E"|"D") ["+" |"-"] digit {digit}.
hCXDigit o digit | HAH | HB" | HC" | HDH | HEH | HFH'

digit e HOH | Hl" | HZH | 11311 | 11411 | HSH | H6H | H7H | HSH | H9H'
characterConst = digit {hexDigit} "X".

String —1tny {Char} Tt | nn {Char} " H'

Parse Trees (Syntax Trees)...

