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Abstract
We address the issue of manipulating games
through communication. In the specific setting we
consider (a variation of Boolean games), we as-
sume there is some set of environment variables,
the value of which is not directly accessible to
players; each player has their own beliefs about
these variables, and makes decisions about what ac-
tions to perform based on these beliefs. The com-
munication we consider takes the form of (truth-
ful) announcements about the value of some envi-
ronment variables; the effect of an announcement
about some variable is to modify the beliefs of the
players who hear the announcement so that they
accurately reflect the value of the announced vari-
ables. By choosing announcements appropriately,
it is possible to perturb the game away from certain
rational outcomes and towards others. We specifi-
cally focus on the issue of stabilisation: making an-
nouncements that transform a game from having no
stable states to one that has stable configurations.

1 Introduction
Our aim in the present paper is to investigate the use of com-
munication in the management and control of multi-agent
systems. In particular, we look at how announcements that
affect the beliefs of players in a game can be used to sta-
bilise the game. The games we consider are a variant of
Boolean games [11; 3; 6; 7]. In Boolean games, each player
in the game has under its unique control a set of Boolean vari-
ables, and is at liberty to assign values to these variables as
it chooses. In addition, each player has a goal that it desires
to be achieved: the goal is represented as a Boolean formula,
which may contain variables under the control of other play-
ers. The fact that the achievement of one agent’s goal may
depend on the choices of another agent is what gives Boolean
games their strategic character. In the variant of Boolean
games that we consider in the present paper, we assume that
each player has (possibly incorrect) beliefs about a certain set
of environment variables, which have a fixed value, outside
the control of any players in the game. An external principal
is assumed to be able to (truthfully) announce the value of
(some subset of) environment variables to the players in the

game. Announcing a variable has the effect of changing the
beliefs of players in the game, and hence, potentially, their
preferences over possible outcomes. By choosing announce-
ments appropriately, the principal can perturb the game away
from some possible outcomes and towards others.

We focus particularly on the issue of stabilisation: making
announcements that transform a game from having no stable
states to one that has stable configurations. Stability in this
sense is close to the notion of Nash equilibrium in the game-
theoretic sense [14]: it means that no agent has any incentive
to unilaterally change its choice. However, the difference be-
tween our setting and the conventional notion of Nash equi-
librium is that an agent’s perception of the utility it would
obtain from an outcome is dependent on its own beliefs. By
changing these beliefs through truthful announcements, we
can modify the rational outcomes of the game. We are partic-
ularly interested in the possibility of transforming a game that
has no stable states into one that has at least one. Our ratio-
nale for this consideration is that instability will, in general,
be undesirable: apart from anything else, it makes behaviour
harder to predict and understand, and introduces the possibil-
ity of players wasting effort by continually modifying their
behaviour. It makes sense, therefore, to consider the problem
of stabilising multi-agent system behaviour: of modifying an
unstable system so that it has equilibrium states, and even fur-
ther, of modifying the system so that it has socially desirable
equilibria. For example, we might consider the principal per-
turbing a game to ensure an equilibrium that maximises the
number of individual agent goals achieved.

Although the model of communication and rational action
we consider in the present paper is based on the abstract set-
ting of Boolean games, the issues we investigate using this
model – stabilisation, and, more generally, the management
of multi-agent systems – are, we believe, of central impor-
tance. This is because there is a fundamental difference be-
tween a distributed system in which all components are de-
signed and implemented by a single designer, and which can
therefore be designed to act in the furtherance of the de-
signer’s objectives, and multi-agent systems, in which indi-
vidual agents will selfishly pursue their own goals. By pro-
viding a formal analysis of how communication can be used
to perturb the rational actions of agents within a system to-
wards certain outcomes, we provide a foundation upon which
future, richer models can be built and investigated.



2 The Model
In this section, we introduce the model of Boolean games
that we work with throughout the remainder of this paper.
This model is a variation of previous models of Boolean
games [11; 3; 6; 7]. The main difference is that we assume
players in the game have beliefs about a set of environment
variables, the values of which are not under the control of any
players in the game. These beliefs may be incorrect. Play-
ers base their decisions about what choices to make based on
their beliefs.

Propositional Logic: Let B = {>,⊥} be the set of Boolean
truth values, with “>” being truth and “⊥” being falsity. We
will abuse notation a little by using > and ⊥ to denote both
the syntactic constants for truth and falsity respectively, as
well as their semantic counterparts. Let Φ = {p, q, . . .}
be a (finite, fixed, non-empty) vocabulary of Boolean vari-
ables, and let L denote the set of (well-formed) formulae
of propositional logic over Φ, constructed using the conven-
tional Boolean operators (“∧”, “∨”, “→”, “↔”, and “¬”), as
well as the truth constants “>” and “⊥”. Where ϕ ∈ L, we let
vars(ϕ) denote the (possibly empty) set of Boolean variables
occurring in ϕ (e.g., vars(p ∧ q) = {p, q}). A valuation is a
total function v : Φ → B, assigning truth or falsity to every
Boolean variable. We write v |= ϕ to mean that the propo-
sitional formula ϕ is true under, or satisfied by, valuation v,
where the satisfaction relation “|=” is defined in the standard
way. Let V denote the set of all valuations over Φ. We write
|= ϕ to mean that ϕ is a tautology. We denote the fact that
|= ϕ↔ ψ by ϕ ≡ ψ.

Agents and Variables: The games we consider are popu-
lated by a set Ag = {1, . . . , n} of agents – the players of
the game. Each agent is assumed to have a goal, charac-
terised by an L-formula: we write γi to denote the goal
of agent i ∈ Ag. Agents i ∈ Ag each control a (possi-
bly empty) subset Φi of the overall set of Boolean variables.
By “control”, we mean that i has the unique ability within
the game to set the value (either > or ⊥) of each variable
p ∈ Φi. We will require that Φi ∩ Φj = ∅ for i 6= j, but in
contrast with other existing models of Boolean games [11;
3], we do not require that Φ1, . . . ,Φn form a partition of
Φ. Thus, we allow for the possibility that some variables
are not under the control of any players in the game. Let
ΦE = Φ \ (Φ1 ∪ · · · ∪Φn) be the variables that are not under
any agent’s control; we call these the environment variables.
It is assumed that the value of these variables is determined
in some way external to the game, and that agents within the
game cannot influence these variables in any way: the actual
value of the variables ΦE is immutable. We let vE : ΦE → B
be a function that gives the actual value of the environment
variables. When playing a Boolean game, the primary aim of
an agent i will be to choose an assignment of values for the
variables Φi under its control so as to satisfy its goal γi. The
difficulty is that γi may contain variables controlled by other
agents j 6= i, who will also be trying to choose values for their
variables Φj so as to get their goals satisfied; and their goals in
turn may be dependent on the variables Φi. In addition, goal
formulae may contain environment variables ΦE, beyond the
control of any of the agents in the system. A choice for agent

i ∈ Ag is a function vi : Φi → B, i.e., an allocation of truth or
falsity to all the variables under i’s control. Let Vi denote the
set of choices for agent i.

Beliefs: In our games, we assume that agents have possi-
bly incorrect beliefs about the value of environment variables
ΦE. We model the beliefs of an agent i ∈ Ag via a func-
tion βi : ΦE → B, with the intended interpretation that if
βi(p) = b, then this means that agent i believes variable
p ∈ ΦE has value b. It goes without saying that this is a
simple model of belief, and that many alternative richer mod-
els of belief could be used instead: we could model an agent’s
beliefs as a set of valuations, yielding something like the pos-
sible worlds model for belief/knowledge, or we could model
beliefs through a probability distribution over possible values
for variables (see, e.g., [10]). However, modelling belief via
functions βi : ΦE → B is conveniently simple, while at the
same time allowing us to consider complex issues, as we will
see later. We comment on this issue further in section 6.

Outcomes: An outcome is a collection of choices, one for
each agent. Formally, an outcome is a tuple (v1, . . . , vn) ∈
V1 × · · · × Vn. Notice that an outcome defines a value
for all variables apart from the environment variables ΦE:
when taken together with a valuation vE for environment
variables, an outcome uniquely defines an overall valuation
for the variables Φ, and we will often think of outcomes
as valuations, for example writing (v1, . . . , vn, vE) |= ϕ to
mean that the valuation defined by the outcome (v1, . . . , vn)
taken together with vE satisfies formula ϕ ∈ L. Notice that
since vE is assumed to be fixed for a game, we sometimes
suppress reference to it when context makes the vE func-
tion unambiguous, simply writing (v1, . . . , vn) |= ϕ. A be-
lief function βi together with an outcome (v1, . . . , vn) also
defines a unique valuation for Φ, and we will sometimes
write (v1, . . . , vn, βi) to mean the valuation obtained from the
choices v1, . . . , vn together with the values for variables ΦE
defined by βi. Observe that we could have (v1, . . . , vn, βi) |=
γi (intuitively, agent i believes it would get its goal γi
achieved by outcome (v1, . . . , vn)) while (v1, . . . , vn, vE) 6|=
γi (in fact i would not get its goal achieved by outcome
(v1, . . . , vn)). Let succ(v1, . . . , vn, vE) denote the set of agents
who have their goal achieved by outcome (v1, . . . , vn), i.e.,
succ(v1, . . . , vn, vE) = {i ∈ Ag | (v1, . . . , vn, vE) |= γi}.
Costs: Intuitively, the actions available to agents correspond
to setting variables true or false. We assume that these actions
have costs, defined by a cost function c : Φ × B → R≥, so
that c(p, b) is the marginal cost of assigning variable p ∈ Φ
the value b ∈ B (where R≥ = {x ∈ R | x ≥ 0}). Note that if
an agent has multiple ways of getting its goal achieved, then
it will prefer to choose one that minimises costs; and if an
agent cannot get its goal achieved, then it simply chooses to
minimise costs. However, cost reduction is a secondary con-
sideration: an agent’s primary concern is goal achievement.

Boolean Games: A Boolean game, G, is a (3n + 4)-tuple:

G = 〈Ag,Φ,Φ1, . . . ,Φn︸ ︷︷ ︸
controlled
variables

γ1, . . . , γn︸ ︷︷ ︸
goals

, β1, . . . , βn︸ ︷︷ ︸
beliefs

, c, vE〉,



where Ag = {1, . . . , n} is a set of agents, Φ = {p, q, . . .} is a
finite set of Boolean variables, Φi ⊆ Φ is the set of Boolean
variables under the unique control of i ∈ Ag; γi ∈ L is the
goal of agent i ∈ Ag; βi : ΦE → B is the belief function
of agent i ∈ Ag; c : Φ × B → R≥ is a cost function; and
vE : ΦE → B is the (fixed) valuation function for environment
variables.

Subjective Utility: We now introduce a model of utility for
our games. While we find it convenient to define numeric
utilities, it should be clearly understood that utility is not
assumed to be transferable: it is simply a numeric way of
capturing an agent’s preferences. The basic idea is that an
agent will strictly prefer all outcomes in which it gets its goal
achieved over all outcomes where it does not; and secondar-
ily, will prefer to minimise costs. Utility functions as we de-
fine them directly capture such preferences.

Of course, agents in our model have beliefs, modelled by
belief functions βi, and the choices agent i makes will de-
pend on its beliefs βi. When an agent makes a choice, it intu-
itively makes a calculation about the benefit it will obtain that
takes into account its beliefs. However, this calculation is
subjective, in the sense that the agent’s beliefs may be wrong,
and hence its judgement about the utility it will obtain from
making a choice may be wrong. We let ui(v1, . . . , vn) de-
note the utility that agent i believes it would obtain if agent j
(1 ≤ j ≤ n) made choice vj. Formally, this value is defined
as follows. First, with a slight abuse of notation, we extend
cost functions to agents and individual choices. We let ci(vi)
denote the cost to agent i of choice vi:

ci(vi) =
∑
p∈Φi

c(p, vi(p))

Next, let ve
i denote a choice for i that has the highest possible

cost for i, and µi the cost to i of such a choice, formally:

ve
i ∈ arg max

vi∈Vi
ci(vi) µi = ci(ve

i ).

We then define the subjective utility that i would obtain from
choices v1, . . . , vn by:

ui(v1, . . . , vn) =

{
1 + µi − ci(vi) if (v1, . . . , vn, βi) |= γi
−ci(vi) otherwise.

It is important to note that in this definition the value of an
agent’s utility is critically dependent on its beliefs βi.

Nash Stability: We now define the notion of equilibrium that
we use throughout the remainder of this paper: this notion of
Nash stability is a variation of that defined in [9]. The ba-
sic idea of Nash stability, as with (pure strategy) Nash equi-
librium [14], is that an outcome is said to be Nash stable if
no agent within it would prefer to make a different choice,
assuming every other agent stays with their choice. How-
ever, the difference between Nash stability and the conven-
tional notion of Nash equilibrium is that an agent i in our
setting will compute its utility – and hence make its choice –
based on its beliefs βi. We say an outcome v1, . . . , vi, . . . , vn
is individually stable for agent i if 6 ∃v′i ∈ Vi such that
ui(v1, . . . , v′i , . . . , vn) > ui(v1, . . . , vi, . . . , vn). We then say

an outcome v1, . . . , vn is Nash stable if v1, . . . , vn is individu-
ally stable ∀i ∈ Ag. We denote the Nash stable outcomes of a
game G by N (G). As with Nash equilibrium, it may be that
N (G) = ∅; in this case we say G is unstable.

Example 1 Consider the following (tongue-in-cheek) exam-
ple. Bob likes Alice, and he believes Alice likes him. Although
Bob doesn’t like going to the pub usually, he would want to be
there if Alice likes him and Alice was there also. Alice likes
going to the pub, but in fact she doesn’t like Bob: she wants
to go to the pub only if Bob isn’t there. We formalise this ex-
ample in our setting as follows. The atomic propositions are
ALB (Alice likes Bob), PA (Alice goes to the pub), and PB
(Bob goes to the pub). We have ΦA = {PA}, ΦB = {PB},
and ΦE = {ALB}, with vE(ALB) = ⊥, but βB(ALB) = >
(poor deluded Bob!). For both agents i ∈ {A,B} the cost of
setting Pi to > is 10, while the cost of setting Pi to ⊥ is 0
for both. Alice’s goal is to avoid Bob: γA = ¬(PA ↔ PB).
Bob’s goal is that Alice likes him, and is in the pub iff she
is: γB = ALB ∧ (PB ∧ PA). Now, it is easy to see that the
game has no Nash stable state. If PA = PB = ⊥, then Alice
would benefit by setting PB = >, thereby achieving her goal.
If PA = ⊥ and PB = >, then Alice gets her goal achieved but
Bob does not; he would do better to set PB = ⊥. If PA = >
and PB = ⊥, then, again Alice gets her goal achieved but
Bob does not; he would do better to set PB = >. If PA = >
and PB = >, then Bob gets his goal achieved but Alice does
not; she would do better to set PA = ⊥.

3 Announcements
Let us now return to the motivation from the introduction
of the paper: namely, that a principal makes announcements
about the value of environment variables in order to modify
the behaviour of agents within the system. We will consider
two types of announcements.

In a simple announcement, the principal announces the
value of some non-empty subset of ΦE to all the agents within
the system. We will assume throughout the paper that this an-
nouncement is truthful, in that the principal does not lie about
the values of the variables it announces. The effect of the an-
nouncement is that all agents within the game modify their
beliefs to reflect correctly the value of the announced vari-
ables as defined in vE. Note that we are not assuming that the
principal must announce all variables in ΦE: the principal is
at liberty to pick some subset of ΦE to announce. The princi-
pal will thus choose from 2|ΦE| − 1 possible announcements.

A complex announcement is more nuanced. In a complex
announcement, the principal may reveal the values of differ-
ent variables to different agents within the system. So, for
example, the principal may reveal the value of variable p to
agent i and the value of q to agent j. Again, however, we
assume that announcements are truthful.

Simple Announcements: Formally, we model a simple an-
nouncement as a subset α ⊆ ΦE (α 6= ∅), with the intended
meaning that, if the principal makes this announcement, then
the value of every variable p ∈ α becomes common knowl-
edge within the game. The effect of an announcement α on
an agent’s belief function βi : ΦE → B is to transform it to a



new belief function βi ⊕ α, defined as follows:

βi ⊕ α(p) =

{
vE(p) if p ∈ α
βi(p) otherwise.

With a slight abuse of notation, where G is a game and α is a
possible announcement in G, we will write G ⊕ α to denote
the game obtained from G by replacing every belief function
βi in G with the belief function βi ⊕ α. Observe that, given a
game G and announcement α from G, computing G ⊕ α can
be done in polynomial time.

Complex Announcements: We model complex announce-
ments as functions α : Ag → 2ΦE , with the intended inter-
pretation that after making an announcement α, an agent i
comes to know the value of the environment variables α(i).
Again, we assume truthfulness, and of course it may be that
α(i) 6= α(j). As with simple announcements, the effect of a
complex announcement α on an agent is to transform its be-
lief function βi to a new function βi⊕α, which in this case is
defined as follows:

βi ⊕ α(p) =

{
vE(p) if p ∈ α(i)
βi(p) otherwise.

The size of a complex announcement α, is denoted (with a
small abuse of notation) by |α| and is defined as: |α| =∑

i∈Ag |α(i)|.

4 Announcements that Stabilise Games
Now that we have a model of announcements and their se-
mantics, let us see how these can be used to stabilise a game.
Given a game G and a simple announcement α over G, we
will say that α is stabilising if N (G ⊕ α) 6= ∅ (we do not
require that N (G) = ∅). Let S(G) be the set of stabilising
announcements for G, i.e., S(G) = {α | N (G⊕ α) 6= ∅}.
Example 2 We return to Alice and Bob, as discussed earlier.
Suppose Alice’s friend, the principal, announces {ALB}; that
is, she tells Bob that Alice does not in fact like Bob. Bob
updates his beliefs accordingly. At this point, Bob no longer
has any possibility to achieve his desire ALB ∧ (PB ↔ PA),
and his optimal choice is to minimise costs by not going to the
pub. Given that Bob stays at home, Alices’s optimal choice to
go to the pub. The outcome where PA = >, PB = ⊥ is Nash
stable. Thus, {ALB} is a stabilising announcement.

From the point of view of the principal, the obvious decision
problem relating to stabilisation is as follows: Given a game
G, does there exist some announcement α over G such that α
stabilises G? We have the following:

Proposition 1 The problem of checking whether a game G
can be stabilised by a simple announcement, (i.e., whether
S(G) 6= ∅), is Σp

2-complete; this holds even if all costs are 0.

Proof: Membership is by the following algorithm: Guess
an α ⊆ ΦE and an outcome (v1, . . . , vn), and verify that
(v1, . . . , vn) is a Nash stable outcome of G ⊕ α. Guessing
can clearly be done in non-deterministic polynomial time,
and verification is a co-NP computation. For hardness, we
reduce the problem of checking whether a Boolean game as

defined in [3] has a Nash equilibrium; this was proved Σp
2-

complete in [3]. Given a conventional Boolean game, we map
the agents, goals, and controlled variables to our setting di-
rectly; we then create one new Boolean variable, call it z, and
set ΦE = {z}. Set vE(z) = > and βi(z) = > for all agents i.
Now, we claim that the system can be stabilised iff the origi-
nal game has a Nash equilibrium; the only announcement that
can be made is α = {z}, which does not change the system in
any way; the Nash stable states of the game G ⊕ α will thus
be exactly the Nash equilibria of the original game.

Another obvious question is what properties announcements
have. While this is not the primary subject of the present
paper, it is nevertheless worth considering. We have the fol-
lowing:

Proposition 2 Stability is not monotonic through announce-
ments. That is, there exist games G and announcements
α1, α2 over G such that G⊕ α1 is stable but (G⊕ α1)⊕ α2

is not.

Proof: Consider the following example (a variant of the Al-
ice and Bob example introduced earlier). Let G be the game
with Ag = {1, 2}, Φ = {p, q, r, s}, Φ1 = {p}, Φ2 = {q},
ΦE = {r, s}, β1(r) = >, β1(s) = ⊥, β2(r) = ⊥, β2(s) = >,
vE(r) = ⊥, vE(s) = >, γ1 = (r ∨ s)∧ (p↔ q), γ2 = ¬(p↔
q), c(p,>) = c(q,>) = 1, and c(p,⊥) = c(q,⊥) = 0. Now,
G is unstable, by a similar argument to Example 1. Announc-
ing r will stabilise the system, again by a similar argument to
Example 1. However, it is easy to see that (G ⊕ {r}) ⊕ {s}
is unstable: intuitively, in (G ⊕ {r}), agent 1 does not be-
lieve he can get his goal achieved, because he believes both
r and s are false, so he prefers to minimise costs by setting
p = ⊥, leaving agent 2 free to get their goal achieved by set-
ting q = >. However, in (G ⊕ {r}) ⊕ {s}, because agent 1
believes s = >, he now believes he has some possibility to
get his goal achieved, and the system is unstable.

Let us say an announcement α ⊆ Φ is relevant for an agent i
if the announcement refers to variables that occur in the goal
of i, that is, if α∩ vars(γi) 6= ∅. Say α is irrelevant if it is not
relevant for any agent. We have:

Proposition 3 If α is irrelevant w.r.t. G thenN (G) = N (G⊕
α).

Now, an obvious question arises: Can we give some complete
characterisation of games G such that S(G) 6= ∅? To help
understand the answer to this question, consider the following
example.

Example 3 Let Ag = {1, 2, 3}, Φ = {p1, . . . , p6}, Φi =
{pi}, γ1 = p1∨p2∨p4, γ2 = p2∨p3∨p5, γ3 = p3∨p1∨p6,
costs for making a variable > are 1, and for making it ⊥ are
0. Finally, we have βi(pj) = ⊥ for all i ∈ {1, 2, 3} and 4 ≤
j ≤ 6. The system is unstable: for example, the outcome in
which all variables take the value⊥ is unstable because agent
1 could benefit by setting p1 = >. Observe, however, that any
of the following announcements would serve to stabilise the
system: α1 = {p4}, α2 = {p5}; α3 = {p6}. For example, if
announcement α1 is made, then agent 1 will believe its goal
will be achieved, and so only needs to minimise costs – it need
not be concerned with what agent 2 does with p2, which it



does by setting p1 = ⊥. In this case, agent 3’s best response
p3 = > (thereby achieving his goal), and agent 2 can set
p2 = ⊥, minimising costs. This outcome is stable. Identical
arguments show that α2 or α3 would also stabilise the system.
How is the system stabilised in this example? Consider the
announcement α1. Before this announcement, agent 1 be-
lieves that his optimal choice may depend on the choice of
agent 2; for if agent 2 were to set p2 = > then agent 1 would
prefer to set p1 = ⊥. In this sense, we can think of agent
1’s optimal choice being dependent on the choice of agent 2.
However, the announcement breaks this dependency: agent
1 now believes his goal is satisfied, and no longer needs to
be concerned about the choices of others. Because his goal
is satisfied, he can simply make a choice that minimises his
costs: his decision becomes a (computationally very sim-
ple) optimisation problem. So, we can stabilise systems by
breaking dependencies, in the way we just described. Previ-
ously, [4] studied in detail dependencies between players in
Boolean games. In our context, a dependency graph for a
game G is a digraph DG = (V,E), with vertex set V = Ag
and edge set E ⊆ Ag × Ag defined as follows: (i, j) ∈ E iff
∃(v1, . . . , vj, . . . , vn) ∈ V1 × · · · × Vj × · · · × Vn and v′j ∈ Vj

such that ui(v1, . . . , vj, . . . , vn) 6= ui(v1, . . . , v′j , . . . , vn). In
other words, (i, j) ∈ E if there is some circumstance under
which a choice made by agent j can affect the utility obtained
by agent i. Proposition 6 of [4] gives a sufficient condition
for the existence of a Nash stable outcome, namely, if the
irreflexive portion of DG is acyclic thenN (G) 6= ∅. This sug-
gests the following approach to stabilising a game G: find an
announcement α such that the irreflexive portion of DG⊕α is
acyclic. A general difficulty with this approach is implied by
the following:
Proposition 4 Given a game G and players i, j in G, the
problem determining whether (i, j) ∈ DG is NP-complete.

Proof: Membership is by “guess-and-check”. For hardness,
we reduce SAT. Let ϕ be a SAT instance. Create two agents,
1 and 2, let γ1 = ϕ ∧ z, where z is a new variable, and let
γ2 = >. Let Φ1 = vars(ϕ) and Φ2 = {z}. All costs are 0.
We now ask whether 1 is dependent on 2; we claim the answer
is “yes” iff ϕ is satisfiable. (→) Observe that the only way
player 1 could obtain different utilities from two outcomes
varying only in the value of z (the variable under the control
of 2) is if ϕ ∧ z was true in one outcome and false in the
other. The outcome satisfying ϕ ∧ z is then witness to the
satisfiability of ϕ. (←) If agent 1 gets the same utility for all
choices it makes and choices of value for z then ϕ ∧ z is not
satisfiable, hence ϕ is not satisfiable.

So, it would be helpful to identify cases where checking de-
pendencies is computationally easy. Let us say that a goal
formula γ is in simple conjunctive form if it is of the form
`1∧ · · ·∧ `k, where each `i is a literal, i.e., an atomic proposi-
tion or the negation of an atomic proposition. We assume
w.l.o.g. that such a formula contains no contradictions (a
proposition and its negation), as such goals are unsatisfiable.
Say a game G is in simple conjunctive form if each goal γi is
in simple conjunctive form. Then:
Proposition 5 Suppose G is a game containing agents i and

j, such that γi is in simple conjunctive form and vars(γi) ∩
Φj 6= ∅; then (i, j) ∈ DG. It follows that, if a game is in
simple conjunctive form then computing DG can be done in
polynomial time.

So, for games in simple conjunctive form, we can easily iden-
tify the dependencies between agents. The next question is
how to break these dependencies. The basic idea is, as in
Example 3, to modify an agent’s beliefs so that it no longer
believes its optimal choice is dependent on the choices of oth-
ers. We do this by convincing the agent that its goal is either
guaranteed to be achieved (in which case its optimal choice
is to minimise costs), or else cannot be achieved (in which
case, again, the optimal choice is again simply to minimise
costs). The difficulty with this approach is that we need to be
careful, when making such an announcement, not to change
the beliefs of other agents so that the dependency graph con-
tains a new cycle; complex announcements will enable us to
manipulate the beliefs of individual agents without affecting
those of others.

Where γi is a goal for some agent in a game G and α is
an announcement, let τ(γi, α) denote the formula obtained
from γi by systematically replacing each variable p ∈ ΦE by
βi ⊕ α(p). We will say α settles a goal γi if τ(γi, α) ≡ > or
τ(γi, α) ≡ ⊥. Intuitively, α settles γi if the result of making
the announcement α is that i believes its goal is guaranteed
to be true or is guaranteed to be false. With this definition in
place, the following Proposition summarises our approach to
stabilising games:

Proposition 6 Suppose G is a game with cyclic dependency
graph DG = (V,E), containing an edge (i, j) such that E \
{(i, j)} is acyclic, and such that γi can be settled by some
(complex) announcement α. Then G can be stabilised.

For simple conjunctive games, we can check the conditions
of Proposition 6 in polynomial time. For games in general, of
course, checking the conditions will be harder.

5 Measures of Optimality for Announcements
Apart from asking whether some stabilising announcement
exists, it seems obvious to consider the problem of finding an
“optimal” stabilising announcement. There are many possi-
ble notions of optimality that we might consider, but here, we
define just three.

Minimal Stabilising Announcements: The most obvious
notion of optimality we might consider for announcements
is that of minimising size. That is, we want an announcement
α∗ satisfying:

α∗ ∈ arg min
α∈S(G)

|α|.

Proposition 7 The problem of computing the size of the
smallest stabilising simple (resp. complex) announcement is
in FPΣp

2[log2 |Φ|] (resp. FPΣp
2[log2 |Φ×Ag|]).

Proof: We give the proof for simple announcements; the
case for complex announcements is similar. Observe that the
following problem, which we refer to as P, is Σp

2-complete
using similar arguments to Proposition 1: Given a game G,
announcement α for G and n ∈ N (n ≤ |ΦE|), does there exist



a simple stabilising announcement α′ for G, where α ⊆ α′,
such that |α′| ≤ n? It then follows that, for simple an-
nouncements, determining the size of the smallest stabilising
announcement can be computed with log2 |Φ| queries to an
oracle for P using binary search (cf. [15, pp.415–418]).

Proposition 8 The problem of computing a smallest stabilis-
ing simple (resp. complex) announcement is in FPΣp

2[|Φ|] (resp.
FPΣp

2[|Ag×Φ|]).

Proof: Compute the size s of the smallest announcement us-
ing the procedure of Proposition 7. Then we build a stabilis-
ing announcement α∗ by dynamic programming: A variable
S will hold the “current” announcement, with S = ∅ initially.
Iteratively consider each variable p ∈ ΦE in turn, invoking
the oracle for P to ask whether there exists a stabilising an-
nouncement for G or size s using the partial announcement
S ∪ {p}; if the answer is yes, then we set S = S ∪ {p}.
We then move on to the next variable in ΦE. We terminate
when |S| = s. In this case, S will be a stabilising announce-
ment of size s, i.e., it will be a smallest stabilising announce-
ment. The overall number of queries to the Σp

2 oracle for P is
|Φ|+ log2 |Φ|, i.e., O(|Φ|).

Goal Maximising Announcements: We do not have trans-
ferable utility in our setting, and so it makes no sense to di-
rectly introduce a measure of social welfare (normally de-
fined for an outcome as the sum of utilities of players in that
outcome). However, a reasonable proxy for social welfare in
our setting is to count the number of goals that are achieved
in the “worst” Nash stable outcome. Formally, we want an
announcement α∗ satisfying:

α∗ ∈ arg maxα∈S(G) min
{succ(v1, . . . , vn, vE) | (v1, . . . , vn, vE) ∈ N (G⊕ α)}.

Objective Satisfying Announcements: A third and final
possibility, considered in [7], is the idea of modifying a game
so that a particular objective is achieved in equilibrium, where
the objective is represented as a formula Υ ∈ L. Formally,
given a game G and an objective Υ ∈ L, we seek an an-
nouncement α∗ ∈ S(G) such that:

∀(v1, . . . , vn) ∈ N (G⊕ α∗) : (v1, . . . , vn, vE) |= Υ.

6 Related Work & Conclusions
In the sense that the main thrust of our work is to design
announcements that will modify games in such a way that
certain outcomes are achieved in equilibrium, our work is
similar in spirit to mechanism design/implementation the-
ory, where the goal is to design games in such a way that
certain outcomes are achieved in equilibrium [12]. How-
ever, we are aware of no work within the AI/computer sci-
ence community that addresses the problem of manipulating
games in the same way that we do – through communica-
tion. Work that has considered manipulating games within
the AI/computer science community has focussed on the
design of taxation schemes to influence behaviour [13; 2;
7]. Our work is also about the effect of making announce-
ments, and in this sense it has some affinity with the growing

body of work on dynamic epistemic logic (DEL) [16]. DEL
tries to give a logical account of how the knowledge states of
agents in a system are affected by announcements that take
the form of logical formulae. Of particular interest in DEL
are announcements that themselves refer to the knowledge of
participants, which can affect systems in subtle and complex
ways. There are many obvious avenues for future research.
We might consider richer models of belief (possible worlds
models, probabilistic and Bayesian models. . . [10]), and of
course, mixed strategy equilibria. We might consider the pos-
sibility of the principal lying, and of noisy communication.
We might consider the announcement of logical formulae,
rather than just announcing the value of individual propo-
sitions, and we might also consider announcements that re-
fer to the epistemic state of agents (“player one knows the
value of x”); this would take us close to the realm of dynamic
epistemic logic [16]. Finally, links with belief revision are
worth examining [1]. Acknowledgments: Special thanks
to the anonymous reviewer who pointed us at [4], the results
of which helped us to simplify our presentation considerably.
This research was financially supported by the Royal Society,
MOST (#3-6797), and ISF (#1357/07).
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