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Abstract

In this paper we investigate methods for measuring the expected utility from communi-
cating information in multi-agent planning and scheduling problems. We consider an envi-
ronment where human teammates can potentially add information to relax constraint infor-
mation. As these problems are NP-complete, no polynomial algorithms exist for evaluating
the impact of either adding or relaxing a certain constraint will have on the global problem.
We present a general approach based on a notion we introduce calledproblem tightness. Dis-
tributed agents use this notion to identify those problems which are not overly constrained
and, therefore, will not benefit from additional information that would relax those constraints.
Finally, agents apply traditional machine learning methods based on their specific local prob-
lem attributes to attempt to identify which of the constrained problems will most benefit from
added information. We evaluated this approach within a distributed c-TAEMS scheduling
domain and found that this approach was effective overall.
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1 Introduction

The use of mixed human and agent teams can be critical in performing a va-
riety of complex planning and scheduling tasks [22, 23, 24]. Both agents and
people have diverse capabilities that must be leveraged within the planning and
scheduling tasks. The importance of effective coordination within mixed human-
agent teams has been shown to be critical in domains such as hazardous cleanup,
emergency first-response, and military conflicts [22, 23].

This paper focuses on how agents can better focus a human operator’s atten-
tion within planning and scheduling tasks. Following previous work [22, 23],
we use the term “automated scheduling agent” (ASA) to refer to an autonomous
multi-agent system that supports coordinated scheduling of people carrying out
complex tasks in a dynamic environment. The team’s quality is based on the
schedules the ASA agents produce. The agents within the team have the advan-
tage that they can process large amounts of constraint information, a character-
istic that can be critical, especially in dynamic and time sensitive environments
[13, 14, 24, 33]. However, the ASAs exist within a distributed multi-agent sys-
tem with each ASA having only a partial, localized view of problem constraints.
ASA agents are separated either geographically, due to security reasons or com-
munication cost considerations. Thus, even discounting the system dynamics,
constructing a global view of the scheduling and planning problem is not feasi-
ble [22, 23].

In the human-agent team under consideration, human operators are assumed
to have access to more complete knowledge about task uncertainty because they
have updated information or expert knowledge external to the ASA agents. They
might be able to provide information that either relaxes or updates scheduling
constraints. For example, a human operator in an emergency response environ-
ment may have updated information about weather conditions, or knowledge ac-
quired from years of experience. This person’s knowledge potentially allows
ASA agents to schedule additional tasks or tasks with higher qualities, thus im-
proving the team’s schedule [22, 23].

Given such a heterogeneous team, a decision framework is typically used to
weigh the estimated costs and gains associated with user interactions [5, 9, 10, 8,
22, 23]. The ASA agents must be particularly sensitive about the cost associated
with obtaining information from the human operators [24]. People are often
busy and one must assume that prompting a user for information incurs some
cost. Thus, the first part of any proposed solution must quantify the cost related
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to interrupting the user for information [22]. Additionally, the ASA agents must
consider the potential impact, or gain, associated with obtaining this information.
Once these agents have this combined information, they can successfully decide
whether to ask the user about a particular constraint.

In this paper we focus on the second part of the human-agent decision frame-
work just described: how to quantify and classify the expected gain from addi-
tional user information. We present a two stage approach to address this chal-
lenge.

• Initial Constraint Assessment - Local ASA agents first share a minimal
amount of local constraint information with other team agents. Local agents
need to obtain enough problem information to compute a value for a general,
non domain-specific constraint “tightness” measure that we define. Specif-
ically, we assume constraints are ordered through a constraint tree structure
with similarities to partial order planners [11] and Hierarchical Task Net-
work (HTN) often used in scheduling and planning problems [17, 18, 19,
26, 32]. Agents must share enough information to construct the basic con-
straint tree structure. A constraint tightness of less than one indicates this
task is underconstrained and can be locally solved. Agents can then imme-
diately identify those tasks for which added information will not impact the
expected utility.

• Estimating the Expected Gain from Information - A tightness measure
of greater than one indicates that the given task is constrained andmaybe
influenced by other scheduling constraints. Even after the first stage, agents
still possess insufficient constraint data to properly judge the potential im-
pact of information in this case. Nonetheless, we found that agents can
apply machine learning techniques learned offline to their local problem
attributes to estimate which of the remaining tasks are likely to have the
highest potential gain from a user’s information.

The next section provides the background and motivation for this work. In
Section 3 we briefly describe a general planning and scheduling formalization,
and use this formalization to define a problem “tightness” measure for locally
identifying constraints that will not benefit from added information. In Section
4 we present the c-TAEMS language as an instance of the formalization defined
in Section 3. Additionally, we describe how the presented tightness measure
can be applied to this domain. Section 5 presents a method for measuring the
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value of information through machine learning regression and classification tree
models. Section 6 provides experimental results. In Section 7, we discuss the
general applicability of these results, as well as provide several directions for
future research. Section 8 concludes.

2 Related Work

The goal of this paper is to quantify the potential utility gain from added in-
formation in distributed scheduling problems. We present this challenge as the
“Coordination Autonomy” (CA) problem, or the challenge of how agents decide
what constraints should be forwarded to their human operator for further infor-
mation. Thus, this paper is linked to previous research in the field of agent-human
interactions, as well as previous distributed scheduling research.

The adjustable autonomy challenge as described by Scerri et al. [24] refers to
how agents can vary their level of autonomy, particularly in dealing with other
types of entities such as people. They proposed a framework where agents can
explicitly reason about the potential costs and gains from interacting with other
agents and people to coordinate decisions. Other frameworks have similarly sug-
gested creating a utility based framework to weigh the potential gain and user
interaction cost tradeoff [5, 8, 9, 10]. However, a key issue in applying such
models within new domains is to effectively quantify the utility that can be po-
tentially gained from other teammates.

Similar issues have arisen in the Information Gain measure that has been put
forward by the machine learning community [15]. Information gain is typically
used to learn the effectiveness of a certain attribute in classifying data, or how
much additional information is gained by partitioning examples according to a
given attribute. Thus, one approach may be to query the ASA agents’ scheduler
with and without a given piece of information and build a solution based on the
resulting Information Gain.

However, there are several reasons why measures such as Information Gain
cannot be applied to this type of problem. First, in this and many real-world ap-
plications there is a cost involved with agents exchanging constraint information
and also a cost involved with profiling a user. As a result, the cost in computing
the Information Gain for a given problem will likely outweigh its benefit. Previ-
ous frameworks [5, 9, 10, 8] assumed such information could be freely obtained.
Second, since there is a potentially large number of tasks to schedule, the size
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of the learning space will be very large. Sending queries to a local scheduler for
each task with and without all potential information can become resource inten-
sive, leading to delays. Finally, sending too much constraint information can re-
sult in a lower team quality: we have previously found that in highly constrained
problems, sending additional information can prevent agents from finding the
optimal solution [20]. More generally, previous work has found that agents that
send all information at their disposal do not necessarily increase the team’s util-
ity. As Durfee has remarked: “ignorance is bliss” [4]. It is not always beneficial
for agents to have more information.

Distributed scheduling problems belong to a more general category of Dis-
tributed Constraint Optimization Problems (DCOP) [13], and a variety of algo-
rithms have been proposed for solving these problems [13, 14, 33]. The specific
c-TAEMS language is based on the TAEMS specification [12], and is currently
being used by many researchers for studying multiagent task scheduling prob-
lems [22]. c-TAEMS has been shown to directly map to the general DCOP for-
malization [28]. In c-TAEMS problems specifically, and DCOP problems more
generally, inter-agent constraints must be coordinated to find the solution that
satisfies as many of these constraints as possible. However, these problems are
known to be NP-complete, even if agents freely share all information at their
disposal [14, 25]. As such, no polynomial algorithms exist for checking how a
scheduling problem’s utility is affected by a given piece of information. Thus,
the proposed solution relies on making decisions with incomplete problem in-
formation and can be classified within the research area of bounded rationality
[10, 21].

This paper’s solution is to estimate the potential gain from interacting with
the user through analyzing the scheduling problem’s structure, even when agents
only have access to limited, locally available information. The significant in this
approach is that agents reason about a limited number of interactions, allowing
for tractable solutions. Previous approaches considered all possible team inter-
actions, potentially creating a need to generate very large numbers of resource
intensive “what if” queries to obtain this information [22, 23, 25, 27].

The concept of developing metrics to help distributed agents select the best
problem solving approach or heuristic, such as the tightness measure presented in
this paper, was previously proposed by Fox et al. [6] and Sycara et al. [29]. Our
work differs in its two-pronged approach: agents first identify which constraints
can be locally solved based on the “tightness” here described. We then focus
on using machine learning models as described in Section 5 to better quantify
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and classify the estimated gain on the remaining constraints from any additional
information that can be provided by the user. In contrast, previous work [6, 29]
uses such measures to guide which heuristic to use in a one-stage approach to
solving the problem. As a result, local agents needed to gather significantly more
information regarding their constraints to aid in their selection of heuristics to
solve the problem. Such an approach is not appropriate when costs are associated
with sharing constraint information.

Even after this potentialgain has been measured, it is also critical to effec-
tively measure the estimatedcost in interacting with a given user in the team.
Only after both the gains and costs of a given user have been modeled can one
create a decision theoretic framework to decide if the user should be prompted for
information [5, 9, 10, 8]. Previous approaches, most noticeably work by Sarne
and Grosz [23] complement our work by modeling the estimatedcost involved
with interacting with a given human user. In this paper, we assume user costs can
be modeled based on their approach.

In our approach, we draw on previous work that has identified the existence of
additional categories of problem complexity exist within NP-complete problems
[2, 16]. Many instances of NP-complete problems can still be quickly solved,
while other similar instances of problems from the same domain cannot. These
studies have introduced the concept of a phase transition to differentiate classes
of “easy” and “hard” instances of a problem [16]. Thus, while scheduling and
planning problems may be NP-complete, we posit that certain portions of these
problems are underconstrained and represent “easy” problem instances within
the global scheduling problem. These instances can be locally solved by ASA
scheduling agents without any additional information. Other instances, or por-
tions within the scheduling problem, are “hard” instances and the potential im-
pact of information cannot be easily assessed. We present an approach in which
the potential impact of information is estimated through machine learning mod-
els that were previous learned offline.

However, finding such phase transitions within real-world domains is far from
trivial due to the varied types of possible agent interactions that constitute these
problem instances [1, 25]. In the theoretical graph coloring problems previously
studied, phase transitions were found that were associated with the ratio of con-
straint clauses per variable [16]. Unfortunately, these graph coloring problems
are relatively simple in that all constraints typically have equal weighting and
every agent has equal numbers of constraints (edges). Thus, discovering phase
transitions in experiments can be accomplished only through variation of a single
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parameter – the ratio of graph edges to nodes. In contrast, as we now describe,
many real-world domains, such as the c-TAEMS scheduling domain we have
focused on, are far more complex. Novel measures are needed to quantify inter-
agent actions in this and similar domains.

3 Domain Formalization and Description

In the CA problem we consider, the problem’s input is an agent’s local schedul-
ing and planning constraints. The proposed output is the constraints with un-
certainty that a person should provide information about. In this section, we first
model in Section 3.1 a general representation suitable for a family of partial order
and HTN planning and scheduling problems. We use this model to present the
problem as to which constraints with uncertainty are most worthy of the user’s
attention. Then, in Section 3.2, we present how these definitions are used to gen-
erally compute a constraint’sproblem tightnesswhich can locally quantify if a
constraint can be locally solved or should be referred to the user for additional
information. In Section 4 we present details of how c-TAEMS represents one
domain instantiation of this general formalization. We also provide specific ex-
amples of the type of information the user may be able to provide and how the
tightness measure of Section 3.2 can be applied to this domain.

3.1 General Planning and Scheduling Formalization

We generally describe the scheduling problem as follows: letG = {A1, A2, . . . , An}
be a team ofn agents trying to maximize their team’s collective scheduling util-
ity. These agents must perform a certain task,T , which must be executed within
a finite timeline,τs until τe. τs andτe are positive integers. TaskT is composed of
a set ofm subtasks,T , that can be performed byG such thatT = {T1, . . . , Tm}.
These subtasks are divided into two categories: basic subtasks that can be per-
formed by one of the agents, and complex subtasks that are composed of other
subtasks. Each subtaskTi ∈ T has a timeWindowor possible start and end times
during which that task can be executed. We define the window,Wi, for subtask
Ti as being fromτi,s to τi,e suchτs ≤ τi,s ≤ τi,e ≤ τe. The window’s length is
defined as the timeτi,e - τi,s.

We assume that there is a partial order between the subtasks,≺, such that
Ti ≺ Tj indicates thatTi needs to be performed before the beginning of the
execution ofTj.
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Each basic subtaskTi is associated with the following elements:

1. An agentAi ∈ A that can perform the basic subtask.

2. A possible quality outcomesQi = {Qi1, Qi2, . . . , Qiki
} indicating that if

agentAi will perform Ti the quality for the team will be a member ofQi.

Qi is associated with a probability distribution functionqi : Qi → [0, 1]
such that

∑ki

j=1 qi(Qij) = 1.

3. A set of possible durations length ofTi, Di = {Di1, Di2, . . . , Dili} indicat-
ing that it will takeAi to performTi one of the possible durations inDi.

Di is associated with a probability distribution functionpi : Di → [0, 1]
such that

∑li
j=1 pi(Dij) = 1.

The relationships between the subtasks are expressed using a tree,TR =
(V,E) such that the root of the tree is labeled withT . The leaves of the tree are
labeled with basic subtasks and the rest of the nodes are labeled with complex
subtasks. For any two subtasksTi, Tj ∈ T associated with the nodesvi, vj ∈ V ,
respectively, such thatvi is the child ofvj in TR the window ofTi is included in
the window ofTj. That is,τi,s ≥ τj,s andτi,e ≤ τj,e.

Using the treeTR we extend the partial order between the subtasks, denoted
≺∗ as follows. For anyTi, Tj ∈ T :

1. If Ti ≺ Tj thenTi ≺∗ Tj.

2. If τi,e ≤ τj,s thenTi ≺∗ Tj.

3. If Ti ≺ Tj and there is paths betweenTi andT
′
i in TR and a path between

Tj andT
′
j thenTi ≺∗ Tj.

We are now ready to define a schedule.

Definition 1. A scheduleπ is a set of pairs{< τ s
1 , T

s
` >, ..., < τ s

l , T
s
` >}, such

that

1. For 1 ≤ i ≤ `, T s
i ∈ T is a basic subtask, whereτ s

i,s, τ s
i,e, Ds

i , Qs
i are the

beginning and end times, the duration lengths and quality outcomes sets of
T s

i , respectively, andτ s
i ≥ τ s

i,s andτ s
i + max{Ds

i} ≤ τ s
i,e.

2. For any two pairs< τ s
i , T

s
i > and< τ s

j , T
s
j >, 1 ≤ i, j ≤ `,

(a) If T s
i ≺∗ T s

j , thenτ s
i + max{Ds

i} ≤ τ s
j .
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(b) Assume, without loss of generality thatτ s
i ≤ τ s

j . If the agentAi as-
sociated withT s

i is the same as the agentAj associated withT s
j , (i.e.,

Ai = Aj), thenτ s
i + max{Ds

i} ≤ τ s
j .

Let π = {< τ s
1 , T

s
1 >, ..., < τ s

l , T
s
` >} be a schedule. The goal of the agents

is to find a scheduleπ = {< τ s
1 , T

s
1 >, ..., < τ s

l , T
s
` >} such that for any other

scheduleπ′ =< τ s′
1 , T s′

1 >, ..., < τ s′
k , T s′

k >

∑

<τ s
i ,T s

i >∈π

min{Qs
i} ≥

∑

<τs′
i ,T s′

i >∈π′

min{Qs′
i }

.
It is clear that additional information from the user reducing the number of

members ofQis andDis can improve the schedule the agents can find. In fact,
we generally refer to constraints of interest as those with uncertainty in the val-
ues ofQi andDi. Thus, the added value information is gained through reducing
the uncertainty in these values. Without any such information, agents support-
ing the automated scheduling process assume that the worst-case scenario must
be planned for (e.g. that the task will have the smallest possible quality or the
smallest value forQi, or the task will take the longest possible time or the largest
value forDi).1

This problem is magnified by the fact that each agent has only partial infor-
mation of the problem. An agent’s local view consists of parts of the tree. We
assume that the local view of agentA ∈ G consists of all the leaves of the tree
such thatA is associated with the basic subtasks of these leaves. Furthermore, if
an agent’s local view consists of a node that is associated with a subtaskTi ∈ T

and there is at least another subtaskTj such thatTi ≺ Tj or Tj ≺ Ti then agentA
knows that such a constraint exists, but may not knowTj. This paper considers
the following problem: given the local view of an agent, how can it estimate the
basic subtasks for which additional information from the user on the quality or
the duration of this subtask may improve the team’s schedule2.

The above general formalization is common to partial order planners [11],
recipes based cooperative planning [7] and contains similarities to Hierarchical
Task Network (HTN) representations used by many classical planners such as

1Domains may exist where the worst-case execution time (WCET) assumption is not necessarily appropriate as
a default for scheduling. For example, some systems may have some built in resilience to some degree of error.
Nonetheless, the described approach is critical as the input from the user may still significantly relax the ASA’s
constraints and improve the scheduler’s quality.

2This paper’s focus is not on how to find the best schedule,π, from local agents’ views. This problem has been
addressed in previous research [27, 30].
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SIPE-2 [17], SHOP [18, 19, 32], as well as by the TAEMS and c-TAEMS lan-
guage [12]. In HTN based representations, the root node branches intotasks
andsubtasks. The leaves of the tree contain the basic subtasks which are called
methodsin c-TAEMS and primitive tasks in other HTN planners. These basic
subtasks represent the actions that can be directly executed by each of the agents
within the team [12, 17, 18, 19, 32].

3.2 Defining Tightness to Quantify Constraint Types

Based on the above general definition, we propose aproblem tightnessmeasure
to identify which types of basic subtask constraints are most worthy of further
information. Our hypothesis is that different types of problems can be identified,
similar to the phase shifts found within simpler graph coloring optimization prob-
lems previously studied [2, 16]. However, novel measures of problem difficulty
are needed to help identified problems so phase shifts can be discovered.

The “tightness” measure presented in this section quantifies if a constraint
is definitely underconstrained, and will not benefit from additional information.
However, before relying on this locally measured value, agents must first confirm
that no partial orders exist that might affect this measure. This is done by a small
amount of localized communication, as described below.

In this paper, we typically assume that only one agent is assigned to basic sub-
tasks within a given task window. Thus,Wi is assigned to only one agent within
the team of n agents, and that agent can independently measure its “tightness”
in Wi. This assumption can be easily relaxed through localized communication
between allm agents under a task windowWi. This communication, between the
agents{A1, A2 . . . , Am} in Wi can then allow each agent in{A1, A2 . . . , AM} to
build the total set of all possible task durations and qualities withinWi.

Based on these definitions and assumptions, we define an agent’s qualitytight-
nessas:

Tightness-Quality(Ti) = Qualitymax(Ti)
Quality(Window(Ti))

whereQualitymax(Ti) returns the maximal quality from the possible values ofTi,
{Qi1, Qi2, . . . , Qij}, andQuality(Window(Ti)) returns the minimal expected
quality of all other subtasks that can be executed within the task window ofTi.
Note that if quality uncertainty exists in these other tasks, we assume the worse
case, and the lowest quality value is used in computing the value ofQuality(Window(Ti)).
The measure of Tightness-Quality(Ti) can then be used to quantify what potential
overlap exists in the qualities distributions found withinTi’s task window. This
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allows the local agents to decide if additional information about their quality un-
certainty may aid in their decision process, or if they can solve the constraints in
this subtask without further information.

For example, assume taskTA can be fulfilled by basic subtasks A1 and A2. A1
has a quality distribution between 10 and 20, and A2 has a quality distribution of
15 and 25. Observe that a greedy scheduler should schedule A2 as its maximal
utility (and average) is greater than that of the other basic subtasks. Also note
that as per the tightness definition, Tightness-Quality(A2) = 25/10 = 2.5 as its
maximal quality is 25 and the minimal quality value of the other subtasks is 10.
However, it is possible that asking the user for input about the actual quality of A1
is worthwhile as the quality distributions of A1 and A2 overlap and A1 may have
a higher quality than A2 (say 20 for A1 and 15 for A2). This is noted through
observing that the tightness measure A1 is also greater than one as Tightness-
Quality(A1) = 20/15 = 1.33. Thus, the ASA agents should decide that a greedy
decision to select A2 is not necessarily correct as the tightness-quality ofanother
basic subtask (here A1) within the task window is greater than 1.

Conversely, assuming ASA agents find no other basic subtask whose quality
tightness is greater than one, it can definitively select the basic subtask with the
highest maximal quality. Again, assume taskTA can be fulfilled by basic subtasks
A1 and A2, but A1 has a quality distribution between 10 and 20 while A2 has
a quality distribution of 25 to 35. In this case, basic subtask A2 should clearly
be scheduled as even in the worse case this basic subtask will return a quality of
25 while A1 in the best case only returns a quality of 20. Similarly, Tightness-
Quality(A1) = 20/25 = 0.8 indicating that basic subtask A2 should be selected
regardless of any additional information. Thus, ASA agents can decide when
additional information willnot be useful based on this measure.

Similarly, we model an agent’s durationtightnessas:
Tightness-Duration(Ti) = Durationmax(Ti)

Length(Window(Ti))
whereDurationmax(Ti) returns the maximal duration from{Di1, Di2, . . . , Dij},
andLength(Window(Ti)) refers to the length of the time window allotted for
completing taskTi. As per our previous definitions in Section 3.1, a window’s
length is defined as the timeτi,e - τi,s.

As was the case within the quality tightness measure, a value of more than one
indicates that user information may be useful as an overlap between the quality
distributions in basic subtasks exist. For example, assume taskTA may take either
10, 20, or 40 time units to complete within a time window,Window(TA) of 25
units. According to the tightness definition, tightness Tightness(TA) is 40/25 of
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1.6. Without any additional information, the ASA’s scheduler must assume this
subtask will take the maximal time, and cannot be scheduled in its time Window
of 25 units. However, assuming information can be provided regarding the task’s
duration, say thatTA will only last for 10 or 20 units, the value of Tightness(TA)
drops below 1 and the ASA agent can schedule taskTA to be executed.

However, there may be a problem with definingWi as per the above defini-
tions. As can be seen from the definition of a schedule (Definition 1), there are
many cases where the actual window in which a basic subtaskTi can be sched-
uled is only a subset ofWindow(Ti), the defined window that is associated with
that subtask. For example, ifTi ≺∗ Tj then the actual time point in which the
performance ofTi can end ismin{τi,e, τj,e −max{Dj}}. Similarly, if Tj ≺∗ Ti

then the performance ofTi can start only atmax{τi,s, τj,s + max{Dj}. Further-
more, the actual window depends on the schedule that the team chooses, i.e., the
possible times should satisfy the constraints of Definition 1. Thus, the definition
of tightness should depend on the actual time window, not the defined one. How-
ever, computing the exact actual window requires finding a schedule, which is
time consuming and may require global information. Additionally, as we assume
there is computational and communication cost associated with communicating
this information [4, 20] this approach is undesirable.

To overcome this problem, we extend the definition of tightness as follows:
If the actual window of a subtask,Ti is different thanWindow(Ti) then both
the Tightness-Duration(Ti) and Tightness-Quality(Ti) are defined to be higher
than one. Otherwise, the original definition is used. In this way, in cases where
the actual actual window ofTi cannot be easily locally quantified, agents simply
assume the worse case about this measure; that is, that the task windows tightness
is more than one and that constraint cannot be locally solved efficiently without
additional information.

The main question that remains is how the agent can decide whether the actual
window of a subtask is equal to the defined window of this subtask. We propose
that this decision will depend on the actual representation of the task informa-
tion. In this paper we will focus on this decision in the context of the c-TAEMS
Domain.
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4 Analyzing Planning and Scheduling Constraints in c-TAEMS

In this section we present how the above general planning and scheduling for-
malization of Section 3.1 can be specifically applied to the c-TAEMS domain.
Additionally, we provide illustrating examples as to what constraint information
could potentially be added by the team’s human users. Finally, we present how
the generally defined tightness measure of Section 3.2 could be specifically ap-
plied to c-TAEMS.

4.1 c-TAEMS Domain Description and Examples

c-TAEMS is an instantiation of a general planning and scheduling problem de-
fined in the previous section. Within c-TAEMS, the root task is referred to as the
“task group”. Time constraints are assigned to Windows and as such are inherited
from their parents’s nodes in the tree, ultimately terminating in the root node. In
c-TAEMS, these basic subtasks are referred to asmethodsand are assigned to a
specific agent withinG.

Methods have associated with them a list of one or more potential outcomes.
Values for these outcomes include: what that method’sQuality will be, as the
utility that the task will add to the team upon its successful completion, that
method’sDuration as the length of time the task requires to be completed, and
Cost as the cost involved with executing that method. As the agents’ cost di-
rectly impacts its utility, (e.g. the method’s total utility isQ − C), we refer to
Q alone as being calculated with any costs already being deducted. Uncertainty
is modeled by defining a probabilistic distribution for the values of Q, D, and C.
For example, a given task could have a duration of 10 with 50% probability, a
duration of 4 with 25% probability, and a duration of 20 with 25% probability.
As described above in Section 3.1, we model the possible quality outcomes ofTi

as{Qi1, Qi2, . . . , Qik}, and{Di1, Di2, . . . , Dil} as the possible duration lengths
of Ti. Note that the time constraints for when taskTi can be executed, or its
time WindowWi, is inherited from higher levels of the constraint tree as defined
above.

In c-TAEMS, interrelations between Tasks and Subtasks are also be quantified
through Quality Accumulation Functions (QAFs). QAF’s are assumed to be of
three forms: min, max or sum. In a min QAF, the total added quality is taken to
be the minimum of all subtasks – it could be thought of as a logical AND relation
between tasks. In a max QAF, the quality is the maximum value (or the logical
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OR), whereas in a sum QAF the quality is the sum of the expected quality of all
subtasks. These subtasks can then be further subdivided into additional levels
of subtasks, each level with an associated QAF. Explicit interrelations between
Tasks and Subtasks not inherited from higher levels of the tree can also be quanti-
fied as a non-local effect (NLE). Hard constraints of this type are defined through
the primitivesenableor disable. For example, to capture the constraint that one
task must occur before another, one would add an enables relation between the
two tasks in c-TAEMS. To capture the requirement that two tasks (or subtasks)
should not both be performed, a disables relation between the two tasks would be
added. Finally, soft constraints are modeled throughfacilitatesandhindersre-
lationships. For example, if the team prefers, but does not require, that one task
be executed before another afacilitatesrelationship would be introduced which
would increase the resulting quality if the relation is respected.

Figure 1: A sample c-TAEMS Scheduling Problem (global view, middle) with 3 agents (3 sub-
jective views on bottom).
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Figure 1 presents an example of a scheduling problem instance described in
c-TAEMS. In this example, agents A, B, and C must coordinate their actions
to find the optimal schedule for a global task T. Task T has three subtasks (A,
B, and C) and these tasks are joined by a sum relationship. There are enable
relationships between these tasks and thus they must be executed sequentially. In
this example, an optimal schedule would be for A to schedule method A1, B to
schedule B2, and C to schedule C1. However, assuming only 70 time units are
available for all three tasks, there is insufficient time for that schedule. As such,
one of the agents must sacrifice scheduling its method with the highest quality
so the team’s quality will be maximized. The team will lose 15 units of quality
if A does not schedule A1, 10 units of quality if B does not schedule B1, and 20
units of quality if C does not schedule C1. Thus, B chooses B2 so that methods
A1 and C1 can be scheduled.

Figure 2: Modified c-TAEMS Scheduling Problem with NLE relationships removed. Note agents
are now free to schedule tasks independently.

The impact from adding information in cases with NLE relationships can of-
ten be easily quantified. As these constraints must be explicitly formulated, their
potential impact can often be easily detected. Conversely, the removal of these
constraints may signify that agents can safely make local decisions without im-
pact on other agents. For example, Figure 2 contains the same basic c-TAEMS
structure from Figure 1, but with the NLE enable statements removed. Note that
all agents can independently schedule their methods, and every agent can greed-
ily choose the subtask with the highest quality (A1, B1, and C1) at the beginning
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of the time window.

Figure 3: The impact of QAF constraints in the c-TAEMS structure (uncertainty found within
only one agent).

Adding information can be equally significant in cases where task relation-
ships are constrained based on their QAF relationships, especially in cases where
uncertainty exists. This may even be true when considering the constraints within
one agent. For example, Figure 3 depicts one agent’s scheduling constraints as
visible from its local view. Note that in this example, tasks A, B, and C contain
only one possible method, but there is uncertainty in the duration of these meth-
ods. Furthermore, in this example, we assume no explicit constraints (NLE’s)
exist, and this agent is free to schedule from among tasks A, B, and C within a
40 time unit window. However, due to the task uncertainty, this one agent may
not have enough time to schedule all of these tasks. For example, assuming task
C lasts for 30 time units (option C1), only 10 additional time units remain to
potentially execute methods A and B. Furthermore, if either of these methods
requires 20 time units (options A1 and B1), they cannot be scheduled. In cases
of this type of uncertainty, we assume agents schedule for the worst case, and
the agent must only schedule methods A1 and B1. However, a human operator
could provide information that tasks will take the shorter time, and potentially all
three methods could be scheduled. For example, a person may have knowledge
that tasks B and C will take the shorter times (options B2 and C2), allowing the
agent to achieve a quality of 70 from executing all three methods. Thus, in this
and similar problems the CA system must identify the importance of querying
the human user for additional information.

Again, modifying the c-Taems structure, even slightly, can change the impor-
tance of these types of task uncertainty. Figure 4 contains the same c-Taems



16

Figure 4: A modified c-TAEMS structure from Figure 3 where QAF constraints are relaxed.

problem, with a max QAF at the problem root instead of a sum. Here, the agent
cannot execute all three tasks A, B, and C, and is free to greedily choose between
the options. In this example, even assuming task C will take its maximal duration
(30 units) sufficient time exists to schedule this method within the task’s 40 unit
time window. As a result, in this case the CA system should identify that there is
no potential benefit from additional information, allowing the human operator to
focus on other constraints.

4.2 Measuring Constraint Tightness in c-TAEMS

As the tightness measures described in Section 3.2 are based exclusively on local
information, they have several significant limitations. First, the tightness defi-
nitions assume that a given task’s window,Window(Ti), can be measured. As
previously stated, some localized communication may be needed to ascertain the
quality and duration distributions of other agent’s methods withinWi. Addition-
ally, non-local constraints between task windows may exist, preventing measur-
ing Wi from being able to be measured locally. An undesirable solution is to use
communication between agents to exactly measureWi. Specific to the c-TAEMS
language, a task windows may also have a non-local event (NLE) that explicitly
links several tasks, requiring the need to remeasure the actual window ofTi based
on these constraints.

To address the second challenge, agents share a minimal amount of informa-
tion to determineif these non-local constraints exist that may affect the actual
window ofTi. We detail this check in Algorithm 1 as follows:

First, c-TAEMS agents check if their taskTi has any NLE constraints (line
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Algorithm 1 Checking for Explicit and Partial Order Constraints (C-TAEMS File T , Task
Ti)

1: if Explicit(Ti) then
2: return constraint-flag⇐ set
3: else
4: for j = Level1 to LevelTi

do
5: if Tree-Constrained(Ti) then
6: return constraint-flag⇐ set
7: end if
8: end for
9: end if

10: return constraint-flag⇐ unset

1). As these constraints are explicitly defined, they can be easily detected. If this
type of constraint is found, the agent must immediately flag this task as having
non-local constraints that may impact its tightness measure (line 2). Otherwise,
the agent must check for the existence of a partial order between the subtasks,≺,
higher up in the constraint tree that may impactTi. This check must be done from
the current level in the constraint tree (LevelTi

) up until the root node (Level1).
We assume that some minimal communication can be done to ascertain this in-
formation even if it is not locally available. This can generally be done within
constraint trees that are aware of partial orders that may be affected by other por-
tions of the tree. Specific to c-TAEM’s representation, this is done by iteratively
checking for any higher level QAF constraints such as a sum QAF that could
affect its actual window. Assuming this type of constraint is found, the agent sets
a constraint flag (line 6) for this task. Otherwise, the flag remainsunsetuntil it
is finally returned at the end of the Algorithm in line 10. Note that in lines 2
and 6, the algorithm immediately ends (returns) once an explicit or higher level
constraint is found thatmayaffect the task’s actual window.

As previously described at the end of Section 3.2, the locally measured value
for Wi may not correspond to its actual value. The task’s constraint flag de-
scribed here is critical for making this determination. When this flag is leftunset,
the locally measured valueWi represents the actual value. In these cases, if the
task’s tightness value is less than one, agents can definitively assume their task
is underconstrained and cannot benefit from additional information. However,
in cases where the tightness measure is greater than one, including cases where
the value is assumed to be greater than one because the constraint flag is set,
agents cannot definitively identify whether additional information will be benefi-
cial. Nonetheless, in these cases, agents use machine learning approaches based
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on local problem attributes to predict the value of information. We present the
process of this second stage in the next section.

5 Learning the Value of Information

As the tightness measure only addresses which tasks will definitelynot benefit
from additional information, the next step in our approach is a machine learn-
ing model to suggest which remaining taskswill show the largest potential gain
from added user information. In addressing this challenge, we built two machine
learning models: a regression based model to predict a numeric value for added
information from the human operator, and a classification model to classify a
given constraint as potentially benefiting or not benefiting from additional infor-
mation. Alternatively, within the classification model, quantitative categories can
be created, such as High, Low, and Zero impact categories instead of binary Yes
and No categories.

Each of these machine models has advantages and disadvantages in terms of
building the final human-agent application. As our goal is to present the user
those methods worthy of her attention, we need to best estimate the utility gain
that the user can potentially add in relaxing a given constraint. In general, re-
gression models predict the expected value of a certain parameter based on the
learned model. Here, the regression model returns a value that predicts the poten-
tial gain, orquantifiesthe gain from adding information about that subtask. This
numeric value could potentially be used to formally model the cost versus gain
analysis for every constraint3. The final list of constraints could be ordered based
on this tradeoff and presented to the user. While this may sound ideal, regression
models in general often have some model error, and we report on the margin of
error in our model in Section 6. Thus, any order presented to the user is unlikely
to be precise.

The advantage of decision tree learning approaches is their ability to classify
a problem instance as belonging to qualitative categories. Instead ofquantifying
the value of added information, this model canclassifyif information will either
help for a given constraint in the Yes/No two category decision, or belongs to
High, Low, or Zero categories. In many cases, it may be impossible to measure
the exact utility gain for a given constraint, especially as people typically operate
with bounded rationality [21]. In these cases, instead of presenting a model that

3Note that the cost component of the application is not addressed in this paper. We assume work by Sarne and
Grosz [23] can be used model this component.
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explicitly weighs between costs and gains, a model may be preferred that gen-
erally indicates certain constraints are important. For example, referring back
to Figure 1, constraints would be colored green if information was predicted to
be less important while high importance constraints would be colored red. The
advantage to the 3 category problem is that it provides a middle-ground between
the regression and 2 category models. Here, we have some relative quantity of
information worth (High versus Low versus None) which may be useful based
on the specifics of a human-agent application under consideration. Specifically,
High categories could be trained for which the estimated gain is estimated to be
at least the cost of interacting with the user. For this reason, we also trained two
types of decision tree classification models and report on the success of these
approaches in Section 6 as well.

The general methodology for creating the machine learning models was to
break each of the problems in the c-TAEMS training set into two variations – the
base problem with constraint uncertainty in the problem’s methods (or its basic
subtasks as generally defined in Section 3.1), and the relaxed constraint after the
user communicated information and the uncertainty was removed. We generated
offline “what if” queries to obtain what the potential gain from information was
in the latter case. It is important to stress that these “what if” queries were only
used for training this machine learning model and not to be used during task
executing as were done in previous approaches [22, 23, 25, 27]. The goal of
this methodology was to train a model that can estimate what types of problem
instances involving quality and duration uncertainty are most likely to benefit
from the user’s attention. During task execution, no resource intensive “what if”
queries are used as the model has already been created to predict the expected
utility for all types of constraints. Furthermore, as agents do not send constraint
information during execution, no performance deterioration is possible because
too many constraints were sent [4, 20].

The procedure we adopted for training the machine learning model is outlined
in Algorithm 2. For each of the X training problems (line 1 in the algorithm), we
first measure the schedule quality as generated without any additional informa-
tion (line 2). In the experiments reported in the next section, we used a previously
tested c-TAEMS centralized scheduler [30] under the assumption that uncertainty
in problems would result in the worst case outcome. Thus, in the first set of prob-
lems, we assumed method’s constraints would yield the lowest quality, and in the
second problem set the methods would take the maximal time. We then computed
what the team’s utility would be if we could relax that assumption, and the user
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could provide information about each of the basic subtasks (called methods in
c-TAEMS) with uncertainty. As such, we assumed the user could definitively
provide information that the method would yield the highest possible quality, or
take the shortest time (line 4). Next, we stored this information into a table along
with a vector of the problem’s specific parameters (e.g. problem parameters such
as tightness, number of agents, number of task, methods, local NLE’s, maximal
duration, and quality) and entered this information into the table, Table (line 5).

Algorithm 2 Training the Information Model(Problem Set of Size X)
1: for k = 1 to X do
2: Without⇐ Utility( Problemk)
3: for j = 1 to Num(Constraints(Problemk)) do
4: With ⇐ Utility( Problemk,j)
5: Table[k][j] ⇐ (With) - (Without)
6: end for
7: end for

In computing the value of added information, we adopted a highly optimistic
approach for the value of Utility(Problemk,j) that makes several assumptions:
a) the person being contacted actually has information about the subtask j, b)
the person will have information that will help the team in the maximal possible
way by informing the agents that the task will have the highest possible quality
or take the shortest duration, and c) all different types of constraint information
can be provided be equal (constant) cost. Despite this oversimplification, this
approach was useful for identifying the maximal theoretical gain (upper bound)
for the utility gain that could be gained through added information. Additionally,
it is important to stress that the “what if” training queries are sent one at a time.
This was done to prevent sending the scheduler we used [30] too many queries
which might prevent it from finding the optimal schedule [4, 20].

6 Experimental Results

In order to implement the machine learning models in Section 5, we used a prob-
lem generator created by Global Infotech Inc. (GITI) for the purpose of generat-
ing c-TAEMS problems within the framework of the COORDINATORS DARPA
program4. We created two sets of 50 problems (or a total of X=100 as the num-
ber of problems in line 1 of Algorithm 2) where c-TAEMS parameters such as

4http://www.darpa.mil/ipto/programs/coordinators/
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the number of agents (between 5 and 10), the number of tasks to be scheduled
(between 25 and 100), the number of methods (between 50 and 500), the hierar-
chical structure of the tasks (randomized QAF values), the number of NLE rela-
tionships between tasks (between 0 and 15), the range of values for task duration
(between 2 and 60) and quality (between 2 and 20) were randomly generated.
In the first set of problems, we generated problems with uncertainty in quality
distributions, while keeping the duration parameter deterministic. In the second
set of problems, we created problems with uncertain durations, while keeping the
quality parameter deterministic. Note that these 100 total problems represent a
small fraction of the total number of the thousands of problem permutations the
GITI scenario generator could create. A person could potentially communicate
information about any given method within a problem subtask. We found that the
100 c-TAEMS problems used in this problem set contained over 5000 methods
with uncertainty where the user’s information might be helpful.

We found that only a small percentage of subtasks had any benefit from adding
this type of constraint information. While each of the 100 training problems did
benefit from added information, less than 30% of the basic subtasks (c-TAEMS
methods) with uncertainty within these problems benefited from additional user
information. For example, in the duration problem set, only 722 of the 2808
methods benefited from any additional information. Similarly, in the quality
problem set 711 of 2399 methods benefited from this information. Thus, in this
domain, finding the constraints where user information is beneficial is akin to
“finding a needle in a haystack”. Clearly, naive methods that query every con-
straint are not appropriate, especially if there is a cost associated with interacting
with the human operator.

Nonetheless, we found strong support for the usefulness of the quality and
duration tightness measures in identifying the cases where information definitely
did not help. For example, of the 1360 quality tasks with a tightness less than
one, only 7 (about 0.5%) benefited from additional information5. As nearly half
of the 5000 constraints with uncertainty had tightness measures less than one,
this measure was effective in allowing agents to filter away many constraints.

We used the Weka machine learning package [31] to train and evaluate the
value of information in the remaining cases. Recall from Section 5 that we pro-

5It is not clear what significance, if any, these 7 cases have about the tightness measure we present. Despite the
general effectiveness of the solver we used [30] it was not always able to find the optimal solution as these problems
are still NP-complete. It seems that in these 7 cases, the added information reordered the constraints sent to the
solver in such a way that it was able to find a better solution. Thus, this anomaly seems to be more connected to the
inner workings of the particular solver than the tightness measure presented.
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posed creating three machine learning models: a regression model, a classifica-
tion model based on 2 information categories (Yes/No impact of information)
and a 3 category information classification task (High, Low, and Zero impact).
In implementing these models we used the M5P algorithm to form the regression
model, and C45 decision trees (J48 within the Weka implementation) for the clas-
sification models. While we present results from these learning algorithms, other
learning algorithms could have been used. We did, in fact, train models based on
Bayes Networks, Neural Networks, and SVM models. However, we found the
results from these algorithms to be nearly identical with those we present. In all
cases, we performed 10-fold cross validation to evaluate the results.

We considered four different attribute sets for creating the machine learning
models to predict the value of added constraint information. These attribute sets
range from one that requires all local and general problem information to one
requiring no information as follows:

• All Information - The attributes in this model were based on all infor-
mation agents have about their problem. This included the local tightness
measure we presented, in addition to c-TAEMS information about tasks and
methods, their potential durations and quality values, and general problem
information such as the number of agents and the total number of tasks and
methods to schedule. Note that this model requires the most communica-
tion as we assume local agents do not have access to this global information.
Still, no information about the exact values of constraint uncertainty needs
to be communicated in this model.

• Tightness with Flag - This model used the tightness measure as described
in Section 4.2. As described at the end of Section 4.2, a constraint flag was
also needed to check if any explicit (NLE) constraints existed, or if higher
level constraints, such as a sum QAF, existed that could impact that task.
Note that this model required communicating only a very limited amount of
local information to set this flag.

• Tightness without Flag - This model used the tightness measure as de-
scribed in Section 4.2 but without the constraint flag described in that sec-
tion. Our hypothesis was that the tightness measure will be accurate only in
cases where this flag was set to false. As a result, we expected the model’s
accuracy to drop once this flag was omitted.

• Naive Model - This naive model simply classifies a problem based on the
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Table 1: Comparing the accuracy (the mathematical correlation) in the regression trained model
for duration and quality categories.

Duration Quality
All Information 0.60 0.73

Tightness with Flag 0.55 0.59
Tightness without Flag 0.22 0.50

Naive Model -0.06 -0.04

majority of instances in the training set. As nearly70% of the constraints
in the training set never benefited from information, this model always pre-
dicts the value of information was 0 in the regression model, and in the
decision tree models classifies all constraints as belonging to the category
where information does not help.

6.1 Quantifying the Value of Information

We first focused on using a regression based model to attempt to quantify the
value of added user information in the remaining constraints. We began with this
model as it can ideally quantify the value of added information, something that
is typically needed in human-agent theoretical decision frameworks [5, 9, 10, 8,
22, 23]. Using Weka [31], we trained and evaluated the regression based model
and present the results of this model in Table 1. In this regression model, the
results represent the correlation between the value of information predicted by
this model versus the actual utility gain from adding this information as logged
during the training period (see Algorithm 2). Ideal results would be a 1.0 statis-
tical correlation, while a correlation of 0 indicates no success in the model. The
first column presents the results from the problem set with duration uncertainty,
and the second column presents the results from the corresponding problem set
with quality uncertainty. Note that this model yielded an average correlation be-
tween the predicted and actual values of 0.60 and 0.73 when all local information
was transferred. This value dropped to 0.55 and 0.59 with only the tightness and
constraint flag information (as defined at the end of Section 4.2). As expected,
the model’s accuracy dropped significantly, most noticeably in the duration cat-
egory, once this flag information was removed. Nonetheless, in all cases, the
learned model produced significantly improved prediction accuracy above the
zero correlation level found within the no communication category. Thus, while
these results do leave some room for improvement, they do show the success of
the tightness measure even without other local information.
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6.2 Classifying the Value of Information

As the regression model did, in fact, not successfully predict the value of in-
formation in all cases, we also considered a two category classification model
(Yes/No categories) to more generally classify constraints as instances where in-
formation does or does not help. This model is more appropriate for this type of
task. When presenting the results from the classification model, we first present
results about the total accuracy and recall of the model. We refer to the total
percentage of problems correctly classified as the model’s total accuracy. In this
dataset, over 70% of the constraints do not benefit from additional information.
Thus, even naively categorizing all constraints within this category results in a
relatively high total accuracy of the model. However, as the goal is to effectively
find all constraints where information will help, this approach will find none of
the desired instances. As a result, we must study what percentage of the desired
problems, where informationwill help, were correctly returned. We use the re-
call measure to quantify how many of these instances were found out of the total
number of these instances in the dataset.

Table 2 presents the accuracy and recall results from this two category model.
In both the problem sets with duration and quality uncertainty, the model using
all local information had the highest recall in finding the constraints where infor-
mation would help (a recall of 0.61 of these constraint in the duration set, and
0.7 in the quality set). Note that the tightness measure alone was sufficient to
achieve similar results (and even had a slightly higher overall accuracy in the
duration problem set) so long as the constraint flag was also sent. As previously
described in Section 4.2, agents need to identify whether their localized task
window has any other constraints that may need to be considered. Having even a
binary flag (do these constraints exist or not) allows agents to definitively use the
tightness measure in cases where these constraints do not exist. However, agents
that lacked this information were not able to guarantee that their local tightness
window was in fact underconstrained. Thus, the accuracy of the model, and the
recall of the desired information dropped precipitously. Note that the model ac-
curacy without this flag dropped from 79.95% to 70.36% in the duration problem
set, and from 83.83% to 74.15% in the quality problem set. Similarly the sys-
tem’s recall dropped from 0.54 to 0 (no cases found!) in the duration set, and
from 0.56 to 0.34 in the quality set.

Finally, we studied the three category classification task. The advantage to this
model is that it incorporates the qualifying aspects of the previous two category
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Table 2: Comparing the overall accuracy and number of high information instances found within
a 2 category decision tree model.

Duration Accuracy Duration Recall Quality Accuracy Quality Recall
All Information 79.16% 0.61 85.29% 0.70

Tightness with Flag 79.95% 0.54 83.83% 0.56
Tightness w/o Flag 70.36% 0 74.15% 0.34

Naive Model 70.36% 0 74.29% 0

Table 3: Comparing the accuracy and number of high information instances found in a 3 category
decision tree model withdurationuncertainty.

All information Classified High Classified Low Classified Zero Accuracy Recall
High 175 49 118 73.11% 0.512
Low 80 85 204 73.11% 0.23
Zero 92 102 1494 73.11% 0.885

Tightness with Flag
High 222 4 116 74.57% 0.649
Low 113 0 256 74.57% 0
Zero 120 1 1567 74.57% 0.928

Tightness w/o Flag
Naive Model

High 0 0 342 70.36% 0
Low 0 0 369 70.36% 0
Zero 0 0 1688 70.36% 1

decision model, while still having various utility thresholds that will be likely
needed by some human-agent models [5, 9, 10, 8, 22, 23]. Here, we divided the
training data into a High category where information about that constraint im-
proved the team’s schedule quality by 10 or more units, a Low category where
constraint information helped less than 10 units, and a Zero category where infor-
mation did not help. Note that the threshold of 10 units for the High category is
not fundamental to the model, and can be modified based on the needs of a given
application. For example, say using previous approaches [23] we can measure
that the cost of obtaining information from the user is 7 units. We can change
this model such that the High category represents constraints that have an added
utility gain of at leastthis amount and in these cases the cost of interrupting the
user is outweighed by the gain. Thus, despite the qualifying nature of this model,
it could be used to definitely decide when to query the user for information.

The results of this experiments from the duration set are found in Table 3, and
those from the quality experiments are in Table 4. Within these tables, we present
the classification confusion matrix, often presented in multi-category classifica-
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Table 4: Comparing the accuracy and number of high information instances found in a 3 category
decision tree model withqualityuncertainty.

All information Classified High Classified Low Classified Zero Accuracy Recall
High 135 34 50 81.37% 0.62
Low 34 250 219 81.37% 0.5
Zero 45 141 1900 81.37% 0.91

Tightness with Flag
High 129 13 77 79.77% 0.59
Low 104 157 242 79.77% 0.31
Zero 66 66 1954 79.77% 0.94

Tightness w/o Flag
Naive Model

High 0 0 219 74.29% 0
Low 0 0 503 74.29% 0
Zero 0 0 2086 74.29% 1

tion problems. We plot the number of instances found within a given category
(the diagonal of table) as well as the number of instances misclassified per cat-
egory. Not all misclassification errors are necessarily equally important. For
example, misclassifying a High problem as Low, or a Low problem as High is
likely to be less problematic than classifying a High problem as Zero. Note that
within the quality experiments involving the tightness information with the con-
straint flag (the middle portion of table 4), only 157 of 503 Low instances were
classified as Low, but another 104 of these instances were classified as High.
This distinction can be quite significant. The recall of the this category alone
(Low classified as Low) is only 0.31, however, if we view classifying High either
as High or Low as being acceptable, the recall jumps to 0.52. Similarly, in the
duration experiments, the recall of the same category (Low classified as Low)
was zero (none properly classified as Low). However, 113 of the cases were
classified as High.

6.3 Exploring the Tradeoff between Precision and Recall

As the machine learning models never achieved a recall near 100%, we consid-
ered creating models which were biased towards categorizing a task as benefiting
from information. While this bias will result in a higher recall for this category,
it will generate false positives that will lower the overall accuracy of the model.
This type of approach is a classical tradeoff between a model’s recall and preci-
sion level. In general, one can improve any model’s recall by biasing the model
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to accept a certain problem as belonging to that category. In the trivial case, any
model’s recall can be made 1.0 by having it always classify that instance as be-
longing to the desired category. However, in this case, the model’s precision is
likely to be quite low. In this problem, recall refers to how many constraints were
found where information helped and precision refers to what percentage of these
constraints was correctly classified.

In this domain, this tradeoff would likely be useful if the human user is able to
be prompted Q times to add information, when Q is greater than the actual num-
ber of tasks that can benefit from added information. Alternatively, this approach
may also be useful if the known cost from interrupting the user is relatively low.
For example, if the cost of prompting the user is 1 unit, we should be willing
to ask several queries for information so additional High instances (each worth
10 utility units) can be found. To train this model, we followed the previously
developed MetaCost algorithm [3]. Metacost is one method for creating cost-
sensitive classification which allows for easily setting a cost matrix for biasing
the classification of a data instance as belong to one category versus another. We
used the Metacost implementation found within the Weka [31] learning package.

We did find that the weight biases created through the MetaCost algorithm
were extremely effective in increasing the system’s ability to find the tasks wor-
thy of prompting the user for information, albeit at a cost of false positives that re-
duced the overall accuracy. To explore this point, we used the MetaCost function
to apply different weights for falsely classifying a constraint where information
was useful (Yes) as belonging to the non-useful category (No). The base weights,
or unbiased classification, will have equal weighting for these categories (1 to 1
weight). We found that as we increased these weights, we obtained a progres-
sively higher recall from the desired Yes category, but at an expense in overall
reduction of model accuracy, and thus a lower precision value. Table 5 presents
the results of this approach from the quality problem set with a two category clas-
sification model with agents sharing all local information (compare these results
to the right side of the top line of Table 2).

In some simple classifiers, the tradeoff between precision and recall is ex-
treme with a high value of recall resulting in a very low value in precision, and a
high value in precision resulting in a very low recall. Here, however, even with
this biased model, the recall and precision values were still moderately high in
the extreme cases. For example, a 5 to 1 bias towards the Yes category found 609
of the 722 instances (or 0.84 recall), and a 50 to 1 bias found nearly all instances
(0.99 recall). However the 50 to 1 bias yielded the lowest overall accuracy due
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Table 5: Exploring the tradeoff between higher recall of desired results (Yes instances found), and
false positives and negatives within a 2 category decision tree model with quality uncertainty.

Weight Total Accuracy Found Not Found Recall Precision
1 to 1 85.29% 502 220 0.70 0.72
2 to 1 84.54% 538 184 0.75 0.68
5 to 1 82.66% 609 113 0.84 0.62
10 to 1 79.84% 655 67 0.91 0.57
50 to 1 70.26% 717 5 0.99 0.46

Figure 5: A graphical tradeoff between the recall and precision for finding constraints where user
information will help with varying weight biases.

to false positives (0.46 precision compared to 0.62 precision with a 5 to 1 bias
and 0.72 with no bias). Nonetheless, even with this strong bias towards catego-
rizing a constraint as benefiting from information (and thus achieving a nearly
1.0 value in recall), the precision still was a moderate 0.46. This indicates that
the model was still able to definitively identify nearly half of the constraints as
still not benefiting from additional information. At the other extreme we present
the unbiased classification model, or a cost bias of 1-1. Note that in this case
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both the recall and precision values were above 0.7. This demonstrates that even
without any bias, the recall of the system was quite high, as one typically finds a
recall value near 0 at this extreme. Figure 5 helps to visualize these results.

We also applied this approach to the two category duration problem set, as
well as the quality and duration 3 category classification models. As expected, in
all cases the cost biases were effective in increasing the recall of the categories
where information helped, albeit at a cost of lower model accuracy. Thus, a
system designer will likely choose some cost bias based on the actual costs for
querying a specific user. This issue is explored in other work [23].

7 Discussion and Future Directions

In general, we found that the tightness measure presented in this paper was ex-
tremely effective in finding which constraints wouldnot benefit from adding
information. This was done by having local agents identify which constraints
could be locally solved. While we applied this measure to c-TAEMS problems,
this domain represents only one possible instance of the the generally defined
the scheduling task in Section 3.1. Furthermore, the tightness measure in Sec-
tion 3.2 was generally defined, allowing it to be applied to other domains as
well. It reasons that other scheduling and planning problems have the same
underconstrained and constrained groupings of problems typically found within
constraint problems [1, 2, 16, 25] and many constraints in these problems can
also be solved without further information. Additionally, c-TAEMS problems
can be directly mapped to the more general Distributed Constraint Optimization
Problem (DCOP) formalization [28]. This suggests that the presented approach
should also be applicable to scheduling problems based on the DCOP formal-
ization [13]. Thus, future work should focus on directly applying the tightness
measure to identify which constraints in other domains can be locally resolved
without additional information.

We believe several other research directions are worthy of study. First, we
found that decision trees were, overall, very effective in quantifying the expected
impact of adding information, and thus were helpful in recommending if the user
should be contacted for additional information. In contrast, previous work on ad-
justable autonomy [24] found decision trees were ineffective in enabling agents
to make autonomous decisions. It seems that the difference of results stems from
the very different tasks considered. The previous work used the learned policy
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from decision trees to enable agents to act independently of people within their
team. As a result, their scheduler system made several critical errors (such as
canceling group meetings and volunteering people against their will for group
activities) by overgeneralizing decision tree rules. In contrast, our support sys-
tem never tries to make autonomous decisions, and instead takes the support role
of recommending what constraint(s) a person should focus on. This distinction
may suggest the need to create different types of learning models for different
agent-human tasks.

Also, further work is necessary to identify general attributes where informa-
tion definitivelydoesadd utility. This paper’s conclusion is that local information
is sufficient for guaranteeing that a given problem is not constrained, and thus
information will not help. However, the disadvantage to the exclusively local
approach we present is that agents are less able to consider the full extent of all
constraints within the problem. Because of this, we believe this approach was
less effective in finding the cases where information woulddefinitelyhelp.

We have begun to study several of these directions in parallel to the work we
present here. Along these lines we have studied how the tightness measure can
guide agents if they should communicate all of their constraints to a centralized
Constraint Optimization Problem (COP) solver [20]. The COP solver would then
attempt to centrally solve the constraint problem after receiving all constraints
from all agents. To address what agents should communicate, each agent viewed
all of its constraints as belonging to only one task window, with all subtasks
falling within this window. We found that the resulting tightness measure created
three classic clusters of constraint interactions: under-constrained, constrained,
and over-constrained with a clear communication policy emerging based on this
measure. Under-constrained problems had low tightness and could locally be
solved without sending any constraints to the COP solver. Constrained problems
had a medium tightness value, and most benefited from having every agent send
all of its constraints. Problems with the highest tightness value were the most
constrained. In fact, these problems had so many constraints that agents sending
all constraints flooded the COP solver, which was not able to find the optimal
solution. In these problems, agents were again best selecting communication
approaches that sent fewer constraints.

Finally, it is important to note that these research directions are complemen-
tary. We foresee applications where different tightness measures are applied to
filter and predict different characteristics. Say, for example, a domain exists
where agents could send constraint information freely. As we have previously
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found, sending too much information can prevent centralized problem solvers
from finding the optimal solution [20]. One solution might be to apply the lo-
cal tightness measure we present here to filter cases where information definitely
will not help, and then have agents send all remaining constraints. This more
limited set of constraints might be most manageable than the original set. We are
hopeful that this work will lead to additional advances in this challenging field.

8 Conclusion

In this paper we presented an approach to estimate the expected utility gain
from adding user information to agents within distributed scheduling problems.
Agents used information about their constraints to predict whether adding con-
straint information will help the team increase its utility. The significance of this
work is its ability to successfully enable agents to find which types of constraints
will most likely benefit from additional human information, without sharing sig-
nificant information about other agent’s constraints or through resource intensive
queries required in other approaches [22, 23, 25, 27, 29]. In our two-stage ap-
proach, agents first initially assess which constraints willnotbenefit from any ad-
ditional information by using our generaltightnessmeasure. After agents shared
a very small amount of information regarding the problem’s structure, they were
able to locally resolve a large percentage of the problem’s constraints without any
additional information from other agents’ or their human operators. In the sec-
ond stage, agents use machine learning models to estimate the value of a user’s
constraint information on the remaining constraints. These models were trained
offline, allowing agents to predict the value of information during task execution
without cost. We present the results of a regression based model which quanti-
fies the estimated utility gain for added information to each of these constraints,
and decision tree approaches that classify if a constraint should be categorized as
benefiting from information or not.

We studied the effectiveness of this two-stage approach within the c-TAEMS
distributed scheduling domain. We found that the non problem-specific tightness
measure in the first stage was extremely effective in finding where additional in-
formation about constraints wouldnot be helpful. Both of the machine learning
models in the second stage were moderately useful in identifying where infor-
mationwouldbe helpful. Finally, we presented several possible future directions
of study, including discussions regarding the generality and possible applications
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of this approach in other domains.
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