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ABSTRACT

We address the problem of finding the shortest path between
two points in an unknown real physical environment, where
a traveling agent must move around in the environment to
explore unknown territories. We present the Physical-A*
algorithm (PHA¥*) to solve such a problem. PHA* is a two-
level algorithm in which the upper level is A*, which chooses
the next node to expand and the lower level directs the agent
to that node in order to explore it. The complexity of this
algorithm is measured by the traveling effort of the mov-
ing agent and not by the number of generated nodes as in
classical A*. We present a number of variations of both the
upper level and lower level algorithms and compare them
both experimentally and theoretically. We then generalize
our algorithm to the multi-agent case where a number of
cooperative agents are designed to solve this problem and
show experimental implementation for such a system.
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1. INTRODUCTION

In this paper we address the problem of finding the short-
est path between two points in an unknown real physical
environment in which a traveling agent must travel around
in the environment to explore unknown territories. Problem
spaces of path-finding problems are commonly represented
as graphs, in which each state is a node and edges represent
the possibilities of moving between the nodes. Graphs can
represent different environments, such as roadmaps, games
and communication networks. Moving from one node to an-
other in graphs can be either logical operators manipulating
the current state or an actual agent moving from one node
to the other. The sliding tile puzzle and Rubik’s cube are
examples of the first class while a roadmap is an example of
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the second class. Graphs in search problems can be divided
into the following three classes:

Fully known graphs - If all the nodes and edges of a
graph are stored in the computer then the graph is fully
known. These graphs are usually stored in adjacency matri-
ces or adjacency lists.

Very large graphs - Graphs that due to storage and
time limitations cannot be completely known and fully stored
in any storage device. Many graphs for search problems have
exponential number of nodes. For example, the 24-tile puz-
zle problem has 10%° states and cannot be completely stored
on current machines.

Small, partially known graphs - Graphs that repre-
sent a partially known environment. For example, a travel-
ing agent in an unknown area without a map does not have
full knowledge of the environment, but given enough time he
can fully explore the environment since it is not very large.

For the first class of graphs - the fully-known graphs -
classic algorithms such as Dijkstra’s single source shortest
path algorithm [6] and the Bellman-Ford algorithm [2] can
be used to find the optimal path between any two nodes.
These algorithms assume that each node of the graph can be
accessed by the algorithm in a constant time. This assump-
tion is valid since all the nodes and edges of the graph are
known in advance and are stored in the computer’s memory.
Thus, the time complexity of these algorithms is measured
by the number of nodes and edges that they process during
the course of the search.

For the second class of graphs these algorithm are usually
not efficient since the number of the nodes of the graph is
very large and is usually exponential. Also, only a very small
portion of the graph is stored in memory at any given time.
The A* algorithm [7] is the common algorithm for finding
the shortest paths in large graphs. A* keeps an open list
of nodes that have been generated but not yet expanded
and chooses the most promising node (the best) from it for
expansion. When a node is expanded it is removed from
the open-list and its neighbors are generated and added to
the open list. The search terminates when a goal node is
chosen for expansion or when the open list is empty. The
cost function for A* is f(n) = g(n) + h(n), where g(n) is
the distance traveled from the initial state to n and h(n) is
a heuristic estimation of the cost from node n to the goal.
If k(n) never overestimates the actual cost from node n to
a goal then we say that h(n) is admissible,

When using an admissible heuristic h(n), A* was proved
to be admissible, complete and optimally effective [5]. In
other words, with such a heuristic, A* is guaranteed to al-



ways return the shortest path. Furthermore, any other al-
gorithm claiming to return the optimal path must expand
at least all the nodes that A* expands. We assume that any
expansion cycle is done in a constant time. This is because
it takes a constant time to retrieve a node from the open
list, as well as generating all its neighbors, which is apply-
ing some operators of the environments on the expanded
node. Thus, the time complexity of A* is also measured by
the number of generated nodes.

In this paper we deal with finding the shortest path in the
third type of graph, i.e., small, partially known graphs which
correspond to a real physical environment. With this type of
graphs we can not assume that visiting a node can be done in
a constant time. Many of the nodes and edges of this graph
are not known in advance. Therefore, if we want to expand a
node that was not known in advance, then a traveling agent
must travel to that node in order to explore it and learn
about its neighbors. The cost of the search in this case would
be the cost of moving an agent in a physical environment
and is proportional to the distance traverssed by the agent.
An efficient algorithm would therefore minimize the distance
traveled by the agent until the optimal path is found. Note
that since we deal here with small graphs, we can omit the
computation time that is done by the computer and only
focus on the traveling time of the agent.

Unlike ordinary navigation tasks, the purpose of our agent
is not to get to the goal node as soon as possible, but rather
to explore the graph in such a manner that the shortest path
will be retrieved for future usage. On the other hand, our
problem is not an ordinary exploration problem where the
entire graph should be explored in order to map it. Following
are two examples that demonstrate real world applications
of such a problem:

Example 1: A division of soldiers is ordered to reach a
specific location. The coordinates of the location are known.
Navigating with the entire division through unknown enemy
territory until the goal is reached is unreasonable and ineffi-
cient. It is common in these cases to send scouts to learn and
evaluate the best path for the division to pass through. The
scouts explore the terrain, and return with the best path for
the division to go through in order to reach the destination.

Example 2: Computers on networks can be online or of-
fline at different times, and communication lines may be
busy, degrading their throughput. Therefore, many net-
works cannot be represented as constan, fully known graphs.
Transferring large data like multimedia files between two
computers on a network can often be time consuming since
the data may pass through many communication lines and
computers before reaching its destination. Finding the op-
timal path between these computers will improve the trans-
fer time of large files. Since the network may not be fully
known, finding an optimal path between two nodes requires
some exploration of the network. An efficient and elegant
solution could be to send small packets (operating as scouts)
to explore the graph and return the optimal path. Assum-
ing that a computer in the network is recognized only by its
neighboring computers, then we are faced with the problem
of finding an optimal path in a real physical environment.’

LOur research is on high level abstract graphs and we do not
presume in this work to provide a new applicable routing al-
gorithm. Current routing technologies keep large databases
that store the best paths from node to node, broadcasting
changes in the network and updating the paths if neces-

2. PROBLEM DESCRIPTION

The problem is to find the shortest path in an unknown
undirected graph. The search agent can visit nodes and
move from node to node only through existing edges. Each
node is assigned a 2-dimensional coordinate, representing
its position in the world. Each edge has a weight, which
is the Euclidean distance between the two nodes that are
connected by it. The input to the problem is the coordinates
of the initial and goal nodes. Other nodes are assumed not
to be known in advance. The agent is assumed to be located
at the initial node. The task find the shortest path in the
graph between the initial node and the goal node for future
usage. In order to accomplish that, the agent should travel
in the graph and explore relevant parts of it.

In this work we assume that when a node is visited by the
search agent, the neighboring nodes are discovered as well as
the edges that connect them. This assumption is reasonable,
because in real life, many intersections have signs indicating
the length of the roads that begin there and where they lead
to. Even without road signs, when a scout reaches a location
he can look around and see the neighboring locations and
how far they are from its current location. Generally, as-
suming that the neighboring nodes are discovered instantly
is a common assumption in search problems and algorithms.

Since the goal of the search is to find the best path to the
goal, 1t 1s clear that the agent must expand all nodes ex-
panded by A* because A* is optimally effective [5]. There-
fore, the task of the agent is to visit all the nodes that are
expanded by A* as efficiently as possible, i.e., with minimum
traveling distance. Below we present the PHA* algorithm
for efficient exploration of a graph in order to find the short-
est path by single and multipe traveling agent.

3. RELATED WORK

Much research has been done to guide a mobile agent that
wishes to explore new and unknown environments in order
to learn and map them. Our work is completely different, as
we only want to explore the necessary regions of the graph in
order to retrieve the shortest path between two nodes. Most
of the litreture deal with a physical mobile robot that moves
in a real environment. These works usually focus on helping
the robot to recognize physical objects in its environment.
Instead of mentioning all of these works, we refer the reader
to [3], which has a nice survey of these approaches and has
some of the most state of the art techniques.

Another class of algorithms is navigation algorithms. A
navigation algorithm halts when a path to the goal has been
found. Our problem, on the other hand, is to find the short-
est path to the goal node for future usage. The search con-
tinues until the best path to the goal node has been found.
Next, we describe briefly some of the work done on naviga-
tion in partially known graphs.

Cucka et al. [4] have introduced navigation algorithms for
sensory based environments such as automated robots mov-
ing in a room. They have used Depth First Search (DFS)
based navigation algorithms, choosing the next node that

sary, thus making the graph of the network practically fully
known. Our algorithm may be relevant to future network
architectures and routing technologies, where routers will
not use these databases. This is not far-fetched since the
Internet for example, is rapidly growing. There might be a
time in the future where storing all the paths will not be
feasible.



the agent should go to according to a heuristic function.

Real-Time-A* (RTA¥*) [10] and its more sophisticated ver-
sion, LRTA*, are also algorithms for finding paths between
two nodes in a graph. In RTA* it is assumed that there
is a constraint on the computation time and thus a small
search is performed and a preferred next node is chosen and
traveled to. In RTA* and LRTA* the merit of a node n is
f(n) = g(n) + h(n) as in A*. However, unlike A*, the in-
terpretation of g(n) in RTA* is the actual distance of node
n from the current state of the problem solver, rather than
from the original initial state. These algorithms are different
than ours since they assume that a node can be expanded in
the computer’s memory even without an actual agent physi-
cally visiting this node. Also, these algorithms are designed
for large graphs.

Knight [9] has presented a multi-agent version of RTA*
called MARTA*. ITn MARTA* every agent runs RTA* [10]
independently. Kitamura et. al. [8] have modified MARTA*
by using coordination strategies based on attraction and re-
pulsion for MARTA*. These strategies are employed only
in tie breaking situations. When using repulsion strategy,
the idea is to spread agents such that each agent intends
to maximize its distance from the others. This work has in-
spired the algorithms presented in this research in respect to
the way that we handled our multi-agent mutual decision.

D* [14] is another algorithm that is designed to find the
optimal path for a mobile robot. However, this algorithm
assumes that the entire graph is known in advance but might
change dynamically. D* also starts the search from the goal
state and assumes that neighbors of states are known in
advance. The task of the agent in D* is actually to find
changes in the graph and recompute the path to the goal.

Roadmap-A* [13] is a more sophisticated single agent nav-
igation algorithm, using local-A* algorithm to navigate to
nodes chosen by a higher-level algorithm called A*. [12]. In-
stead of always choosing the best node from the open list,
A*. allows the search agent to choose from a set of good
nodes. This set is called the focal set. The focal is a set
of nodes from the open list that have f-value larger than
the value of the best node by no more than e. Once the
focal nodes are determined, a local search is performed to
navigate the agent to one of these nodes. In Roadmap-A*,
€ is a constant, chosen before the search, which determines
the tradeoff between the local search and A*. For example,
Ag is A* while A is just a local search, choosing at each
iteration any node from the open list.

Note that most of the algorithms listed above are navi-
gation algorithms and thus do not guarantee that the path
they find i1s the optimal one.

4. PHA* FOR A SINGLE AGENT

Nodes in our environments can be divided into explored
and unezplorednodes. Exploring a node means to physically
visiting that node by the agent and learn about its location
and the location of its neighbors. Our new algorithm PHA*
actually activates A* on this environment. However, in or-
der to expand a node by A*, this node must be first explored
by the agent in order to have the relevant data (edges and
neighbors) about that node. PHA* is a 2-level algorithm.
The upper level algorithm is a regular A*, which chooses at
each cycle which node from the open list to expand. The
heuristic function h(n) which is used here is the Euclidean
distance of a straight line between the two nodes in question.

If the node chosen by the upper level algorithm has not yet
been explored by the agent, the lower level algorithm, which
is a navigation algorithm, is then activated to navigate the
agent to that node and explore it. After a node has been
explored by the lower level it is expandable by the upper
level. If the chosen node has already been explored, or if
its neighbors are already known, then it can be expanded
immediately by the upper level. Following is a pseudo-code
for the upper level:

upper-level(open-list){
while(open list is not empty){
target = best node from open-list.
if unexplored(target){
explore(target) by lower level

expand(target)

4.1 Lower leve algorithms

The upper level algorithm (A*) chooses to expand the
node with the smallest f-value in the open list, regardless of
whether the agent has visited that node before or not. If the
chosen node has not yet been visited by the agent, the lower
level instructs the agent to visit that node. We call this node
the target node for the lower level. In order to reach the tar-
get node we must use some sort of a navigation algorithm.
We have implemented a number of navigation algorithms for
the lower level. We first describe simple algorithms which
only use known information on the graph. Then, we present
more efficient algorithms, which also explore the graph dur-
ing the navigation and add new information for the upper
level. We assume that the agent is in the current node and
that it should navigate to the target node.

411 Smplenavigation algorithms

Shortest Known Path: Like every best-first search, A*
spans the nodes which it generates in a tree which is called
the search tree. Some of these nodes have already been ex-
plored by the agent and all of the edges incident with them
are known. This tree, plus the additional edges of the ex-
plored nodes, can be seen as a subgraph that is fully known.
All nodes of this subgraph are connected because they are
all part of the search tree. Using this subgraph, we can cal-
culate the shortest path via known nodes and edges. As
mentioned above, finding the best path in a known graph
can be easily done, so the agent using the shortest known
path simply calculates the best path in the known graph to
the target node and travels along this path.

Air Path: Assuming that the agent is able to move freely
in the environments and is not restricted to the edges of
the graph, we can simply move the agent from the current
node to the target node via the straight line connecting these
nodes. This method may be relevant when the search agents
are highly mobile, but are exploring the environment for a
less mobile agent that is confined to travel only along the
edges. Note that air-path will never be longer than the
shortest known path.

4.1.2 DFSbased Navigation algorithms

In the simple navigation algorithms described above, the



exploration of new nodes is done only by the upper level al-
gorithm. Thus, the lower level does not add any new knowl-
edge of the graph and in that sense is inefficient. Here we
propose more intelligent approaches that try to find a path
to the target node by also looking at unexplored nodes. Two
advantages are added by these approaches. The first one is
that the paths that are currently known to the agent may
be much longer than other paths that have not yet been
explored. It may be more efficient to navigate through un-
known parts of the graph if they seem to lead to a better
path to the target node than the paths currently known in
the graph. A more important advantage is that while navi-
gating through unknown parts of the graph, the agent might
visit new nodes that have not yet been explored and explore
them on the fly. This may save traveling back to those nodes
in the future if they would ever be chosen for expansion by
the upper level algorithm.

These reasons encourage the usage of a DFS-based navi-
gation for the lower level. In a DFS-based navigation algo-
rithm, the search agent moves to a neighboring node that
has not been visited yet in a classical DFS manner. A DFS
search backtracks when reaching a dead end and it keeps on
searching until it reaches the target node. When there is
more than one neighbor, we have to use some sort of heuris-
tic function to evaluate which neighbor is more likely to lead
to the target node faster and visit that node first. We have
experimented with a couple of such DFS-based navigations
which are presented below.

P-DFS - Positional DFS: This DFS-based navigation
algorithm sorts the neighbors according to their Euclidean
distance from the target node, choosing to try the node with
minimum distance to the target node first. This variation
was first introduced in [4].

D-DFS - Directional DFS: This DFS-based navigation
algorithm sorts the neighbors according to the direction of
the edge between them and the current node. It first chooses
the node with the smallest difference in angle between the
line from that node to the current node, and the line from
the current node to the target. In other words, the nodes
are prioritized by the directional difference between them
and the target node, giving priority to nodes that differ the
least. This algorithm was also first introduced by [4].

A*DFS: A*DFS is an improved version of P-DFS. At
each step the agent chooses the neighbor that minimizes the
sum of the distances from the current node to that neighbor
and from that neighbor to the target node. We call it A*DFS
since it uses a cost function which is similar to A*.

Figure 1: The different navigation algorithms.

Figure 1 illustrates the navigation algorithms listed above.
The search agent is currently at node C. The upper level
algorithm chooses to expand node T. Dark nodes are the

nodes that have already been visited by the agent (explored
nodes). These nodes and the edges connecting them are the
tree spanned by the upper level A* search. Since T has
not yet been unexplored, the lower level algorithm will now
navigate to node T. The shortest known path will follow the
path of C, 1, R, 2 and finally T. Note that since node A was
not explored yet, the path from node C to node R through
node A is not known at this point. When the agent uses
one of the DFS-based navigations, it will move to node T
through nodes P,D or A according to the heuristic used: P
for P-DFS, D for D-DFS and A for A*DFS. The benefit of
the DFS algorithms is that they explore new nodes during
the navigation (nodes P, D or L) and they will not need to
go there again if the upper level chooses to expand them.

4.1.3 Improved A*DFS

The DFS-based navigation algorithms explore new nodes
as they traverse the graph, saving future navigation if these
nodes will ever be chosen for expansion by the upper level.
While this behavior is very useful as can be seen in the re-
sults of the experiments below, we can take these approaches
much further.

Suppose that the agent is navigating to a target node.
On its way, it may pass near nodes that have small f-value
without visiting them because they are not on the way to
the target node according to the navigation algorithm. This
behavior is counter-productive, since nodes with small f-
values are likely to be chosen for expansion by the upper
level in the near future. If the agent visits them now, when
they are nearby it may save a lot of future traveling effort.

To incorporate this notion, we introduce Improved A*DFS
(I-A*DF'S). The basic concept is that when navigating to the
target node by the lower level and choosing the next node to
visit, the heuristic will consider a node’s f-value in addition
to its approximate distance to the target node. On its way
to the target node, FA*DFS should tend to visit nodes with
small f-value on one hand, but on the other hand avoid
nodes that are completely off the track of the target node.
TI-A*DFS therefore chooses to go to the neighboring node
of the current node which minimizes the following heuristic
function:

hin) = A*DFS(n) (1 - (1}((:;)62) ifn € OPEN
A*DFS(n) '

otherwise

T is the target node while n is the agent’s neighbor which
is being evaluated by the heuristic function. f(z) is the f-
value of a node x given by the upper level A*. ¢; and e
are constants. If a neighbor n is not in the open list then
I-A*DFS treats it just the same as A*DFS and k(n) is the
same as in A¥DFS . However, if it is on the open list then
we also consider the goodness of its f-value. The target
node has the smallest f-value on the open list and thus has

been chosen for expansion. Therefore, ]fc((:; < 1. If f(n)

is very close to f(T') then the fraction %% is close to 1
and the overall h-value will be decreased compared to the
h-value given to it by simple A*DFS. If however, f(n) is

very large then %% is very close to 0 and the overall h-
value will not be decreased. Thus, the agent might choose
to visit nodes that are in the open list and have good f-
values even if their A¥DFS value is not the best. We have
searched for the constants that will yield the best results,

and our comprehensive experiments have shown that using



this formula with ¢;=0.25 and c¢2=2.5 produces the best
results. Our experiments have shown that using I-A*DFS
instead of the other navigation algorithm listed above yields
better results. More details on generating this formula can
be found in [15].

4.2 Experimental results

Figure 2: Delaunay graph, 15 vertices.

Since we focus on graphs that represent roadmaps, we
have decided to experiment with Delaunay graphs [11]. De-
launay graphs comprise Delaunay triangulations of planar
point patterns that are generated by a Poisson point process
[11] that distributes points at random over a unit square us-
ing a uniform probability density function. Delaunay trian-
gulation of a planar point pattern is constructed by creating
a line segment between each pair of points (u,v), such that
there exists a circle passing through u and v that encloses
no other point. This characteristic simulates roadmaps. To
construct Delaunay graphs for our experiments, we used
the Qhull software package [1], which generates Delaunay
tringulations on a square frame with unit size of 1. Figure
2 illustrates Delaunay graph with 15 nodes.

In graphs built by Delaunay triangulation nodes are con-

nected to the nodes that are near them. However, in roadmaps

which are the object of this research, sometimes nearby loca-
tions do not have roads between them, perhaps due to some
sort of an obstacle like a mountain or a river. To imitate
this characteristic to our graphs we have also experimented
with Delaunay graphs that had some of their edges deleted.
Another possible characteristic of roadmaps, is the existence
of highways, that connect distant locations. To add this ef-
fect to our graphs as well, we have added additional random
edges to the Delaunay graph in some of the experiments.

T T T T T T
Shortest known path ——
80 Air path -----

Search cost

! ! ! ! ! !

0
500 1000 1500 2000 2500 3000 3500 4000
The number of nodes in the graph

Figure 3: Lower level searches.

Figure 3 shows the traveling distance of the agent, using

PHA* with the different lower level algorithms on Delaunay
graphs with 500, 1000, 2000 and 4000 nodes. Every data
point (here and in all of the experiments below) is an av-
erage of 250 different pairs of initial and goal nodes. Note
that the entire graph was generated on a square of size 1X1
and that the average optimal path is about 0.55 units. The
figure clearly shows that it is efficient to use a more complex
algorithm. The I-A*DFS is consistently better than all of
the other algorithms for all sizes of graphs. For a graph of
size 4000, for example, it outperforms the most simple algo-
rithm by more than a factor of 10. By deleting edges from
the graph it becomes more sparse and therefore the agent
will run into dead ends more often. When we have deleted
edges, all the algorithms needed more traveling effort to find
the optimal path. However, the difference between any two
algorithms tends to remain the same and I-A*DFS was the
best for all these graphs. This behavior was stable for all
our experiments in both the single agent and the multi agent
environments.

4.3 Upper leve algorithm: A* with window

A* expands the nodes from the open list in a best-first
order according their f-value. This order is the optimal
order when the complexity of expanding a node is O(1).
However, in real physical environments in which expanding
a node may require an agent to perform costly tasks, it is
not always better to expand the current best node. There
may be nodes that are near the agent, and while they are not
the best nodes in the open list, they are in a high position
in the open list, and therefore will be probably chosen for
expansion by A* in the next few steps. An intelligent agent
might choose to explore them first even though they are not
the best nodes in the open list.

Figure 4: Disadvantage of A*.

Consider Figure 4 where there are two clusters of nodes.
The number inside a node is its f-value. An agent that wants
to visit the nodes in a best-first order (as A* expands them)
will have to travel back and forth from one cluster to the
other. A much better approach would be to explore all the
nodes in one cluster and then to move to the other cluster
thus only traveling once from one cluster to the other.

In order to incorporate this into our algorithm, we gener-
alized A* to what we call Window-A* (WinA*). While A*
always chooses to expand the node with the lowest f-value,
WinA* creates a set (window) of n nodes with the smallest
f-value and chooses one node from that set for expansion.
Our window uses the same principal as A*, of [12] which was
explained above. After constructing the window we have to
choose a node from it for expansion. Our intention is to
minimize the traveling effort of the agent and not necessar-
ily to reduce the number of expanded nodes. Thus, rather
than choosing only these nodes that have a small f-value,



we want to choose nodes that are also close to the location
of the agent. While we tried many combinations, we have
found that the best combination between these two aspects
is to simply multiply them. Therefore, we order the nodes
of the window by the following cost function:

c(n) = f(n) *d(Curr, n)

where f(n) is their f-value and d(Curr,n) is the distance
between n to the current location of the agent. Note that
if a node with a small f-value is not chosen for expansion
then its f-value relative to other nodes in the open list will
tend to decrease as time passes. This is because the f-value
of new generated nodes is monotonically increasing because
we are using a consistent admissible heuristic. Because of
that we do not face the problem of starvation.

The way to combine this modified upper level algorithm
with the lower level algorithm and then to determine the
shortest path is not straight forward and some difficulties
arise due to the fact that we do not expand nodes from
the open-list in a best-first order. A more comprehensive
description of how we have solved these problems can be
found in [15] and is omitted here due to lack of space.

431 Experimental results
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Figure 5: Different windows.

Our experiments have shown that using WinA* as the up-
per level phase of PHA* has led to a significant improvement
in the efficiency of our algorithm. Figure 5 presents the av-
erage distance traveled by the search agent until the optimal
path is found, as a function of the window size. Here we only
used I-A*DFS as the lower level algorithm. The results in
Figure 5 show that using a window of size larger than one
(which is the trivial case of A*) significantly improves the
algorithm performance on all of the different sizes of graphs
we have experimented with. We have also found that the
optimal size of the window tends to be a function of the size
of the graph. The best approximation that we found is that
the optimal window size should be 1/50 of the number of
nodes in the graph. Thus, the best window for graphs of
size 500 was 10 while for graphs of size 2000 it was 40.

At first glance, the improvement of WinA* over simple
A* for the upper level seems somewhat modest and is never
higher than 30%. This is due to the fact that I-A*DFS is
very strong and already explores many nearby nodes. When
we use the other navigating algorithms, then the improve-
ment of WinA* over simple A* is much greater. However,
when we deal with time of real agents and people even this
improvement of 30% is significant and worthwhile.

5. MAPHA*: MULTI-AGENT PHA*

In the following section we generalize the above techniques
to the multi-agent case where a number of such agents coop-
erate in order to find the shortest path. We call the resulting
algorithm Multi-agent physical A* (MAPHA*).

We want to divide the traveling effort between the agents
in the most efficient way possible. We can measure this
efficiency for the multi-agent case using two different mea-
surements. The first is the overall global time needed to
solve the problem. The second is the total amount of fuel
that is consumed by all agents during the search. Sometimes
we might want to minimize the cost of moving the agents,
perhaps considering the fuel cost of mobilizing the agents.
In that case, it may be wise to move some agents while other
agents remain idle. However, if the goal is to find the best
path to the goal as soon as possible, idle agents seem waste-
ful, as they can better utilize their time by further explo-
ration of the graph. In that case, all available agents should
be moving at all times. Note that in the single agent case
these two measurements converge. Below, we introduce two
algorithms for these two aspects namely a fuel-efficient algo-
rithm and a time-efficient algorithm. We assume that each
agent can communicate freely with all of the others agents
and share data at any time. Thus, any knowledge obtained
by one agent is known to all other agents. We therefore
use the model of a centralized supervisor that moves the
agents according to the complete knowledge that was gath-
ered by all the agents. This is a reasonable assumption since
in many cases there is a dispatcher or some sort of central-
ized controller that gathers information from the agents and
instructs them accordingly. Future research may address a
more restrictive communication model, perhaps limiting the
communication range or inducing communication errors.

The main idea of the MAPHA* algorithm that we present
below is very similar to the PHA* for the single agent case.
The upper level chooses which nodes to expand while the
lower level navigates the agents to the required nodes. In the
multi-agent case we only tried our most powerful techniques
for both levels, namely WinA* for the upper level and I-
A*DFS for the lower level. The problem that we deal with
below for MAPHA* is how to assign the different agents to
explore different nodes.

51 MAPHA*: Fud-efficient algorithm

For simplicity, we assume that the amount of fuel con-
sumed by an agent is equal to its traveling distance during
the search. Since the purpose of the algorithm is to mini-
mize the amount of fuel spent by the agents, regardless of
the overall search time, there is no benefit to moving more
than one agent at a time. This is because by moving only
one agent, that agent might gain new knowledge of the graph
that would allow the other agents to make more intelligent
and beneficial moves.

At the beginning, all agents are situated at the initial
state. Then, as in the case of the single agent, the upper
level defines a window of unexplored nodes from the open list
that are potential candidates for expansion. For each pair
(a,n), where a is an agent and n is a node from the win-
dow, we calculate an allocation cost function of ¢(a,n) =
f(n) - dist(a,n), where f(n) is the f-value of node n and
dist(a,n) is the distance from the location of agent a to node
n. We then choose an agent and a target node that min-
imizes that allocation function. In the case of tie-breaking



(such as the beginning of the search where all agents are
at the initial state), we randomly pick one agent from the
relevant candidates. At this stage, the lower level algorithm
navigates the chosen agent to the chosen target node from
the window to explore this node. Here again, during the nav-
igation, more knowledge about the graph is being learned as
many unexplored nodes are visited by the traveling agent.
Only when the chosen agent reaches its target is a new cycle
for the upper and the lower level activated.?

52 MAPHA*: Time-efficient algorithm

The time-efficient algorithm is very similar to the fuel-
efficient algorithm that was presented above, with only one
basic modification. Instead of moving only one agent for ev-
ery upper level cycle, we now move all of the available agents
since we only care about the time spent by the agents and
not the fuel. We cannot use the same allocation function
here as we did for the fuel efficient algorithm. This is be-
cause this allocation formula will cause all agents to always
go to the same node, since all the agents begin at the same
node and move together. Thus, we would like to distribute
the agents to many candidate nodes from the window. Sup-
pose that we have p available agents and ¢ nodes in the win-
dow. We want to distribute these p agents to these ¢ nodes
as efficiently as possible. Since the f-values of neighbouring
nodes are somewhat corolated with each other then nodes
with small f-value are more likely to generate new nodes
with small f-values than nodes with larger f-value. There-
fore, the distribution should be biased in favor of nodes with
small f-value. We have tried many variations for the dis-
tribution function and found that they all perform well as
long as they are biased in favor of nodes with small f-values
i.e., nodes from the window that have a small f-value will
tend to have more agents assigned to them than nodes with
a large f-value. Once the number of agents for each node
has been determined, each agent is assigned to one of the
nodes in such a manner that minimizes the expected travel
distance, i.e., preferably, an agent is assigned to a node with
a small distance from it. Further discussion of these dis-
tribution functions can be found in [15]. Once again, each
agent navigates to its target node with the help of our best
lower level algorithm - I-A*DFS. Another upper level cycle
begins as soon the the first agent reaches its target node.
Note again that computation time of the window and the
distribution and allocation functions can be omitted since
we only care about the traveling time of the agents.

5.3 Experimental results

The experiments performed here were again on Delau-
nay graphs of sizes of 500, 1000, 2000, 4000 and 8000 nodes
where in some experiments some edges were randomly deleted
and new edges were randomly added.

53.1 MAPHA*: Fuel-efficient algorithmresults

The fuel consumption that we report is the total fuel con-
sumed by all the agents. Note again that the entire graph
was generated on a square of size 1X1. Thus, the average
optimal path is about 0.55 units.

2We have also implemented a more complex algorithm such
that whenever a new unexplored node is reached a new up-
per level cycle is activated. Results were not significantly
different and we omit the details of this variation for sim-
plicity. A comprehensive description can be found in [15].
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Figure 6: Fuel consumption, simple Delaunay graph.

Figure 6 presents the results of the fuel-efficient algorithm
on simple Delaunay graphs as a function of the number of
agents used in the search. The figure clearly shows that
as more agents are added, the overall fuel consumption de-
creases until a certain point at which adding more agents
tends to increase the overall consumption. Thus an opti-
mal number of agents exists for each of the graphs. This
phenomena is due to the fact that A* search is usually char-
acterized by a small number of search regions. Therefore,
a small number of agents suffices to cover those regions.
Adding more agents will only waste more fuel. Support for
this explanation can be obtained by the fact that the opti-
mal number of agents increases as the number of nodes in
the graph increases. While the optimal number of agents
for a graph of 500 nodes was 2, this number increases up
to 7 when searching in a graph of size 4000. Larger graphs
have more search regions and thus more agents are needed
to explore them.
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Figure 7: Fuel consumption, sparse graphs.

Figure 7 presents a similar test on Delaunay graphs in
which 60% percent of their edges have been randomly deleted.
Sparse graphs have fewer paths between the nodes, thus
causing the agents to backtrack more often. The overall
cost of the search is increased, as can be seen from a com-
parison of the results from Figures 6 and 7. The overall
fuel consumption in the sparse graphs tends to be larger by
a factor of 1.5 than the consumption on a simple Delaunay
graph. Note that the optimal number of agents also in-
creases on the sparse graph. Here, agents need to backtrack
more often and thus more agents will help. As expected,
adding random edges to the graphs causes the opposite ef-
fect; that is, less fuel was consumed and the optimal number
of agents was reduced. Since there are new edges that may



connect between nodes, many “shortcuts” are generated and
the search can be done at a faster speed and with a smaller
number of agents.

5.3.2 MAPHA*: Time-efficient algorithmresults

Here we report the results of the Time-efficient algorithm.
The overall search time is actually the distance that any one
of the agents has traveled until the best path to the goal node
is found since all agents are always moving.
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Figure 8: Time consumption, Delaunay graphs.

Figure 8 presents the results of the time-efficient algorithm
on Delaunay graphs as a function of the number of agents
used in the search. Note that the search time can never be
shorter than the time that it takes to travel through the
best path to the goal. As the results show, adding more
agents is always efficient since we only measure the overall
time that has elapsed until the goal is found. What makes
our algorithm interesting and efficient is the fact that as we
add more agents, the search time asymptotically converges
to the size of the shortest path. This means that with many
agents, one of them actually travels in that shortest path
and almost never deviates from it. For example, the average
size of the best path in graphs of size 500 is approximately
0.55 and indeed with many agents the overall time tends to
converge to that number. With 14 agents the overall search
time was 0.7.

6. CONCLUSION AND FUTURE WORK

We have addressed the problem of finding the best path to
a goal node in unknown graphs that represents physical envi-
ronments. We have presented a two-level algorithm, PHA*,
for these environments for a single search agent, as well as
MAPHA* for multi-agents. We have experimented on sev-
eral variations of Delaunay graphs, with up to 8000 nodes.
The most complex single agent algorithm yielded much bet-
ter results than other trivial implementations of A*. The
results on the fuel-efficient algorithm have shown that using
more agents is beneficial only to some extent. This is be-
cause all of the agents are initially positioned at the same
location and they all consume fuel for all their moves. For
the same reason the benefit of using the optimal number of
agents as apposed to only one agent is modest. The results
of the time-efficient algorithm are very encouraging since the
search time quickly converges to the optimum as the number
of search agents used in the search increases.

This work can be taken further in the following directions:

1. We have assumed that when an agent reaches a node,
it can learn the locations of all of its neighbors. In many
domains this model is not valid and the location of a node
is known only when an agent actually visits it. Further re-
search should be done in order to implement our algorithms
in such a model.

2. We have assumed a centralized model where all the
agents share their knowledge at all times. Future work can
assume other communications paradigms.

3. In many cases, both time and fuel are important. Fur-
ther work may find a way to combine the cost of both time
and fuel. 4. We have used traveling agents to solve the
shortest path problem. A similar mechanism might be used
to solve other known graph problems.
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