
Decremental Single-Source Reachability and Strongly Connected Components in
Õ(m

√
n) Total Update Time

Shiri Chechik∗, Thomas Dueholm Hansen†, Giuseppe F. Italiano‡, Jakub Łącki§, Nikos Parotsidis¶
∗Tel Aviv University, Tel Aviv, Israel. Email: schechik@cs.tau.ac.il

†Aarhus University, Aarhus, Denmark. Email: tdh@cs.au.dk
‡University of Rome Tor Vergata, Rome, Italy. Email: giuseppe.italiano@uniroma2.it

§Sapienza University of Rome, Rome, Italy. Email: j.lacki@mimuw.edu.pl
¶University of Rome Tor Vergata, Rome, Italy. Email: nikos.parotsidis@uniroma2.it

Abstract—We present randomized algorithms with a total
update time of Õ(m

√
n) for the problems of decremental single-

source reachability and decremental strongly connected compo-
nents on directed graphs. This improves recent breakthrough
results of Henzinger, Krinninger and Nanongkai [STOC 14,
ICALP 15]. In addition, our algorithms are arguably simpler.

Keywords-dynamic algorithm; single-source reachability;
strongly connected components

I. INTRODUCTION

Dynamic graph algorithms are designed to answer queries

on graphs subject to updates, such as adding or removing a

vertex or an edge. Typically, one is interested in a very small

query time (either constant or poly-log), while minimizing the

update time as much as possible. A dynamic algorithm is said

to be incremental if it handles only insertions, decremental
if it handles only deletions, and fully dynamic if it handles

both insertions and deletions. Dynamic graph algorithms have

been extensively studied in the last four decades, and efficient

dynamic algorithms with poly-log update times are known

for many basic problems on undirected graphs, including

dynamic connectivity, dynamic 2-edge connectivity, dynamic

2-vertex connectivity, and dynamic minimum spanning tree

(see, e.g., [1]–[6]).

Dealing with directed graphs seems much more chal-

lenging. In fact, up until very recently, even for very

basic reachability problems (e.g., decrementally maintaining

whether a fixed node s can reach a fixed node t), no sublinear

(in the number of vertices) update time algorithms were

known for general graphs. Very recently, in an important

breakthrough, Henzinger, Krinninger and Nanongkai [7],

managed to circumvent this barrier, by presenting a ran-

domized decremental single-source reachability algorithm

with total update time O(mn0.984+o(1)) (that is with n1−ε

amortized update time for some fixed ε). They later improved

the running time to O(mn0.9+o(1)) [8]. Both these algorithms

are quite involved and solve the more general problem of

single-source decremental reachability. In this problem we

are given a directed graph G and a source node s and the

goal is to maintain the set of nodes that are reachable from

s, subject to edge deletions.

In this paper we present an improved randomized decre-

mental single-source reachability algorithm with an improved

running time of O(m
√
n log n). In addition, our algorithm

is arguably simpler.

Previous Results: A naive approach to decremental

single-source reachability (SSR) is to simply recompute

from scratch all the vertices that are reachable from the

source after every deletion. This can be done in O(m+ n)
time per update, and gives a total update time of O(m2)
over all deletions. Even and Shiloach [9] were the first to

beat this naive approach, with a decremental algorithm that

runs in O(mn) total update time. (A similar scheme was

independently found by Dinitz [10].) Although the algorithm

of Even and Shiloach solves a more general problem than

decremental single-source reachability, it was still the best

known for the problem and the O(mn) barrier stood for

more than three decades. Only in the special case of directed

acyclic graphs, decremental SSR could be solved faster, i.e,

in O(m) total update time [11].

A closely related problem is the decremental maintenance

of strongly connected components (SCC), where we are

required answer queries of the form: “Given two vertices u
and v, do u and v belong to the same SCC?”. This problem is

almost equivalent to the decremental SSR problem: A solution

for decremental SCC trivially implies a decremental SSR

algorithm with the same running time, while a decremental

SSR algorithm with running time O(mnβ), with β = Ω(1),
implies a decremental SCC algorithm with essentially the

same expected total update time (see [7], [12]). This justifies

why for many years the best known upper bound for a

decremental SCC algorithm was also O(mn) [12]–[14]. The

lack of improvement made researchers in the field wonder

whether O(mn1−ε) was possible [12], [13], [15]. In a recent

breakthrough, Henzinger, Krinninger and Nanongkai [7]

showed that this is indeed possible and presented algorithms

for decremental SCC and SSR with O(mn0.984+o(1)) total

update time. They later [8] improved this to O(mn0.9+o(1)).
Both these results are Las Vegas randomized.

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.42

314

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.42

315

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.42

315

Our Results: We present improved randomized decre-

mental SSR and SCC algorithms with total update time

of O(m
√
n log n). This matches the best known result for

planar graphs [13], up to logarithmic factors. In addition to the

substantially improved bounds, our algorithms are arguably

simpler than the algorithms in [7], [8]. Our single-source

reachability algorithm can be generalized to an algorithm for

maintaining reachability from k fixed vertices, at the cost

of increasing the running time by an additive O(km log n)
term. (Due to lack of space, the details are deferred to the

full version of the paper.) We focus our attention on giving

a faster decremental SCC algorithm, as a decremental SSR

algorithm follows from it quite easily. Our decremental SCC

algorithm uses two existing decremental SCC algorithms.

One is the O(mn) total expected time algorithm by Roditty

and Zwick [12] and the other is the O(mn) total worst-case

time algorithm by Łącki [13]. What is crucial for our result,

is that in some special cases the running time bounds of both

these algorithms can be improved. The algorithm by Roditty

and Zwick uses Even-Shiloach trees (in short ES-trees) to

maintain BFS trees under edge deletions. This data structure

requires O(mn) total time in the general case, but only

O(mδ) time, if the diameter of the graph does not exceed

δ. On the other hand, the performance of Łącki’s algorithm

can be improved if the graph contains a small separator, i.e.

a small set of vertices, whose removal considerably reduces

the sizes of the SCCs.

We show that each graph has one of the two afore-

mentioned properties. Namely, we prove that in a graph

of diameter Ω(q log n) there exists a set of k vertices (a

separator), whose removal results in the largest SCC having

size at most n−kq. This allows us to combine the algorithm

of Roditty and Zwick with the algorithm by Łącki. We use

the former as long as the graph has small diameter (as it uses

ES-trees internally it can also measure the diameter up to a

constant factor), and once the diameter exceeds a predefined

threshold δ = Θ(
√
n), we switch to the algorithm by Łącki.

At this point the graph has a separator of small size, which

we can use to make the algorithm by Łącki run efficiently.

We believe that our structural result regarding separators may

be of independent interest.

II. PRELIMINARIES

Let G = (V,E) be a directed graph with vertex set V =
V (G) and edge set E = E(G). We denote the number of

vertices and edges by n and m, respectively. G is strongly
connected if every vertex is reachable from every other vertex.

The strongly connected components (in short SCCs) of G
are its maximal strongly connected subgraphs. The SCCs of

a graph can be computed in O(m+ n) time [16]. We let �G
be the graph obtained by reversing the direction of all edges

in G, and refer to �G as the reversed graph of G. Note that

G and �G have the same SCCs. We denote by G \ S (resp.,

G \ uv) the graph obtained after deleting a set S of vertices

(resp., an edge uv) from G. Additionally, we let G[S] be the

subgraph of G induced by the set of vertices S. Let H be

a strongly connected graph. We say that deleting an edge

uv breaks H , if H \ uv is not strongly connected. Let u, v
be two vertices of G. We denote by dist(u, v) the distance

from u to v. If there is no path from u to v, dist(u, v) =∞.

The diameter of G is the largest distance in G. If G is not

strongly connected, its diameter is equal to ∞.

For a given initial graph G, the decremental SCC problem

asks us to maintain a data structure that allows edge deletions

and that can answer whether (arbitrary) pairs of vertices are

in the same SCC. The goal is to update the data structure as

quickly as possible while still answering queries in constant

time. The decremental single-source reachability (SSR)

problem similarly asks us to maintain a data structure that

allows edge deletions and that can answer whether (arbitrary)

vertices are reachable from a fixed given source v ∈ V (G).
Our algorithm for maintaining SCCs under edge deletions is

obtained by combining two previous data structures: Even-

Shiloach trees [9] and Łącki’s SCC-decomposition [13]. We

next briefly describe these two data structures.

A. ES-tree

Even and Shiloach [9] introduced a data structure, com-

monly referred to as an Even-Shiloach tree (ES-tree), to

maintain a breadth-first search (BFS) tree from a given source

vertex under edge deletions. Let G be a graph and r ∈ V (G).
Clearly, G is strongly connected iff the BFS trees from r in

G and �G both contain all vertices of G. Checking whether

G remains strongly connected when edges are deleted can

therefore be done by maintaining two ES-trees F and �F for

G and �G, respectively. Our algorithm uses such a pair of ES-

trees from a shared source r to detect when an edge deletion

breaks a strongly connected subgraph. An ES-tree can also

be modified such that it maintains a set of vertices, whose

distance from the root is at most δ, where δ is a parameter

specified when the ES-tree is built. The data structure may

report all vertices whose distance from the root is more

than δ (which includes vertices not reachable from the root).

Maintaining such an ES-tree takes O(mδ) total time. Let G
be a graph, r ∈ V (G), and δ > 0. Our algorithm uses a data

structure that maintains two independent δ-depth-bounded

ES-trees. Both trees are rooted in r and have depth bound δ.

One of them is built in G and the other one in �G. We call

such a data structure an in-out ES-tree.

Definition 1 (In-out ES-tree). Let G be a graph, r ∈ V (G),
and δ > 0. A δ-depth-bounded in-out ES-tree of G is a data
structure E = (G, r, δ,D) that maintains the set D of all
vertices v ∈ V (G) with either dist(r, v) > δ or dist(v, r) >
δ, and that supports the following four operations:

• Delete an edge uv from G, and update D accordingly.
• List all vertices of D.

315316316

• List all vertices C ⊆ D that are unreachable from or
cannot reach r in G.

• Delete a vertex v ∈ D from both D and G (together
with its incident edges).

Note that D includes all vertices that are unreachable

from or cannot reach r. In our algorithm we only access

the in-out ES-trees by running the two query operations

given in Definition 1. We let BUILD-ES-TREE(G, r, δ) be

a function that builds an in-out ES-tree E = (G, r, δ,D) for

G. We say that the depth invariant of E is violated if the

set D is nonempty. Observe that if the depth invariant is

not violated, then the graph G represented by E is strongly

connected. The following lemma follows straightforwardly

from the implementation of an in-out ES-tree.

Lemma 2. Let G be a directed graph, n = |V (G)|, m =
|E(G)|, r ∈ V (G), and δ > 0.
• The total time spent building an in-out ES-tree E =
(G, r, δ,D) and handling all delete operations is
O(mδ).

• The running time of each operation that lists vertices
of D is linear in the size of D.

• The running time of each operation that lists vertices
of C ⊆ D that are unreachable from or cannot reach r
in G is linear in the size of D and the total degree of
vertices of D (in G).

B. SCC-decomposition

Łącki [13] introduced a decomposition of a strongly

connected graph G that can be efficiently updated under

edge deletions. To solve the decremental SCC problem, such

a decomposition can be maintained for each SCC. His idea

was that, in terms of strong connectivity, a strongly connected

subgraph may essentially be viewed as a single vertex from

the point of view of the rest of the graph. We can thus

contract strongly connected subgraphs into single vertices and

separately maintain connectivity with respect to internal and

external edges. We refer to Łącki’s decomposition as an SCC-
decomposition. An SCC-decomposition recursively partitions

the graph G into smaller strongly connected subgraphs. This

generates a rooted tree T , whose root r represents the entire

graph, and where the subtree rooted at each node φ represents

some strongly connected subgraph Gφ (we refer to vertices of

T as nodes to distinguish T from G). Every internal (non-leaf)

node φ is a vertex of Gφ, and the children of φ correspond

to SCCs of Gφ \ φ. The algorithm by Łącki recursively

partitions the graphs until the leaves represent single vertices.

We cut the recursion short and instead operate with partial
SCC-decompositions, in which the leaves represent strongly

connected subgraphs rather than single vertices.

Definition 3 (SCC-decomposition). Let G = (V,E) be a
strongly connected graph. An SCC-decomposition of G is
a rooted tree T , whose nodes form a partition of V . For a

node φ of T we define Gφ to be the subgraph of G induced
by the union of all descendants of φ (including φ). Then, the
following hold:
• Each internal node φ of T is a single-element set.1

• Let φ be any internal node of T , and let H1, . . . , Ht

be the SCCs of Gφ \ φ. Then the node φ has t
children φ1, . . . , φt, where Gφi

= G[φi] = Hi for all
i ∈ {1, . . . , t}.

An SCC-decomposition of a graph G that is not strongly
connected is a collection of SCC-decompositions of the SCCs
of G. We say that T is a partial SCC-decomposition when
the leaves of T are not required to be singletons.

Observe that for each node φ, the graph Gφ is strongly

connected. Moreover, the subtree of T rooted at φ is an

SCC-decomposition of Gφ. To build an SCC-decomposition

T of a strongly connected graph G we pick an arbitrary

vertex v, put it in the root of T , then recursively build SCC-

decompositions of SCCs of G \ {v} and make them the

children of v in T . Since the choice of v is arbitrary, there

are many ways to build an SCC-decomposition of the same

graph. As shown in [13], the total initialization and update

time of an SCC-decomposition is O(mγ), where γ is the

depth of the decomposition. Thus, it is desirable to build

decompositions of low depth.
SCC-decomposition and separators: For any set S ⊆

V (G) we can build a partial SCC-decomposition of G by

picking vertices of S (in arbitrary order). This results in a

tree T where the vertices of S are at the top, and where the

leaves represent SCCs of G \ S. In the following we use

BUILD-SCC-DEC(G,S) to refer to this procedure.

Lemma 4. Let G be a directed graph and S ⊆
V (G). BUILD-SCC-DEC(G,S) builds a partial SCC-
decomposition T with |S| internal nodes. Each leaf of T is
exactly the vertex set of one SCC of G \ S. The procedure
runs in O(|E(G)| · |S|) time.

Let T be a partial SCC-decomposition of G and φ be a

leaf node of T . Note that if we modify T by replacing φ by a

partial SCC-decomposition of G[φ], we obtain a new partial

SCC-decomposition of G (in this case we say that we expand
φ). The node set of this new partial SCC-decomposition is

a finer partition of vertices of G. If S is a small set of

vertices, such that the SCCs of G \ S are small, then the

SCC-decomposition computed by BUILD-SCC-DEC(G,S)
has low depth. Łącki [13] used this observation and the

planar separator theorem to obtain an O(n1.5) total update

time algorithm for the decremental SCC problem in planar
graphs. The key insight of our result is that we may find a

suitable set S in graphs of high diameter. Thus, we expand

each leaf φ of the SCC-decomposition when the diameter

of Gφ grows large. Up to this point we maintain strong

1In this case, we sometimes abuse notation and assume that φ is the
vertex itself.

316317317

Procedure Build-SCC-Dec(G,S)

Input: A strongly connected graph G and S ⊆ V (G).
Output: A partial SCC-decomposition T of G whose internal

nodes are exactly the vertices of S.

1 if S = ∅ then
2 return the tree T consisting of a single node φ with

associated graph Gφ = G.

3 Pick an arbitrary vertex v ∈ S.
4 Make v the root of T , and let Gv = G.
5 Compute the SCCs H1, . . . , Ht of G \ {v}.
6 foreach i ∈ {1, . . . , t} do
7 Recursively compute

Ti = BUILD-SCC-DEC(Hi, S ∩ V (Hi)).
8 Make the subtree Ti a child of v in T .

9 return T .

connectivity for the subgraph of the leaf with an in-out

ES-tree, which is efficient due to the low diameter.

Handling deletions: We next very briefly sketch Łącki’s

procedure for maintaining an SCC-decomposition when an

edge uv is deleted (see [13] for more details). Łącki does

not consider partial SCC-decompositions, but his technique

easily extends to this case since all updates propagate toward

the root. In particular, a partial SCC-decomposition T of

a graph G is isomorphic to an SCC-decomposition of the

graph that is obtained from G by contracting the strongly

connected subgraphs represented by the leaves of T .

The procedure for updating an SCC-decomposition T is a

recursive function that takes a node φ of T as a parameter,

and possibly makes a single recursive call with the parent

of φ. Thus, the update process is bottom-up and affects

some number of immediate ancestor of φ. When node φ
is processed, some child node φ′ (and its subtree) may be

moved up in the tree T , i.e., it becomes a sibling of φ. Łącki

shows that the running time of this step is proportional to the

total degree of vertices in the subtree rooted at φ′. Moreover,

the running time of such steps dominates the running time

of the update procedure. Since nodes only move up in T ,

it follows that maintaining the SCC-decomposition T under

edge deletions can be done in total time O(γm), where

γ ≤ n is the initial depth of T .

In this paper we modify the SCC-decomposition by

replacing subtrees of the SCC-decomposition with in-out

ES-trees. We will call such an SCC-decomposition an

augmented SCC-decomposition. Let T be an augmented SCC-

decomposition. Whenever an edge uv is deleted, where u
and v belong to distinct nodes of T , the in-out ES-trees are

not affected at all. On the other hand, when u and v belong

to the same leaf φ of T , we update the in-out ES-tree Eφ
for φ as follows. Let H1, . . . , H� be the SCCs of Gφ \ uv.

We first update Eφ to represent the SCC Hi that contains the

root of Eφ, and then call FIX-SCC-DEC, which is a function

for propagating the update in an SCC-decomposition. This

procedure is given SCC-decompositions of all H1, . . . , H�,

except Hi, as arguments. In this extended abstract, we do

not describe the procedures for updating the internal nodes

of an SCC-decomposition (e.g., FIX-SCC-DEC), as they are

essentially the same as in [13].

III. OUR ALGORITHM

Our goal is to maintain the SCCs of a given directed

graph G under edge deletions, and to answer in constant

time whether (arbitrary) pairs of vertices are in the same

SCC. To answer such queries we assign a unique identifier to

each SCC and store it with all its vertices. To check whether

two vertices are in the same SCC we simply check if their

identifiers match. We use essentially the same algorithm

to solve the decremental single-source reachability (SSR)

problem: to reduce decremental SSR to decremental SCC,

simply add an edge from every vertex back to the source. A

vertex is now reachable from the source if and only if it is

in the same SCC as the source in the modified graph.

Consider the algorithm that maintains an in-out ES-tree

for each SCC of G. It uses the in-out ES-trees to detect when

an SCC breaks, and then computes new in-out ES-trees for

the resulting new SCCs. Roditty and Zwick [12] showed that

when the root of every in-out ES-tree is chosen uniformly

at random from its SCC, the total expected update time for

a graph with n vertices and m edges is O(mn). We use the

same idea, but further reduce the update time by bounding

the depth of the in-out ES-trees. (The use of random roots

is also the only randomized element in our algorithm.) In

particular, the depth of all in-out ES-trees will be upper

bounded by O(
√
n). When the depth invariant of an in-out

ES-tree is violated, we then need to maintain connectivity

for the vertices that are too far from its root.

Consider the case when the deletion of an edge uv causes

the depth invariant of an in-out ES-tree E = (H, r, δ,D) to

be violated. Similar to the simple algorithm, our algorithm

computes the set of vertices C ⊆ D that lost their strong

connectivity to the root r of E . It then removes C from E
and recomputes in-out ES-trees for the new SCCs of H[C]
(using uniformly random sources). It is, however, possible

that the depth invariant remains violated for E or the new

in-out ES-trees after C is removed. Note, however, that

H \C is strongly connected at this point, and so are the new

SCCs by definition. The challenge is therefore to restore the

depth invariant for an in-out ES-tree of a subgraph that we

know is strongly connected. This is where we use Łącki’s

SCC-decomposition [13].

Let G0 be the original graph for which our data structure

is initialized, and let n0 = |V (G0)|. Throughout, we use

n0 to distinguish G0 from other graphs and subgraphs

that we operate with. We also introduce two parameters:

δ0 = 8�√n0� and q0 = 	√n0/ log n0
. We will use depth

threshold δ0 for all our in-out ES-trees, and we refer to q0
as a quality parameter. We will later explain the significance

of δ0 and q0.

317318318

Procedure Fix-Depth(E)

Input: An in-out ES-tree E = (G, r, δ0, D) for a strongly
connected graph G.

Output: An augmented SCC-decomposition T of G,
consisting of a single tree.

1 if D = ∅ then
2 Let T be the tree consisting of a single node φ with

associated graph Gφ = G, and let Eφ = E .
3 return T

4 if More than half the vertices of G have distance at most δ0/2
to r, and more than half the vertices of G have distance at
most δ0/2 from r then

5 Compute S = FIND-SEPARATOR(G, r, δ0).
6 Compute T = BUILD-SCC-DEC(G,S).
7 Let φ1, . . . , φ� ⊆ V (G) be the leaves of T .
8 Compute {T1, . . . , T�} =

AUGMENTED-SCCS(E , {G[φ1], . . . , G[φ�]})
9 foreach i ∈ {1, . . . , �} do

10 Replace the leaf φi of T by the subtree Ti.

11 return T .
12 else
13 Destroy E .
14 return BUILD-BALANCED-SCC-DEC(G).

Let G be a strongly connected graph, and let E =
(G, r, δ0, D) be an in-out ES-tree for G. Recall that T =
BUILD-SCC-DEC(G,S), where S ⊆ V (G), is a partial

SCC-decomposition of G whose internal nodes are ex-

actly the vertices of S. When the depth invariant of E
is violated, our algorithm picks an appropriate set S, and

computes the corresponding partial SCC-decomposition

T = BUILD-SCC-DEC(G,S). The leaves of T are the

SCCs of G \ S, and as before our algorithm recomputes

new in-out ES-trees for these SCCs, with the exception of

the SCC H that contains r, if a majority of the vertices in

H have distance greater than δ0/2 to or from r, respectively.

(We explain later why this distinction is important.) The

in-out ES-tree for H is instead obtained by removing

all vertices not in H from E . If the depth invariant is

still violated for some of the resulting in-out ES-trees,

the procedure is repeated recursively, extending the SCC-

decomposition. In the end we are left with an augmented

SCC-decomposition: A partial SCC-decomposition T for G,

where each leaf φ of T has an in-out ES-tree Eφ for G[φ]. The

procedure is described formally in FIX-DEPTH(E). It calls

the function AUGMENTED-SCCS(E , {G[φ1], . . . , G[φ�]}),
which constructs augmented SCC-decompositions for the

SCCs G[φ1], . . . , G[φ�], possibly by reusing the original in-

out ES-tree E (which will be detailed later). Note that we

did not yet describe how the set S is chosen, nor why we

use δ0 = 8�√n0� as depth threshold.

Our data structure for maintaining SCCs under edge

deletions is thus a partial SCC-decomposition where the

leaves are represented by depth-bounded in-out ES-trees (an

augmented SCC-decomposition). When the depth threshold

is sufficiently high, the partial SCC-decomposition will have

no internal nodes, and we get the simple algorithm by Roditty

and Zwick [12]. On the other hand, if the depth threshold

only allows in-out ES-trees consisting of single vertices, we

get Łącki’s algorithm [13]. Both algorithms use O(mn) total

update time, but for different reasons. To improve the running

time we balance the depth of the partial SCC-decomposition

and the depth of the in-out ES-trees against each other. This

is achieved by carefully choosing the depth threshold for

the ES-trees, and by carefully selecting the internal nodes

for the partial SCC-decomposition. Note however that any

choice of depth threshold and internal nodes gives a correct

algorithm; these choices only affect the running time.

Before defining the choice of S in FIX-DEPTH(E), we

first describe how an augmented SCC-decomposition T
is updated when an edge uv is deleted. We refer to

DELETE-EDGE(T, uv) for a formal description of the proce-

dure. As in Łącki’s algorithm [13], we first find the lowest

common ancestor φ of u and v, and if φ is an internal node

we proceed as in Łącki’s algorithm (we refer to this procedure

as DELETE-EDGE-FROM-SCC-DEC(T, uv)). If φ is a leaf,

then we remove uv from the corresponding in-out ES-tree

Eφ = (G[φ], rφ, δ0, Dφ), and if this does not break the depth

invariant then we are done. If the depth invariant of Eφ is

violated, then we find the set Cφ of vertices that are not

strongly connected to the root rφ of Eφ in G[φ]. We compute

the SCCs of G[Cφ], and compute an in-out ES-tree from a

random root in every SCC. We also remove Cφ and all its

incident edges from Eφ. (We ignore for now the case where

Eφ is destroyed and reconstructed.) We now have an in-out

ES-tree for every SCC of G[φ] \ uv, but since the depth

invariant may be violated, we make a call to FIX-DEPTH(E)
for each such in-out ES-tree E . This gives us an augmented

SCC-decomposition of every SCC of G[φ] \ uv. In fact

this situation is virtually identical to the case in Łącki’s

algorithm [13] when an edge deletion breaks the strongly

connected subgraph of some internal node, and we proceed

correspondingly: The augmented SCC-decomposition T�+1

that corresponds to the original in-out ES-tree Eφ replaces

φ in T , and the remaining augmented SCC-decompositions

T1, . . . , T� are attached higher in the tree T by making a call

to FIX-SCC-DEC(T, uv, φ′, {T1, . . . , T�}), where φ′ is the

parent of φ in T . This is again done as in Łącki’s algorithm.

Note that if G[φ] \ uv is strongly connected (i.e., Cφ = ∅)
then this step is not needed. If φ has no parent and G[φ]\uv
has more than one SCC, then the new SCCs represented by

T1, . . . , T� are also new SCCs of the original graph G, and

the identifiers of the vertices in these new SCCs are updated.

It remains to explain our use of the depth threshold,

our choice of internal nodes for the augmented SCC-

decomposition, and when to destroy and recompute in-out

ES-trees. In order to make efficient use of Łącki’s SCC-

decomposition, we must make sure that the (combined)

initial depth is low. Recall from the discussion at the end

318319319

Procedure Delete-Edge(T ,uv)

Input: An augmented SCC-decomposition T for a graph G,
and an edge uv to be deleted from G. Every leaf φ of
T is associated with an in-out ES-tree
Eφ = (G[φ], rφ, δ0, Dφ).

Output: An augmented SCC-decomposition T ′ for
G′ = G \ uv.

1 Let φ = LCA(u, v) be the lowest common ancestor of u and
v in T .

2 if φ is an internal node of T then
3 return DELETE-EDGE-FROM-SCC-DEC(T ,uv).

4 Remove uv from the in-out ES-tree Eφ.
5 if Dφ = ∅ then
6 return T

7 Using Lemma 2, compute the set Cφ ⊆ φ of vertices that are
not strongly connected to rφ in G[φ].

8 Compute the SCCs H1, . . . , H� of the graph G[Cφ] induced
by Cφ.

9 Compute H�+1 = G[φ] \ Cφ.
10 Compute {T1, . . . , T�+1} =

AUGMENTED-SCCS(Eφ, {H1, . . . , H�+1}).
11 Let φ′ be the parent of φ in T , or let φ′ = � if φ has no

parent.
12 Replace φ by T�+1 in T .
13 if φ′ = � or Cφ = ∅ then
14 return T ′ = {T, T1, . . . , T�}.
15 else
16 return FIX-SCC-DEC(T ,uv,φ′,{T1, . . . , T�}).

of Section II-B that this can be achieved by using good

separators. We therefore introduce the following definition.

Definition 5 (q-separator). Let G = (V,E) be a graph with
n vertices, and let q ≥ 1 be an integer. A q-separator for G
is a non-empty set of vertices S ⊆ V , such that each SCC
of G \ S contains at most n− q · |S| vertices. We refer to q
as the quality of S.

For our application it is desirable for separators to have

as high quality as possible. However, since no SCC contains

fewer than one vertex, every q-separator S must have q ·|S| <
n. We next describe a procedure FIND-SEPARATOR(G, r, δ)
for computing a high-quality separator for a graph with a

high diameter. The procedure starts by computing a BFS tree

T rooted at r for either G or the reversed graph �G, such that

T has depth at least δ. If no such tree exists the procedure

returns the empty set. Define the ith layer Li ⊆ V (G) of

T to be the set of vertices at distance i from the root v in

T . We now consider two cases: Either the layers from 0

up to δ/2 contain at least half the vertices of G, or they

contain less than half the vertices of G. In the first case,

we let j be the lowest index such that q ≤ j ≤ δ/2 and

|Lj | ≤ 2j/q−1. We show that such an index exists, and that

Lj is a q-separator. We thus let FIND-SEPARATOR(G, r, δ)
return Lj . In the second case, we similarly return the layer

Lj , where j is the highest index such that δ/2 ≤ j ≤ δ − q
and |Lj | ≤ 2(δ−j)/q−1.

Lemma 6. Let G be a strongly connected graph with n
vertices and m edges, let r ∈ V (G), and let δ be an integer.
Then the procedure FIND-SEPARATOR(G, r, δ) computes a q-
separator for G with quality q = 	δ/(2 log n)
 in O(m) time
if there exists a vertex v ∈ V (G) with either dist(r, v) ≥ δ or
dist(v, r) ≥ δ. If no such vertex v exists then the procedure
returns the empty set.

Proof: Let T be the BFS tree that is produced by

FIND-SEPARATOR(G, r, δ), i.e., T is rooted at r and has

depth at least δ. If no such BFS tree exists, then the procedure

returns the empty set as it should. We will assume for

simplicity that δ is even.

Let Li ⊆ V (G) be the ith layer of T . Observe that since T
is a BFS tree, each layer Lj separates the lower layers from

the higher layers, that is, there are no edges from Li to Lk for

i < j < k. It follows that the largest SCC of G \Lj has size

at most max{∑i<j |Li|,
∑

k>j |Lk|}. Assume that the first

δ/2+1 layers L0, . . . , Lδ/2 contain at most half the vertices

of G. (Otherwise we may reverse the order of the layers and

use an analogous argument.) This means that for j ≤ δ/2, we

have
∑

i<j |Li| < n/2 ≤ ∑
k>j |Lk|, and thus the largest

SCC of G\Lj has size at most
∑

k>j |Lk| = n−∑
i≤j |Li|.

Let q = 	δ/(2 log n)
, and note that 	q log n
 ≤ δ/2. Let

j be the lowest index such that q ≤ j ≤ 	q log n
 and

|Lj | ≤ 2j/q−1. We show that such an index exists, and that

Lj is a q-separator. The lemma then follows from the fact

that Lj is computed in O(m) time.

Assume that |Li| > 2i/q−1 for all q ≤ i < j. Since

|Li| ≥ 1 for all i < q, we have that
∑j−1

i=0 |Li| >

q +
∑j−1

i=q 2i/q−1 ≥ q +
∑j−q−1

i=0 2(i+q)/q−1 = q +∑j−q−1
i=0 2i/q = q + 1−2(j−q)/q

1−21/q
= q + 2j/q−1−1

21/q−1
. Note that

(1+1/x)x ≥ 2 for x ≥ 1, which implies that 21/x−1 ≤ 1/x.

Hence,
∑j−1

i=0 |Li| > q + (2j/q−1 − 1) · q = q · 2j/q−1.

Assume by contradiction that there is no index j such

that q ≤ j ≤ 	q log n
 and |Lj | ≤ 2j/q−1. Then

|Li| > 2i/q−1 for all q ≤ i ≤ 	q log n
, which means that∑�q logn�
i=0 |Li| > q · 2(�q logn�+1)/q−1 ≥ 1

2 · 2(q logn)/q =
n/2. Since 	q log n
 ≤ δ/2, this contradicts the assumption

that the layers L0, . . . , Lδ/2 contain at most half the vertices

of G, and therefore there must exist a lowest index j such

that q ≤ j ≤ 	q log n
 and |Lj | ≤ 2j/q−1.

Observe that |Li| > 2i/q−1 for all q ≤ i < j. When

combined with |Lj | ≤ 2j/q−1, this implies that
∑j−1

i=0 |Li| >
q ·2j/q−1 ≥ q ·|Lj |. Since

∑j−1
i=0 |Li| ≤ n/2 this also implies

that |Lj | < n/(2q). It follows that the largest SCC of G\Lj

has size at most
∑

k>j |Lk| = n −∑
i≤j |Li| ≤ n −∑j−1

i=0 |Li| ≤ n− q · |Lj | . Since Lj = ∅, this proves that

Lj is a q-separator, and the lemma follows.

Note that when we call FIND-SEPARATOR(G, r, δ) on

line 5 in FIX-DEPTH(E) we use depth δ0 = 8�√n0�,
whereas we only use depth δ0/4 = 2�√n0� on line 2

in BUILD-BALANCED-SCC-DEC(G). It then follows from

319320320

Procedure Build-Balanced-SCC-Dec(G)

Input: A strongly connected graph G.
Output: An augmented SCC-decomposition T of G.

1 Pick an arbitrary vertex v ∈ V (G).
2 Compute S = FIND-SEPARATOR(G, v, δ0/4).
3 if S = ∅ then
4 Pick r ∈ V (G) uniformly at random.
5 return FIX-DEPTH(BUILD-ES-TREE(G, r, δ0)).
6 else
7 Compute T = BUILD-SCC-DEC(G,S).
8 Let φ1, . . . , φ� ⊆ V (G) be the leaves of T .
9 Let imax = argmaxi≤� |φi|.

10 foreach i ∈ {1, . . . , �} \ {imax} do
11 Pick vi ∈ φi uniformly at random.
12 Compute Ei = BUILD-ES-TREE(G[φi], vi, δ0)
13 Compute Ti = FIX-DEPTH(Ei).
14 Replace the leaf φi of T by the subtree Ti.

15 Compute
Timax = BUILD-BALANCED-SCC-DEC(G[φimax]).

16 Replace the leaf φimax of T by the subtree Timax .
17 return T .

Procedure Augmented-SCCs(E , {H1, . . . , H�})
Input: An in-out ES-tree E = (G, r, δ0, D), and a collection

{H1, . . . , H�} of disjoint, strongly connected
subgraphs of G.

Output: A collection of augmented SCC-decompositions
{T1, . . . , T�}, such that Ti is an augmented
SCC-decomposition for Hi.

1 Let imax = argmaxi≤t |Hi|.
2 if r ∈ φimax then
3 Remove V (Himax) and its adjacent edges from E .
4 Compute Timax = FIX-DEPTH(E).
5 else
6 Destroy E , and compute

Timax = BUILD-BALANCED-SCC-DEC(Himax).

7 foreach i ∈ {1, . . . , �} \ {imax} do
8 Pick vi ∈ φi uniformly at random.
9 Compute Ei = BUILD-ES-TREE(Hi, vi, δ0).

10 Compute Ti = FIX-DEPTH(Ei).

11 return {T1, . . . , T�}.

Lemma 6 that the produced separators always have quality

at least q = 	�√n0�/ log n
 ≥ 	√n0/ log n0
 = q0. We use

this to show that the combined increase in depth for the partial

SCC-decomposition is at most O(n0/q0) = O(
√
n0 log n0),

which means that the total time spent on maintaining the

SCC-decomposition is O(m0
√
n0 log n0), where m0 is the

number of edges in the initial graph.

To bound the time spent on in-out ES-trees, one could

try to argue that every time a new in-out ES-tree is created,

it will contain at most half of the vertices from the graph

that it came from. This would imply that every vertex only

appears in a logarithmic number of in-out ES-trees. Since

the contribution of one vertex to the work performed by

an ES-tree is proportional to its degree multiplied by the

maximum depth of the ES-tree, it would follow that the total

time spent on maintaining ES-trees is O(m0δ0 log n0) =
O(m0

√
n0 log n0). Unfortunately, it is not true that every

new in-out ES-trees has half the size of the graph that it

came from. To fix the argument we exploit that the root of

the in-out ES-tree was picked uniformly at random.

Consider the point at which half the vertices from

the original graph G of an in-out ES-tree FIX-DEPTH(E)
have distance greater than δ0/2 to or from the root r of

FIX-DEPTH(E), respectively. (Note that this includes the

case where half the vertices are unreachable, i.e., have infinite

distance to or from r.) Since r ∈ V (G) was chosen uniformly

at random, with probability 1/2 the situation would have

been similar for half of the choices of roots. This restricts

the structure of the graph, and we prove that in this case we

can repeatedly remove q0-separators from the largest SCC

until it is reduced to half the size of the original graph. To do

so we use the function BUILD-BALANCED-SCC-DEC(G).
We then get that each vertex only appears in a logarithmic

number of in-out ES-trees in expectation. In order to repeat

the argument, we destroy and recompute FIX-DEPTH(E)
before calling BUILD-BALANCED-SCC-DEC.

To initialize our data structure for some given graph G0,

we compute the SCCs H1, . . . , H� of G0, and then for each

i ≤ �, we compute an in-out ES-tree Ei with depth threshold

δ0 = 8�√n0� from a random source ri in Hi. For each

i ≤ � we then call FIX-DEPTH(Ei) to get an augmented

SCC-decomposition.

IV. DECREMENTAL MAINTENANCE OF SCCS

Let G = (V,E) be the initial graph, and let Gj be the

graph after j edges have been deleted from G. In particular

G0 = G. Also let T j be the partial SCC-decomposition

that our algorithm constructs for Gj . In this section we

let m0 = |E(G0)| and n0 = |V (G0)|. To bound the

running time of the operations that modify our partial SCC-

decomposition, we use the following function that assigns

potential to a partial SCC-decomposition T of a graph G. We

will separately bound the time spent on building and updating

the ES-trees. Let v ∈ V (G). We denote by levelT (v) the

depth in T of the node that contains v. Then, the potential

function is given by Φ(T) :=
∑

v∈V (G) degG(v) · levelT (v).
The analysis by Łącki [13] can be interpreted as showing

that the total time spent updating internal nodes of an SCC-

decomposition T is O(Φ(T)). This is done by charging work

performed by the algorithm to a decrease of the potential.

Let us first briefly analyze how each function affects the

levels of vertices.

1) As noted in Section II-B the procedure for updating

the internal nodes of a partial SCC-decomposition after

deleting an edge, may only decrease the levels.

2) Each call to FIX-DEPTH may result in replacing a

leaf node of an SCC-decomposition with a multi-level

subtree computed with BUILD-SCC-DEC. Thus, these

two operations may only increase the levels of vertices.

320321321

In [13], the SCC-decomposition is first built, which

accumulates some potential, and then the potential may only

drop. Thus, in order to bound the running time it suffices

to bound the initial potential. In our case, we bound the

total potential increase caused by calls to FIX-DEPTH and

BUILD-SCC-DEC. The level of a vertex v only increases

if v belongs to a leaf. When v is an internal node of the

SCC-decomposition, its level only decreases.
There are two atomic operations that modify SCC-

decompositions. The first one moves a node one level up

(in the procedure for updating partial SCC-decomposition).

The second consists of expanding a leaf node of an SCC-

decomposition to a multilevel subtree computed with BUILD-

SCC-DEC. The leaves of this subtree may then be recursively

expanded with other subtrees. For the purpose of our analysis,

we track the levels of nodes (and the potential) after each

such atomic operation. Note that whenever we build an in-

out ES-tree for a graph on n ≤ n0 vertices, we use the depth

threshold δ0. This allows us to find q0-separators, where

q0 = 	√n0/ log n0
.
We now analyze BUILD-SCC-DEC(G,S). This function

is called by FIX-DEPTH and BUILD-BALANCED-SCC-DEC,

and it calls itself recursively. We refer to the first two cases

as initial calls to BUILD-SCC-DEC. The following lemma

follows from Lemma 6 and the fact that S is constructed

by FIND-SEPARATOR(G, r, δ), where δ ≥ δ0/4 = 2�√n0�,
i.e., the procedure returns a q0-separator, where q0 =
	√n0/ log n0
.
Lemma 7. In each initial call to BUILD-SCC-DEC(G,S),
S is a q0-separator of G, where q0 = 	√n0/ log n0
.
Lemma 8. Let v ∈ G0. The total increase in the level of v in
the course of handling all edge deletions is O(

√
n0 log n0).

Proof: Observe that the level of v only increases when v
belongs to a leaf of the partial SCC-decomposition, and this

leaf is expanded to a partial SCC-decomposition built with

a call BUILD-SCC-DEC(H,S). We claim that in this case

the size of the node containing v decreases significantly.

By Lemma 4, BUILD-SCC-DEC(H,S) builds an SCC-

decomposition T ′ of depth at most |S|, where each leaf

corresponds to an SCC of H \ S. By Lemma 7, S is a

	√n0/ log n0
-separator of H . Hence, each SCC of H \ S
has size at most |V (H)| − 	√n0/ log n0
|S|. Thus, when

the leaf containing v is replaced with T ′, the level of v
increases by at most |S|. Since the size of the set containing

v is reduced by at least 	√n0/ log n0
|S|, the level of v can

increase at most
√
n0 log n0 times.

Corollary 9. The total potential increase in the course of
handling all edge deletions is O(m0

√
n0 log n0).

The following lemma follows from Corollary 9, and

the fact that FIND-SEPARATOR is guaranteed to find a q0-

separator when it is called from BUILD-SCC-DEC.

Lemma 10. The total time spent in FIND-SEPARATOR,
BUILD-BALANCED-SCC-DEC and BUILD-SCC-DEC, ex-
cluding the case when FIND-SEPARATOR returns the empty
set in BUILD-BALANCED-SCC-DEC, is O(m0

√
n0 log n0).

Lemma 10 accounts only for a part of the time spent

by calls to FIX-DEPTH. We attribute the remainder of the

work of FIX-DEPTH to handling in-out ES-trees, which we

describe in Section IV-A. We also still need to bound the

running time of FIX-SCC-DEC and DELETE-EDGE-FROM-

SCC-DEC, but as it depends on the analysis of in-out ES-

trees, we postpone it to Lemma 15.

A. ES-trees

We first show that the costs of all DELETE-EDGE op-

erations on an ES-tree are dominated by the cost of the

BUILD-SCC-DEC operation and the cost of all FIX-DEPTH

operations. The proofs of the following two lemmas are

deferred to the full paper.

Lemma 11. Let m0 = |E(G0)| and n0 = |V (G0)|. The
total running time of all FIX-DEPTH operations (excluding
the ones that exit immediately and take O(1) time) is
O(m0

√
n0 log n0).

Lemma 12. The total time spent inside DELETE-EDGE (that
is, excluding the calls to DELETE-EDGE-FROM-SCC-DEC,
FIX-DEPTH, FIX-SCC-DEC, and BUILD-BALANCED-SCC-

DEC) is dominated by the time spent on building the ES-tree
and calls to FIX-DEPTH.

For every leaf φ of each partial SCC-decomposition we

maintain an in-out ES-tree representing Gφ. As the in-out

ES-trees in the leaf nodes are subdivided, new in-out ES-trees

have to be built.

Lemma 13. Let φ be a leaf of an augmented SCC-
decomposition, let n = |φ|, let G[φ] be the subgraph corre-
sponding to φ at the time that the leaf was created, and let
Eφ = (G[φ], rφ, δ0, Dφ) be the in-out ES-tree for φ. In partic-
ular rφ is a uniformly random vertex from φ. Then until Eφ is
destroyed, every new in-out ES-tree created for a subgraph of
G[φ] contains at most n/2 vertices. Let Hmax be the largest
SCC of the graph for Eφ right before Eφ is destroyed, and let
Tmax = BUILD-BALANCED-SCC-DEC(Hmax). Then with
probability 1/2 the largest leaf of Tmax contains at most
n/2 vertices, and the SCCs other than Hmax also contain
at most n/2 vertices.

Proof: We only sketch the proof. Additional details can

be found in the full version of the paper.

Observe that we destroy Eφ as soon as we cut away more

than half of its vertices. Therefore, every new in-out ES-tree

that is created from G[φ] before Eφ is destroyed can at most

contain n/2 vertices. Also, when Eφ is destroyed, only the

largest SCC Hmax of its subgraph at that time can contain

more than n/2 vertices. To prove the lemma it therefore

321322322

suffices to show that the largest leaf of Tmax contains at

most n/2 vertices with probability 1/2.

Once the root rφ of Eφ is chosen, the remainder of our

algorithm for handling Eφ is deterministic, given a fixed

sequence of edge deletions e1, e2, . . . , es. For every choice

of rφ, we may therefore ask how many edges from the

sequence are deleted before the algorithm destroys Eφ. In

particular, we may sort the vertices of G[φ] in non-decreasing

order according to the time it takes for the resulting in-out

ES-tree to be destroyed. Let v1, v2, . . . , vn be this sequence.

For some choice of a root vi, let Ei be the corresponding

in-out ES-tree for G[φ], let S
(i)
1 , S

(i)
2 , . . . , S

(i)
�i
⊆ φ be the

sequence of separators that are removed from G[φ] up to

the point where Ei is destroyed, and let t(i) be the number

of edges e1, . . . , et(i) that are deleted before this happens.

(Note that t(i) ≤ t(j) for i ≤ j.) Finally, let G(i) be what

remains of G[φ] right before Ei is destroyed, i.e., G(i) =

(G[φ] \ (S(i)
1 ∪ . . . ∪ S

(i)
�i

)) \ {e1, . . . , et(i)}.
Let vr = rφ be the chosen root. Observe that with

probability 1/2 at least n/2 vertices appear before vr in

the sequence v1, v2, . . . , vn. If this is not the case, then we

ignore the outcome, so for the remainder of the proof we will

assume that r appears in the second half of the sequence.

Recall that BUILD-BALANCED-SCC-DEC(Hmax) repeat-

edly removes a separator from Hmax. We must therefore show

that we can keep doing this until the largest SCC contains at

most n/2 vertices. To do so we prove the following claim.

Let S be any (possibly empty) subset of φ, and suppose that

G(r) \ S has an SCC H with more than n/2 vertices. Then

we show that for every vi ∈ V (H) with i ≤ n/2, there exists

some vertex v ∈ V (H) such that either dist(vi, v) ≥ δ0/2
or dist(v, vi) ≥ δ0/2 in H . Since |V (H)| > n/2 there is

at least one vi ∈ V (H), which implies that the diameter

of H is at least δ0/2. For every u ∈ V (Hmax), there

therefore exists some vertex v ∈ V (Hmax) such that either

dist(v, u) ≥ δ0/4 or dist(u, v) ≥ δ0/4 in Hmax. Hence

FIND-SEPARATOR(Hmax, u, δ0/4) finds a q0-separator for

any u ∈ V (Hmax). To repeat the argument we let S be the

union of the separators produced so far.

Suppose the largest SCC H of G(r) \ S has more than

n/2 vertices. We then prove by contradiction that for every

vi ∈ V (H) with i ≤ n/2, there exists some vertex v ∈
V (H) such that either dist(vi, v) ≥ δ0/2 or dist(v, vi) ≥
δ0/2 in H . Hence we assume that dist(vi, v) < δ0/2 and

dist(v, vi) < δ0/2 for some vi ∈ V (H) and all v ∈ V (H).

Consider the separators S
(i)
1 , S

(i)
2 , . . . , S

(i)
�i
⊆ φ that would

have been generated if we had chosen vi as the root of Ei,
and consider the SCC H(i) that contains vi in G(i). We prove

by induction that S
(i)
j ∩ V (H) = ∅ for all j ∈ {1, . . . , �i}.

This implies that H is a subgraph of H(i). Indeed, then H is

also an SCC of G′ = (G(r)\S)\(S(i)
1 ∪. . .∪S(i)

�i
), and since

G′ is a subgraph of G(i) it follows that vi can only be part

of a smaller SCC in G′. Since removing edges and vertices

from a graph only increases the distance between pairs of

vertices, it follows that distances to and from vi in H are

at least as large as in H(i). The key observation is then that

Ei was destroyed because at most n/2 vertices had distance

at most δ0/2 to or from vi in H(i), respectively. Since the

same is true for H , it follows from dist(vi, v) < δ0/2 and

dist(v, vi) < δ0/2 for all v ∈ V (H) that |V (H)| ≤ n/2,

which contradicts our assumption that |V (H)| > n/2.

We use a similar argument to prove that S
(i)
j ∩V (H) = ∅

for all j ∈ {1, . . . , �i}. The key property we use from

our algorithm is that when we compute a separator on

line 5 of FIX-DEPTH, more than half of the vertices have

distance at most δ0/2 to and from the root of the in-out

ES-tree, respectively. This means that in FIND-SEPARATOR

the constructed separator only contains vertices with distance

at least δ0/2 either to or from this root.

Lemma 14. Let G be a graph, with n = |V (G)| and m =
|E(G)|. Assume that edges are deleted from G. For each
SCC we maintain an in-out ES-tree up to depth O(

√
n) (n

is the current size of the SCC) rooted in a vertex chosen
uniformly at random. After edges are deleted and an SCC
H is partitioned into H1, . . . , Hk we do the following. Let
Wi be the SCC containing the root of the in-out ES-tree E
of H . If Wi contains at least n/2 vertices then we reuse
the in-out ES-tree E of H in the SCC Wi and for j = i
we build new in-out ES-trees for Hj . If Wi contains less
than n/2 vertices then we invoke the procedure BUILD-

BALANCED-SCC-DEC. Then, maintaining all the in-out ES-
trees and all calls to BUILD-BALANCED-SCC-DEC requires
O(m

√
n log n) expected time.

Proof: Maintaining an in-out ES-tree with depth thresh-

old Θ(
√
n) of a graph that initially has m edges and n

vertices requires O(m
√
n) time. For simplicity, we may

charge all this time to the initialization of the in-out ES-tree

and ignore the constant factor. Thus, in the following we

assume that this time is exactly m
√
n.

We bound separately the time spend for the calls of BUILD-

BALANCED-SCC-DEC and the time for the ES-trees. Recall

that we call BUILD-BALANCED-SCC-DEC in the case where

Wi contains less than half of the vertices. Every recursive

call of BUILD-BALANCED-SCC-DEC spends O(m) time

to find a 	√n/ log n
-separator S. Since every time the

largest SCC is at least 	√n/ log n
 vertices smaller that

the SCC it belonged previously, this can happen at most√
n log n times. By Lemma 13 the probability that a call to

FIND-SEPARATOR returns S = ∅ before BUILD-BALANCED-

SCC-DEC halts is at most 1/2. Thus, in expectation the

number of call to FIND-SEPARATOR is O(
√
n log n). This

results in total O(m
√
n log n) expected time in the calls

to FIND-SEPARATOR from BUILD-BALANCED-SCC-DEC.

Additionally, all calls to FIX-DEPTH and BUILD-ES-TREE

are bounded below. By Lemma 10, the time spent on calls of

BUILD-SCC-DEC is bounded by O(m
√
n log n). Thus, the

322323323

total time spent on calls of BUILD-BALANCED-SCC-DEC,

excluding the time for building and maintaining the in-out

ES-trees, is O(m
√
n log n) in expectation.

We next analyze the time for all ES-trees. Note that we

initiate new ES-trees only for SCCs that are of size at most

half their previous SCC. Therefore, every node belongs to at

most O(log n) ES-trees. Thus for all trees the total update

time is O(m
√
n log n). In the second case, by Lemma 13

with constant probability all the SCCs are at most a constant

fraction of the size of the original SCC. As mentioned above,

w.h.p. this happens to every node at most O(log n) times.

Thus this part also costs O(m
√
n log n) total update time.

It remains to bound the running time of FIX-SCC-DEC

and DELETE-EDGE-FROM-SCC-DEC (the proof is deferred

to the full version).

Lemma 15. The total expected running time of FIX-

SCC-DEC and DELETE-EDGE-FROM-SCC-DEC is
O(m

√
n log n).

B. Main result

Lemma 16. Let G be a strongly connected graph subject
to edge deletions, n = |V (G)| and m = |E(G)|. Then,
we can maintain SCC-decompositions of all SCCs of G in
O(m

√
n log n) expected time.

Proof: Consider the operations one by one. The total

expected time spent on BUILD-ES-TREE and on updating

all the ES-trees in the leaves of the SCC-decomposition is

O(m
√
n log n) by Lemma 14. On the other hand, finding sep-

arators and all calls to BUILD-SCC-DEC take O(m
√
n log n)

time, by Lemma 10. The running time of FIX-DEPTH is split

between finding the separators, calling BUILD-ES-TREE and

performing operations that are dominated by the running time

of BUILD-ES-TREE. We have already accounted for each of

these cases. The cost of DELETE-EDGE operations on in-out

ES-trees can be charged to other operations, by Lemma 12.

Finally, the total time spent in all the DELETE-EDGE

operations executed on internal nodes of SCC-decompositions

is bounded by O(m
√
n log n) by Lemma 15. Therefore, the

total running time is O(m
√
n log n).

Theorem 17. Let G be a directed graph, n = |V (G)| and
m = |E(G)|. There exists an algorithm for maintaining
strongly connected components of G subject to edge deletions,
that processes edge deletions in O(m

√
n log n) total expected

time and at any point is able to answer queries that ask
whether two vertices are contained in the same strongly
connected component in O(1) time. It uses O(m+n) space.

ACKNOWLEDGMENT

S. Chechik is supported by the Israel Science Foundation (grant
no. 1528/15), T. D. Hansen by the Carlsberg Foundation, grant
no. CF14-0617, G. F. Italiano by MIUR under Project AMANDA
(Algorithmics for MAssive and Networked DAta), and J. Łącki

by the EU FET project MULTIPLEX no. 317532 and the Google
Focused Award on "Algorithms for Large-scale Data Analysis".

REFERENCES

[1] M. R. Henzinger and M. Thorup, “Sampling to provide or to
bound: With applications to fully dynamic graph algorithms,”
Random Struct. Algorithms, vol. 11, no. 4, pp. 369–379, 1997.

[2] J. Holm, K. de Lichtenberg, and M. Thorup, “Poly-logarithmic
deterministic fully-dynamic algorithms for connectivity, min-
imum spanning tree, 2-edge, and biconnectivity,” J. ACM,
vol. 48, no. 4, pp. 723–760, 2001.

[3] J. Holm, E. Rotenberg, and C. Wulff-Nilsen, “Faster fully-
dynamic minimum spanning forest,” in Proc. of 23rd ESA,
2015, pp. 742–753.

[4] M. Thorup, “Near-optimal fully-dynamic graph connectivity,”
in Proc. of 32nd STOC. ACM, 2000, pp. 343–350.

[5] C. Wulff-Nilsen, “Faster deterministic fully-dynamic graph
connectivity,” in Proc. of 24th SODA, 2013, pp. 1757–1769.

[6] B. M. Kapron, V. King, and B. Mountjoy, “Dynamic graph
connectivity in polylogarithmic worst case time,” in Proc. of
24th SODA, 2013, pp. 1131–1142.

[7] M. Henzinger, S. Krinninger, and D. Nanongkai, “Sublinear-
time decremental algorithms for single-source reachability and
shortest paths on directed graphs,” in Proc. of 46th STOC,
2014, pp. 674–683.

[8] ——, “Improved algorithms for decremental single-source
reachability on directed graphs,” in Proc. of 42nd ICALP,
2015, pp. 725–736.

[9] S. Even and Y. Shiloach, “An on-line edge-deletion problem,”
J. ACM, vol. 28, no. 1, pp. 1–4, 1981.

[10] Y. Dinitz, “Dinitz’ algorithm: The original version and Even’s
version,” in Theoretical Computer Science, Essays in Memory
of Shimon Even, 2006, pp. 218–240.

[11] G. F. Italiano, “Finding paths and deleting edges in directed
acyclic graphs,” Inf. Process. Lett., vol. 28, no. 1, pp. 5–11,
1988.

[12] L. Roditty and U. Zwick, “Improved dynamic reachability
algorithms for directed graphs,” SIAM J. Comput., vol. 37,
no. 5, pp. 1455–1471, 2008.

[13] J. Lacki, “Improved deterministic algorithms for decremen-
tal reachability and strongly connected components,” ACM
Transactions on Algorithms, vol. 9, no. 3, p. 27, 2013.

[14] L. Roditty, “Decremental maintenance of strongly connected
components,” in Proc. of 24th SODA, 2013, pp. 1143–1150.

[15] V. King, “Fully dynamic transitive closure,” in Encyclopedia
of Algorithms. Springer, 2008.

[16] R. E. Tarjan, “Depth-first search and linear graph algorithms,”
SIAM J. Comput., vol. 1, no. 2, pp. 146–160, 1972.

323324324

