
Jonathan Katz and Yehuda Lindell

Introduction to Modern
Cryptography

CRC PRESS

Boca Raton London New York Washington, D.C.





Preface

This book presents the basic paradigms and principles of modern cryptogra-
phy. It is designed to serve as a textbook for undergraduate- or graduate-level
courses in cryptography (in computer science or mathematics departments),
as a general introduction suitable for self-study (especially for beginning grad-
uate students), and as a reference for students, researchers, and practitioners.

There are numerous other cryptography textbooks available today, and the
reader may rightly ask whether another book on the subject is needed. We
would not have written this book if the answer to that question were anything
other than an unequivocal yes. The novelty of this book — and what, in our
opinion, distinguishes it from all other books currently available — is that it
provides a rigorous treatment of modern cryptography in an accessible manner
appropriate for an introduction to the topic.

As mentioned, our focus is on modern (post-1980s) cryptography, which
is distinguished from classical cryptography by its emphasis on definitions,
precise assumptions, and rigorous proofs of security. We briefly discuss each
of these in turn (these principles are explored in greater detail in Chapter 1):

• The central role of definitions: A key intellectual contribution of
modern cryptography has been the recognition that formal definitions

of security are an essential first step in the design of any cryptographic

primitive or protocol. The reason, in retrospect, is simple: if you don’t
know what it is you are trying to achieve, how can you hope to know
when you have achieved it? As we will see in this book, cryptographic
definitions of security are quite strong and — at first glance — may
appear impossible to achieve. One of the most amazing aspects of cryp-
tography is that (under mild and widely-believed assumptions) efficient
constructions satisfying such strong definitions can be proven to exist.

• The importance of formal and precise assumptions: As will be
explained in Chapters 2 and 3, many cryptographic constructions can-
not currently be proven secure in an unconditional sense. Security often
relies, instead, on some widely-believed (albeit unproven) assumption.
The modern cryptographic approach dictates that any such assumption

must be clearly stated and unambiguously defined. This not only al-
lows for objective evaluation of the assumption but, more importantly,
enables rigorous proofs of security as described next.

• The possibility of rigorous proofs of security: The previous two
ideas lead naturally to the current one, which is the realization that cryp-
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tographic constructions can be proven secure with respect to a clearly-
stated definition of security and relative to a well-defined cryptographic
assumption. This is the essence of modern cryptography, and what has
transformed cryptography from an art to a science.

The importance of this idea cannot be over-emphasized. Historically,
cryptographic schemes were designed in a largely ad-hoc fashion, and
were deemed to be secure if the designers themselves could not find
any attacks. In contrast, modern cryptography promotes the design
of schemes with formal, mathematical proofs of security in well-defined
models. Such schemes are guaranteed to be secure unless the underly-
ing assumption is false (or the security definition did not appropriately
model the real-world security concerns). By relying on long-standing
assumptions (e.g., the assumption that “factoring is hard”), it is thus
possible to obtain schemes that are extremely unlikely to be broken.

A unified approach. The above contributions of modern cryptography are
relevant not only to the “theory of cryptography” community. The impor-
tance of precise definitions is, by now, widely understood and appreciated by
those in the security community who use cryptographic tools to build secure
systems, and rigorous proofs of security have become one of the requirements
for cryptographic schemes to be standardized. As such, we do not separate
“applied cryptography” from “provable security”; rather, we present practical
and widely-used constructions along with precise statements (and, most of the
time, a proof) of what definition of security is achieved.

Guide to Using this Book

This section is intended primarily for instructors seeking to adopt this book
for their course, though the student picking up this book on his or her own
may also find it a useful overview of the topics that will be covered.

Required background. This book uses definitions, proofs, and mathemat-
ical concepts, and therefore requires some mathematical maturity. In par-
ticular, the reader is assumed to have had some exposure to proofs at the
college level, say in an upper-level mathematics course or a course on discrete
mathematics, algorithms, or computability theory. Having said this, we have
made a significant effort to simplify the presentation and make it generally
accessible. It is our belief that this book is not more difficult than analogous
textbooks that are less rigorous. On the contrary, we believe that (to take one
example) once security goals are clearly formulated, it often becomes easier
to understand the design choices made in a particular construction.

We have structured the book so that the only formal prerequisites are a
course in algorithms and a course in discrete mathematics. Even here we rely
on very little material: specifically, we assume some familiarity with basic
probability and big-O notation, modular arithmetic, and the idea of equating
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efficient algorithms with those running in polynomial time. These concepts
are reviewed in Appendix A and/or when first used in the book.

Suggestions for course organization. The core material of this book,
which we strongly recommend should be covered in any introductory course
on cryptography, consists of the following (starred sections are excluded in
what follows; see further discussion regarding starred material below):

• Chapters 1–4 (through Section 4.6), discussing classical cryptography,
modern cryptography, and the basics of private-key cryptography (both
private-key encryption and message authentication).

• Chapter 5, illustrating basic design principles for block ciphers and in-
cluding material on the widely-used block ciphers DES and AES.1

• Chapter 7, introducing concrete mathematical problems believed to be
“hard”, and providing the number-theoretic background needed to un-
derstand the RSA, Diffie-Hellman, and El Gamal cryptosystems. This
chapter also gives the first examples of how number-theoretic assump-
tions are used in cryptography.

• Chapters 9 and 10, motivating the public-key setting and discussing
public-key encryption (including RSA-based schemes and El Gamal en-
cryption).

• Chapter 12, describing digital signature schemes.

• Sections 13.1 and 13.3, introducing the random oracle model and the
RSA-FDH signature scheme.

We believe that this core material — possibly omitting some of the more in-
depth discussion and proofs — can be covered in a 30–35-hour undergraduate
course. Instructors with more time available could proceed at a more leisurely
pace, e.g., giving details of all proofs and going more slowly when introducing
the underlying group theory and number-theoretic background. Alternatively,
additional topics could be incorporated as discussed next.

Those wishing to cover additional material, in either a longer course or a
faster-paced graduate course, will find that the book has been structured to
allow flexible incorporation of other topics as time permits (and depending on
the instructor’s interests). Specifically, some of the chapters and sections are
starred (*). These sections are not less important in any way, but arguably
do not constitute “core material” for an introductory course in cryptography.
As made evident by the course outline just given (which does not include any
starred material), starred chapters and sections may be skipped — or covered
at any point subsequent to their appearance in the book — without affecting

1Although we consider this to be core material, it is not used in the remainder of the book

and so this chapter can be skipped if desired.
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the flow of the course. In particular, we have taken care to ensure that none of
the later un-starred material depends on any starred material. For the most
part, the starred chapters also do not depend on each other (and when they
do, this dependence is explicitly noted).

We suggest the following from among the starred topics for those wishing
to give their course a particular flavor:

• Theory: A more theoretically-inclined course could include material
from Section 3.2.2 (building to a definition of semantic security for en-
cryption); Sections 4.8 and 4.9 (dealing with stronger notions of secu-
rity for private-key encryption); Chapter 6 (introducing one-way func-
tions and hard-core bits, and constructing pseudorandom generators
and pseudorandom functions/permutations starting from any one-way
permutation); Section 10.7 (constructing public-key encryption from
trapdoor permutations); Chapter 11 (describing the Goldwasser-Micali,
Rabin, and Paillier encryption schemes); and Section 12.6 (showing a
signature scheme that does not rely on random oracles).

• Applications: An instructor wanting to emphasize practical aspects
of cryptography is highly encouraged to cover Section 4.7 (describing
HMAC) and all of Chapter 13 (giving cryptographic constructions in
the random oracle model).

• Mathematics: A course directed at students with a strong mathematics
background — or taught by someone who enjoys this aspect of cryptog-
raphy — could incorporate some of the more advanced number theory
from Chapter 7 (e.g., the Chinese remainder theorem and/or elliptic-
curve groups); all of Chapter 8 (algorithms for factoring and computing
discrete logarithms); and selections from Chapter 11 (describing the
Goldwasser-Micali, Rabin, and Paillier encryption schemes along with
the necessary number-theoretic background).

Comments and Errata

Our goal in writing this book was to make modern cryptography accessible
to a wide audience outside the “theoretical computer science” community. We
hope you will let us know whether we have succeeded. In particular, we are
always more than happy to receive feedback on this book, especially construc-
tive comments telling us how the book can be improved. We hope there are
no errors or typos in the book; if you do find any, however, we would greatly
appreciate it if you let us know. (A list of known errata will be maintained
at http://www.cs.umd.edu/~jkatz/imc.html.) You can email your com-
ments and errata to jkatz@cs.umd.edu and lindell@cs.biu.ac.il; please
put “Introduction to Modern Cryptography” in the subject line.
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