
Dynamic Approximate All-Pairs Shortest Paths in Undirected Graphs

Liam Roditty
Department of Computer Science

Bar-Ilan University
Ramat-Gan 52900, Israel

liamr@macs.biu.ac.il

Uri Zwick
School of Computer Science

Tel Aviv University
Tel Aviv 69978, Israel

zwick@cs.tau.ac.il

November 8, 2009

Abstract

We obtain three new dynamic algorithms for the approximate all-pairs shortest paths problem in unweighted
undirected graphs:

1. For any fixed ε > 0, a decremental algorithm with an expected total running time of Õ(mn), where m is
the number of edges and n is the number of vertices in the initial graph. Each distance query is answered in
O(1) worst-case time, and the stretch of the returned distances is at most 1 + ε. The algorithm uses Õ(n2)
space.

2. For any fixed integer k ≥ 1, a decremental algorithm with an expected total running time of Õ(mn). Each
query is answered in O(1) worst-case time, and the stretch of the returned distances is at most 2k− 1. This
algorithm uses, however, only O(m + n1+1/k) space. It is obtained by dynamizing techniques of Thorup
and Zwick. In addition to being more space efficient, this algorithm is also one of the building blocks used
to obtain the first algorithm.

3. For any fixed ε, δ > 0 and every t ≤ m1/2−δ , a fully dynamic algorithm with an expected amortized update
time of Õ(mn/t) and worst-case query time of O(t). The stretch of the returned distances is at most 1 + ε.

All algorithms can also be made to work on undirected graphs with small integer edge weights. If the largest
edge weight is b, then all bounds on the running times are multiplied by b.

1 Introduction

The objective of a dynamic All-Pairs Shortest Paths (APSP) algorithm is to efficiently process an online sequence of
update and query operations. Each update operation inserts or deletes edges from an underlying graph. Each query
operation asks for the distance between two specified vertices in the current graph. Recall that, a dynamic algorithm
is said to be fully dynamic if it can handle both insertions and deletions. An incremental algorithm is an algorithm
that can handle insertions of edges, but not deletions, and a decremental algorithm is an algorithm that can handle
deletions, but not insertions. Incremental and decremental algorithms are sometimes referred to as being partially
dynamic.

The dynamic APSP problem is a very interesting problem, from both the theoretical and practical perspectives, and
it received a lot of attention in recent years. Static approximate versions of the APSP problems were also the focus
of a lot of research recently. In this paper we show that techniques from these two areas, together with some new
ideas, can be combined to obtain very efficient approximate dynamic APSP algorithms for undirected graphs.

The distance from a vertex u to a vertex v in a graph G is denoted by δ(u, v). We say that an estimate δ̂(u, v) of
the distance δ(u, v) is of stretch t if and only if δ(u, v) ≤ δ̂(u, v) ≤ t ·δ(u, v). We let t-APSP be the problem of
producing, upon request, a stretch t estimate of the distance between any two given vertices of the graph. We are

especially interested in obtaining stretch 1 + ε estimates, for an arbitrary small ε > 0, as they are, in most cases, as
good as exact distances. (In particular, for distances up to 1/ε, such estimated distances are exact.)

We present two new partially dynamic algorithms and one new fully-dynamic algorithm for the dynamic approximate
APSP problem for undirected graphs. Our algorithms are Monte-Carlo, i.e, they have a one-sided error. Our first
algorithm is a decremental (1 + ε)-APSP algorithm that has, for any fixed ε > 0, a total expected running time
of only Õ(mn) and it answers each distance query in O(1) worst-case time. The algorithm uses Õ(n2) space. A
running time of O(mn) is a natural barrier for the decremental APSP problem for two reasons: (i) The fastest
combinatorial algorithm for the exact static problem runs in O(mn) time; (ii) The best decremental algorithm for
the single-source shortest paths problem, due to Even and Shiloach [15], also runs in O(mn) time.

The Õ(n2) space used by our decremental (1+ε)-APSP algorithm may be prohibitive in many practical applications.
(See, e.g., the concluding remarks of [10].) Our second decremental algorithm presents a tradeoff between the
amount of space used and the accuracy of the estimates obtained. For any integer k ≥ 1, it uses O(m + n1+1/k)
space and produces distance estimates of stretch 2k − 1. The total expected running time of the algorithm is still
Õ(mn). The algorithm is obtained by partially dynamizing the approximate distance oracles of Thorup and Zwick
[23]. Note that the algorithm can still answer any distance query in O(1) time even though it does not maintain an
explicit n× n matrix of distance estimates.

Our first decremental algorithm is based on a sampling technique first used by Ullman and Yannakakis [24]. This
technique was also used by [17, 25, 18]. Our second decremental algorithm, as mentioned, is based on the construc-
tions of [23]. Our two decremental algorithms are inter-dependent. Parts from each one of them are used as building
blocks in the other algorithm.

Finally, relying on our first decremental algorithm and using a static approximate APSP algorithm of Elkin [13], we
obtain, for every ε, δ > 0, and for every t ≤ m1/2−δ, a fully-dynamic (1 + ε)-APSP algorithm with an amortized
update time of Õ(mn/t) and a query time of O(t). In particular, we can get a (1 + ε)-APSP algorithm with an
amortized update time of Õ(m1/2+δn) and a query time of O(m1/2−δ). (Note that m1/2 ≤ n and m1/2n ≤ n2.)

The rest of this paper is organized as follows. In the next section we discuss the relation of our new algorithms to
previously available dynamic and static APSP algorithms. Our first decremental algorithm is then developed in two
installments. In Section 3 we present a decremental (1 + ε)-APSP algorithm with a total running time of Õ(mn)
but with a non-constant query time of O(log log n). In Section 4 we then explain how the query time can be reduced
to O(1). Our second decremental algorithm is again developed in two installments. In Section 5 we develop, for
every d ≥ 1, a decremental (2k − 1)-APSP algorithm with a total running time of Õ(dmn1/k) that can produce
stretch 2k − 1 estimates for all distances that are at most d. In Section 6 we combine this with parts taken from our
first decremental algorithm to obtain a decremental (2k − 1)-APSP algorithm, for all distances, that runs in Õ(mn)
time and uses only O(m + n1+1/k) space. Our fully-dynamic (1 + ε)-APSP algorithm is then presented, in one
installement, in Section 7. We end in Section 8 with some concluding remarks and open problems.

2 Related work

Demetrescu and Italiano [10], in a major breakthrough, obtained recently a fully dynamic algorithm for the directed
APSP problem with an amortized update time of Õ(n2). Each distance query is answered in O(1) worst-case time.
(Thorup [22] presents an improvement of this result.) Each update operation inserts, deletes, or changes the weights
of a set of edges, all incident on the same vertex of the graph. No better algorithm is known for the undirected
version of the problem. An amortized update time of Õ(n2) is essentially optimal, if the distance matrix is to be
explicitly maintained, as done by the algorithm of [10], since each update operation may change Ω(n2) distances in
the matrix.

The Õ(m1/2+δn) amortized update time of our fully-dynamic (1 + ε)-APSP algorithm beats the Õ(n2) amortized
update time of [10] whenever m ≤ n2(1−δ). The query time, alas, is much larger. (It should be remembered,

2

of course, that our algorithm is for an easier problem. We consider the unweighted and undirected version of the
problem and are willing to settle for approximate distances.)

Ausiello et al. [2] obtained an incremental algorithm for the APSP problem for unweighted directed graphs with
a total running time of O(n3 log n). (An extension of this algorithm for graphs with small integer edge weights is
given in [3].) Baswana et al. [5] obtained a decremental algorithm for the APSP problem for unweighted directed
graphs with a total update time of O(n3 log2 n). Both algorithms answer distance queries in O(1) worst-case time.
(The total running time of a partially dynamic algorithm is the total number of operations performed by the algorithm
as the edges of the graph are inserted, or deleted, one by one.)

Baswana et al. [5] obtained a decremental algorithm for the directed (1 + ε)-APSP problem with a total running
time of Õ(m1/2n2). In [6] they consider the same problem considered by us here and obtain decremental algorithms
for the undirected 3-APSP, 5-APSP and 7-APSP problems with expected running times of Õ(mn10/9), Õ(mn14/13)
and Õ(mn28/27), respectively.

Our decremental (1 + ε)-APSP algorithm substantially improves on results of Baswana et al. [6]. Our algorithm
is faster (total running time of Õ(mn)) and more accurate (stretch 1 + ε). It can also be turned into a zero-error
algorithm. Our decremental (2k − 1)-APSP algorithm also improves on the results of [6]. It is faster, as accurate
and uses less space.

As mentioned, there has also been a lot of work on obtaining approximate solutions of the static APSP problem. For
more details, and additional references, see [4, 7, 1, 12, 8, 14, 13, 25, 23]. We mention here only two results that
have a direct bearing on the current paper.

Thorup and Zwick [23] show that for any fixed integer k ≥ 1 it is possible to preprocess a weighted undirected
graph in O(mn1/k) time and produce a data structure of size O(n1+1/k) such that any distance in the graph can be
approximated in O(1) time. The stretch of the estimated distances produced is 2k − 1. As mentioned, one of the
contributions in this paper is a decremental version of these distance oracles.

Elkin [13], extending results of Elkin and Peleg [14], shows that for any ε, δ > 0 there exists β = β(ε, δ) such
that estimated distances from a set of sources S to all vertices of an unweighted undirected graph can be computed
in O(mnδ + |S|n1+δ) time, where m and n are the number edges and vertices, respectively, in the graph. Each
estimated distance δ̂(u, v) satisfies the following inequality δ(u, v) ≤ δ̂(u, v) ≤ (1 + ε)δ(u, v) + β. Our fully-
dynamic algorithms uses the algorithm of Elkin. (It should be noted that our fully-dynamic algorithm has a stretch
of 1 + ε, without the additive error term present in Elkin’s result. In particular, all distances smaller than 1/ε are
found exactly by our algorithm.)

Finally, we note that the best known algorithm for the static (1 + ε)-APSP problem in sparse undirected graphs is
still the trivial algorithm of running a BFS from each vertex of the graph. The running time of this algorithm is
O(mn). (Using fast matrix multiplication, the exact problem can be solved in O(n2.38) time [16, 20, 21], but for
sparse enough graphs the O(mn) algorithm is faster.) Our decremental (1 + ε)-APSP algorithm, which solves a
harder problem, has an almost matching running time of Õ(mn).

3 A decremental (1 + ε)-APSP algorithm with an O(log log n) query time

In this section we describe a simple decremental (1+ε)-APSP algorithm that runs, with high probability, in Õ(mn/ε)
time and has a query time of O(log log n). The following obvious observation is similar to an observation used by
Ullman and Yannakakis [24] and by various other shortest paths algorithms:

Lemma 3.1 Let G = (V,E) be a graph on n vertices and let 1 ≤ d ≤ n. Let S be a random subset of vertices
obtained by selecting each vertex, independently, with probability (c lnn)/d, for some constant c. (If (c ln n)/d ≥ 1,
we take S = V .) Then, with a probability of at least 1− n−(c−1), for every vertex v ∈ V contained in a connected
component of G of size at least d there is a vertex w ∈ S such that δ(w, v) ≤ d.

3

Proof: If v is contained in a connected component of size at least d, then there is a set N(v) of at least d vertices that
are at distance at most d from v. The probability that S does not contain any of these vertices is (1− (c lnn)/d)d <
n−c. Multiplying this by the number of vertices, we get that the failure probability is at most n−(c−1). 2

As stated, the lemma applies to a fixed graph. However, as the choice of the random set S is independent of the graph,
it is clear that the lemma also applies in the dynamic setting. The failure probability should simply be multiplied by
the number of different versions of the graph. In the decremental setting, we consider only m ≤ n2 versions of the
graph, so the failure probability is at most n−(c−3).

We are now ready to start the description of our algorithm. Let I = {1, 2, . . . , log n}. For every i ∈ I , let Si be a
random set obtained by sampling each vertex of V , independently, with probability qi = min{ c ln n

ε2i , 1}, where ε is
the desired accuracy of the reported distances, and c is a large enough constant that controls the error probability.
(For the first O(log log n) indices we have qi = 1, so they are not really needed.)

For every u ∈ V and i ∈ I , we let pi(u) be a closest vertex to u from Si. If there is no vertex from Si in the connected
component of u, then pi(u) is undefined and we let δ(u, pi(u)) = ∞. By Lemma 3.1, if δ(u, pi(u)) < ∞, then
δ(u, pi(u)) ≤ ε2i, with high probability. In the sequel, we assume that this happens for every u ∈ V and i ∈ I .
(If ε2i < δ(u, pi(u)) < ∞, then the choice of Si is ‘unlucky’, and we can replace it. To find the pi(u)’s we add
a new vertex si to the graph and connect it with edges to all the vertices of Si. We then maintain, using [15], a
decremental shortest paths tree from si. The cost of decrementally maintaining a single shortest paths tree up to
depth d is O(md). Thus, the total cost of maintaining these O(log n) trees up to depth n is O(mn log n). If u ∈ V
is contained in the subtree of w, we set pi(u) to w. After each edge deletion, we can update the pi(u)’s in O(n log n)
time, so the total time spent on updating these values is also only O(mn log n).

For every i ∈ I and every w ∈ Si, we also decrementally maintain, using the algorithm of [15], the first 2i+2 levels
of a shortest paths tree from w. As the cost of decrementally maintaining a single shortest paths tree up to depth d is
O(md), the total cost of maintaining all the trees is

O(
∑

i

|Si|m2i) = O(
∑

i

cn ln n

ε2i
m2i) = O(

mn log2 n

ε
) .

A query asking for the distance from u to v is answered in the following way. If we somehow know that 2i ≤
δ(u, v) < 2i+1, we can return δ(u, pi(u)) + δ(pi(u), v). Note that as δ(pi(u), u) ≤ ε2i and δ(pi(u), v) ≤
δ(pi(u), u) + δ(u, v) < 2i+2, both distances δ(u, pi(u)) and δ(pi(u), v) can be found in the tree of pi(u). It is
easy to see that we have

δ̂(u, v) = δ(u, pi(u)) + δ(pi(u), v)
≤ δ(u, pi(u)) + (δ(pi(u), u) + δ(u, v))
= δ(u, v) + 2δ(u, pi(u))
≤ (1 + 2ε)δ(u, v) .

Clearly δ(u, v) ≤ δ̂(u, v). Thus, the stretch of the estimate produced is at most 1 + 2ε.

As we do not know the right i, the obvious approach is to check all values i ∈ I and return the minimum estimated
distance obtained. (Not all values of i yield such an estimate, as u or v may not be contained in the tree of pi(u).
We simply ignore such values of i.) This gives us a decremental (1 + ε)-APSP algorithm with a total running time
of O(mn log2 n/ε) and a query time of O(log n).

We can reduce the query time to O(log log n) using binary search. Suppose again that 2i ≤ δ(u, v) < 2i+1. Suppose
we try to get an estimate using j ≤ i. If the attempt succeeds, we get an estimate of stretch at most 1 + ε. If it fails,
because v is not contained in the tree of pj(u), then we know that our choice of j was too small. If we try to get
an estimate using a value j > i, then the attempt may fail as pj(u) may not be defined, but then we know that our
choice of j is too large. Thus, we can use binary search to find the smallest j for which we do get an estimate, and
this estimate will be of stretch at most 1 + ε.

4

4 A decremental (1 + ε)-APSP algorithm with an O(1) query time

We first explain how the query time can be reduced to O(1) if it is known that δ(u, v) ≥ n1/2.

Let r = b1
2 log nc. We keep a table of estimated distances between any pair of vertices in Sr. The size of the table

is |Sr|2 = Õ(n). After each update, we recompute the table, by querying the algorithm of Section 3. As each query
takes O(log log n) time, the total time needed is only Õ(n).

When asked for an estimate of δ(u, v), we return δ(u, pr(u)) + δ̂(pr(u), pr(v)) + δ(pr(v), v). This takes only O(1)
time, as δ(u, pr(u)) is stored in the tree of pr(u), δ(pr(v), v) is stored in the tree of pr(v), and δ̂(pr(u), pr(v)) is
stored in the table we prepared. It is not difficult to show, using an argument similar to the one used above, that the
stretch of this estimate, if δ(u, v) ≥ n1/2, is at most 1 + 4ε.

To handle shorter distances, we use the decremental approximate distance oracles of the next section. Choosing
k = 2, we get a decremental oracle for distances up to d = n1/2 whose total running time is Õ(dmn1/2) = Õ(mn).
Each query is answered in O(1) time with a stretch of at most 3. We can, however, use this crude estimate as a start
for our search, from the previous section, for the right value of i ∈ I . The search will now take only O(1) time and
produce an estimate of stretch 1 + ε.

5 A decremental distance oracle for relatively short distances

Thorup and Zwick [23] constructed static distance oracles with the following properties:

Theorem 5.1 ([23]) Let G = (V, E) be an undirected graph with positive weights attached to its edges. Let |E| =
m and |V | = n. Let k ≥ 1 be a fixed integer. Then, it is possible to preprocess G in O(mn1/k) expected time, and
produce a data structure of size O(n1+1/k), such that for any u, v ∈ V it is possible to produce, in O(1) worst-case
time, an estimate δ̂(u, v) of the distance δ(u, v) from u to v in G that satisfies δ(u, v) ≤ δ̂(u, v) ≤ (2k− 1)·δ(u, v).

In this section we obtain the following partially dynamic version of these oracles:

Theorem 5.2 Let G = (V, E) be an undirected graph with integer weights attached to its edges that undergoes a
sequence of edge deletions. Let |E| = m and |V | = n. Let k ≥ 1 be a fixed integer and let d ≥ 1. It is possible
to maintain, in O(dmn1/k) total expected time, a data structure of size O(m + n1+1/k), such that after each edge
deletion, for every u, v ∈ V it is possible to produce, in O(1) worst-case time, an estimate δ̂(u, v) of the distance
δ(u, v) from u to v with the following properties: If δ(u, v) ≤ d, then δ(u, v) ≤ δ̂(u, v) ≤ (2k − 1) ·δ(u, v). If
δ(u, v) > d, then δ(u, v) ≤ δ̂(u, v).

Before we present our partially dynamic oracles, we need to review the static construction of [23]. We do that in the
next subsection. In Section 5.2 we then present our partially dynamic version.

5.1 The static distance oracle of Thorup and Zwick

The construction starts by defining a hierarchy A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ Ak of subsets of V as follows: We start with
A0 = V . For every 1 ≤ i < k, we let Ai be random subset of Ai−1 obtained by selecting each element of Ai−1,
independently, with probability n−1/k. Finally, we let Ak = φ. The elements of Ai are referred to as i-centers. We
let δ(v,Ai) = minw∈Ai δ(w, v), for 0 ≤ i < k. As Ak = φ, we let δ(v,Ak) = ∞. For every v ∈ V and 0 ≤ i < k,
we let pi(v) ∈ Ai be such that δ(pi(v), v) = δ(v, Ai). (Note that p0(v) = v.)

5

DISTk(u, v) :

w ← u ; i ← 0
while w 6∈ B(v)

i ← i + 1
(u, v) ← (v, u)
w ← pi(u)

return δ(w, u) + δ(w, v)

Figure 1: The query answering algorithm of [23].

Definition 5.3 (Clusters and bunches [23])
For every i-center w ∈ Ai −Ai+1, where 0 ≤ i < k, we define the cluster C(w) as follows:

C(w) = { v ∈ V | δ(w, v) < δ(v, Ai+1) } .

For every v ∈ V we define the bunch B(v) as follows:

B(v) =
k−1⋃

i=0

Bi(v) ,

where
Bi(v) = {w ∈ Ai −Ai+1 | δ(w, v) < δ(v, Ai+1) } .

Clearly, v ∈ C(w) if and only if w ∈ B(v). Clusters have the following important ‘connectedness’ property:

Lemma 5.4 ([23]) If v ∈ C(w) and u is on a shortest path from w to v in G, then u ∈ C(w).

Proof: Suppose w ∈ Ai − Ai+1. If u 6∈ C(w), then δ(u,Ai+1) ≤ δ(w, u). But then δ(v,Ai+1) ≤ δ(v, u) +
δ(u,Ai+1) ≤ δ(v, u) + δ(u,w) = δ(v, w), contradicting the assumption that v ∈ C(w). 2

It follows that the cluster C(w) can be constructed by running a modified version of Dijkstra’s algorithm from w.
Dijkstra’s algorithm maintains for each vertex u, encountered during the search from w, a tentative distance d[u]. At
the start of the algorithm the only encountered vertex is w, and d[w] = 0. Each encountered vertex is either marked
or unmarked. All encountered vertices are initially unmarked. The encountered vertices that are still unmarked are
held in a priority queue Q(w). The key associated with each encountered vertex u is d[u], its tentative distance
from w. In each iteration the algorithm chooses an unmarked vertex u with a smallest tentative distance and marks
it. It then relaxes all the edges touching u. An edge (u, v) ∈ E is relaxed as follows. If v was not encountered yet,
we set d[v] ← d[u] + `(u, v). (Here `(u, v) is the length of the edge (u, v).) If v was already encountered, so d[v] is
already defined, we let d[v] ← min{d[v], d[u] + `(u, v)}. It is not difficult to show that when a vertex u is marked,
d[u] = δ(w, u). (The proof can be found in any textbook, e.g., [9].) The algorithm halts when all the encountered
vertices are marked.

The simple modification required in Dijkstra’s algorithm is the following: Relax an edge (u, v) ∈ E only if d[u] +
`(u, v) < δ(Ai+1, v). It is not difficult to see that the vertices encountered, and marked, by this modified version
of Dijkstra’s algorithm are exactly the vertices of C(w). For the straightforward correctness proof, the reader is
referred to [23].

The analysis of the construction relies on the following bound on the expected size of the bunches:

Lemma 5.5 ([23]) For every vertex v ∈ V and every 0 ≤ i < k we have E[|Bi(v)|] ≤ n1/k.

6

Proof: The claim for i = k − 1 is obvious as E[|Ak−1|] = n1/k. Suppose, therefore, that 0 ≤ i < k − 1.
Let w1, w2, . . . be the vertices of Ai in a non-decreasing order of distance from v. Then, wj ∈ Bi(v) only if
w1, w2, . . . , wj−1 6∈ Ai+1. As each element of Ai becomes an element of Ai+1, independently, with probability p =
n−1/k, we get that Pr[wj ∈ Bi(v)] ≤ (1 − p)j−1. Thus, E[|Bi(v)|] =

∑
j≥1 Pr[wj ∈ Bi(v)] ≤ ∑

j≥1(1 − p)j ≤
p−1 = n1/k, as required. 2

As an immediate consequence, we get that each vertex v ∈ V is contained in an expected number of at most kn1/k

clusters.

A distance query is answered using the algorithm given in Figure 1. To check the condition w 6∈ B(v) in constant
time, we keep, for every v ∈ V , a hash table containing B(v). Each distance query is therefore answered in O(k)
time, which is O(1) time, as k is fixed. It is shown in [23] that the estimate δ̂(u, v) returned is of stretch at most
2k − 1.

5.2 A decremental version of the distance oracle

In this section we describe a decremental version of the approximate distance oracle of [23]. The challenge is to
maintain the bunches and clusters as the graph undergoes a sequence of edge deletions.

As the center hierarchy A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ Ak is picked in an oblivious manner, without even looking at the
graph G = (V, E), we can use the same center hierarchy for all the versions of the graphs. We next describe how
we update the clusters and bunches following the deletion, in turn, of each edge of G.

To find, for every v ∈ V and 0 ≤ i < k, the i-center pi(v) closest to v, we add a dummy source vertex si to the
graph and connect it with edges of length 0 to all the vertices of Ai. We use the algorithm of [15] to decrementally
maintain the first d̄ = (2k − 1)d levels of a shortest paths tree from si as the graph undergoes a sequence of edge
deletions. The collection of these k trees is referred to as the set forest. The total time required, for each value of i, is
O(dm). As k is a constant, the total time required for all values of i is also O(dm). Maintaining δ(v, Ai) is therefore
fairly straightforward. Maintaining closest vertices pi(v) for which δ(v, pi(v)) = δ(v, Ai), for every v ∈ V and
0 ≤ i < k, is more subtle. It can be done, however, in O(dmn1/k) total time.

For the sake of efficiency, we tune a bit the definition of the closest vertex. Let v ∈ V , pi(v) is the vertex from Ai

that survives to the set Aj , where j > i is maximal and its distance from v is δ(Ai, v). It follows from this definition
that a vertex changes its closest vertex between Ai and Ai+1 only if pi(v) /∈ Ai+1. It also follows that whenever
such a change occurs then δ(Ai, v) < δ(Ai+1, v).

Maintaining closest vertices. As explained above we add a dummy source vertex si to the graph and connect it
with edges of length 0 to all the vertices of Ai. In fact we can connect si only to the vertices of Ai − Ai+1. The
value of δ(Ai, v) can be computed by scanning the trees starting with the tree of sk−1 backwards till si.

Let (u, v) be an edge which is deleted from the graph and assume it is a tree edge in the tree of si. There are two
cases. The first case is when pi(v) ∈ Ai+1. If this is the case we simply process the deletion of (u, v) from the tree
of si as a regular deletion from a decremental shortest paths tree using the algorithm of [15].

The second case is when if pi(v) ∈ Ai − Ai+1. Since (u, v) is a tree edge it must be that the path from pi(v)
to v in the tree uses the edge (u, v). In this case we need to check whether the vertex that serves as pi(v) before
the deletion can serve as pi(v) also after the deletion. Let w1, w2, . . . , w` ∈ Ai − Ai+1 and assume, w.l.o.g, that
pi(v) = w1. As a first step we try to check whether there is a path from v to w1 of the same length. To do that we
search among the edges of v, that were not checked yet as a possible connection to w1 at the current length, for an
edge (u′, v) such that pi(u′) = w1 and δ(u′, w1) = δ(u, w1). If such an edge is found we can stop without doing
any further change. If such an edge does not exist then we try to connect v to si throughout other wj . By scanning
the incoming edges of v, from the beginning of the list now, we find (if exist) an edge (u′, v) such that pi(u′) = wj

and δ(u′, wj) = δ(u,w1), for some u′ and wj . If such a replacement is found, then pi(v) is set to wj .

7

If we do not succeed to connect v to the tree with a path of the same length as before the deletion then we increment
δ(Ai, v) by one and try to reconnect it to the tree as in a regular decremental shortest paths tree.

We repeat on the same process recursively for every vertex v′ that was hanged on v before the deletion. If its closest
vertex pi(v′) is in Ai −Ai+1 we first try to keep it unchanged and if we do not succeed then we scan the edge list of
v′ from the beginning for a replacement.

After we are done with the deletion of (u, v) from the trees of s0, s2, . . . , sk−1 we need to preform closest vertex
update for every vertex v that after the deletion for some i the value δ(Ai, v) was increased or its closest vertex pi(v)
that was in Ai \ Ai+1 before the deletion is no longer its closest vertex. We can detect all these vertices without
increasing the total update cost. We scan the trees from sk−1 to s1 and compute the closest vertex for such vertices
according to the tune definition, that is, for every j we search for the maximal j′ which is greater than j and satisfies
δ(Aj , v) = δ(Aj′ , v). The total cost of that is O(k) and it is done only to vertices that their distance was increased.

The correctness of the algorithm stems from the correctness of the algorithm of [15]. The running time, however,
has to be carefully analyzed. Every time the distance to a vertex is increased then we are free to scan its edges as
the total time this event occurs is only d̄ times and the vertex participates in k trees which results in O(md) total
time. The problem is when the distance is not increased and after an edge is deleted we have to verify that the
previous pi(v) is still the closest vertex from Ai − Ai+1 to v and not some other vertex from Ai − Ai+1. When v
searches in its edge list it does it given a specific distance. It tries to find a replacement edge that keeps the same
pi(v) with the same distance. Every edge is tested exactly once for this purpose. Thus, given a distance and a vertex
from Ai − Ai+1 that serves before the deletion as pi(v) the edges of v are scanned only once. There are d̄ possible
distances. The question is for a given distance how many possible vertices there are from Ai − Ai+1 that can serve
as pi(v). Note that since we are using the tune definition of closest vertex, every such a vertex is also in Bi(v), and
from Lemma 5.5 we know that the expected size of Bi(v) is at most n1/k. Thus, we conclude that the total expected
running time is O(dmn1/k).

Maintaining cluster. Another challenging task is keeping track of the changes in the clusters C(w), for every
w ∈ V . Recall that v ∈ C(w), where w ∈ Ai−Ai+1, if and only if δ(w, v) < δ(v, Ai+1). As the graph G = (V, E)
is only loosing edges, both δ(w, v) and δ(v, Ai+1) can only increase. But, the order relation between δ(w, v) and
δ(v, Ai+1) may change several times as the edges of G = (V, E) are deleted, one by one. Thus, vertices may both
join and leave C(w).

The modified version of Dijkstra’s algorithm described in Section 5.1 constructs, for every w ∈ V , a tree of shortest
paths from w to all vertices in C(w). We again use the algorithm of [15] to decrementally maintain this tree, up to
level d̄ = (2k − 1)d. The collection of these n trees is referred to as the cluster forest. The basic property of the
algorithm of [15] is that an edge touching a vertex v is rescanned only following an increase in the distance from w
to v.

For every vertex v in the tree of C(w) whose distance from w increased as a result of the last edge deletion, we
check whether v should still belong to C(w). If not, we remove v from C(w). (Note that if v is removed from C(w),
then by Lemma 5.4 all vertices in the subtree of v are also removed from C(w).)

Finding the vertices that should join the cluster C(w) is a somewhat more complicated process. After each edge
deletion we construct, for every 0 ≤ i < k, a set Xi of all the vertices whose distance to Ai increased as a result of
the deletion, but for which this distance is still at most d̄. Recall that v ∈ C(w), where w ∈ Ai − Ai+1, if and only
δ(w, v) < δ(v, Ai+1). Thus, a vertex v can join C(w) only after an increase in δ(v, Ai+1), i.e., only if v ∈ Xi+1.

Let v ∈ Xi+1. To find out whether v should join a cluster C(w), where w ∈ Ai − Ai+1, we should check whether
δ(w, v) < δ(v, Ai+1). However, the distance δ(w, v) may not be known to us at this stage, so we cannot check this
condition directly. We thus try, at first, to check whether v should join clusters that contain neighbors of v. Note that
a vertex v ∈ Xi+1 may potentially join many clusters, and not just one.

For every v ∈ Xi+1, every edge (u, v) ∈ E and every i-center w ∈ Bi(u) − Bi(v), we check whether δ(w, u) +

8

Dijkstra(w):

1. while Q(w) 6= φ

2. u ← Extract-Min(Q(w))

3. δ(w, u) ← dw[u]

4. Bi(u) ← Bi(u) ∪ {w}
5. for each (u, v) ∈ E s.t. w /∈ Bi(v)

6. if δ(w, u)+ `(u, v) < δ(v, pi(s))

7. Relax(Q(w), u, v)

Relax(Q(w), u, v):

1. d′ ← δ(w, u) + `(u, v)

2. if d′ ≤ d̄ then

3. if v 6∈ Q(w) then

4. decrease-key(Q(w), v, d′)

5. else if dw[v] > d′

6. insert(Q(w), v, d′)

Examine(Xi+1):

1. C ← φ

2. for each v ∈ Xi+1 do

3. for each (u, v) ∈ E do

4. for each w ∈ Bi(u)−Bi(v)

5. if δ(w, u)+`(u, v) < δ(v, Ai+1)

6. C ← C ∪ {w}
7. Relax(Q(w), u, v)

8. for each w ∈ C do

9. Dijkstra(w)

Figure 2: Decremental maintenance of bunches and clusters

`(u, v) < δ(v, Ai). If so, then v should clearly join C(w). (Note that v may join C(w) even if δ(w, u) + `(u, v) ≥
δ(v, Ai), as there might be a shorter way of getting from w to v without passing through u. We will detect that later.)
If v should join C(w) we add v to a priority queue Q(w) with an associated key dw[u] = δ(w, u)+ `(u, v). If v was
already contained in Q(w), we decrease its key, if appropriate.

This initial stage produces, for every i-center w ∈ Ai −Ai+1 a priority queue Q(w) containing vertices that should
definitely join C(w). Not all vertices that are to join C(w) are necessarily contained in Q(w), but as we shall argue
later, if a vertex v should join C(w), then there is a shortest path from w to v that passes through a vertex added
to Q(w).

After this initial stage is over, we simply restart, for every i-center w the modified Dijkstra’s algorithm from w, with
Q(w) serving the role of the priority queue that holds the vertices that were encountered, but not yet marked. We
claim that this process will encounter, and subsequently mark, all vertices that should join C(w), and only them.

A pseudo-code describing this two stage process is given in Figure 2. For every 0 ≤ i < k, we issue a call to
Examine(Xi+1). These calls will find all vertices that should join clusters and add them to the appropriate clusters.
Procedure Examine(Xi+1) performs the first stage of the process described above and calls procedure Dijkstra to
restart the modified Dijkstra’s algorithm to complete the construction of C(w).

Theorem 5.2 follows from the following two lemmas:

9

Lemma 5.6 The algorithm described above correctly maintains the clusters.

Proof: The proof is a simple extension of the correctness proof of the modified Dijkstra algorithm. We have to
show that the algorithm correctly updates the clusters after an edge deletion. The removal of vertices from clusters
is a relatively straightforward process as if a vertex is currently in the cluster its distance to the cluster root is known
and a violation of the cluster rule can be detected easily. The more difficult task is identifying vertices that should
join clusters as their distance from the cluster root is not known. Let w ∈ Ai−Ai+1 and let v be a vertex that before
the deletion is not contained in C(w) and after the deletion it should be contained in C(w). Let x be the first vertex
on the shortest path from w to v after the deletion that was not in C(w) before the deletion. By the definition of
Xi+1 it follows that x ∈ Xi+1. When Examine(Xi+1) is called then there is an edge from a vertex in C(w) to x
which causes x to be added to Q(w) and to w to be added to C. When Dijkstra(w) is called it follows from the
correctness proof of the modified Dijkstra that the vertex v will be found. 2

Lemma 5.7 The total expected cost for maintaining the cluster forest is O(dmn1/k).

Proof: As mentioned, the algorithm of [15] rescans the edges of a vertex v, in a shortest paths tree rooted at w, only
when the distance from w to v increases. As we only keep the first d̄ = (2k − 1)d levels of the trees, the edges of
each vertex are scanned at most d̄ times per tree. As each vertex is contained in an expected number of only kn1/k

trees, we would like to claim that the expected number of times that the edges of a vertex v are scanned is at most
d̄kn1/k. The lemma would then follow. This reasoning is basically correct, but its rigorous proof is quite subtle. The
difficulty lies in the fact that vertices may belong to different trees at different times.

Let w ∈ Ai\Ai+1. The edges of v are scanned in C(w) once when v joins C(w) and then each time δ(v, w) changes
until v leaves C(w). We first separately analyze the cost of joining new clusters. In the decremental setting, v can
only join C(w) if δ(v, Ai+1) increases, which can happen at most d̄ times. Each time, v joins O(n1/k) clusters.
Thus, the total number of times the edges of v are scanned because of v joining a cluster is O(kd̄n1/k).

We now turn to analyze the case where the distance between v and the cluster center decreases. This will allow us
to bound the expected number of times that the edges of a vertex v ∈ V are rescanned in trees rooted at vertices of
Ai. Let δt(w, v) denote the distance from w to v in the graph at time t, i.e., after the deletion of the first t edges, and
let Ct(w) be the cluster of w at that time. To bound the number of times that the edges of v are scanned, we bound
the number of indices t for which v ∈ Ct(w) and δt(w, v) < δt+1(w, v).

In the spirit of the proof of Lemma 5.5, we let wt,1, wt,2, . . . be the vertices of Ai arranged in non-decreasing order of
distance from v after the t-th deletion. In the proof of Lemma 5.5 ties in distances were resolved arbitrarily. Here, we
should be slightly more careful. We arrange them in a non-decreasing lexicographic order of (δt(v, w), δt+1(v, w)).
Thus, if w and w′ have the same distance from v at time t, and the distance of w′ increases as a result of the next
edge deletion, but the distance of w does not, then w appears before w′ in the ordering. With this ordering, we have
the following important property:

Claim 5.8 For every v ∈ V and j ≥ 1, the sequence δt(v, wt,j) is non-decreasing. Furthermore, if δt(v, wt,j) <
δt+1(v, wt,j) then also δt(v, wt,j) < δt+1(v, wt+1,j).

As in the proof of Lemma 5.5, the probability that v ∈ Ct(wt,j) is at most (1 − p)j−1, where p = n−1/k. Let
I = { (t, j) | δt(v, wt,j) < δt+1(v, wt,j) ≤ d̄ }. Clearly, the expected number of times the edges of v are scanned, in
all trees rooted at vertices of Ai, is at most

∑
(t,j)∈I Pr[v ∈ Ct(wt,j)].

By Claim 5.8, for each j, the set I contains at most d̄ pairs of the form (t, j). In other words, there are at most d̄ times
in which the distance to the j-th closest vertex to v increases. Thus

∑
(t,j)∈I Pr[v ∈ Ct(wt,j)] ≤ d̄

∑
j≥1(1−p)j−1 ≤

d̄p−1 = d̄n1/k, as required. 2

Finally, after reconstructing the clusters, and hence the bunches, we use a dynamic hashing algorithm ([11],[19]) to
update the hash table of each bunch.

10

6 Decremental distance oracles for all distances

We use the decremental (2k − 1)-APSP algorithm of the previous section with d = n1−1/k. The total running time
is then Õ(dmn1/k) = Õ(mn). To take care of distances that are at least d we use a slightly modified version of the
(1 + ε)-APSP algorithm of Section 4. Instead of working with I = {1, 2, . . . , log n} we work with the set Id =
{log d, . . . , log n}. For each i ∈ Id we maintain trees (of depth at most 2i+2) from the (cn lnn)/(ε2i) vertices of Si.
The amount of space needed for storing all these trees is only O(n

∑
i≥log d |Si|) = O(n

∑
i≥log d(cn ln n)/(ε2i)) =

Õ(n2/d) = Õ(n1+1/k). Thus, the total amount of space used by the combination of the two algorithms is only
Õ(m + n1+1/k), as promised.

7 A fully-dynamic (1 + ε)-APSP algorithm

The fully-dynamic algorithm uses a technique of [17] for converting a decremental algorithm into a fully-dynamic
algorithm. This technique was also used by us in the previous part. A few additional ideas are required here,
however.

The algorithm works in phases as follows. In the beginning of each phase, the current graph G = (V, E) is passed
to the decremental algorithm of Section 4. A random subset S ⊆ V of vertices, of size (cn ln n)/(εd), is chosen,
where d is a parameter to be chosen later. The static algorithm of Elkin [13] is used to find approximate distances
from the vertices of S to all vertices of the graph. For any vertex v ∈ V , we let p(v) ∈ S be the vertex of S closest
to v. The set C is initialized to the empty set.

An insertion of a set E′ of edges, all touching a vertex v ∈ V , said to be the center of the insertion, is handled
as follows. First if |C| ≥ t, where t is a second parameter to be chosen later, then the current phase is declared
over, and all the data structures are reinitialized. Next, the center v is added to the set C, and the first d levels of
shortest paths trees Tin(v) and Tout(v), containing shortest paths to and from v, are constructed. The trees Tin(v)
and Tout(v) are constructed and maintained using the algorithm of [15]. Finally, the algorithm of [13] is rerun to
find the new distances from the vertices of S to all vertices of the graph. For any vertex v ∈ V , we let p(v) ∈ S be
the vertex of S closest to v.

A deletion of an arbitrary set E′ of edges is handled as follows. First, the edges of E′ are removed from the
decremental data structure, initialized at the beginning of the current phase, using the algorithm of Section 4. Next,
the algorithm of [15] is used to update the shortest paths trees Tin(v) and Tout(v), for every v ∈ C. Finally, the
algorithm of [13] is rerun to find the new distances from the vertices of S to all vertices of the graph, and for every
v ∈ V we again let p(v) ∈ S be the vertex of S closest to v.

A distance query Query(u, v), asking for an estimate of the distance δ(u, v) from u to v in the current graph, is
handled using the following three stage process. First, we query the decremental data structure, that keeps track
of all delete operations performed in the current phase, but ignores all insert operations, and get an answer `1. We
clearly have δ(u, v) ≤ `1, as all edges in the decrementally maintained graph are also edges of the current graph.
Furthermore, if there is a shortest path from u to v in the current graph that does not use any edge that was inserted
during the current phase, then `1 ≤ (1 + ε)δ(u, v).

Next, we try to find a shortest path from u to v that passes through one of the insertion centers contained in C.
For every w ∈ C, we check whether u ∈ Tin(w) and v ∈ Tout(w). If so, we compute a bound δ(u,w) +
δ(w, v) on the distance δ(u, v). (The distance δ(u,w) is obtained by querying Tin(w) while δ(w, v) is obtained by
querying Tout(v).) By taking the minimum of all these bounds we get a second distance estimate that we denote
by `2. (If there is no w ∈ C for which u ∈ Tin(w) and v ∈ Tout(w), then `2 = ∞.) Again, we have δ(u, v) ≤ `2.
Furthermore, if δ(u, v) ≤ d, and there is a shortest path from u to v in the current graph that passes through
a vertex that was an insertion center in the current phase of the algorithm, then δ(u, v) = `2. Finally, we let
`3 ← δ(u, p(u)) + δ(p(u), v). The final answer returned by the algorithm is min{`1, `2, `3}.

11

As the query time of the decremental algorithm of Section 4 is O(1), the query time here is O(t). To minimize the
amortized update time, we set d = n1+δ/m1/2, where δ > 0 is an arbitrary small constant.

Theorem 7.1 For any fixed ε, δ > 0 and every t ≤ m1/2/nδ, the fully dynamic approximate all-pairs shortest paths
algorithm has an expected amortized update time of Õ(mn/t) and worst-case query time of O(t). The stretch of the
returned distances is at most 1 + ε.

Proof: The correctness of the algorithm follows from the arguments outlined above. As each estimate `1, `2 and `3

obtained is the length of a path in the graph from u to v, we have δ(u, v) ≤ `1, `2, `3. Thus, the estimate returned by
the algorithm can never be too small.

If there is a shortest path from u to v that does not use any edge inserted in the current phase, then `1 ≤ (1+ε)δ(u, v).
Suppose therefore that there is a shortest path p from u to v that uses at least one edge that was inserted during the
current phase. Let w be the latest vertex on p to serve as an insertion center. If δ(u, v) ≤ d, then the exact distance
from u to v will be found while examining the trees Tin(w) and Tout(w).

Finally, suppose that δ(u, v) ≥ d. With very high probability, we have δ(u, p(u)) ≤ 1
2εd, and therefore δ(u, p(u))+

δ(p(u), v) ≤ δ(u, p(u)) + (δ(p(u), u) + δ(u, v)) = δ(u, v) + 2δ(u, p(u)) ≤ (1 + ε)δ(u, v).

We next analyze the complexity of the algorithm. The total cost of maintaining the decremental data structure is
Õ(mn). As each phase is composed of at least t update operations, this contributes Õ(mn

t) to the amortized cost of
each update operation. Each insert operation triggers the creation (or recreation) of two decremental shortest paths
trees that are maintained only up to depth d. The total cost of maintaining these trees is O(dm). (Note that this also
covers the cost of all future operations performed on these trees.) Finally, each insert or delete operation requires the
recomputation of approximate distances from S. Using the algorithm of [13], this takes O(mnδ + |S|n1+δ) time.
As |S| = O((n log n)/d), the running time is Õ(mnδ + n2+δ

d). For every u ∈ S and v ∈ V , we get an estimate
δ̂(u, v) of the distance δ(u, v) that satisfies δ(u, v) ≤ δ̂(u, v) ≤ (1+ ε

2)δ(u, v)+β(δ, ε), where β(δ, ε) is a constant.
If δ(u, v) ≥ 2β/ε, then δ(u, v) ≤ δ̂(u, v) ≤ (1 + ε)δ(u, v). (This will be satisfied, as our choice of d will be
non-constant.) The total amortized cost of each update operation is therefore Õ(mn

t + dm + mnδ + n2+δ

d).

Each query is handled by the algorithm in O(t): The estimate `1 is obtained in O(1) time by querying the decre-
mental data structure. The estimate `2 is obtained in O(t) by considering all the trees associated with C. Finally the
estimate `3 is again obtained in O(1) time.

To minimize the amortized update time, we choose d = n1+δ/m1/2. The amortized update time is then O(mn
t +

m1/2n1+δ). (Note that m1/2 ≤ n.) For t ≤ m1/2/nδ we have m1/2n1+δ ≤ mn
t . Thus, for t ≤ m1/2/nδ we get an

amortized update time of Õ(mn/t) and query time O(t). 2

8 Concluding remarks and open problems

We obtained two new decremental algorithms and one new fully-dynamic algorithm for the dynamic approximate
APSP problem for unweighted undirected. The total running time of our decremental algorithms is Õ(mn), a bound
that will be hard to beat as almost any improvement on it will yield improved results also for the static version of the
problem. It is not difficult also to extend our algorithms to work on graphs with small integer weights. The running
time is multiplied by b, the largest edge weight.

An interesting open problem is whether similar results can be obtained for the decremental version of the exact
APSP problem.

The techniques used to obtain our decremental algorithms can also be used to obtain incremental algorithms, with
the same time bounds, for the approximate APSP problem.

12

Our fully-dynamic algorithm presents an interesting tradeoff between the amortized update time and the query time.
Improving this tradeoff is an interesting open problem.

References

[1] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and shortest paths (without
matrix multiplication). SIAM Journal on Computing, 28:1167–1181, 1999.

[2] G. Ausiello, G.F. Italiano, A. Marchetti-Spaccamela, and U. Nanni. Incremental algorithms for minimal length
paths. J. Algorithms, 12(4):615–638, 1991.

[3] G. Ausiello, G.F. Italiano, A. Marchetti-Spaccamela, and U. Nanni. On-line computation of minimal and
maximal length paths. Theoretical Computer Science, 95(2):245–261, 1992.

[4] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Near-linear time construction of sparse neighborhood covers.
SIAM Journal on Computing, 28:263–277, 1999.

[5] S. Baswana, R. Hariharan, and S. Sen. Improved decremental algorithms for transitive closure and all-pairs
shortest paths. In Proc. of 34th STOC, pages 117–123, 2002.

[6] S. Baswana, R. Hariharan, and S. Sen. Maintaining all-pairs approximate shortest paths under deletion of
edges. In Proc. of 14th SODA, pages 394–403, 2003.

[7] E. Cohen. Fast algorithms for constructing t-spanners and paths with stretch t. SIAM Journal on Computing,
28:210–236, 1999.

[8] E. Cohen and U. Zwick. All-pairs small-stretch paths. Journal of Algorithms, 38:335–353, 2001.

[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to algorithms. The MIT Press, second
edition, 2001.

[10] C. Demetrescu and G.F. Italiano. Experimental analysis of dynamic all pairs shortest path algorithms. In Proc.
of 15th SODA, pages 362–371, 2004.

[11] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer Auf Der Heide, H. Rohnert, and R.E. Tarjan. Dynamic
perfect hashing: Upper and lower bounds. SIAM Journal on Computing, 23:738–761, 1994.

[12] D. Dor, S. Halperin, and U. Zwick. All pairs almost shortest paths. SIAM Journal on Computing, 29:1740–
1759, 2000.

[13] M. Elkin. Computing almost shortest paths. In Proc. of 20th PODC, pages 53–62, 2001.

[14] M. Elkin and D. Peleg. (1+epsilon, beta)-spanner constructions for general graphs. SIAM J. Comput.,
33(3):608–631, 2004.

[15] S. Even and Y. Shiloach. An on-line edge-deletion problem. Journal of the ACM, 28(1):1–4, 1981.

[16] Z. Galil and O. Margalit. All pairs shortest paths for graphs with small integer length edges. Journal of
Computer and System Sciences, 54:243–254, 1997.

[17] M. Henzinger and V. King. Fully dynamic biconnectivity and transitive closure. In Proc. of 36th FOCS, pages
664–672, 1995.

[18] V. King. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs.
In Proc. of 40th FOCS, pages 81–91, 1999.

13

[19] R. Pagh and F.F. Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122–144, 2004.

[20] R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal of Computer and
System Sciences, 51:400–403, 1995.

[21] A. Shoshan and U. Zwick. All pairs shortest paths in undirected graphs with integer weights. In Proc. of 40th
FOCS, pages 605–614, 1999.

[22] M. Thorup. Fully-dynamic all-pairs shortest paths: Faster and allowing negative cycles. In SWAT: Scandinavian
Workshop on Algorithm Theory, pages 384–396, 2004.

[23] M. Thorup and U. Zwick. Approximate distance oracles. Journal of the ACM, 52(1):1–24, 2005.

[24] J.D. Ullman and M. Yannakakis. High-probability parallel transitive-closure algorithms. SIAM Journal on
Computing, 20:100–125, 1991.

[25] U. Zwick. All-pairs shortest paths using bridging sets and rectangular matrix multiplication. Journal of the
ACM, 49:289–317, 2002.

14

