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Abstract This paper addresses the problem of automated advice provision in scenarios that
involve repeated interactions between people and computer agents. This problem arises in
many applications such as route selection systems, office assistants and climate control sys-
tems. To succeed in such settings agents must reason about how their advice influences
people’s future actions or decisions over time. This work models such scenarios as a fam-
ily of repeated bilateral interaction called “choice selection processes”, in which humans or
computer agents may share certain goals, but are essentially self-interested. We propose a
Social agent for Advice Provision (SAP) for such environments that generates advice us-
ing a social utility function which weighs the sum of the individual utilities of both agent
and human participants. The SAP agent models human choice selection using hyperbolic
discounting and samples the model to infer the best weights for its social utility function.
We demonstrate the effectiveness of SAP in two separate domains which vary in the com-
plexity of modeling human behavior as well as the information that is available to people
when they need to decide whether to accept the agent’s advice. In both of these domains, we
evaluated SAP in extensive empirical studies involving hundreds of human subjects. SAP
was compared to agents using alternative models of choice selection processes informed
by behavioral economics and psychological models of decision-making. Our results show
that in both domains, the SAP agent was able to outperform alternative models. This work
demonstrates the efficacy of combining computational methods with behavioral economics
to model how people reason about machine-generated advice and presents a general method-
ology for agent-design in such repeated advice settings.
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1 Introduction

Computer systems are increasingly being deployed in platforms that enable interactions with
people as well as with other computer agents. Many of these scenarios require computer
agents to repeatedly generate advice to their human users about what choices to make. Such
settings arise in application domains like coaching and rehabilitation, route-navigation and
climate control systems. Although users and systems in these domains share some goals,
such as completing the user’s tasks, their goals may not overlap completely. For exam-
ple, consider an environmentally-conscious route-selection system that advises drivers about
their daily commuting routes. The system possesses information about traffic jams and road
conditions that is not available directly to the driver who makes the decision which route to
take. Both system and driver wish to reach the destination safely. However, the driver may
prefer quicker routes, while the system cares also about reducing the driver’s emissions to
protect the environment or about some information it expects to collect from the driver (such
as traffic conditions or patrol-car location). Another example involves a decision-support
system for doctors for the purpose of recommending medical treatments to patients. The
system may have knowledge of a new highly effective antibiotic, but will suggest a more
traditional treatment for the patient in order to alleviate drug resistance in the population.

The focus of this paper is on the design of advice provision strategies for computer
agents that repeatedly interact with people. We model these interactions as a family of
repeated games of incomplete information called choice selection processes comprising a
human and a computer player. Both of the participants in a choice selection process are self-
interested. The computer possesses private information regarding the states of the world
which influences both participants’ rewards; this information is not fully known to the per-
son. In our example, this corresponds to the person not knowing the traffic conditions in all
of the roads. At each round, the computer suggests one of several choices to the person, and
the person then selects his or her choice, which may or may not correspond to the computer’s
suggestion. The choice of the person affects the reward for both the person and the computer
agent. The performance of both participants is measured by their aggregate reward that is
accumulated over time.

For an agent to be successful in such interactions, it needs to generate advice that is
likely to be accepted by people, while still fulfilling the agent’s individual goals. The design
of such advice provision strategies is computationally challenging for several reasons. First,
the agent needs to reason about the potential effect of the proposed advice and resulting user-
action on its future interactions. For instance, suggesting routes that are significantly more
beneficial to the agent than to the person may cause the person to ignore future recommen-
dations or to turn off the advice system. Second, it is difficult to predict people’s behavior
over time for different types of advice strategies, because people affected by a variety of
social and psychological factors [10]. For instance, some people may prefer certain routes
over other routes due to past experience that was satisfactory and may be reluctant to adopt
new, possibly preferable alternative routes. Lastly, people have been shown to discount the
advice they receive from experts when they need to make strategic decisions [9,48]. Lastly,
people may not be familiar with the agent’s costs and benefits, as in the case of a driver that
is interacting with a route recommendation system. Thus choice selection processes are not
amenable to traditional game theoretic analysis.

To address these challenges, we designed several models of human behavior in choice
selection processes that incorporated quantal response, exponential smoothing, and hyper-
bolic discounting theories taken from behavioral economics [21,24]. We estimated the pa-
rameters of these models using maximum likelihood techniques based on data consisting of
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hundreds of instances of human play in choice selection processes. The best model found
for the human decision making process was a combination of hyperbolic discounting and
quantal response. We implemented an intelligent agent named Social agent for Advice Pro-
vision (SAP) that provides an advice that maximizes a social utility function which is a
weighted sum of the agent and human’s utilities. The SAP agent uses the human model and
runs simulations of repeated human-agent interaction to identify the weights that maximizes
the agent’s utility over time.

The agent behavior was evaluated in extensive empirical studies using hundreds of hu-
man subjects in two types of selection processes that varied in complexity and the type of
interaction used between computer and person. The first domain was analogous to a route
selection task in which users needed to choose one of several possible commuting routes
(from a set of candidates) for each day. The travel time and the fuel consumption of each
road varied due to traffic, and was known to a computer agent (but not to the person). At
each round, the computer suggested one of the routes to the person. The person’s individual
goal was to minimize travel time while the agent’s individual goal was to minimize fuel
consumption.

The second domain was analogous to a climate control task in which users needed to
set the level of the climate control system deployed in a fictional car. The comfort level of
the person depended on the level of the climate control system as well as environmental
conditions such as the heat load of each day. While the person’s individual goal depended
both on its comfort level as well as the power consumption of the climate control system,
the agent’s goal was solely to minimize the energy consumption. The person may choose to
partially follow the computer’s advice, by selecting comfort levels that are close to, but not
equal to the computer’s suggestion. The computer needs to reason about this fact when it
considers the effect of its advice on the person’s behavior.

In both of the domains, we compared several alternative agent designs for providing
advice to people. We used several candidate agent models. We tested the performance of an
agent that approximated the optimal strategy based on a Markov Decision Process (MDP).
We also tested the performance of three baseline strategies. The first of which provides no
advice, the second provided the advice which was best for the user and the third totally
ignored the user and provided advice which was optimal for the agent’s individual goal.
Finally, we compared all these agents to the SAP approach, which considered the costs for
both agent and person when making suggestions. We evaluated these different agent designs
in studies comprising hundreds of people that interacted with the system we developed on
Amazon’s Mechanical Turk [2]. In both of the domains, the SAP agent was consistently able
to outperform all other agent strategies.

This work is first to design a computer agent for generating advice to people in repeated
settings, and demonstrates the efficacy of using behavioral economic models when gener-
ating advice. This paper extends previous work in Azaria et al. [8] by formalizing people’s
advice provision behavior in a general way, as presented in Section 3 and used through-
out the paper. This paper also extends previous work by adding an additional domain, the
climate control system (which appears in Section 5, along with its extensive experimental
evaluation. This new domain is substantially different (as described in Section 5), and also
allows us to directly compare our agent’s performance with that of an agent using a formal
decision-theoretic approach (MDP).

The rest of this paper is organized as follows. The following section presents related
work on advice provisions from the computational and social science disciplines. Section 3
presents the general selection process model. Sections 4 and 5 presents the route selection
and climate control domains, show how we used selection processes to design the SAP
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agent for each domain, and present empirical evaluation of the agent. Section 6 concludes
with discussing some of the limitations of our approach and provides pointers for future
work.

2 Related Work

Past work on advice provision spans the computational and social sciences disciplines.
Work in Multi-Agent Systems has provided several agent designs for providing advice

to human users. One of these is the Pocket Negotiator [29] which provides advice to users
about when to accept bids in closed bi-lateral negotiation settings. Rovatsos and Belesio-
tis [42] provide a formal model of advice taking in Multi-agent reinforement learning that
is evaluated on simulated data.

Recommender systems [1] advise users to take certain actions, usually from a large set
of actions. Users may benefit from such recommendations since they may have difficulties
in estimating their utility from each alternative. Several works in recommendation systems
have predicted rating behavior by users in order to best provide them with recommenda-
tions. (See Ricci et al. [40] for a review of this topic). Most works in this realm have only
considered the utility of the system and have not modeled the user’s reactions to the sys-
tem’s recommendations over time. Although several works do consider the utility of the
system [37,12,13,5] neither of them explicitly deal with repeated interactions. One excep-
tion is the work by Shani et al. [43], which uses a discrete-state MDP model to maximize the
system utility function taking into account the future interactions with their users. However,
the model they use does not explicitly consider the possible effects of providing advice that
turns out to be bad (or good) to the user on the way the user will perceive future advice. In
our work, we show that providing advice which turns out to be bad to the user causes the
user to follow future advice less

It is well known that the way information is presented may have an impact on the human
decision-making process. Rosenberg et al. [41] study the effect that photographs of political
candidates have on voters’ perception and show indeed that these images significantly affect
their votes. Fenster et al. [17] design an agent which influences human decision-making in
a conversational setting. The work studied an environment where the human had to select
a location for a school. The agent interacted with the human and attempted to convince
her to choose a certain location. The agent tries to convince the human about a location by
providing examples for her to emulate, or by providing justifications for a certain choice.

Azaria et al. [6] designed a system that provides partial information to a user in or-
der to encourage the user to take a certain action. This information was presented to the
user as a probability distribution on the state of the world. Based on these probabilities,
the user had to choose a road among several options. Subsequent work proposed a method
for advice-generation in path selection problems which are difficult for people to solve. In
those settings, the agent and the person interact only once and both have full information
about the roads network. The user’s sole incentive was to choose the shortest path, while
the agent’s incentives also included the number of color changes in the path. Recent work
in E-commerce that also considered information disclosure to people as a way to affect
their performance [26,25]. These works consider comparison shopping agents (CSAs) and
suggest a set of methods for affecting users decisions based on selective disclosure of in-
formation and anchoring, aiming to influence users not to query additional CSAs. None of
these works consider repeated interactions in which there is a need to model how the user
reacts to the agents’ advice. Elmalech et al. [15] show that an agent trying to maximize a
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user’s expected utility, should provide advice which is not based merely on the encapsulated
utility, but rather also on the likelihood of its acceptance by the user.

Past work in user-modeling have generated advice in dialogue systems or collaborative
office assistants [47]. These models have relied on probabilistic and decision-theoretic meth-
ods [28], plan recognition and logical approaches [3] for inferring users’ goals and activities.
We extend these works by incorporating features from behavioral economics in our models
of human-decision-making, and showing the efficacy of this approach empirically.

Much of the work in human computer interaction related to encouraging certain behav-
ior focuses on visualizations and feedback [30,38,39]. These works succeed in modifying
human behavior by causing users to be more aware of the consequences of their actions.
Froehlich et al. [19] survey many persuasive technologies with a goal of reducing environ-
mental impact. However, in these works the system does not provide advice to the user nor
builds a model of human behavior over time and use this model to provide advice to the user
as we do.

Fogg surveys many technologies trying to persuade humans, and analyzes the main
properties required for such persuasion technologies to be successful [18]. One example
is an exercise bicycle connected to a TV (“Telecycle”). In this system, as you pedal at a
higher rate the image on the TV becomes clearer. This way the Telecycle encourages hu-
mans to exercise at higher rates. This work also describes different methods for persuasive
systems such as a social actor - an example is the Banana-Rama slot machine which has
characters which celebrate every time the gambler wins. Fogg later states that in order to be
persuasive, a system must be credible, i.e. both trustworthiness and expertise.

3 Choice Selection Processes

A choice selection process is a repeated interaction with incomplete information between
a receiver and a sender. Each round, the sender observes the state of the world v ∈ V ,
drawn from some distribution P (V), and can advise the receiver to take one of the actions
in a predefined set, d ∈ A. After observing the advice given by the sender (d), the receiver
chooses one of the actions a ∈ A. The costs to the receiver and to the sender depend on
the action chosen by the receiver and the state of the world, which are denoted cR(a, v) and
cS(a, v), respectively. Both players, receiver and sender, can observe the outcome at the end
of each round. In contrast to the sender, the receiver does not know the state of the world
nor the costs for the sender. This interaction is repeated indefinitely and players’ costs each
round are discounted by a constant factor γ. The sender knows the distribution over V and
the costs of both participants, for possible future interactions (note that the sender is revealed
the exact state of the world, v, only once that round is reached).

A round t in a selection process is represented by a tuple ht = (at, ct, dt) where at is
the receiver’s action at round t, ct = (ctR, c

t
S) is the cost for the receiver and sender at t, and

dt is the advice provided by the sender at t (prior to the receiver choosing at) given the state
v. Here, ctR denotes cR(at, v) and ctS denotes cS(at, v). We define the history from round
1 through t as h1,t = h1,t−1 ◦ ht. For t = 0 the cost functions ctR and ctS are initialized to
0 and h1,0 is initialized to an arbitrary a and d. H1,t defines the set of all possible history
sequences (the set of all h1,t). Table 1 provides a complete list of notation used in the paper.

The next sections show two different advice provision domains which were modeled
using selection processes. In the first domain users do not have information about the state
of the world and therefore each interaction can be considered a new interaction. In this case,
users cannot increase their knowledge about the state of the world over time. In the second
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Notation Meaning
a action.
A action space.

cR(a, v) receiver’s cost as a function of the action a and state v.
cS(a, v) sender’s cost.

d advice given by the sender.
ECt

S(v, h
1,t−1, d) optimal expected cost for sender at time t

as a function of current state v, the history h1,t−1 and advice d.
ht history at time t composed of (at, ct, dt).

mb(a, v, t) receiver’s belief about its comfort level for action a
state v and time t (CCS domain).

o(v) observation obtained by receiver, depending on the state v (CCS domain).
p(v) density function of the state space.
P (a) probability that the receiver will take action a.
HCa(t) hypothetical cost for receiver for taking action a at time t.
HCF (t) hypothetical cost for receiver for following the advice at time t.
HCN (t) hypothetical cost for receiver for not following the advice at time t.

t round number (time).
tr(h1,t−1) trust rate given the history h1,t−1(CCS domain).

v state of the world.
V state space.
w weight.
wi optimized parameters.

ACa(t, h1,t−1) aggregated hypothetical cost for receiver for action a
from round 1 to round t− 1 (route selection domain).

ACF (t, h1,t−1) aggregated hypothetical cost for receiver for following the advice
from round 1 to round t− 1.

ACN (t, h1,t−1) aggregated hypothetical cost for receiver for not following the advice
from round 1 to round t− 1 (CCS domain).

α, β parameters used in cost function for receiver (CCS domain).
γ discount factor in choice selection process.
δ discount factor for aggregated hypothetical cost.
λ parameter for logit quantal response.

C(a, v, d, t, h1,t−1) sender’s model of receiver’s cost as a function of the action a,
the state v, the advice d, the time t and the history h1,t−1 (CCS domain).

π(v, w) sender’s advice (for SAP) assuming world state v and the use of the weight w.

Table 1 List of notations

domain, users receive observations about the state of the work prior to making a decision
regarding and they can choose the extent to which to follow the advice that is provided by
the agent.

4 Route Selection Domain

In this domain the driver (the player playing the receiver) can choose one of A roads for his
or her commute. The state of the world v = (v1, . . . , v|A|) is sampled from a continuous
multivariate random variable that represents the traffic condition (travel time and fuel con-
sumption from source to destination) for each of the roads. At each round, the system (the
sender) observes the state of the world and suggests one of the roads in A to the driver. The
outcome for both participants depends on the road a ∈ A chosen by the driver as well as
the road conditions va. Since the person does not know the actual state of the world, and in
particular the costs of all actions in each round, we need to express his hypothetical costs
when reasoning about which action to take.
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We define the hypothetical cost the receiver incurs for taking action a at time t, denoted
HCa(t, ht) to equal the cost ctR when a = at (i.e., the receiver chose action at at time t);
if a 6= at then the person did not choose action at, and its hypothetical cost equals some
default value w3. This is because the person does not know what cost would have been
incurred by taking action at for rounds that it was not chosen. For example, suppose that the
receiver chose to use route 66 on day 1 and incurred a 45 minute commute. The hypothetical
cost of the receiver for using route 66 on day 1 equals 45 minutes, while the hypothetical
cost for using any other route equals the default value.

The probability distribution that the receiver will take action at at round t given advice
d, and behavior h1,t−1 in past rounds is denoted P (a | h1,t−1, d, t). For a given world
state v and history h1,t−1, the sender’s expected cost ECS(v, h1,t−1, d) for advice d is an
expectation over its future costs given it gives the best advice d′ at each time step. The best
advice is the one computed by the optimal policy π∗ as follows:

ECtS(v, h
1,t−1, d) =

∑
a∈A

P (a | h1,t−1, d, t)·

(
cS(a, v) + γ

∫
v′
P (v′)mind′EC

t+1
S (v′, h1,t, d′)dv′

)
(1)

For a given world state v and history ht−1, the advice d that minimizes the sender’s cost is
a policy π∗(v, h1,t−1, t) defined as follows:

π∗(v, h1,t−1, t) = argmindEC
t
S(v, h

1,t−1, d) (2)

As we later show, there is a natural mapping from this formalization to a Markov decision
making problem for the sender agent.

4.1 Modeling Human Receivers

In this section we provide a model of a human receiver player in choice selection processes
for the case in which the state of the world is not observed by the receiver.

Because a receiver cannot observe the state of the world nor its distribution, his decision
problem can be analogously described as a Multi Armed Bandit Problem (MAB) [4], in
which there are |A| + 1 arms (one for each action, and one for following the advice of the
sender). We therefore assume that the receiver records the utility obtained from each of the
actions (or arms) and is more likely to choose an action (or arm) that performed better in the
past. If following the advice yielded a high performance for the user, he will be more likely
to follow the advice in future actions.

The models of human receivers we present below differ in the way in which they com-
pute the utility that is attributed by the receiver for each choice. Before presenting the model,
we need to make the following definitions. First, we generalize the definition of hypothetical
cost of the receiver for following the advice of the sender. We define the hypothetical cost
incurred by the receiver for taking advice d at time t, denoted HCF (t, ht), to equal the cost
ctR when at = d (i.e., the receiver followed the sender’s advice), or a default value. Note that
F (which stands for following the advice) is simply part of the function name and may not
take any value (unlike HCa, in which a may be any action). HC(η) will denote a general
hypothetical cost function in which (η) may either be an action a (implying that HC(η) will
compute HCa for any action a) or a constant F (implying that HC(η) will compute HCF ).
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Next, we generalize the notion of the receiver’s hypothetical cost to include behavior
over multiple rounds. Let ACa(t, h1,t−1) denote the aggregate hypothetical cost incurred
by the receiver for taking action a, taking into account all rounds 1 through t − 1, and
ACF (t, h1,t−1) the aggregate hypothetical cost incurred by the receiver for following the
advice, taking into account all rounds 1 through t − 1. This aggregated hypothetical cost,
ACa, builds upon the hypothetical cost and thus, is well defined for all actions a even
though, the receiver may have taken different actions at certain rounds. Similarly, ACF

builds upon HCF , and thus is well defined even though the receiver may have not followed
the advice in certain rounds.

We can now describe several models which differ in how they aggregate the receiver’s
hypothetical costs over time. We begin with two models in which receivers discount their
past costs higher than their present costs. In the hyperbolic discounting model [11,14], the
discount factor δ falls very rapidly for short delay periods, but falls slowly for longer delay
periods. For example, consider a driver who took a new route to work on Monday which
happened to take an hour longer than the route on Friday. According to hyperbolic theory,
the relative difference between the commute times will be perceived to be largest during
the first few days following Monday. However, as time goes by, the perceived difference
between the commute times will diminish. Equation 3 models the accumulative cost in the
hyper model:

AC(η)(t, h1,t−1) =
∑
t′<t

HC(η)(t, ht
′
)

δ · (t− t′)
(3)

Where (η) may either be an action a, or F for following the advice.
In the Exponential Smoothing model [21], the discount factor δ is constant over time,

meaning the perceived difference between the commute times will stay the same over time.
The hypothetical cost for the receiver is defined as follows. If at−1 = a (the receiver took
action a at time t − 1) or at−1 = d (the receiver followed the advice specified in ht−1 of
h1,t−1) then we have:

AC(η)(t, h1,t−1) = δ ·HC(η)(t, ht−1) + (1− δ) ·AC(η)(t− 1, h1,t−2) (4)

If at−1 6= a or at−1 6= d the receiver does not update his aggregate hypothetical cost for
action a or the advice respectively, and we have

AC(η)(t, h1,t−1) = AC(η)(t− 1, h1,t−2) (5)

If t = 1 then AC(η)(t, h1,t−1) equals the default value w3 for any (η).
In the Short Term Memory model, the receiver’s valuation is limited to the past 7 rounds,

(the number of items commonly associated with human short term memory capacity [34,
31]). The aggregated hypothetical cost for the receiver is defined as follows:

AC(η)(t, h1,t−1) =
∑

t−7≤t′<t
HC(η)(t′, h1,t′−1) · 1

7
(6)

If t < 7, then the summation only spans rounds 1 through t, and the denominator is replaced
by t (the receiver is assumed to remember all utilities obtained if there were less than 7
rounds in total).
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Lastly, as a baseline, we consider the Soft Max model [46] in which the aggregate hypo-
thetical cost of the receiver for any action is simply the average true cost (as opposed to the
hypothetical cost) of taking this action in past rounds, with no discount factor:

AC(η)(t, h1,t−1) =

∑
1≤t′<t c

t′

R · 1{(η) = at′ ∨
(
(η) = F ∧ dt′ = at′

)
}∑

1≤t′<t 1{(η) = at′ ∨
(
(η) = F ∧ dt′ = at′

)
}

(7)

where 1{·} is the indicator function. In order to avoid division by 0, some default value is
assigned to actions which were never performed.

When estimating the probability of the action a, one should reason about the past ex-
perience of the receiver from taking this action (ACa(t, ht−1)) and the experience of the
receiver from following the advice of the sender (ACF (t, ht−1)). The probability of choos-
ing a certain action should increase if that action was advised by the sender. Therefore, for
all the four suggested models for the aggregated hypothetical cost we adopted the quantal
response theory from behavioral economics [24] for choice of actions. This theory assigns
a probability of choosing an action a that is inversely proportional to the aggregate hypo-
thetical cost of that action given the history (i.e. AC(η)(t, ht−1)). The receiver is modeled
to prefer actions associated with lower hypothetical costs. However, with some probability,
the receiver may still choose actions that are more costly.

Formally, the probability that the receiver will take action at at round t given behavior
in past rounds h1,t−1 depends on the benefit ACF (t, h1,t−1) from the advice d that was
given at this round.

P (a, t |h1,t−1, d) =
e−λ·AC

a(t,h1,t−1) + Z

e−λ·ACF (t,h1,t−1) +
∑
a∈A e

−λ·ACa(t,h1,t−1)
(8)

Where Z is set to equal e−λ·AC
F (t,h1,t−1) when a = d, and otherwise zero; λ is a smoothing

parameter. Note that all methods have parameters which must be learned from data. These
parameters are assessed in section 4.3.1.

4.2 Agent Design for Sender Role

In this section we formally define the problem of finding the optimal strategy for the sender
player in a selection process, and present several approximate solutions to the problem given
a model of the receiver’s decision making process. To this end we present two possible agent
designs, one that uses a Markov Decision Process and one that uses a social preference
model.

4.2.1 Markov Decision Process

In this approach the sender’s decision making process is represented as a continuous MDP.
These models provide a decision-theoretic framework for reasoning about uncertainty over
time and are used extensively in MAS to model planning coordination activities [23,22]. To
represent the selection process from the sender’s point of view as an MDP, we define the set
of world states for the MDP as follows.1 Every time t, state vt ∈ V and history sequence

1 We use the term “world state” to disambiguate the states of an MDP from those of a selection process.
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h1,t ∈ H1,t define a world state st = (vt, h1,t−1). The set of all such world states at time t
is:

St = {(vt, h1,t−1, t) | vt ∈ V, h1,t ∈ H1,t} (9)
and the set of possible world states is defined as S = ∪∞t=1S

t. The set of actions for the
sender is the set |A| of actions in the selection process. The reward function for the MDP,
denoted r(st), is defined as −ct−1

S (which is a part of the history at time t− 1 - see Section
3.)

The discount factor for the MDP is γ. The transition function of the MDP is set to

P (st+1 | st, dt) = P (at | h1,t−1, dt, t) · P (vt+1) (10)

where st+1 as above and P (vt+1) is the probability that the selection process state vt+1 will
occur. Finally, the initial state of the MDP is sampled from the world states subset {(v, ∅, 1) |
v ∈ V} according to P (v), and the optimality criterion is set to be the minimization of the
expected accumulated cost.

Proposition 1 Solving the MDP described above will yield a policy that satisfies equation 2.

Proof Given a world state st = (vt, h1,t−1), we define the Q(st, d) and value function
V (st) for the MDP as follows:

Q(st, d) = r(st) + γ

∫
s′
P (s′ | st, d) · V (s′)ds′ (11)

V (st) = max
d

Q(st, d) (12)

and the optimal policy π∗(st) is defined as

π∗(st) = argmax
d

Q(st, d) (13)

Recall that st = (vt, h1,t−1) and r(st) = −ct−1
S = −cS(at−1, vt−1). Therefore Equation

11 may be replaced by:

Q((vt, h1,t−1), d) = −cS(at−1, vt−1) + γ ·
∑
a∈A

P (a | h1,t−1, d, t)·∫
vt+1

P (vt+1) ·max
d

Q((vt+1, h1,t), d)dvt+1 (14)

According to Equation 1 we obtain that ECtS(v
t, h1,t−1, d) is proportionate to −Q(st, d).

Therefore, the optimal policy π∗(st) in Equation 13 satisfies Equation 2.

Therefore, solving the continuous MDP described above yields an optimal policy for
the sender given a model of the receiver, P (at | h1,t−1, dt, t). However, the world states
of the MDP incorporate the continuous state of the selection process and discrete histories
of arbitrary length, which makes the MDP structure too complex to be accurately solved.
In addition, we cannot use existing approximation algorithms, which assume a finite state
space [32], partition of the state space [16], or use kernel-based methods [36], due to the
mixture of the continuous component (selection process state) and an arbitrarily large dis-
crete component (action and advice history) of the world state.

Given these constraints, we suggest an agent design that does not solve the MPD ex-
plicitly, but uses the models for human receivers described above to reason about the con-
sequence of their actions over time. The agent, called MCS, chooses the optimal advice for
the current time step while using Monte-Carlo Simulation [33,27] for selecting future states
according to the transition function of Equation 10, and selecting future actions of the sender
according to a uniform probability distribution.
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4.2.2 Social Preference Approach

According to the social preference theory, people consider others’ outcomes as well as their
own when making strategic decisions [20]. The agent design we propose here is called SAP,
a Social agent for Advice Provision, that generates advice according to the following social
model. Our approach explicitly reasons about the trade-offs between the costs to both par-
ticipants in the selection process based on a social weight. The intuition behind this agent is
the following: assume the agent only considers the system’s cost. After several interactions
with the user, the user is likely to ignore any future advice, resulting in a high cost to the
agent. On the other hand, if the agent considered only the user’s cost, the user will probably
follow the agent’s advice, however, the user will be choosing actions which are not as good
for the agent. Therefore, SAP tries to find the optimal balance for the agent by applying a
weight to each of the participants’ costs. For a state v and a weight w, a policy for advice
provision is a decision d with minimal social cost.

d = π(v, w) = argmin
d∈A

(1−w) · (cR(d, v))+

w · (cS(d, v))
(15)

where w is a constant weight. In practice we scale cR (and cS) by dividing it by the average
cost of the receiver (or sender respectively), so that w = 0.5 will imply an equal weight for
both cR and cS . We will refer to this wight, w, as the selfishness of the agent.

To compute the most beneficial weightw∗, we need to assume some behavior on the part
of the user (P (a | h1,t−1, π(v, w), t)) when he interacts with an agent that provides pieces
of advice to him (π(v, w) based on Equation 15). See examples of such models for human
behaviors in Section 4.1. Then, the weight most beneficial to the agent, w∗, is searched in
the space of all weights. The result is the weight with minimal total expected cost for the
agent.

For a given world state v and history ht, we can define the sender’s expected cost
EW t

S(v, h
1,t−1, w) for weight w and fixed policy π(v, w). Note that this is not the opti-

mal expected cost for the sender described in Equation 1 as it does not require to solve the
intractable min expression in Equation 1 to obtain the future advice but instead uses π(v, w)
as a fixed policy.

EW t
S(v, h

1,t−1, w) =
∑
a∈A

P (a | h1,t−1, π(v, w), t)·

(
cS(a, v) + γ

∫
v′
P (v′)EW t+1

S (v′, h1,t, w)dv′
) (16)

Note that in each iteration of the search process, w remains fixed for that iteration in the
rightmost term of equation 16. The weight w is chosen to minimize the sender’s aggregate
costs for the fixed policy π(v, w)

w∗ = argmin
w

EW t
S(v, h

1,t−1, w) (17)
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4.3 Empirical Methodology

We evaluated the different agent models (SAP and MDP) using an empirical study in a route-
selection domain. In the route-selection domain a driver needs to choose one of 4 possible
routes to get to work. The system can advise the driver to take one of the routes before the
driver makes a choice. The road conditions (i.e., travel time and fuel consumption) constitute
the state of the world, and vary due to traffic and maintenance. This information is unknown
to the driver when he makes his decision. The driver’s goal is to minimize the travel time
over all rounds, and the system’s goal is to reduce fuel consumption over all rounds. This
is obviously one example and it shows an extreme case where user’s and agent’s goals do
not conflict but do not necessarily overlap. Real world scenarios will naturally be more
cooperative. For example, a user might prefer to arrive the fastest possible route but he
would also like to save fuel. That is, while arriving fast is the most preferred criteria he does
not oppose to saving fuel as long as it does not significantly affect his time of arrival. Our
results show that even in the less cooperative situation, the agent succeeds in changing the
user’s choices such that both will benefit. As stated, the purpose of our advice provider agent
is not to impose the action that is most beneficial to the agent, but to lead the user to change
his choices in the direction of the most beneficial action as long as his other preferences can
be preserved.

After the driver chooses a route, both participants incur a cost which depends on the road
conditions of the chosen route. At this point the interaction continues to the next round with
a probability of 0.96. (This probability was chosen to align with the expected number of
commuting days of 25 which is the average commuting days in one month). The conditions
of the roads in each round are sampled from a joint distribution that is known to the agent,
but not to the driver. We modeled the fuel consumption and travel time using a multivariate
log-normal distribution.

We enlisted 123 subjects, 57.6% females and 42.4% males, from the USA (recruited via
Mechanical Turk). The subjects’ ages ranged from 19 to 69, with a mean age of 37.6 and
median of 35. Subjects were paid 12 cents for participating in the study, and additionally
received between 5 to 50 cents depending on their performance. The subjects were told that
the probability of a new round was 0.96. The actual number of rounds was not revealed to
the subjects (nor to the computer agents). The subjects were paid a bonus proportional to
the average travel time (the lower the travel time the higher the bonus). All subjects were
provided an explanation of the game and its details, as described in the beginning of this
section and they had to pass a quiz. The subjects were told that the agent providing advice
had a goal different from theirs. In each round, after receiving the advice from the agent,
the subjects had to select a road. Then the subjects were told how much time it took them
to travel via that road. The history, including previous advice, previous actions and previous
travel time was available to the subjects at all times.

4.3.1 Model Selection for the Receiver

To compare the various models of the receiver, we collected 2250 rounds of 90 subjects
to train and evaluate the Short-term memory, hyperbolic discounting (Hyper), SoftMax ,
and Exponential Smoothing (ES) models that were described earlier. In this training phase,
the users chose roads, while receiving recommendations from one of the baseline agents:
Sender, that advised to take the road with the least fuel consumption , Receiver that advised
to take the road with the lowest travel time or Silent that did not provide any advice. For
each of these models, we estimated the maximum-likelihood (ML) value of the parameters
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Table 2 Fit-to-data of different receiver models (the lower the better)

model d.f. N-Log-Like.
SoftMax 1 178.5

ES 2 172.2
hyper 2 169.4

short memory 1 186.9

Table 3 Settings used in the route selection domain.

parameter road #1 road #2 road #3 road #4
average travel time 72 84 52 64
travel time stdev 14 24 16 4

average fuel consumption 4 4.4 8 6
fuel consumption stdev 1.2 1.2 2 1.6

using sampling, and computed the fit-to-data of the test set using the ML values. All re-
sults reported throughout the section were confirmed to be statistically significant using the
Mann-Whitney U test with α = 0.05. Table 2 presents the fitness of the models employ-
ing a tenfold-cross-validation on all the training data (lower values indicate a better fit of
the model). As shown in the table, the Hyper model, which modeled the receiver using the
hyperbolic discounting theory (Equations 3 and 8) exhibited a higher fit-to-data than all the
other models of human receivers.

We hypothesized that the use of the social utility approach would lead to the best per-
formance of the agent sender, measured in terms of fuel consumption. To evaluate this hy-
pothesis, we used different agent designs to generate offers to people which incorporated
the decision-making strategies that were described in the previous section. Specifically, we
used an agent that incorporated the social utility approach to make offers, termed the Social
agent for Advice Provision (SAP). Building upon a human model, SAP, using a simulation
of the environment, searched for w∗ (the optimal weight in Equation 17). Since the hyper
model had the best fit-to-data, SAP used it as the human model. Iterating on different pos-
sible w, SAP simulated 10000 users for each w, where each user was simulated for a full
process (until it terminated). We considered w’s in {0, 0.01, 0.02, ..., 0.99, 1}. SAP chose
the w with the lowest overall average cost as w∗. Then, in each round, SAP provided advice
according to Equation 15, using the optimal weight. The second agent used the MDP model
to make offers, by solving Equation 11. We estimated V (st) using Markov Chain Monte
Carlo sampling [33,27] in a manner similar to that of the MCTS method mentioned in Sil-
ver et al. [44].2 We term this agent MCS. We also employed two baseline agents, Random
that offered roads with uniform probability and Silent that did not provide any advice.

We evaluated these agent designs in simulation as well as in experiments involving new
human subjects. The simulation studies consisted of sampling 10,000 road instances accord-
ing to the distribution over the fuel consumption and travel time in Table 3. Fuel and energy
consumption were sampled independently.

As an alternative to the hyperbolic discounting model, we also considered an approach
using an ε−greedy strategy to describe possible behavior of a receiver. This strategy assumes
that the decision problem from the point of view of the receiver is a Multi Armed Bandit
Problem (MAB) [4,46], in which there are |A| + 1 arms (one for each action, and one for

2 This method is more common in POMDPs, however, since our state space is very large, we use this
method as well.
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Table 4 Simulation results comparing agent strategies

human model agent strategy fuel time
(liters) (minutes)

Random 6.120 64.40
hyper Silent 6.297 63.04

MCS 5.792 65.92
SAP 5.520 64.54

Random 7.046 58.08
ε−greedy Silent 7.104 57.68

MCS 6.812 59.26
SAP 6.432 55.84

following the advice of the sender). The MAB approach has been used in MAS in the past
to model team coordination [45].We therefore assume that the receiver records the utility
obtained from each of the actions (or arms) and is more likely to choose an action (or arm)
that performed better in the past. If following the advice yielded a high performance for
the user, he will be more likely to follow the advice in future actions. It provides a rational
baseline that seeks to minimize travel time for receivers over time.

Table 4 presents results of the simulation. We compared the fuel consumption costs
incurred by the different sender agents for each model used to describe human behavior. As
shown in Table 4, the cost accumulated by the SAP agent using the hyperbolic discounting
model was 5.52 liters (shown in bold), which was significantly lower than the costs incurred
by all other agents using the hyper models to describe human behavior. Similarly, the cost
accumulated by the SAP agent using the ε−greedy model were significantly lower than the
costs incurred by all other agents using the ε−greedy model.

4.3.2 Evaluation with People and Generalization

Given the demonstrated efficacy of the SAP agent in the simulation described above, we
aimed to evaluate the ability of the SAP agent to generalize to new types of settings and
new people. We hypothesized that a SAP agent using the hyperbolic discounting model to
describe receiver behavior when selecting w∗ would be able to improve its performance
compared to a SAP agent using the ε−greedy model. We randomly divided the subjects
into one of several treatment groups. The subjects in the Silent group received no advice
at all. The subjects in the SAP-hyper group received advice from the SAP agent that used
a hyperbolic model to describe the receiver’s behavior. The subjects in the SAP-ε group
received advice from the SAP agent that used an ε−greedy strategy to describe the receiver’s
behavior when selecting w∗. The subjects in the Receiver group were consistently advised
to choose the road that was most beneficial to them, (i.e., associated with the lowest travel
time). Lastly, the subjects in the Sender group were consistently advised to choose the road
which was best for the sender (i.e., associated with the lowest fuel consumption).

Figure 1 presents the fuel consumption of each one of the treatment groups (the black
error-bars represent 95% confidence bars). As can be seen in the figure, the SAP-hyper agent
significantly (p < 0.05 using the Mann-Whitney test) outperformed all other agent-designs,
accumulating a cost of 5.08 liters. The MCS method (which uses Monte Carlo sampling)
came in second, accumulating an average cost of 5.35 liters. Table 5 shows additional in-
formation on each one of the treatment groups. The performance for agents and for people
is measured in terms of overall fuel consumption and commuting time, respectively. The
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Fig. 1 Average fuel consumption for each of the treatment groups (the lower the better).

Table 5 Performance results of agents interacting with people. The selfishness rate equals w in Equation 15

method selfishness fuel time acceptance
Silent – 6.20 64 –

receiver 0 6.44 56.6 63.6%
sender 1 5.88 64.32 31.0%
SAP-ε 0.29 5.76 56.6 70.8%
MCS – 5.35 67.1 52.2%

SAP-hyper 0.58 5.08 64.8 52.6%

“selfishness” column in the table measures the degree to which the agent was self-interested
(the weight w in Equation 15).

4.4 Discussion

As we have shown, the SAP-hyper model was able to outperform all other alternative agent
designs when interacting with people in the route-selection domain.The MCS (the pure de-
cision theoretic model) came in second. In addition to SAP-hyper’s higher performance in
terms of energy consumption in comparison to MCS, the SAP-hyper method enjoys two
additional advantages:

1. Online calculations are minor, and are limited to finding a minimum among several
linear combinations (as opposed to MCS which simulates many future branches and thus
requires high CPU processing that is calculated online, before it can provide advice).

2. The performance for the users was very similar to the performance of the Silent and
sender methods (and much better than the MCS method).

The advice acceptance rates (i.e. the percent of times which a user followed the advice)
for the SAP-hyper were lower than those for SAP-ε, which we attribute to the higher de-
gree of selfishness of the SAP-hyper agent. Unsurprisingly, the best performance for people
(travel time of 56.6 minutes) was achieved when using an agent that only considered peo-
ple’s costs (receiver). However, a similar result in terms of travel time was also obtained
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by the ε−greedy agent. Another surprising result is that the acceptance rate for SAP-ε was
higher than that of the receiver agent, whose degree of selfishness was 0, and consistently
recommended the route that was best for people. We hypothesize that this may have been
caused by an unintended “too-good-to-be-true” signaling effect that is perceived by people.

One may be concerned with the relatively low user acceptance rate or by the relatively
poor user performance for SAP-hyper. This may raise the concern that SAP might not per-
form as well when longer interactions are expected. Recall that the agent’s goal was only to
minimize its own cost. Although the agent did consider the user’s cost and thus its satisfac-
tion, it was considered a means to an end in order to minimize the agent’s overall cost. If the
system expects a longer period of interaction with the user (i.e. greater γ), the user’s satis-
faction will be more important to the agent, and therefore the social weight will be balanced
towards the user’s benefit (causing an increase in user acceptance rate and performance).
Furthermore, if user satisfaction is important to the agent itself, it can be explicitly added
to the agent’s utility. However, we chose a more confrontational setting to demonstrate the
efficacy of the method.

We conclude this section with two illustrative examples of the reasoning used by the
SAP-hyper agent. In the first example, one of the roads incurs a very low cost for the agent
(3 liters), but constitutes an extremely high cost for the person (43 minutes). In this example,
the SAP-hyper agent recommended the road that was associated with the highest cost for the
agent (4.19 liters), but a very low cost for the person (18 minutes). The person accepted this
advice and chose the recommended route. In the next round, the agent advised the person
to take a road that incurred a relatively high cost for the person (31 minutes) and a very low
cost for the agent (1.6 liters). This offer was again accepted.

5 Climate Control Domain

In this section, we present a different type of choice selection process which includes a
simulation system where a car driver needs to set how much power he would like his Climate
Control System (CCS) to consume. We denote this the ”power level” of the CCS. Higher
values of the power level are associated with increased energy consumption by the system.
The sender player represents a system which suggests a power level setting to the receiver
(the driver). As in the road selection setting, in each round the sender can suggest to the
receiver to perform a certain action before the receiver makes his selection.

This domain differs from the route selection domain in the following ways:

– Ordered actions: The action set is an ordinal scale which represents the energy consump-
tion level of the CCS in the car. The roads in the previous domain that we examined were
not sorted in any scale. The actions were a set of non-ordered options.

– Partial acceptance: The receiver may partially accept the advice (e.g. set the power level
of the CCS to a lower level than initially intended, but not as low as suggested by the
sender). This makes the task of modeling the receiver significantly more difficult. In the
roads domain, a user could either accept or not accept the advice; in the climate control
case a user can partially accept advice and in a sense make a choice is closer to the
advice.

– Cost for receiver: The cost for the receiver depends on two attributes: the energy con-
sumption of the CCS, and the user’s comfort level which depends on the energy con-
sumption and the state of the world. Therefore, modeling the human behavior becomes
a more complex task in this case than in the roads domain.
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– Partial observability: The receiver is given an observation (the heat load) that is associ-
ated with the state of the world. Therefore he is able to update his belief regarding the
state of the world. In the roads domain, the user was assumed not to have any informa-
tion about the traffic distribution in the different roads.

– Finite state space: In this configuration the state space is constrained which allows us to
solve the MDP. In the roads domain, the state space was larger and it was not practical
to find the optimal solution to the corresponding MDP.

5.1 Setting Description

In this setting, A is an ordered set of actions (1, . . . , |A|). Each action represents the setting
of the power level of the climate control system. The state of the world v = (v1, . . . , v|A|)
represents the “comfort level” for the receiver (i.e., the driver of the car) when operating the
AC system according to each of the possible system settings. Note that the comfort level
may have a real (non-integer) value.

In the choice selection process in each round t, the receiver is given a discrete obser-
vation o(v) that represents the current heat load in the car (a function of the temperature,
humidity and other environmental conditions). Note that because the receiver does not di-
rectly observe the state v, he does not know the comfort level. The assumption is that a
user who is new to such an interaction does not yet know how he would feel at the end of
the drive for any particular setting. The cost function for the receiver, cR(a, v) is a linear
combination of the energy consumption (a) and the comfort level (va).

cR(a, v) = α · va + β · a (18)

where α ≤ 0 and β ≥ 0 are constants in the problem definition. The cost for the sender,
cS(a, v), is determined by the action taken by the receiver (the energy consumption), i.e.
cS(a, v) = a. The next round of the choice selection process occurs with a constant proba-
bility γ.

Because the receiver is given an observation about the state v, we predict the probability
that the receiver will choose action a, which depends on the history, the advice of the sender
in the current round, and the state of the world:

P (a | h1,t−1, d, t, v) (19)

Similar to the road selection domain, for a given world state v and history h1,t−1, we
can define the sender’s expected cost ECS(v, h1,t−1) for action (i.e., advice) d as

ECtS(v, h
1,t−1, d) =

∑
a∈A

P (a | h1,t−1, d, t, v)
(
cS(a, v)+

γ
∑
v′∈V

p(v′)(min
d′

ECt+1
s (v′, h1,t, d′))

)
(20)

The advice that minimizes the sender’s cost is

π∗(v, h1,t−1, d) = argmindEC
t
S(v, h

1,t−1, d) (21)

It is important to observe that in our world all variables in the optimization problem for
the sender are known to the sender except P (a | h1,t−1, d(v, h1,t−1), v), which requires
a human model of the receiver. Therefore, the next subsection is dedicated to methods for
modeling a human receiver.
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5.2 Modeling Human Receivers

An important factor in predicting the receiver’s action is the sender’s model of the cost
incurred by the receiver. This modeled cost is a function of the action taken by the receiver,
the history, the advice and the state of the world and is denoted C(a, v, d, ht−1). We present
several possibilities for such a model. In the simplest case, this modeled cost is assumed to
be the receiver’s true cost.

C(a, v, d, ht−1) = cR(a, v) (22)

We term this candidate True-Cost.
Another candidate for the receiver’s cost is a weighted sum over the comfort level av

and the receiver’s action a

C(a, v, d, t, h1,t−1) = w1 · va + w2 · a (23)

We assume that w1 ≤ 0 and w2 ≥ 0. A similar approach (based on building a hypothetical
utility function using a linear combination of the parameters and using a quantal response)
for modeling humans was performed successfully in previous work ([35], [7]). This can-
didate is termed LUQ (Linear combination for hypothetical Utility and Quantal response).
Recall that the true cost for the receiver is a linear combination of the comfort level and the
action performed by the receiver as well. Although, LUQ assumes that, the modeled cost
C(a, v, d, t, h1,t−1), is also a linear combination of both attributes of the problem, i.e. the
comfort level and the energy consumption, the coefficients (w1 and w2) may differ from the
coefficients used in cR(a, v) (α and β)3.

An alternative to the models shown above is to specifically represent the sender’s advice
in the cost function of the receiver. We define the hypothetical cost of the receiver from
following the advice as HCF (t | ht) as in the road selection domain. Additionally, we
define HCN (t, ht), to equal the cost ctR when at 6= dt (i.e., the receiver did not follow the
sender’s advice); otherwise it equals some default value (w3). Note, that while HCF (t | ht)
was already defined in the road selection domain, HCN (t, ht) is new to the CCS domain.
In the road selection domain, instead of modeling the cost to the user when not following
the advice, we model the cost to the user for each of the possible roads (arms). That is, we
assume that the user assigns a cost for each of the different roads and a cost for following
the advice (HCF (t | ht)). However, in the CCS domain, it would not be rational to assume
that the user assigns a cost to each of the power levels, as the user’s cost depends also on the
users heat load (the user’s observation). Therefore, we expect that the user will not assign
costs to a certain action (e.g. setting the power level to 3 resulted with a low score), but that
the user will assign costs to what happened when he did not follow the advice4. We define
the following two formulas for the aggregated costs (Equations 24 and 25). These formulas
are similar to those defined in the road selection domain (see Equation 3), but account for the
slight variation considering how well the user may do when he does not follow the advice
(i.e., η in the CCS domain may either be F or N , while in the road selection domain it could

3 This model does not require an additional parameter for the actual cost for the receiver (cR(a, v)), since
cR(a, v) is already a linear combination of the comfort level and the energy consumption.

4 In fact, the exact equivalent to the road selection domain, would be assuming that the user set a cost to
each of the possible combinations of the heat load and each of the possible power levels. However, such an
assumption would result with too many arms, most of which would not be sampled or sampled only once,
and thus would not result in a good human model.
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have been either F or each of the actions). We define two types of aggregated costs (for
human receivers), one which employs hyperbolic discounting:

AC(η)(h1,t−1) =
∑
t′<t

HC(η)(t | ht
′
)

δ · (t− t′)
(24)

where η is either F or N and δ is the discount factor parameter. For t = 0 we use the default
parameter w3.

The second type of aggregated cost employs exponential smoothing:

AC(η)(h1,t−1) =
∑
t′<t

HC(η)(t | ht
′
)δ(t−t′) (25)

We can now define the receiver’s trust in the advice as a value between 0 (receiver does
not trust the advice) and 1 (receiver fully trusts the advice):

tr(h1,t−1) =
1

1 + e−
(
ACN (t,h1,t−1)−ACF (t,h1,t−1)

) (26)

As an example assume that the receiver incurred very low costs when following the ad-
vice and very high costs when not following it. This will imply that

(
ACN (t, h1,t−1) −

ACF (t, h1,t−1)
)

is a high positive number which in turn implies that tr(h1,t−1) is close to
1.

Finally, we can define a candidate model for the receiver’s cost that is a weighted average
of the comfort level, the energy consumption (the receiver’s action) and the trust of the
receiver as a function of the distance between the action and the advice. Notice that since
in this domain partial acceptance of advice is possible, we can consider the distance of an
action from the advice:

C(a, v, d, t, h1,t−1) = w1 · va + w2 · a+ w4 · tr(h1,t−1) · w−|d−a|7 (27)

where w1 ≤ 0, w2 ≥ 0, w4 ≤ 0, w7 ≥ 0. Here, the term tr(h1,t−1) · w−|d−a|7 increases
proportionally to the receiver’s trust in the advice, and the distance between the receiver’s
action and the advice. In particular, when the trust of the receiver is high, the difference
between the advice and the receiver’s action has a greater impact on its cost than when the
trust of the receiver is low.

The following candidate model for the receiver’s cost explicitly models how the receiver
learns about the true comfort level over time. We define the receiver’s estimate of the comfort
level given round t, state v and action a as follows:

mb(a, v, t) =
1

NZ

∑
a′∈A

ew8·|a′−a|+w6·(t+1)·1{a′ 6=a} · va′ (28)

where w8 ≤ 0, w6 ≤ 0, 1{·} is the indicator function and NZ is a normalizing factor, such
that:

NZ =
∑
ā∈A

∑
a′∈A

ew8·|a′−ā|+w6·(t+1)·1{a′ 6=ā} · va′ (29)
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We note that (1) large differences between a and a′ imply more error, and thus the
contribution of va′ to mb decreases (2), as t increases, the receiver learns more about the
true va and thus the contribution of va′ to mb decreases.

The following is the receiver’s cost which is identical to Equation 27 where the only
difference is that the first parameter is multiplied by the receiver’s belief over his comfort
level (mb(a, v, t)), rather than using the true comfort level (va):

C(a, v, d, t, h1,t−1) = w1 ·mb(a, v, t) + w2 · a+ w4 · tr(h1,t−1) · w−|d−a|7 (30)

Finally, in all the above methods, we recall the function of the logit quantal response and
adopt it to the climate control domain, and thus, the probability that the receiver shall choose
an action a in any round t, given the state v and the receiver’s aggregated hypothetical cost
is:

P (a | h1,t−1, d(v, h1,t−1), v) =
e−λ·C(a,v,d,t,h1,t−1)∑

a′∈A e
−λ·C(a′,v,d,t,h1,t−1)

(31)

Although λ is another parameter, it is used only for the True-Cost, and all other methods set
it at 1 without losing any degree of freedom.

The last model we consider does not use the modeled cost function (C). This is a baseline
model which uses the model which was found best in the road selection domain (hyper) and
implies it on the CCS domain without accounting for the CCS domain different properties.
This method, termed MAB, assumes that the receiver treats the problem as a multi armed-
bandit problem where the advice is considered as an extra arm (for a total of 11 arms).
This method is identical to the one used in the road selection domain and uses hyperbolic
discounting, and therefore it ignores the receiver’s observation, the fact that the actions are
ordered and the differences between the two domains.

5.3 Agent Design for Sender

In the previous subsections we proposed different methods for modeling human behavior,
which provide an estimation on P (a | h1,t−1, d(v, h1,t−1), v). Based on these models we
constructed two agents, SAP and MDP, for solving the optimization problem given in Equa-
tion 21. In the SAP agent the Hyper with learning human model (which resulted in the best
fit-to-data see Section 5.6) is used for simulating the receiver’s decision making process in
order to search for the weights of the social utility function, which result in the lowest over-
all expected cost for the sender. In the MDP-based agent we simplified the receiver’s model
by using the ES w/o learning model which uses exponential smoothing rather than Hyper-
bolic discounting and does not assume any learning of the comfort level that occurs on the
receiver’s side. These simplifications only slightly decrease the suitability of the model to
the collected data (see Table 6) but make the MDP feasible to solve. Due to the nature of
ES w/o learning model the MDP world states do not require the whole history (h1,t−1), but
instead, allow the calculation of the sender’s model of the receiver’s cost, based solely on
the current state (v), and the aggregated cost functions (ACF and ACN ). This allows us to
redefine the state space as s = (v,ACF , ACN ) and solve Equation 13. In order to solve the
MDP, the state space must be discretized.
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5.4 Experimental Settings

In our experiments we simulate a climate control system of an electrical car that interacts
with a human driver. The sender in the climate control game represents the vehicle advisor
system and the receiver represents the human driver. We set A = {1, 2, ..., 10} as the set of
possible energy consumption levels. The state of the world, v, was drawn uniformly from
V = {v1, v2, v3, v4, v5, v6}. The receiver’s observation o(v), was attributed to the heat
load where 1 corresponds to a very light heat load, 2 to light, 3 to a moderate heat load, 4 to
heavy, 5 very heavy and 6 to an extreme heat load. In our experiments we used the following
function to determine the comfort level:

voa = 10 · 1

1 + e−(a−o) (32)

This function was chosen since it encapsulates the following favorable properties: 1. The
higher the CCS energy consumption the higher the comfort level. 2. The higher the heat
load the lower the comfort level for a fixed CCS energy consumption level. 3. The comfort
level is always between 0 and 10.

We set cS(a, v) = a, i.e. the system cost is simply the energy consumption level.
cR(a, v), the user’s cost function, was captured as a utility function and was set as twice
the comfort level (va) minus the energy consumption level a. More Formally:

cR(a, v) = −2 · va + a (33)

5.5 Experiments

A total of 272 subjects from the USA (recruited via Mechanical Turk), of whom 44.4%
were females and 55.6% were males, participated in the experiments in the climate control
domain. The subjects’ ages ranged from 19 to 67, with a mean age of 32.3 and median of
30. All subjects had to pass a short quiz to assure that they understood the game.

Every round the subjects were told the heat load for the current round and the advice
given by the system. They had to select an energy consumption level for the climate control
system (a number from 1 to 10). Then, they were told their comfort level and their final
score for that round. Every round the subjects were shown their history, containing previous
actions, previous observations, previous advice and the utility they gained. Similarly to the
road selection domain, the subjects were paid 12 cents for participating in the study, and
they received between 5 to 50 cents depending on their performance. The subjects were told
that the probability of a new round was 0.96. They actually played 25 rounds, resulting in
data obtained from 272 · 25 = 6800 rounds.

For the MDP agent, we discretized the state space to hold 40 different ranges for each
hypothetical cost value, the states also held each of the 6 possible states of the world yielding
a total of 40 · 40 · 6 = 9600 states. Each state had 60 transitions; the number of the action
(10) multiplied by the number of states of the world for the next round (6). We used value-
iteration to solve the MDP - which took approximately 12 hours to solve on an Intel i5
2.4Ghz CPU.

Along with all the above strategies, we also considered the behavior of a fully ratio-
nal sender interacting with a fully rational receiver. A fully rational sender would never
advise an energy consumption level which is strictly higher than the energy consumption
level that is best for the receiver. (Assume by contradiction that the sender advises d where
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Table 6 Fit-to-data of different receiver models in the climate control domain (lower is better)

model d.f. N-Log-Like.
True-Cost 1 830.6

LUQ 2 757.0
Hyper w/o learning 7 706.2

ES w/o learning 7 713.0
Hyper with learning 9 677.3

ES with learning 9 684.2
MAB 4 863.8

cS(d, v) > cS(a
′, v) and cR(d, v) < cR(a

′, v), whereby the sender may improve its advice
to a′ resulting in a lower cost in the current round along with reducing the receiver’s cost
which may increase future performance.) Therefore, a fully rational receiver, given the state,
will search for its best action but never set its energy consumption level below the sender’s
advice. However, since the sender is trying to minimize the energy consumption level, it will
always advise the lowest energy consumption level available (1). We will refer to a sender
that always advises the lowest energy consumption level simply as sender.

As base-line we tested two additional strategies: Silent that did not provide any advice
and receiver, that consistently advised the CCS energy consumption level that was most
beneficial to the receiver.

We randomly divided subjects into one of five different groups, each of which received
advice provided by a different strategy method of those listed in Section 5.3 (Silent, Re-
ceiver, Sender, SAP, MDP). The data obtained from the first three groups (Silent, Receiver
and Sender) served to train the human models used by SAP and MDP.

5.6 Results

We begin by describing the fit-to-data of the various models we described in Section 5.2
using the data gathered in the Silent, Receiver and Sender groups.

Table 6 presents the fit-to-data of all the models which we tested using a tenfold cross
validation on learning the parameters while minimizing the negative log-likelihood. As de-
picted in the table, Hyper with learning resulted in the best fit-to-data and was therefore
our preferred method for modeling human behavior. The results presented in Table 6 cannot
be directly compared to those in Table 2 since the domains are drastically different. Still,
intuitively the latter are much lower due to the fact that in the road selection problem the
subjects had to choose between four options while in the climate control domain the sub-
jects had to choose between 10 different climate control energy consumption levels and the
training data set was larger in the CCS domain.

Figure 2 presents the average performance for each of the groups, i.e. the average con-
sumption level of the subjects (the lower the better). SAP significantly (p < 0.001 using the
Mann-Whitney test) outperformed each of the other methods (including the MDP method).

Table 7 presents some additional data on each of the groups, including the number of
subjects, the average comfort level, the average user score and the average acceptance rate
(the percentage of times that the subject followed the exact advice). Unsurprisingly, the
subjects in the receiver group yielded the best score, however, the acceptance rate of both
the MDP method and SAP were very close to that of the subjects following the advice in the
receiver group.



Strategic Advice Provision in Repeated Human-Agent Interactions 23

Fig. 2 Average energy consumption level for each of the treatment groups (the lower the better).

Table 7 Performance results of the interactions with people

method no. of energy comfort user acceptance
subjects consumption level score

Silent 57 5.202 8.744 12.289 –
Receiver 58 5.197 8.933 12.67 36.7%
Sender 47 4.437 7.843 11.264 19.5%
SAP 55 3.952 7.466 11.02 34.5%
MDP 55 4.361 7.996 11.652 33.8%

5.7 Discussion: Partially Informed and Ordered Actions Domains

In this section we introduced the climate control game and described a method for modeling
the human decision making process in such a complex domain. We assimilated this model
into SAP in order to provide advice to the user. The climate control game was designed in
a manner that allowed construction of a complete MDP. Though the MDP method outper-
formed other baseline methods, SAP outperformed all methods including the MDP. It may
seem surprising that SAP, which uses a relatively simple method outperformed the MDP ap-
proach. We explain this by the fact that the user model had to be simplified and discretized
in order to suit the MDP. Furthermore, a human model may never be exact, therefore, over-
relying on a noisy model as the MDP does, may cause the SAP, which only uses the human
model as a guideline, to perform better.

As in the route selection domain, we assume that the sender has perfect knowledge of the
world. In the route selection domain, we assumed that the receiver knows the expected travel
time (and energy consumption) on each of the roads and in the CCS domain we assume that
the receiver knows the expected energy consumption and user comfort level for each of the
user actions. In real life, the agent may be required to collect a vast amount of data in order
to predict these values well. If such data is unavailable in real life, the agent may consider
some form of uncertainty. Previous work [6] which dealt with information disclosure (as
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described in Section 2) was successfully extended in [7] while adding the assumption that
the sender has some noisy observation.

If enough data can be gathered on a specific user, one may consider an improvement to
SAP in which the parameters of the human model can be learned over time. Personalizing
the advice may also be attributed to different cost functions associated with different users
(e.g. some users may care more about energy consumption). However, explicitly changing
SAP weights according to the user’s acceptance rate may cause a user to feel manipulated.

6 Conclusions

In this paper we considered a two player game, in which an agent repeatedly supplies ad-
vice to a human user followed by an action taken by the user which influences both the
agent’s and the user’s costs. We presented the Social agent for Advice Provision (SAP)
which models human behavior combining principles known from behavioral science with
machine learning techniques. We tested the performance of the SAP agent when interacting
with human users in different types of domains. These domains differ in three main aspects.
First, the amount of information a user has about the state of the world may be different
whereby it may exist at some level or may not exist at all. Second, advice can affect the
choice of a user at the global level by having a possible effect on all possible choices or it
may have only a local effect on one action only. Third, the domains were different in the
complexity of their state space making it possible to implement and solve the problem with
an optimal solution or enabled only an approximate solution.

The results from all the experiments that were run in these different domains with differ-
ent mechanisms for modeling the agent and human behaviors show the following consistent
insights:

(1) SAP is successful - it outperforms all other agent implementations tested.
(2) SAP is simple to implement since its strategy for advice provision does not depend

on the history of the interaction with its current user (modeled as hyper). Therefore, it is
possible to deploy it in many common situations, where there is no knowledge about the
number of times that users have used the system in the past.

(3) SAP is practical for real world scenarios since online advice may be provided, which
demands very low CPU usage, i.e., SAP can be computed online with a time complexity of
O(|A|).
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