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Abstract. We obtain the following results related to dynamic versions
of the shortest-paths problem:

(i) Reductions that show that the incremental and decremental single-
source shortest-paths problems, for weighted directed or undirected
graphs, are, in a strong sense, at least as hard as the static all-pairs
shortest-paths problem. We also obtain slightly weaker results for
the corresponding unweighted problems.

(ii) A randomized fully-dynamic algorithm for the all-pairs shortest-
paths problem in directed unweighted graphs with an amortized
update time of Õ(m

√
n) and a worst case query time is O(n3/4).

(iii) A deterministic O(n2 log n) time algorithm for constructing a (log n)-
spanner with O(n) edges for any weighted undirected graph on n
vertices. The algorithm uses a simple algorithm for incrementally
maintaining single-source shortest-paths tree up to a given distance.

1 Introduction

The objective of a dynamic shortest path algorithm is to efficiently process an
online sequence of update and query operations. Each update operation inserts
or deletes edges from an underlying dynamic graph. Each query operation asks
for the distance between two specified vertices in the current graph. A dynamic
algorithm is said to be fully dynamic if it can handle both insertions and dele-
tions. An incremental algorithm is an algorithm that can handle insertions, but
not deletions, and a decremental algorithm is an algorithm that can handle dele-
tions, but not insertions. Incremental and decremental algorithms are sometimes
referred to as being partially dynamic. An all-pairs shortest paths (APSP) algo-
rithm is an algorithm that can report distances between any two vertices of the
graph. A single-source shortest paths (SSSP) algorithm can only report distances
from a given source vertex.

We present three results related to dynamic shortest paths problems. We
begin with simple reductions that show that the innocent looking incremental
and decremental SSSP problems are, in a strong sense, at least as hard as the
static APSP problem. This may explain the lack of progress on these problems,
and indicates that it will be difficult to improve classical algorithms for these
problems, such as the decremental algorithm of Even and Shiloach [9].

We then present a new fully dynamic APSP algorithm for unweighted di-
rected graphs. The amortized update time of the algorithm is Õ(m

√
n) and

the worst-case query time is O(n3/4). The algorithm is randomized. The results



returned by the algorithm are correct with very high probability. The new algo-
rithm should be compared with a recent algorithm of Demetrescu and Italiano
[8] and its slight improvement by Thorup [26]. Their algorithm, that works for
weighted directed graphs, has an amortized update time of Õ(n2) and a query
time of O(1). For sparse enough graphs our new algorithm has a faster update
time. The query cost, alas, is much larger.

The new algorithm can also be compared to fully dynamic reachability algo-
rithms for directed graphs obtained by the authors in [20] and [21]. A reachabil-
ity algorithm is only required to determine, given two vertices u and v, whether
there is a directed path from u to v in the graph. The reachability problem, also
referred to as the transitive closure problem, is, of course, easier than the APSP
problem. A fully dynamic reachability algorithm with an amortized update time
of Õ(m

√
n) and a worst-case query time of O(

√
n) is presented in [20]. A fully

dynamic reachability algorithm with an amortized update time of O(m+n log n)
and a worst-case query time of O(n) is presented in [21].

Finally, we present a simple application of incremental SSSP algorithms,
showing that they can be used to speed up the operation of the greedy al-
gorithm for constructing spanners. In particular, we obtain an O(n2 log n) time
algorithm for constructing an O(log n)-spanner with O(n) edges for any weighted
undirected graph on n vertices. The previously fastest algorithm for constructing
such spanners runs in O(mn) time.

The rest of this paper is organized as follows. In the next section we describe
the hardness results for incremental and decremental SSSP. We also discuss the
implications of these results. In Section 3 we then present our new fully dynamic
APSP algorithm. In Section 4 we present our improved spanner construction al-
gorithm. We end in Section 5 with some concluding remarks and open problems.

2 Hardness of partially dynamic SSSP problems

We start with two simple reductions that show that the incremental and decre-
mental weighted SSSP problems are at least as hard as the static weighted APSP
problem. We then present two similar reductions that show that the incremen-
tal and decremental unweighted SSSP problems are at least as hard as several
natural static graph problems such as Boolean matrix multiplication and the
problem of finding all edges of a graph that are contained in triangles.

Let A be an incremental (decremental) algorithm for the weighted (un-
weighted) directed (undirected) SSSP problem. We let initA(m,n) be the initial-
ization time of A on a graph with m edges and n vertices. We let updateA(m,n)
be the amortized edge insertion (deletion) time of A, and queryA(m,n) be the
amortized query time of A, where m and n are the number of edges and ver-
tices in the graph at the time of the operation. We assume that the functions
initA(m,n), updateA(m,n) and queryA(m,n) are monotone in m and n.

Theorem 1. Let A be an incremental (decremental) algorithm for the weighted
directed (undirected) SSSP problem. Then, there is an algorithm for the static
APSP problem for weighted graphs that runs in O(initA(m + n, n + 1) + n ·
updateA(m + n, n + 1) + n2 ·queryA(m + n, n + 1)) time.



Proof. Let G = (V, E) be a graph, with |V | = n and |E| = m, and let w : E →
R+ be an assignment of non-negative weights to its edges. The proof works for
both directed and undirected graphs. We assume, without loss of generality, that
V = {1, 2, . . . , n}. Let W = maxe∈E w(e) be the maximum edge weight.

Assume, at first, that A is a decremental algorithm. We construct a new
graph G0 = (V ∪ {0}, E ∪ ({0} × V )), where 0 is a new source vertex. A new
edge (0, j), where 1 ≤ j ≤ n is assigned the weight j ·nW . (See Figure 1(a).)
The graph G0, composed of n + 1 vertices and m + n edges, is passed as the
initial graph to the decremental algorithm A. The source is naturally set to
be 0. After A is initialized, we perform the n queries query(j), for 1 ≤ j ≤ n.
Each query query(j) returns δG0(0, j), the distance from 0 to j in G0. As the
weight of the edge (0, 1) is substantially smaller than the weight of all other edges
emanating from the source, it is easy to see that δG(1, j) = δG0(0, j)− nW , for
every 1 ≤ j ≤ n. We now delete the edge (0, 1) from G0 and perform again the n
queries query(j), for 1 ≤ j ≤ n. We now have δG(2, j) = δG0(0, j) − 2nW , for
every 1 ≤ j ≤ n. Repeating this process n−2 more times we obtain all distances
in the original graph by performing only n edge deletions and n2 queries.

The proof when A is an incremental algorithm is analogous. The only differ-
ence is that we now insert the edges (0, j) one by one, in reverse order. We first
insert the edge (0, n), with weight n2W , then the edge (0, n − 1) with weight
(n− 1)nW , and so on. ut

We note that the simple reduction just described works for undirected, di-
rected, as well as acyclic directed graphs (DAGs). We next move to unweighted
versions of the problem.

Theorem 2. Let A be an incremental (decremental) algorithm for the unweighted
directed (undirected) SSSP problem. Then, there is an algorithm that multiplies
two Boolean n × n matrices, with a total number of m 1’s, in O(initA(m +
2n, 4n) + n·updateA(m + 2n, 4n) + n2 ·queryA(m + 2n, 4n)) time.

Proof. Let A and B be two Boolean n × n matrices. Let C = AB be their
Boolean product. Construct a graph G = (V, E) as follows: V = {si, ui, vi, wi |
1 ≤ i ≤ n}, and E = {(si, si+1) | 1 ≤ i < n} ∪ {(si, ui) | 1 ≤ i ≤ n} ∪ {(ui, vj) |
aij = 1, 1 ≤ i, j ≤ n} ∪ {(vi, wj) | bij = 1, 1 ≤ i, j ≤ n}. (See Figure 1(b).) The
graph G is composed of 4n vertices and m + 2n− 1 edges. Let s = s1. It is easy
to see that δG(s, wj) = 3 if and only if c1j = 1. We now delete the edge (s1, u1).
Now, δG(s, wj) = 4 if and only if c2j = 1. We then delete the edge (s2, u2), and
so on. Again we use only n delete operations and n2 queries. The incremental
case is handled in a similar manner. ut

Discussion. All known algorithms for the static APSP problems in weighted
directed or undirected graphs run in Ω(mn) time. A running time of O(mn +
n2 log n) is obtained by running Dijkstra’s algorithm from each vertex (see [10]).
Slightly faster algorithms are available, in various settings. For the best available
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Fig. 1. Reductions of static problems to incremental or decremental SSSP problems

results see [10], [25], [13], [18], [17]. Karger et al. [15] show that any path-
comparison algorithm for the problem must have a running time of Ω(mn).

The reduction of Theorem 1 shows that if there is an incremental or decre-
mental SSSP algorithm that can handle n update operations and n2 query oper-
ations in o(mn) time, then there is also an o(mn) time algorithm for the static
APSP problem. We note that the trivial ‘dynamic’ SSSP algorithm that simply
constructs a shortest paths tree from scratch after each update operation han-
dles n update operations in Õ(mn) time. Almost any improvement of this trivial
algorithm, even with much increased query times, will yield improved results for
the static APSP problem.

An interesting open problem is whether there are incremental or decremental
SSSP algorithms for weighted graphs that can handle m updates and n2 queries
in Õ(mn) time. (Note that the number of updates here is m and not n.)

We next consider unweighted versions of the SSSP problem. A classical result
in this area is the following:

Theorem 3 (Even and Shiloach [9]). There is a decremental algorithm for
maintaining the first k levels of a single-source shortest-paths tree, in a directed
or undirected unweighted graph, whose total running time, over all deletions, is
O(km), where m is the initial number of edges in the graph. Each query can be
answered in O(1) time.

It is easy to obtain an incremental variant of this algorithm. Such a variant
is described, for completeness, in Section 4, where it is also used.

How efficient is the algorithm of [9], and what are the prospects of improving
it? If k, the number of levels required is small, then the running time of the
algorithm is close to be optimal, as Ω(m) is an obvious lower bound. But, if a
complete shortest paths tree is to be maintained, i.e., k = n−1, the running time
of the algorithm becomes O(mn). How hard will it be to improve this result?

Our reductions for the unweighted problems are slightly weaker than the ones
we have for the weighted problems. We cannot reduce the static APSP problems
to the partially dynamic SSSP problems, but we can still reduce the Boolean



matrix multiplication problem to them. The APSP problem for undirected un-
weighted graphs can be reduced to the Boolean matrix multiplication problem
(see [11],[23],[24]), but these reductions does not preserve sparsity.

The fastest known combinatorial algorithm for computing the Boolean prod-
uct of two n × n matrices that contain a total of m 1’s runs in O(mn) time.
By a combinatorial algorithm here we refer to an algorithm that does not rely
on fast algebraic matrix multiplication techniques. Using such algebraic tech-
niques it is possible to multiply the matrices in O(n2.38) time (see [7]), and also
in O(m0.7n1.2 + n2) time (see [29]). Obtaining a combinatorial Boolean matrix
multiplication algorithm whose running time is O((mn)1−ε + n2), or O(n3−ε),
for some ε > 0, is a major open problem.

The reduction of Theorem 2 shows that reducing the total running time
of the algorithm of [9] to o(mn), using only combinatorial means, is at least
as hard as obtaining an improved combinatorial Boolean matrix multiplication
algorithm. Also, via the reduction of the static APSP problem to Boolean matrix
multiplication, we get that an incremental or decremental SSSP algorithm with
a total running time of O(n3−ε), and a query time of O(n1−ε), for some ε > 0,
will yield a combinatorial algorithm for the static APSP problem with a running
time of O(n3−ε). We believe that this provides strong evidence that improving
the algorithm of [9] will be very hard.

It is also not difficult to see that if the first k levels of a single-source shortest-
paths tree can be incrementally or decrementally maintained in o(km) time, then
there is an o(mn) time Boolean matrix multiplication algorithm. The details will
appear in the full version of the paper.

Chan [5] describes a simple reduction from the rectangular Boolean matrix
multiplication problem to the fully dynamic subgraph connectivity problem. It
is similar in spirit to our reduction. The details, and the problems involved, are
different, however.

As a final remark we note that we have reduced the APSP problem and
the Boolean matrix multiplication problem to offline versions of incremental or
decremental SSSP problem. It will thus be difficult to obtain improved algo-
rithms for partially dynamic SSSP problems even if all the update and query
operations are given in advance.

3 Fully dynamic all-pairs shortest paths

In this section we obtain a new fully dynamic algorithm for the all-pairs shortest
paths problem. The algorithm relies on ideas of [14] and [20]. We rely on following
result of [14] and a simple observation of [28]:

Theorem 4 (Henzinger and King [14]). There is a randomized decremen-
tal all-pairs shortest-paths algorithm for directed unweighted graphs whose total
running time, over all deletions, is O(mn2 log n

t + mn log2 n) and whose query
time is O(t), where m and n are the number of edges and vertices in the initial
graph, and t ≥ 1 is a parameter. (In particular, for t ≤ n/ log n, the total run-
ning time is O(mn2 log n

t ).) Every result returned by the algorithm is correct with
a probability of at least 1− n−c, where c is a parameter set in advance.



Lemma 1 (Ullman and Yannakakis [28]). Let G = (V, E) be a directed
graph on n vertices. Let 1 ≤ k ≤ n, and let S be a random subset of V obtained
by selecting each vertex, independently, with probability p = (c ln n)/k. (If p ≥ 1,
we let S be V .) If p is a path in G of length at least k, then with a probability of
at least 1− n−c, at least one of the vertices on p belongs to S.

The new algorithm works in phases as follows. In the beginning of each
phase, the current graph G = (V, E) is passed to the decremental algorithm
of [14] (Theorem 4). A random subset S of the vertices, of size (cn ln n)/k, is
chosen, where k is a parameter to be chosen later. The standard BFS algorithm
is then used to build shortest paths trees to and from all the vertices of S. If
w ∈ V , we let Tin(w) be a tree of shortest paths to w, and Tout(w) be a tree of
shortest paths from w. The set C is initially empty.

An insertion of a set E′ of edges, all touching a vertex v ∈ V , said to be the
center of the insertion, is handled as follows. First if |C| ≥ t, where t is a second
parameter to be chosen later, then the current phase is declared over, and all the
data structures are reinitialized. Next, the center v is added to the set C, and the
first k levels of shortest paths trees T̂in(v) and T̂out(v), containing shortest paths
to and from v, are constructed. The trees T̂in(v) and T̂out(v) are constructed and
maintained using the algorithm of [9] (Theorem 3). Finally, shortest paths trees
Tin(w) and Tout(w), for every w ∈ S, are constructed from scratch. (Note that
we use T̂in(v) and T̂out(v) to denote the trees associated with a vertex v ∈ C,
and Tin(w) and Tout(w), without the hats, to denote the trees of a vertex w ∈ S.
The former are decrementally maintained, up to depth k, while the later are
rebuilt from scratch following each update operation.)

A deletion of an arbitrary set E′ of edges is handled as follows. First, the
edges of E′ are removed from the decremental data structure initialized at the
beginning of the current phase, using the algorithm of [14] (Theorem 4). Next,
the algorithm of [9] (Theorem 3) is used to update the shortest paths trees T̂in(v)
and T̂out(v), for every v ∈ C. Finally, the trees Tin(w) and Tout(w), for every
w ∈ S, are again rebuilt from scratch.

A distance query Query(u, v), asking for the distance d(u, v) from u to v in the
current version of the graph, is handled using the following three stage process.
First, we query the decremental data structure, that keeps track of all delete
operations performed in the current phase, but ignores all insert operations, and
get an answer `1. We clearly have d(u, v) ≤ `1, as all edges in the decrementally
maintained graph are also edges of the current graph. Furthermore, if there is a
shortest path from u to v in the current graph that does not use any edge that
was inserted during the current phase, then d(u, v) = `1.

Next, we try to find a shortest path from u to v that passes through one of
the insertion centers contained in C. For every w ∈ C, we query T̂in(w) for the
distance from u to w and T̂out(w) for the distance from w to v, and add these
two numbers. (If d(u, w) > k, then u is not contained in T̂in(w) and the distance
from w to u, in the present context, is taken to be ∞. The case d(w, v) > k
is handled similarly.) By taking the minimum of all these numbers we get a
second answer that we denote by `2. Again, we have d(u, v) ≤ `2. Furthermore,



Init(G; k; t):

1. Init-Dec(G, t)
2. C ← φ
3. S ← Random(V, (cn ln n)/k)
4. Build-Trees(S)

Insert(E0; v):

1. E ← E ∪ E′

2. if |C| ≥ t then Init(G, k, t)
3. C ← C ∪ {v}
4. Init-Tree(T̂in(v), E, k)
5. Init-Tree(T̂out(v), E, k)
6. Build-Trees(S)

Delete(E0):

1. E ← E − E′

2. Delete-Dec(E′)
3. for every v ∈ C
4. Delete-Tree(T̂in(v), E′, k)
5. Delete-Tree(T̂out(v), E′, k)
6. Build-Trees(S)

Build-Trees(S):

1. for every w ∈ S
2. BFS(Tin(w), E)
3. BFS(Tout(w), E)

Query(u; v):

1. `1 ← Query-Dec(u, v)
2. `2 ← minw∈C Query-Tree(T̂in(w), u) + Query-Tree(T̂out(w), v)
3. `3 ← minw∈S Query-Tree(Tin(w), u) + Query-Tree(Tout(w), v)
4. return min{`1, `2, `3}

Fig. 2. The new fully dynamic all-pairs shortest paths algorithm.

if d(u, v) ≤ k, and there is a shortest path from u to v in the current graph that
passes through a vertex that was an insertion center in the current phase of the
algorithm, then d(u, v) = `2.

Finally, we look for a shortest path from u to v that passes through a vertex
of S. This is done in a similar manner by examining the trees associated with
the vertices of S. The answer obtained using this process is denoted by `3. (If
there is no path from u to v that passes through a vertex of S, then `3 = ∞.)
The final answer returned by the algorithm is min{`1, `2, `3}.

A formal description of the new algorithm is given in Figure 2. The algorithm
is initialized by a call Init(G, k, t), where G = (V, E) is the initial graph and k
and t are parameters to be chosen later. Such a call is also made at the beginning
of each phase. A set E′ of edges, centered at v, is added to the graph by a
call Insert(E′, v). A set E′ of edges is deleted by a call Delete(E′). A query
is answered by calling Query(u, v). A call Build-Trees(S) is used to (re)build
shortest paths trees to and from the vertices of S.

The call Init-Dec(G, t), in line 1 of Init, initializes the decremental algorithm
of [14]. The call Random(V, (cn ln n)/k), in line 3, chooses the random sample S.
The call Build-Trees(S), in line 4, construct the shortest paths trees Tin(w) and
Tout(w), for every w ∈ S. A call Init-Tree(T̂in(v), E, k) (line 4 of Insert) is used to
initialize the decremental maintenance of the first k levels of a shortest paths tree
T̂in(v) to v. Such a tree is updated, following a deletion of a set E′ of edges, using



a call Delete-Tree(T̂in(v), E′) (line 4 of Delete). A query Query-Tree(T̂in(w), u)
(line 2 of Query) is used to find the distance from u to w in the tree T̂in(w). If u
is not in T̂in(w), the value returned is ∞. Such a tree-distance query is easily
handled in O(1) time. The out-trees T̂out(v) are handled similarly. Finally a call
BFS(Tin(w), E) (line 2 of Build-Trees) is used to construct a standard, static,
shortest paths tree to w. Distances in such trees are again found by calling
Query-Tree(Tin(w), u) (line 3 of Query).

Theorem 5. The fully dynamic all-pairs shortest paths algorithm of Figure 2
handles each insert or delete operation in O(mn2 log n

t2 +km+ mn log n
k ) amortized

time, and answers each distance query in O(t + n log n
k ) worst-case time. Each

result returned by the algorithm is correct with a probability of at least 1− 2n−c.
By choosing k = (n log n)1/2 and (n log n)1/2 ≤ t ≤ n3/4(log n)1/4 we get an
amortized update time of O(mn2 log n

t2 ) and a worst-case query time of O(t).

Proof. The correctness proof follows from the arguments outlined along side
the description of the algorithm. As each estimate `1, `2 and `3 obtained while
answering a distance query Query(u, v) is equal to the length of a path in the
graph from u to v, we have d(u, v) ≤ `1, `2, `3. We show that at least one of these
estimates is equal, with very high probability, to d(u, v).

If there is a shortest path from u to v that does not use any edge inserted in
the current phase, then d(u, v) = `1, assuming that the estimate `1 returned by
the decremental data structure is correct. The error probability here is only n−c.

Suppose therefore that there is a shortest path p from u to v that uses at least
one edge that was inserted during the current phase. Let w be the latest vertex
on p to serve as an insertion center. If d(u, v) ≤ k, then the correct distance
from u to v will be found while examining the trees T̂in(w) and T̂out(w).

Finally, suppose that d(u, v) ≥ k. Let p be a shortest path from u to v in the
current graph. By Lemma 1, with a probability of at least 1 − n−c the path p
passes through a vertex of w of S, and the correct distance will be found while
examining the trees Tin(w) and Tout(w).

We next analyze the complexity of the algorithm. By Theorem 4, the total
cost of maintaining the decremental data structure is O(mn log2 n

t ). As each phase
is composed of at least t update operations, this contributes O(mn log2 n

t2 ) to the
amortized cost of each update operation. Each insert operation triggers the cre-
ation (or recreation) of two decremental shortest paths trees that are maintained
only up to depth k. By Theorem 3 the total cost of maintaining these trees is only
O(km). (Note that this also covers the cost of all future operations performed
on these trees.) Finally, each insert or delete operation requires the rebuilding of
(cn ln n)/k shortest paths trees at a total cost of O(mn log n

k ). The total amortized
cost of each update operation is therefore O(mn2 log n

t2 +km+ mn log n
k ), as claimed.

Each query is handled by the algorithm in O(t + n log n
k ): The estimate `1 is ob-

tained in O(t) time by querying the decremental data structure. The estimate `2
is obtained in O(t) by considering all the trees associated with C. Finally the



Init:

1. for every v ∈ V ,
2. d[v] ←∞ ; p[v] ← null ; N [v] ← φ
3. d[s] ← 0

Insert(u; v):

1. N [u] ← N [u] ∪ {v}
2. Scan(u, v)

Scan(u; v):

1. d′ ← d[u] + wt(u, v)
2. if d′ < d[v] and d′ ≤ k then
3. d[v] ← d′ ; p[v] ← u
4. for every w ∈ N [v],
5. Scan(v, w)

Fig. 3. A simple incremental SSSP algorithm.

estimate `3 is obtained in O(n log n
k ) time by examining all the trees associated

with S.
By examining these bounds it is obvious that k = (n log n)1/2 is the optimal

choice for k. By choosing t in the range (n log n)1/2 ≤ t ≤ n3/4(log n)1/4, we
get a tradeoff between the update and query times. The fastest update time of
O(m(n log n)1/2) is obtained by choosing t = n3/4(log n)1/4. ut

4 An incremental SSSP algorithm and greedy spanners

A simple algorithm for incrementally maintaining a single-source shortest-paths
tree from a source vertex s up to distance k is given in Figure 3. The edge
weights are assumed to be non-negative integers. The algorithm may be seen as
an incremental variant of the algorithm of [9]. It is also similar to an algorithm
of Ramalingam and Reps [19]. The algorithm is brought here for completeness.

For each vertex v ∈ V , d[v] is the current distance from s to v, p[v] is the
parent of v in the shortest paths tree, and N [v] are the vertices that can be
reached from v by following an outgoing edge. The integer weight of an edge
(u, v) is denoted by wt(u, v). As described, the algorithm works on directed
graphs. It is easy to adapt it to work on undirected graphs. (We simply need to
scan each edge in both directions.)

Theorem 6. The algorithm of Figure 3 incrementally maintains a shortest-
paths tree from a source vertex s up to distance k in a directed unweighted graph
using a total number of O(km) operations, where m is the number of edges in
the final graph. Each distance query is answered in O(1) time.

Proof. (Sketch) It is easy to see that the algorithm correctly maintains the dis-
tances from s. The complexity is O(km) as each edge (u, v) is rescanned only
when the distance from s to u decreases, and this happens at most k times. ut

We next define the notion of spanners.



Greedy-Spanner(G; k):

1. E′ ← ∅
2. for each edge (u, v) ∈ E, in non-decreasing order of weight, do
3. if δE′(u, v) > (2k − 1) · wt(u, v) then
3’. [if dE′(u, v) > (2k − 1) then]
4. E′ ← E′ ∪ {(u, v)}
5. return G′ ← (V, E′)

Fig. 4. A greedy algorithm for constructing spanners.

Definition 1 (Spanners [16]). Let G = (V, E) be a weighted undirected graph,
and let t ≥ 1. A subgraph G′ = (V, E′) is said to be a t-spanner of G if and only
if for every u, v ∈ V we have δG′(u, v) ≤ t·δG(u, v).

The greedy algorithm of Althöfer et al. [1] for constructing sparse spanners
of weighted undirected graphs is given in Figure 4. For every integer k ≥ 2,
it constructs a (2k − 1)-spanner with at most n1+1/k edges. This is an essen-
tially optimal tradeoff between stretch and size. The algorithm is reminiscent of
Kruskal’s algorithm for the construction of a minimum spanning tree algorithm.
A naive implementation of this algorithm requires O(mn1+1/k) time.

We consider a variant of the algorithm in which line 3 is replaced by line 3’.
For every edge (u, v) ∈ E, the original algorithm checks whether δE′(u, v) >
(2k− 1)wt(u, v), i.e., whether the weighted distance from u to v in the subgraph
composed of the edges already selected to the spanner is at most 2k−1 times the
weight wt(u, v) of the edge. The modified version of the algorithm asks, instead,
whether dE′(u, v) > 2k − 1, i.e., whether the unweighted distance between u
and v in the subgraph (V,E′) is greater than 2k − 1. We now claim:

Theorem 7. The modified version of the greedy spanner algorithm still produces
a (2k−1)-spanner with at most n1+1/k edges for any weighted graph on n vertices.

Proof. The claim follows from a simple modification of the correctness proof of
the greedy algorithm. If an edge (u, v) is not selected by the modified algorithm,
then dE′(u, v) ≤ 2k − 1. As the edges are scanned in an increasing order of
weight, all the edges on the shortest path connecting u and v in (V,E′) are of
weight at most wt(u, v), and therefore δE′(u, v) ≤ (2k − 1)·wt(u, v). Thus, the
edge (u, v) is also not selected by the original algorithm. The edge set returned
by the modified algorithm is therefore a superset of the edge set returned by the
original algorithm, and is therefore a (2k − 1)-spanner of G.

The proof that the set of edges E′ returned by the original algorithm is of size
at most n1+1/k relies only on the fact that the girth of G′ = (V, E′) is at least
2k + 1. This also holds for the set E′ constructed by the modified algorithm, as
we never add to E′ an edge that would form a cycle of size at most 2k. Hence, the
size of the set E′ returned by the modified algorithm is also at most n1+1/k. ut
Theorem 8. The modified greedy algorithm of Figure 4 can be implemented to
run in O(kn2+1/k)time.



Proof. We use the algorithm of Figure 3 to maintain a tree of shortest-paths, up
to distance 2k − 1, from each vertex of the graph. As the spanner contains at
most n1+1/k edges, the total cost of maintaining each one of these trees is only
O(kn1+1/k), and the total cost of the algorithm is O(kn2+1/k), as claimed. ut

Discussion. There are several other algorithms for constructing sparse span-
ners of weighted graphs. In particular, a randomized algorithm of Baswana and
Sen [4] constructs a (2k − 1)-spanner with O(kn1+1/k) edges in O(m) expected
time. A randomized O(mn1/k) algorithm for constructing such spanners is de-
scribed in [27]. Why then insist on a faster implementation of the greedy al-
gorithm? The answer is that the greedy algorithm constructs slightly sparser
spanners. It produces (2k − 1)-spanners with at most n1+1/k edges (no big-O is
needed here). When k is non-constant, this is significant. When we let k = log n,
the greedy algorithm produces an O(log n)-spanner containing only O(n) edges.
All other algorithms produce spanners with Ω(n log n) edges. It is, of course, an
interesting open problem whether such spanners can be constructed even faster.

Another interesting property of the (original) greedy algorithm, shown by [6],
is that the total weight of the edges in the (2k−1)-spanner that it constructs is at
most O(n(1+ε)/k·wt(MST (G))), for any ε > 0, where wt(MST (G)) is the weight
of the minimum spanning tree of G. Unfortunately, this property no longer holds
for the modified greedy algorithm. Again, it is an interesting open problem to
obtain an efficient spanner construction algorithm that does have this property.

An efficient implementation of a different variant of the greedy algorithm, in
the setting of geometric graphs, is described in [12].

5 Concluding remarks and open problems

We presented a simple reduction from the static APSP problem for weighted
graphs to offline partially dynamic SSSP problem for weighted graphs, and a
simple reduction from the Boolean matrix multiplication problem to the offline
partially dynamic SSSP problem for unweighted graphs.

An interesting issue to explore is whether faster partially dynamic SSSP
algorithms may be obtained if approximate answers are allowed. (For steps in
this direction, but for the approximate dynamic APSP problem, see [2, 3, 22].)
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1. I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of
weighted graphs. Discrete & Computational Geometry, 9:81–100, 1993.

2. S. Baswana, R. Hariharan, and S. Sen. Improved decremental algorithms for tran-
sitive closure and all-pairs shortest paths. In Proc. of 34th STOC, pages 117–123,
2002.

3. S. Baswana, R. Hariharan, and S. Sen. Maintaining all-pairs approximate shortest
paths under deletion of edges. In Proc. of 14th SODA, pages 394–403, 2003.

4. S. Baswana and S. Sen. A simple linear time algorithm for computing (2k − 1)-
spanner of O(n1+1/k) size for weighted graphs. In Proc. of 30th ICALP, pages
384–296, 2003.



5. T. Chan. Dynamic subgraph connectivity with geometric applications. In Proc. of
34th STOC, pages 7–13, 2002.

6. B. Chandra, G. Das, G. Narasimhan, and J. Soares. New sparseness results on
graph spanners. Internat. J. Comput. Geom. Appl., 5:125–144, 1995.

7. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-
sions. Journal of Symbolic Computation, 9:251–280, 1990.

8. C. Demetrescu and G. Italiano. A new approach to dynamic all pairs shortest
paths. In Proc. of 35th STOC, pages 159–166, 2003.

9. S. Even and Y. Shiloach. An on-line edge-deletion problem. Journal of the ACM,
28(1):1–4, 1981.

10. M. Fredman and R. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM, 34:596–615, 1987.

11. Z. Galil and O. Margalit. All pairs shortest distances for graphs with small integer
length edges. Information and Computation, 134:103–139, 1997.

12. J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Fast greedy algorithm for
constructing sparse geometric spanners. SIAM J. Comput., 31:1479–1500, 2002.

13. T. Hagerup. Improved shortest paths on the word RAM. In Proc. of 27th ICALP,
pages 61–72, 2000.

14. M. Henzinger and V. King. Fully dynamic biconnectivity and transitive closure.
In Proc. of 36th FOCS, pages 664–672, 1995.

15. D. Karger, D. Koller, and S. Phillips. Finding the hidden path: time bounds for
all-pairs shortest paths. SIAM Journal on Computing, 22:1199–1217, 1993.
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