Questions - BNF:

2. Consider the following EBNF syntax. Which of the sentences following are not legal according to the syntax for sneeches? Why?

<PRIVATE
sneech>
::=
'*' |

('(' <sneech> ')' '*') |

[<bander>] <sneech>

<bander>
::=
{ '+$+' | '#' } | ('%' <bander>)

1. (*)

2. (+$+*)

3. *

4. *****

5. %%%**

6. #####**

7. (+$+#

8. +$+#*

9. *+$+#

10. %#*+$+**

2. Consider the BNF
<bexpr> ::= <bexpr> or <bterm> | <bterm>
<bterm> ::= <bterm> and <bfactor> | <bfactor>
<bfactor> ::= not <bfactor> | (<bexpr>) | true | false

Construct a parse tree for the sentence not (true or false).
Show that this BNF generates all boolean expressions.

Solutions - BNF

1.

 1. (*) Not legal it can be represented as (*)* because of the rule of sneech ('('<sneech')''*'). sneech ->'*'.it can be represented as * by the rule of sneech ->'*'.

 2. (+$+*) Not legal The asterik should be outside of the right parenthesis, if we represent sneech -> ('('<sneech')'*') like this.

 3. * Legal sneech 4. The asterik can be presented one at a time and not recursive(link) to extend the asteriks .

 5. %%%** Not legal, Using the rule bander -> ('%'<bander>), we cannot generate * after %

 6. #####** Not legal shouldn't have **

 7. (+$+# Not legal, no closing parenthesis.

 8. +$+#* Legal

 9. *+$+# Not legal, should be <bander>< sneech>not sneech bander.

 10. %#*+$+** Not legal, shouldn't have **

2. Constructing a parse tree for not (true or false)

bexpr => bterm
bexpr => bfactor
bexpr => not bfactor
bexpr => not (bexpr)
bexpr=> not (bexpr or bterm)
bexpr => not (bterm or bfactor)
bexpr => not (bfactor or false)
bexpr => not (true or false)

To show the grammer generates all boolean expressions

bexpr => bterm
bexpr => bfactor
bexpr => true

bexpr => bterm
bexpr => bfactor
bexpr => false

bexpr => bterm
bexpr => bfactor
bexpr => not bfactor
bexpr => not true

bexpr => bterm
bexpr => bfactor
bexpr => not bfactor
bexpr => not false

bexpr => bterm
bexpr => bterm and bfactor
bexpr => bterm and false
bexpr => bfactor and false
bexpr => true and false

bexpr => bexpr or bterm
bexpr => bterm or bterm
bexpr => bfactor or bterm
bexpr => true or bterm
bexpr => true or bfactor
bexpr => true or false

bexpr => bterm
bexpr => bfactor
bexpr => not bfactor
bexpr => not bexpr
bexpr => not bterm
bexpr => not bterm and bfactor
bexpr => not bfactor and bfactor
bexpr => not true and bfactor
bexpr => not true and false

bexpr => bterm
bexpr => bfactor
bexpr => not bfactor
bexpr => not bexpr
bexpr => not bexpr or bterm
bexpr => not bterm or bterm
bexpr => not bfactor or bterm
bexpr => not true or bterm
bexpr => not true or bfactor
bexpr => not true or false

Scoping Rules:

Assume the following program was compiled and executed using static scoping rules. What value of x is printed in procedures sub1? Under dynamic scoping rules, what value of x is printed in procedure sub1?

program main;

var x : integer;

procedure sub1;

begin {sub1}

writeln('x = ', x)

end; {sub1}

procedure sub2;

var x : integer;

begin {sub2}

x := 10;

sub1;

end; {sub2}

begin {main}

x := 5;

sub2;

end. {main}

Using Static Scoping Rules:- Here the program will print the value of X as 5,because the following steps will occur.

 The comper first searches the current procedure (sub1) for the declaration of Variable X.

 When no declaration for X is found in Sub1.The compiler searches the static parent of Sub1 for the declaration of X.which is main (The static parent is nothing but the larger enclosing unit in which sub1 is declared).

 In the main, the value of X is declared as 5 and this value is used for X in Sub1 and this is printed.

Using Dynamic Scoping Rules:- Here the program will print the value of X as 10,because the following steps will occur.

 The compiler first searches the current procedure (sub1) for the declaration of Variable X.

 When no declaration for X is found in Sub1.The compiler searches the dynamic parent of Sub1 for the declaration of X.which is Sub2 (The dynamic parent of Sub1 is the procedure or sub1 which has made this particular call to Sub1).

 In this case, the value of X is declared as 10 in sub2 and hence thix value is used for X in sub1 and gets printed.

Consider the following function:

function F(x,y: integer) return integer is
begin
x:=x+1; y:=y+1; return(x-y);
end F;

Show by one or more examples of calls on procedure F that call-by-name, call-by-value/result, and call-by-reference are different parameter-passing methods. That is, show calls that produce different results for the different binding rules.

