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Abstract. We address the issue of manipulating games through communication. In the

specific setting we consider (a variation of Boolean games), we assume there is some set of en-

vironment variables, the values of which are not directly accessible to players; the players have

their own beliefs about these variables, and make decisions about what actions to perform

based on these beliefs. The communication we consider takes the form of (truthful) announce-

ments about the values of some environment variables; the effect of an announcement is the

modification of the beliefs of the players who hear the announcement so that they accurately

reflect the values of the announced variables. By choosing announcements appropriately, it is

possible to perturb the game away from certain outcomes and towards others. We specifically

focus on the issue of stabilisation: making announcements that transform a game from having

no stable states to one that has stable configurations.
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1. Introduction

In a Boolean game, [16, 3, 8, 9], each player has a set of Boolean variables
under its unique control and is at liberty to assign values to these variables as
it chooses. In addition, each player has a goal that it desires to be achieved: the
goal is represented as a Boolean formula, which may contain variables under the
control of other players. Boolean games have a strategic character because the
achievement of one player’s goal may depend on the choices of other players.
In this work we consider the players to be agents giving the Boolean game an
aspect of a multi-agent system. Actually, as we are interested in dealing with
communication, we use a special variant of Boolean games: in addition to the
variables under the control of the agents, there is an additional set of envi-
ronment variables. An external principal knows the values of the environment
variables and may announce (truthful) information about them to the agents.
The agents then revise their beliefs based on the announcement, and will de-
cide what actions to perform based on their beliefs. It follows that, by choosing
announcements appropriately, the principal can perturb the game away from
some possible outcomes and towards others.

We focus on the issue of stabilisation: making announcements that trans-
form a game from having no stable states to one that has stable configurations.
Stability in this sense is close to the notion of Nash equilibrium in the game-
theoretic sense [20]: it means that no agent has any incentive to unilaterally
change its choice. However, the difference between our setting and the conven-
tional notion of Nash equilibrium is that an agent’s perception of the utility
it would obtain from an outcome is dependent on its own beliefs. By chang-
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ing these beliefs through truthful announcements, we can modify the rational
outcomes of the game.

The rationale for focussing on stabilisation is that instability will, in general,
be undesirable: apart from anything else, it makes behaviour harder to predict
and understand, and introduces the possibility of agents wasting effort by con-
tinually modifying their behaviour. It makes sense, therefore, to consider the
problem of stabilising multi-agent system behaviour: of modifying an unstable
system so that it has equilibrium states, and even further, of modifying the sys-
tem so that it has socially desirable equilibria. For example, we might consider
the principal perturbing a game to ensure an equilibrium that maximises the
number of individual agent goals achieved.

Although the model of communication and rational action we consider in
the present paper is based on the abstract setting of Boolean games, the is-
sues we investigate using this model – stabilisation, and, more generally, the
management of multi-agent systems – are, we believe, of central importance.
This is because there is a fundamental difference between a distributed system
in which all components are designed and implemented by a single designer,
and which can therefore be designed to act in the furtherance of the designer’s
objectives, and multi-agent systems, in which individual agents will selfishly
pursue their own goals. By providing a formal analysis of how communication
can be used to perturb the rational actions of agents within a system towards
certain outcomes, we provide a foundation upon which future, richer models
can be built and investigated.

The plan of the rest of the paper is as follows. In Section 2 we present the
basic model that we use for most of the paper. This model allows for complex
goals but only simple conjunctive beliefs for the agents. Section 2.2 defines our
version of Nash stability. Section 3 introduces simple conjunctive announce-
ments. The major results of the paper in Section 3.2 deal with announcements
that stabilise games. Section 3.3 considers measures of optimality for announce-
ments. We then consider extensions to the basic model in Section 4: for ex-
ample, to allow richer announcements (arbitrary truthful statements about the
environment variables), and richer models of belief. Finally, Section 5 considers
related work and gives conclusions, including possibilities for further work.

2. The Basic Model

In this section we introduce the basic model of Boolean games that we will work
with for most of the paper and define notions of stability for it.

2.1. Components of the Basic Model

Our model is a variation of previous models of Boolean games [16, 3, 8, 9]. The
main difference is the addition of a set of environment variables whose values
are fixed and cannot be changed by the agents. The agents have beliefs about
the environment variables that may be incorrect, and base their decisions about
their choices on their beliefs.

Propositional Logic: Let B = {>,⊥} be the set of Boolean truth values,
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with “>” being truth and “⊥” being falsity. We will abuse notation a little
by using > and ⊥ to denote both the syntactic constants for truth and falsity
respectively, as well as their semantic counterparts. Let Φ = {p, q , . . .} be a
(finite, fixed, non-empty) vocabulary of Boolean variables, and let L denote the
set of (well-formed) formulae of propositional logic over Φ, constructed using the
conventional Boolean operators (“∧”, “∨”, “→”, “↔”, and “¬”), as well as the
truth constants “>” and “⊥”. Where ϕ ∈ L, we let vars(ϕ) denote the (possibly
empty) set of Boolean variables occurring in ϕ (e.g., vars(p ∧ q → p) = {p, q}).

We will also use a special subset of L. A simple conjunctive formula has
the form `1∧· · ·∧ `k , where each `i is a literal, that is, a Boolean variable or its
negation. We do not permit both a Boolean variable and its negation to occur in
a simple conjunctive formula; hence contradictions are excluded. Such a simple
conjunctive formula whose variables are p1, . . . , pk can also be represented as
a function f : {p1, . . . , pk} → B, with f (`i) = > if `i = pi and f (`i) = ⊥ if
`i = ¬pi and we will usually use the latter formulation. A valuation is a total
function v : Φ → B, assigning truth or falsity to every Boolean variable. We
write v |= ϕ to mean that the propositional formula ϕ is true under, or satisfied
by, valuation v , where the satisfaction relation “|=” is defined in the standard
way. Let V denote the set of all valuations over Φ. We write |= ϕ to mean that
ϕ is a tautology. We denote the fact that |= ϕ↔ ψ by ϕ ≡ ψ.

Agents and Variables: The games we consider are populated by a set Ag =
{1, . . . ,n} of agents – the players of the game. Each agent is assumed to have
a goal, characterised by an L-formula: we write γi to denote the goal of agent
i ∈ Ag . Agents i ∈ Ag each control a (possibly empty) subset Φi ⊆ Φ. By
“control”, we mean that i has the unique ability within the game to set the
value (either > or ⊥) of each variable p ∈ Φi . We will require that Φi ∩Φj = ∅
for i 6= j , but in contrast with other existing models of Boolean games [16, 3],
we do not require that the sets Φ1, . . . ,Φn form a partition of Φ. Thus, we
allow for the possibility that some variables are not under the control of any
players in the game. Let ΦE = Φ \ (Φ1 ∪ · · · ∪Φn) be the variables that are not
under any agent’s control; we call these the environment variables. The values
of these variables are determined external to the game. We let vE : ΦE → B
be the function that gives the actual value of the environment variables. When
playing a Boolean game, the primary aim of an agent i will be to choose an
assignment of values for the variables Φi under its control so as to satisfy its goal
γi . The difficulty is that γi may contain variables controlled by other agents
j 6= i , who will also be trying to choose values for their variables Φj so as to get
their goals satisfied; and their goals in turn may be dependent on the variables
Φi . In addition, goal formulae may contain environment variables ΦE , beyond
the control of any agent in the system. A choice for agent i ∈ Ag is a function
vi : Φi → B, i.e., an allocation of truth or falsity to all the variables under i ’s
control. Let Vi denote the set of choices for agent i , and let VE denote the set
of all valuations vE : ΦE → B for the set of environment variables ΦE .

Beliefs: Players in our games are assumed to have possibly incorrect beliefs
about the values of the environment variables ΦE . For the moment, we will
assume that the belief a player i has about ΦE is represented as a simple



4 Grant, Kraus et al.

conjunctive formula over ΦE , which must include all the variables in ΦE . For
example, suppose that ΦE = {p, q}. Then there are four possible beliefs for a
player i :

• p ∧ q
player i believes both that p and q are true;

• p ∧ ¬q
player i believes that p is true and q is false;

• ¬p ∧ q
player i believes that p is false and q is true; and

• ¬p ∧ ¬q
player i believes that both p and q are false.

Thus, in our simple model of belief, formulae such as p ∨ q and p → q are not
allowed.

We will model the beliefs of an agent i ∈ Ag via the corresponding function
βi : ΦE → B. Thus, βi(p) = b indicates agent i ’s belief that p ∈ ΦE has the
value b (where b ∈ B).

This is, of course, a very simple model of belief, and many alternative richer
models of belief could be used instead. Later in this paper, we will consider
some such richer models of belief.

Outcomes: An outcome is a collection of choices, one for each agent. Formally,
an outcome is a tuple (v1, . . . , vn) ∈ V1 × · · · × Vn . When taken together with
the valuation vE for the environment variables, an outcome uniquely defines
an overall valuation for all the variables in Φ. We write (v1, . . . , vn , vE ) |= ϕ
to mean that the valuation defined by the outcome (v1, . . . , vn) taken together
with vE satisfies formula ϕ ∈ L. A belief function βi together with an out-
come (v1, . . . , vn) also defines a unique valuation for Φ, and we will write
(v1, . . . , vn , βi) to mean the valuation obtained from the choices v1, . . . , vn to-
gether with the values for the variables in ΦE defined by βi . Observe that we
could have (v1, . . . , vn , βi) |= γi (agent i believes that its goal γi is achieved
by outcome (v1, . . . , vn)) while (v1, . . . , vn , vE ) 6|= γi (in fact, it is not). Let
succ(v1, . . . , vn , vE ) denote the set of agents whose goals are actually achieved
by outcome (v1, . . . , vn), that is:

succ(v1, . . . , vn , vE ) = {i ∈ Ag | (v1, . . . , vn , vE ) |= γi}.

Costs: Intuitively, the actions available to agents correspond to setting vari-
ables to true or false. We assume that these actions have costs, defined by a
cost function c : Φ× B→ R≥, so that c(p, b) is the marginal cost of assigning
variable p ∈ Φ the value b ∈ B (where R≥ = {x ∈ R | x ≥ 0}). Note that if
an agent has multiple ways of getting its goal achieved, then it will prefer to
choose one that minimises costs; and if an agent cannot get its goal achieved,
then it simply chooses to minimise costs. However, cost reduction is a secondary
consideration: an agent’s primary concern is goal achievement.

To keep the model simple, we will assume that the cost of setting a variable
to ⊥ is 0; this makes sense if we think of Boolean variables as actions, and
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cost as the corresponding marginal cost of performing a particular action. In
this case setting a variable to be > means performing an action, and hence
incurring the corresponding marginal cost, while setting it to ⊥ corresponds to
doing nothing, and hence incurring no cost.

Boolean Games: A Boolean game, G , is a (3n + 4)-tuple:

G = 〈Ag ,Φ,Φ1, . . . ,Φn︸ ︷︷ ︸
controlled
variables

γ1, . . . , γn︸ ︷︷ ︸
goals

, β1, . . . , βn︸ ︷︷ ︸
beliefs

, c, vE 〉,

where:

• Ag = {1, . . . ,n} is a set of agents – the players of the game;

• Φ = {p, q , . . .} is the (finite) set of Boolean variables;

• Φi ⊆ Φ is the set of Boolean variables under the unique control of player
i ∈ Ag ;

• γi ∈ L is the goal of agent i ∈ Ag ;

• βi represents the beliefs of agent i ∈ Ag ;

• c : Φ× B→ R≥ is the cost function; and

• vE : ΦE → B is the (fixed) valuation function for the environment variables.

For now, as we are dealing with Boolean games with simple conjunctive beliefs,
it is convenient to represent βi as a belief function βi : ΦE → B. However, it
should be understood that this function is the representation of a simple con-
junctive formula over ΦE ; since these two representations are directly equivalent
for simple conjunctive formulae, in what follows we will use whichever repre-
sentation is more convenient for the task at hand.

2.2. Stability

Now we are ready to define the notion of equilibrium that we use throughout
the paper. We call it Nash stability as it is a variation of a concept with the
same name that was defined in [13]. Nash stability is, in turn, derived from
the well-known notion of pure strategy Nash equilibrium from non-cooperative
game theory [20].

Subjective Utility: We now introduce a model of utility for our games. While
we find it convenient to define numeric utilities, it should be clearly understood
that utility is not assumed to be transferable: it is simply a numeric way of
capturing an agent’s preferences. The basic idea is that an agent will strictly
prefer all outcomes in which it gets its goal achieved over all outcomes where
it does not; and secondarily, will prefer to minimise costs. Utility functions as
we define them directly capture such preferences.

When an agent makes a choice, it intuitively makes a calculation of the util-
ity that it might obtain from that choice. However, this calculation is subjective,
in the sense that the agent’s beliefs may be wrong, and hence its judgement
about the utility it will obtain from making a choice may be wrong. We let
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ui(v1, . . . , vn) denote the utility that agent i believes it would obtain if agent
j (1 ≤ j ≤ n) made choice vj . We define it formally as follows. First, we let
ci(vi) denote the marginal cost to agent i of choice vi ∈ Vi :

ci(vi) =
∑
p∈Φi

c(p, vi(p))

The highest possible cost for agent i , which we write as µi , occurs when agent
i sets all its variables to >. We then define the subjective utility that i would
obtain from choices v1, . . . , vn as the negative of the cost to the agent if its goal
is not satisfied; otherwise it is the positive difference (+1) between the highest
possible cost and the actual cost.

ui(v1, . . . , vn) =

{
1 + µi − ci(vi) if (v1, . . . , vn , βi) |= γi
−ci(vi) otherwise.

Sometimes we will want to be explicit about the beliefs an agent is using when
computing subjective utility, in which case we will write ui(v1, . . . , vn , βi) to
mean the utility agent i will get assuming the belief function βi .

Thus a player receives positive utility if its goal is satisfied, and negative
utility if its goal is not satisfied. In order to maximize utility, each agent will
try to satisfy its goal by adopting a valuation that does so with minimal cost;
if it cannot satisfy its goal, it adopts the valuation of minimal cost, namely
setting all its variables to ⊥. It is important to note that in this definition the
value of an agent’s utility is critically dependent on its beliefs βi .

Nash Stability: The basic idea of Nash stability, as with (pure strategy)
Nash equilibrium [20], is that an outcome is said to be Nash stable if no agent
within it would prefer to make a different choice, assuming every other agent
stays with its choice. However, the difference between Nash stability and the
conventional notion of Nash equilibrium is that an agent i in our setting will
compute its utility – and hence make its choice – based on its beliefs βi . We
say an outcome (v1, . . . , vi , . . . , vn) is individually stable for agent i if 6 ∃v ′i ∈ Vi
such that ui(v1, . . . , v

′
i , . . . , vn) > ui(v1, . . . , vi , . . . , vn). We then say that an

outcome (v1, . . . , vn) is Nash stable if (v1, . . . , vn) is individually stable for all
players i ∈ Ag . We denote the Nash stable outcomes of a game G by NE (G).
As with pure strategy Nash equilibria, it may be that NE (G) = ∅; in this
case we call G unstable. If a game is unstable, then for every possible outcome
(v1, . . . , vn) of the game, some player would do better to make an alternative
choice. We say that such a player has a beneficial deviation.

Dependencies: Recall now our earlier statement that the achievement of an
agent’s goal may depend on the actions of other agents. We will now make this
idea formal, in the notion of a dependency graph [4]. A dependency graph is
a digraph in which the vertex set is the set of players of a game, and where
an edge from one player to another indicates that the utility that the source
player gets may depend on the choices of the destination player. Formally, a
dependency graph for a Boolean game G is a digraph DG = (V ,E ), with vertex
set V = Ag and edge set E ⊆ Ag ×Ag defined as follows:
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(i , j ) ∈ E
iff
∃(v1, . . . , vj , . . . , vn) ∈ V1 × · · · × Vj × · · · × Vn and v ′j ∈ Vj such that
ui(v1, . . . , vj , . . . , vn) 6= ui(v1, . . . , v

′
j , . . . , vn).

In words, (i , j ) ∈ E if there is some circumstance under which a choice made
by agent j can affect the utility obtained by agent i . Where DG = (V ,E ), we
will subsequently abuse notation and write (i , j ) ∈ DG to mean (i , j ) ∈ E .

Proposition 6 of [4] gives a sufficient condition for the existence of a Nash
stable outcome: namely, if the irreflexive portion of DG is acyclic then NE (G) 6=
∅. As was shown in [4] this condition is not necessary; for instance, if two agents
have the same goal, a cycle between them is irrelevant. As we now show, in
general, the problem of checking for acyclicity is computationally complex.

Proposition 1. Given a game G and agents i , j in G, the problem of deter-
mining whether (i , j ) ∈ DG is np-complete.

Proof. Membership is by “guess-and-check”. For hardness, we reduce sat.
Let ϕ be a sat instance. Create two agents, 1 and 2, let γ1 = ϕ∧ z , where z is
a new variable, and let γ2 = >. Let Φ1 = vars(ϕ) and Φ2 = {z}. All costs are
0. We now ask whether 1 is dependent on 2; we claim the answer is “yes” iff ϕ
is satisfiable:

(→) Observe that the only way player 1 could obtain different utilities from two
outcomes varying only in the value of z (the variable under the control of
2) is if ϕ∧ z were true in one outcome and false in the other. The outcome
satisfying ϕ ∧ z is then witness to the satisfiability of ϕ.

(←) If agent 1 gets the same utility for all choices as well as for either choice for
z then ϕ ∧ z is not satisfiable, hence ϕ is not satisfiable.

Next we show that if not just the beliefs of the agents but also their goals
are in simple conjunctive form, the computational cost is reduced.

Proposition 2. In a game where all players have simple conjunctive beliefs
and goals, we have (i , j ) ∈ DG iff vars(γi) ∩ Φj 6= ∅. It follows that, for a
game G with simple conjunctive beliefs and goals, computing DG can be done
in polynomial time: we simply have to check for each pair of agents {i , j} ⊆
Ag (i 6= j ) whether or not vars(γi) ∩ Φj 6= ∅, which is trivially computed in
polynomial time.

To illustrate the ideas we have introduced above, we now present a small
(and slightly playful) example.

Example 1. Consider the following scenario:

Bob likes Alice, and he believes Alice likes him. Although Bob doesn’t
like going to the pub usually, he would want to be there if Alice likes him
and Alice was there also. Alice likes going to the pub, but in fact she
doesn’t like Bob: she wants to go to the pub only if Bob isn’t there.
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We formalise this example in our setting as follows. The atomic propositions
are:

ALB – Alice likes Bob;

PA – Alice goes to the pub, and

PB – Bob goes to the pub.

We have:

ΦA = {PA} (Alice can determine whether she goes to the pub);

ΦB = {PB} (Bob can determine whether he goes to the pub); and

ΦE = {ALB} (the environment determines whether Alice likes Bob).

We also have vE (ALB) = ⊥ (in fact, Alice does not like Bob), and βA(ALB) =
⊥ (Alice believes she does not like Bob), but βB (ALB) = > (Bob believes Alice
likes him – poor deluded Bob!).

For both agents i ∈ {A,B} we have c(Pi ,>) = 10 (take this to be the cost
of a couple of drinks in the pub), while c(Pi ,⊥) = 0 (staying at home costs
nothing).

Alice’s goal is simply to avoid Bob:

γA = ¬(PA↔ PB).

However, Bob’s goal is that Alice likes him, and is in the pub with him:

γB = ALB ∧ (PB ↔ PA).

Now, it is easy to see that the game has no Nash stable state:

• If PA = PB = ⊥, then Alice would benefit by setting PA = >, thereby
achieving her goal.

• If PA = ⊥ and PB = >, then Alice gets her goal achieved but Bob does not;
he would do better to set PB = ⊥.

• If PA = > and PB = ⊥, then, again Alice gets her goal achieved but Bob
does not; he would do better to set PB = >.

• Finally, if PA = > and PB = >, then Bob gets his goal achieved but Alice
does not; she would do better to set PA = ⊥.

The irreflexive portion of the dependency graph for this example is shown in
Figure 1: observe that both players are dependent upon each other, and so we
have a cycle in the dependency graph.

3. Simple Conjunctive Announcements

Let us now return to the motivation from the introduction of the paper: namely,
that a principal makes announcements about the values of the environment vari-
ables in order to modify the behaviour of agents within the system. We now
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A B

Figure 1. The dependency graph for Example 1.

begin our investigation of this issue by assuming that announcements take the
form of simple conjunctions; we will call them simple conjunctive announce-
ments. We start by distinguishing between two types of announcements. This
is followed by a study of the issue of stabilizing a Boolean game by such an an-
nouncement. Finally, we consider the problem of finding an optimal stabilizing
announcement.

3.1. Types of Announcements

We will consider two types of announcements: uniform and nonuniform. By
uniform we mean that the announcements are the same for all the agents.
Since an announcement (in this section) has simple conjunctive form, its effect
is to reveal the truth values of some, possibly all, environment variables. As
the agent beliefs for now are also in simple conjunctive form, the effect of
an announcement is for the agents to replace false beliefs by true beliefs. We
emphasise that announcements must be truthful : the principal cannot lie about
the values of the variables.

Uniform Announcements: Formally, we model a uniform announcement as
a subset α ⊆ ΦE (α 6= ∅), with the intended meaning that, if the principal
makes this announcement, then the value of every variable p ∈ α becomes
common knowledge within the game. The effect of such an announcement α
on an agent’s belief function βi : ΦE → B is to transform it to a new belief
function βi ⊕ α, defined as follows:

βi ⊕ α(p) =

{
vE (p) if p ∈ α
βi(p) otherwise.

With a slight abuse of notation, where G is a game and α is a possible an-
nouncement in G , we will write G ⊕α to denote the game obtained from G by
replacing every belief function βi in G with the belief function βi ⊕α. Observe
that, given a game G and announcement α from G , computing G ⊕ α can be
done in polynomial time.

Notice that we can view a uniform announcement α either set theoretically
(as a subset of ΦE , the idea being that the value of every member of α is
revealed), or else as a conjunctive formula: ∧

{p∈α|vE (p)=>}

p

 ∧
 ∧
{q∈α|vE (p)=⊥}

¬q
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We will switch between these two views as we find it convenient.

Nonuniform Announcements: We model nonuniform announcements as
functions α : Ag → 2ΦE , with the intended interpretation that after making an
announcement α, an agent i comes to know the value of the environment vari-
ables α(i). Thus, with a non-uniform announcement, the principal can reveal
different pieces of information to different agents. As with uniform announce-
ments, the effect of a nonuniform announcement α on an agent is to transform
its belief function βi to a new function βi ⊕ α, which in this case is defined as
follows:

βi ⊕ α(p) =

{
vE (p) if p ∈ α(i)
βi(p) otherwise.

The size of a nonuniform announcement α, is denoted (with a small abuse of
notation) by |α| and is defined as: |α| =

∑
i∈Ag |α(i)|.

Recall that a key concern of our work is announcements that stabilise games.
So, we return to Example 1 where the game had no Nash stable state.

Example 2. Suppose that Alice’s friend, the principal, announces {ALB} to
Bob; that is, she tells Bob that Alice does not in fact like him. Notice that
announcing {ALB} to Bob means revealing the value of the environment vari-
able ALB, which can also be viewed as announcing to Bob the formula ¬ALB.
After the announcement Bob updates his belief accordingly. At this point, Bob
no longer has any possibility to achieve his goal ALB ∧ (PB ↔ PA), and his
optimal choice is to minimise costs by not going to the pub. Given that Bob
stays at home, Alices’s optimal choice is to go to the pub. The outcome where
PA = >, PB = ⊥ (Alice goes to the pub but Bob stays at home) is Nash sta-
ble. Thus, announcing α = {ALB} to Bob only is a nonuniform stabilizing
announcement. As Alice already believes α, the same effect could have been
achieved by the uniform announcement in which {ALB} was announced to both
Bob and Alice.

3.2. Simple Conjunctive Announcements that Stabilize Games

The last example showed a situation where an announcement (either uniform
or nonuniform) changed a Boolean game from one without a Nash stable state
to one that is Nash stable. In this subsection we will start by considering
uniform announcements. We will say that an announcement α is stabilising if
NE (G ⊕ α) 6= ∅ (we do not require that NE (G) = ∅). Let S(G) be the set of
uniform simple conjunctive stabilising announcements for G :

S(G) = {α ⊆ ΦE | NE (G ⊕ α) 6= ∅}.

From the point of view of the principal, the obvious decision problem relating
to stabilisation is as follows:

Given a game G, does there exist some announcement α over G that
stabilises G, i.e., is it the case that S(G) 6= ∅?

We have the following:
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Proposition 3. The problem of checking whether a game G can be stabilised
by a uniform simple conjunctive announcement, (i.e., whether S(G) 6= ∅), is
Σp

2-complete; this holds even if all costs are 0.

Proof. Membership is by the following algorithm: Guess an α ⊆ ΦE and an
outcome (v1, . . . , vn), and verify that (v1, . . . , vn) is a Nash stable outcome of
G ⊕ α. Guessing can clearly be done in non-deterministic polynomial time,
and verification is a co-np computation. For hardness, we reduce the problem
of checking whether a Boolean game as defined in [3] has a Nash equilibrium;
this problem was shown to be Σp

2 -complete in [3]. Given a conventional Boolean
game, we map the agents, goals, and controlled variables to our setting directly;
we then create one new Boolean variable, call it z , and set ΦE = {z}. Let
vE (z ) = > and βi(z ) = > for all agents i . Now, we claim that the system can be
stabilised iff the original game has a Nash equilibrium; the only announcement
that can be made is α = {z}, which does not change the system in any way; the
Nash stable states of the game G ⊕ α will thus be exactly the Nash equilibria
of the original game.

Another obvious question is what properties announcements have. While
this is not the primary subject of the present paper, it is nevertheless worth
considering. We have the following:

Proposition 4. Stability is not monotonic through announcements. That is,
there exist games G and announcements α1, α2 over G such that G ⊕ α1 is
stable but (G ⊕ α1)⊕ α2 is not.

Proof. Consider the following example (a variant of the Alice and Bob exam-
ple introduced earlier). Let G be the game with:

• Ag = {1, 2};

• Φ = {p, q , r , s};

• Φ1 = {p};

• Φ2 = {q};

• ΦE = {r , s};

• β1(r) = >;

• β1(s) = ⊥;

• β2(r) = ⊥;

• β2(s) = >;

• vE (r) = ⊥;

• vE (s) = > (so agent 2’s belief is correct);

• γ1 = (r ∨ s) ∧ (p ↔ q);

• γ2 = ¬(p ↔ q); and

• c(p,>) = c(q ,>) = 1.
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Now, G is unstable, by a similar argument to Example 1. Announcing ¬r will
stabilise the system, again by a similar argument to Example 1. However, it is
easy to see that (G ⊕{¬r})⊕{s} is unstable: intuitively, in (G ⊕{¬r}), agent
1 does not believe that it can get its goal achieved, because it believes both r
and s are false, so it prefers to minimise costs by setting p = ⊥, leaving agent
2 free to get its goal achieved by setting q = >. However, in (G ⊕ {r})⊕ {s},
because agent 1 now believes again, as in the case of G , that there is some
possibility to get its goal achieved, the system is unstable.

Let us say an announcement α ⊆ Φ is relevant for an agent i if the announce-
ment refers to variables that occur in the goal of i , that is, if α ∩ vars(γi) 6= ∅.
Call α irrelevant if it is not relevant for any agent. Clearly, if α is irrelevant
w.r.t. G then NE (G) = NE (G ⊕ α).

Recall now our earlier statement about the dependency graph DG for a
game and the condition that if the irreflexive portion of DG is acyclic, then
NE (G) 6= ∅. Consider a game G where NE (G) = ∅. By this condition the
irreflexive portion of DG must have a cycle. Now, suppose the principal can
make an announcement that breaks all such cycles; such an announcement
α will stabilise the system and must be such that the irreflexive portion of
DG⊕α is acyclic. This suggests an approach to stabilizing systems through
announcements: try to find an announcement α such that the irreflexive portion
of DG⊕α is acyclic.

We illustrate this situation with the following example.

Example 3. Consider the following game G:

• Ag = {1, 2, 3};
• Φ = {p1, p2, p3, q1, q2, q3};
• Φi = {pi} (hence the q’s are the environment variables);

• γ1 = p1 ∨ p2 ∨ q1;

• γ2 = p2 ∨ p3 ∨ q2;

• γ3 = p3 ∨ p1 ∨ q3;

• c(pi ,>) = 1 for all i ∈ {1, 2, 3};
• vE (qi) = > for all i ∈ {1, 2, 3}; and finally,

• βi(qj ) = ⊥ for all i , j ∈ {1, 2, 3}.

The system is unstable: for example, the outcome in which all variables take
the value ⊥ is unstable because agent 1 could benefit by setting p1 = >. The
irreflexive portion of the dependency graph for this example is illustrated in
Figure 2(a).

Observe, however, that any of the following announcements would serve to
stabilise the system:

• α1 = {q1};
• α2 = {q2}; or

• α3 = {q3}.
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Figure 2. The dependency graph for Example 3. Part (a) shows the original dependency
graph; part (b) shows the graph after announcement α1, while parts (c) and (d) show the
dependency graph after announcements α2 and α3 respectively.

For example, if announcement α1 is made, then agent 1 will believe its goal will
be achieved, and so only needs to minimise costs – it need not be concerned with
what agent 2 does with p2, so it sets p1 = ⊥. In this case, agent 3’s best response
is setting p3 = > (thereby achieving its goal), and agent 2 can set p2 = ⊥,
minimising its cost. This outcome is stable. Identical arguments show that α2

or α3 would also stabilise the system. Note how in Figure 2(a) the irreflexive
portion of the original DG contains the edges (1, 2), (2, 3), (3, 1) creating a cycle.
The announcement α1 breaks the dependency and hence removes the edge (1, 2)
making the irreflexive portion of the new digraph acyclic. Similarly, α2 removes
edge (2, 3) and α3 removes edge (3, 1). Hence, if at least one of the environment
variables is true, the principal can stabilise the system.

Recall from Proposition 2 that for games with goals in simple conjunctive
form, we can easily identify the dependencies between agents. The next question
is how to break these dependencies. As in Example 3, the basic idea is to modify
an agent’s beliefs so that it no longer believes its optimal choice is dependent on
the choices of others. We do this by convincing the agent that its goal is either
guaranteed to be achieved (in which case its optimal choice is to minimise costs),
or else cannot be achieved (in which case, again, the optimal choice is again
simply to minimise costs). The difficulty with this approach is that we need to
be careful, when making such an announcement, not to change the beliefs of
other agents so that the dependency graph contains a new cycle; nonuniform
announcements will enable us to manipulate the beliefs of individual agents
without affecting those of others.

Where γi is a goal for some agent in a game G and α is an announcement,
let τ(γi , α) denote the formula obtained from γi by systematically replacing
each variable p ∈ ΦE by βi ⊕ α(p). We will say that α settles a goal γi if
τ(γi , α) ≡ > or τ(γi , α) ≡ ⊥. Intuitively, α settles γi if the result of making
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the announcement α is that i believes its goal is guaranteed to be true or
is guaranteed to be false. So if G is a game with cyclic dependency graph
DG = (V ,E ), containing an edge (i , j ) such that the irreflexive portion of
E \ {(i , j )} is acyclic, and such that γi can be settled by some (nonuniform)
announcement α, then G can be stabilised. For games with simple conjunctive
goals we can check this condition in polynomial time. For games in general, of
course, checking the conditions will be harder.

3.3. Measures of Optimality for Announcements

Apart from asking whether some stabilising announcement exists, it seems obvi-
ous to consider the problem of finding an “optimal” stabilising announcement.
There are many possible notions of optimality that we might consider, but here,
we define just three.

Minimal Stabilising Announcements: The most obvious notion of opti-
mality we might consider for announcements is that of minimising size. That
is, we want an announcement α∗ satisfying:

α∗ ∈ arg min
α∈S(G)

|α|.

Proposition 5. The problem of computing the size of the smallest stabilis-
ing uniform (respectively nonuniform) simple conjunctive announcement is in
fpΣp

2 [log2 |Φ|] (resp. fpΣp
2 [log2 |Φ×Ag|]).

Proof. We give the proof for uniform announcements; the case for nonuniform
announcements is similar. Observe that the following problem, which we refer
to as P , is Σp

2 -complete using similar arguments to Proposition 3: Given a game
G, announcement α for G and n ∈ N (n ≤ |ΦE |), does there exist a uniform
stabilising announcement α′ for G, where α ⊆ α′, such that |α′| ≤ n? It then
follows that, for uniform announcements, determining the size of the smallest
stabilising announcement can be computed with log2 |Φ| queries to an oracle
for P using binary search (cf. [21, pp.415–418]).

Proposition 6. The problem of computing a smallest stabilising uniform (re-
spectively nonuniform) simple conjunctive announcement is in fpΣp

2 [|Φ|] (respec-
tively fpΣp

2 [|Ag×Φ|]).

Proof. Compute the size s of the smallest announcement using the procedure
of Proposition 5. Then we build a stabilising announcement α∗ by dynamic
programming: A variable S will hold the “current” announcement, with S = ∅
initially. Iteratively consider each variable p ∈ ΦE in turn, invoking the oracle
for P to ask whether there exists a stabilising announcement for G of size
s using the partial announcement S ∪ {p}; if the answer is yes, then we set
S = S ∪{p}. We then move on to the next variable in ΦE . We terminate when
|S | = s. In this case, S will be a stabilising announcement of size s, i.e., it will
be a smallest stabilising announcement. The overall number of queries to the
Σp

2 oracle for P is |Φ|+ log2 |Φ|, i.e., O(|Φ|).
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Goal Maximising Announcements: We do not have transferable utility in
our setting, so it makes no sense to directly introduce a measure of social welfare
(normally defined for an outcome as the sum of the utilities of the players in
that outcome). However, a reasonable proxy for social welfare in our setting
is to count the number of goals that are achieved in the “worst” Nash stable
outcome. Formally, we want an announcement α∗ satisfying:

α∗ ∈ arg max
α∈S(G)

min {succ(v1, . . . , vn , vE ) | (v1, . . . , vn , vE ) ∈ NE (G ⊕ α)}.

Objective Satisfying Announcements: A third possibility, considered in [9],
is the idea of modifying a game so that a particular objective is achieved in equi-
librium, where the objective is represented as a formula Υ ∈ L. Formally, given
a game G and an objective Υ ∈ L, we seek an announcement α∗ ∈ S(G) such
that:

∀(v1, . . . , vn) ∈ NE (G ⊕ α∗) : (v1, . . . , vn , vE ) |= Υ.

Unique Equilibria: As described above, the main aim of this paper is to con-
sider the issue of stabilising Boolean games through announcements. However,
we may have games with more than one Nash equilibrium, which then presents
the players with a coordination problem: which equilibrium should they choose?
The following example shows that the same technique described in this paper
can be used to ensure that a game has a unique equilibrium.

Example 4. Suppose we have a game with:

• Ag = {1, 2};
• Φ1 = {p};
• Φ2 = {q};
• ΦE = {r};
• γ1 = p ∨ r;

• γ2 = p ∧ q;

• c(p, b) = 0 for all p ∈ Φ, b ∈ B;

• vE (r) = ⊥;

• β1(r) = >; and

• β2(r) = >.

Essentially, player 1 (incorrectly) believes its goal is satisfied by virtue of the
fact that the environment variable r is true, and so is indifferent between setting
p to be > or ⊥. There are thus three equilibria in the game, corresponding to
the formulae p ∧ q, ¬p ∧ q, and ¬p ∧ ¬q. (The formula p ∧ ¬q is not an
equilibrium because player 2 could improve the outcome for himself by setting
q = >). However, if the principal announces the true value of r, then player 2
will believe the only way its goal will be achieved is by setting p = >; player 2
will then be able to achieve its goal by setting q = >. Thus the game will then
have a unique Nash equilibrium that satisfies both players’ goals.
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4. Extensions and Refinements

In this section, we present and discuss a number of possible refinements and
extensions to the basic model of games, announcements, and updates that we
presented above. All of these extensions and refinements have a common theme:
namely, that they are concerned with going beyond the very simple model of
beliefs, going beyond the simple associated model of announcements, and going
beyond the simple model of belief update that we presented earlier.

4.1. Complex Goals, Beliefs, and Announcements

Up to this point we have dealt with Boolean games where beliefs and announce-
ments are simple conjunctive formulae. In this section we remove that restric-
tion and allow arbitrary propositional formulae for both beliefs and announce-
ments. Recall first that while the goals are formulae that may contain any of the
variables of Φ, the beliefs and announcements are restricted to the environment
variables ΦE . We will represent both an agent’s belief and an announcement
in what we call minimal disjunctive form, as we define it below. In analogy
with the concept of simple conjunctive form, we say that a formula is in simple
disjunctive form (also known as a clause in other contexts) if it is a disjunction
of literals. Where we write “disjunction”, this should be understood as an ab-
breviation of “formula in minimal disjunctive form”. A set of disjunctions S is
in minimal disjunctive form if the following two conditions hold:

1. If d ∈ S then S \ d 6|= d , and

2. If d ∈ S then there is no proper subformula d ′ of d such that S |= d ′.

If a set of disjunctions S is not in minimal disjunctive form, it can always
be changed to an equivalent set in minimal disjunctive form by omitting super-
fluous (for equivalence) formulae and replacing every formula by a subformula,
if there is one, that is implied by S . These steps may have to be done multiple
times. We write md(S ) for the minimal disjunctive form of S . Clearly, md(S )
is uniquely defined for every S .

Example 5. Let ΦE = {p, q , r}. Then:

• δ1 = {p ∨ q ,¬p ∨ r} is in minimal disjunctive form.

• δ2 = {p ∨ q ,¬p ∨ r , q ∨ r} is not in minimal disjunctive form because it
violates the first condition (q ∨ r is superfluous).

• δ3 = {p ∨ q ∨ r , p ∨ q ∨ ¬r} is not in minimal disjunctive form because the
two disjunctions can be replaced by p ∨ q.

• δ4 = {p∨q ,¬p∨r , p∨q∨r} violates both conditions for minimal disjunctive
form.

The revision of an agent’s belief given an announcement was easy when
only simple conjunctive formulae were allowed. We just replaced in the agent’s
belief set the incorrect truth value for any environment variable disclosed in the
announcement. We wrote βi for the belief of agent i , α for the announcement
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and βi ⊕α for the updated belief of the agent. As we will be dealing with only
one agent for now, we will drop the subscript i . We will continue to use ⊕
to represent the updated belief but it will be convenient not to use a function
notation. We assume that both β and α are a set of disjunctions in minimal
disjunctive form. As we will next show, there is no obvious unique way to define
⊕ in this context. There are a number of options of which we will consider two.

Example 6. Let ΦE = {p, q , r}, β = {p, q , r}, α = {¬p ∨¬q ∨¬r}. The agent
believes that all environment variables are true. The principal then announces
that at least one is false, but not which one(s). Clearly, α contradicts β. The
question is how the agent should update its belief. In one approach, that we call
the optimistic update, the agent tries to keep as much of its belief as possible
while avoiding a contradiction. One could, in distinction to the optimistic up-
date, retain two of the atoms, say p and q, and change r to ¬r. The problem is
that there is no unique way to make the choice of the two atoms to keep, as the
agent could have kept p and r, for instance. Instead, we make new disjunctions
that come as close as possible to the original belief without causing a contra-
diction, noting that α allows for any two of the atoms to remain true. The
optimistic update in this case is {p ∨ q , p ∨ r , q ∨ r ,¬p ∨ ¬q ∨ ¬r}. The other
approach that we call the cautious approach deletes all beliefs that were involved
in a contradiction with α. The cautious approach in this requires deleting each
atom, yielding {¬p ∨ ¬q ∨ ¬r}.

Example 7. Let Φe = {p, q , r}, β = {p, q , r}, α = {¬p ∨ ¬q}. This is similar
to the previous example, except that α says nothing about r. In this case the
optimistic update is {p∨q , r ,¬p∨¬q}, while the cautious update is {r ,¬p∨¬q}.

The Optimistic Belief Update: We now define the optimistic update in
several steps. We use the notation ⊕o for this concept. We start with the
environment variables ΦE , the agent’s belief β, and the announcement α, where
β and α are in minimal disjunctive form. There are two cases. First, if β ∪ α
is consistent then we define β ⊕o α = md(β ∪ α). Next, suppose that β ∪ α
is inconsistent. Accepting α as true we will try to preserve as much of β as
possible. Let β1, . . . , βk be all subsets of β such that each βi ∪α is inconsistent
and there is no proper subset of βi whose union with α is inconsistent. We
write β0 = β \ ∪ki=1βi . Each βi may contain several disjunctions, say βi =
{di1, . . . , dik}. Form all disjunctions from pairs of dij . For example, if di1 = p∨q
and di2 = r then by di1 ∨ di2 we mean p ∨ q ∨ r . Let β′i = {dim ∨ din |1 ≤ m <
n ≤ k}. Note that if |βi | = 1 then β′i = ∅. βi ∪α must be consistent: otherwise
there would be some proper subset of βi whose union with α is inconsistent.
We define β ⊕o α = md(β0 ∪ ∪ki=1β

′
i ∪ α).

Let us now show that ⊕o conforms with the ⊕ we defined previously for
simple conjunctive beliefs and announcements. However, instead of functions,
we write both β and α in simple disjunctive form. Without loss of gen-
erality assume that β contains all atoms and α may contain negations of
atoms: β = {p1, . . . , pn}, α = {`1, . . . , `m}. If β ∪ α is consistent, then
β ⊕o α = {p1, . . . , pn , `1, . . . , `m} with repetitions removed. In case β ∪ α is
inconsistent, without loss of generality, let α = {¬p1, . . . ,¬pi , `i+1, . . . , `m},
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that is, the inconsistency is caused by the incorrect beliefs for the variables
p1, . . . , pi . According to the above definition we form β1 = {p1}, . . . , βi = {pi}.
As |β1| = . . . |βi | = 1, β′1 = · · ·β′i = ∅. Then by the definition β ⊕o α =
{pi+1, . . . , pn , `1, . . . , `m} (with repetitions removed).

Commutativity of Belief Updates: We would like the new belief updates
to also have another important property, namely, that in the case of several
announcements the order does not matter, that is, (β⊕α1)⊕α2 = (β⊕α2)⊕α1.
It is easy to show that this property holds in the simple conjunctive case. Our
next examples show why the order matters for ⊕o .

Example 8. ΦE = {p, q}, β = {p}, α1 = {¬p ∨ q}, α2 = {¬p}. Then
β ⊕o α1 = {p, q} (there was no inconsistency), so (β ⊕o α1) ⊕o α2 = {¬p, q}
(p was inconsistent with ¬p and hence deleted). But β ⊕o α2 = {¬p} and then
(β ⊕o α2) ⊕o α1 = {¬p} (the result is placed in minimal disjunctive form).
Hence (β ⊕o α1)⊕o α2 6= (β ⊕o α2)⊕o α1.

In this example the problem was that the first announcement led the agent
to conclude q . But the second announcement subsumes the first and has no
q in it. By announcing α2 first, α1 becomes superfluous. The next example
shows that even if there is no subsumption between announcements, as long as
the announcements share a variable the problem of noncommutativity persists.

Example 9. ΦE = {p, q , r}, β = {p, q ∨ r}, α1 = {¬p ∨¬q}, α2 = {¬p ∨¬r}.
Then β ⊕o α1 = {p,¬q , r}, and (β ⊕o α1)⊕o α2 = {p ∨ r ,¬q ,¬p ∨ ¬r}, while
β ⊕o α2 = {p,¬r , q}, and (β ⊕o α2) ⊕o α1 = {p ∨ q ,¬r ,¬p ∨ ¬q}. Again,
(β ⊕o α1)⊕o α2 6= (β ⊕o α2)⊕o α1.

We can show that if the announcements refer to different variables, we
get commutativity. Previously we wrote vars(ϕ) to refer to the variables of a
formula. We extend this definition so that for a set of formulae S we write
vars(S ) = {vars(ϕ) | ϕ ∈ S}.

Proposition 7. If vars(α1)∩vars(α2) = ∅ then (β⊕α1)⊕α2 = (β⊕α2)⊕α1.

Proof. Let F = {ϕ ∈ β | vars(ϕ)∩vars(α1) 6= ∅ and vars(ϕ)∩vars(α2) 6= ∅}.
If F = ∅ then the interaction of β with α1 must be different from the interaction
of β with α2. Hence the announcements must change different formulae of β (if
any) and each formula in β can be inconsistent only with formulae entirely in
α1 or α2. Therefore the order of application of α1 and α2 does not matter.

If F 6= ∅ let ϕ ∈ β such that some variable of ϕ occurs in a formula of
α1 and some variable of ϕ occurs in a formula of α2. The situation will be
something like the following: ϕ = p ∨ q ∨ ( other literals ), α1 has a formula
ψ1 containing p or ¬p and α2 has a formula ψ2 containing q or ¬q . Two types
of interactions are possible with ϕ. The first type is where either ψ1 or ψ2 (or
both) subsumes ϕ. In this case in both update orders ϕ is replaced by ψ1 and
ψ2. The second type is where the interaction is caused by a negated literal in
ψ1 or ψ2 (or both), such as if ψ1 = ¬p. Then, when α1 is applied, ϕ becomes
ϕ′ = q ∨ ( other literals ), but the update order makes no difference.
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The Cautious Belief Update: We just sketch here the definition of the
cautious belief update and some results about it based on the presentation of
the optimistic belief update. There is only one place in the definition where
⊕c differs from ⊕o . Recall that β1, . . . , βk are all the subsets of β that are
minimally inconsistent with α and β0 = β \ ∪ki=1βi . For the optimistic update
we tried to preserve as much of the information of β as possible by taking
pairwise disjunctions. The idea of the cautious update is that we no longer trust
any belief formula that is involved in an inconsistency with the announcement.
Hence we define β ⊕c α = md(β0 ∪ α).

It is clear that ⊕c works the same way as ⊕o for simple conjunctive beliefs
and announcements. Consider now what happens if the order of two announce-
ments is switched. Examples 8 and 9 again show noncommutativity. In Ex-
ample 8 the results are the same as before. In Example 9 (β ⊕0 α1) ⊕0 α2 =
{¬q ,¬p ∨ ¬r}, while (β ⊕0 α2) ⊕0 α1 = {¬r ,¬p ∨ ¬q}. Also, Proposition 7 is
proved the same way for ⊕c .

Stability: Recall that our goal for announcements was to allow the principal to
create stability in an unstable situation. The principal’s strategy is to make an-
nouncements, possibly different ones to different agents, convincing them that
their goal is not really dependent on the actions of other agents. A reasonable
question to ask is whether moving to complex announcements will allow the
principal to stabilise an unstable system that it cannot stabilise by simple con-
junctive announcements. We present an example based on Example 3, to show
that this is indeed the case.

Example 10. Consider a game with:

• Ag = {1, 2, 3};
• Φ = {p1, p2, p3, q1, q2, q3, q4},
• Φi = {pi} (hence the q’s are the environment variables);

• γ1 = p1 ∨ p2 ∨ q1;

• γ2 = p2 ∨ p3 ∨ q2;

• γ3 = p3 ∨ p1 ∨ q3;

• β1 = {q4};
• β2 = {¬q2};
• β3 = {¬q3};
• c(pi ,>) = 1 for all i and

• vE (qi) = ⊥.

The difference between this example and Example 3 is slight, including the fact
that in this example each environment variable has truth value ⊥. There is also
an extra variable, q4, and the agents’ beliefs do not involve all the environment
variables. Exactly as in Example 3 the system is unstable. In that example the
principal was able to stabilise the system by announcing either {q1} or {q2},
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or {q3} breaking the dependency cycle and making the irreflexive portion of
the digraph acyclic. That is not possible to do here because these environment
variables are false. But if the principal announces the true disjunctive formula
α1 = q1∨¬q4 to agent 1, notice what happens: β1⊕x α1 = {q4, q1} (we wrote the
subscript x because both versions of ⊕ give the same result). Now, the presence
of q1 in the belief of agent 1 breaks the cycle and the system becomes stable,
even though no simple conjunctive announcement (that is true) can make the
system stable.

In this example the system was stabilised by the principal essentially mis-
leading an agent. While a truthful principal, restricted to simple conjunctive
announcements can hide information from an agent, it cannot mislead an agent.

4.2. Beliefs and Possible Worlds

So far in this paper, we have considered models of belief that are essentially
syntactic in nature. That is, beliefs can be understood as sets of formulae, (or
in the simplest case, just one formula), which represents how that agent sees
the environment variables. An extremely powerful alternative model involves a
possible worlds model of beliefs [10]. In this approach, we characterise an agent’s
beliefs as a set of alternatives, called possible worlds, each one representing one
possible way the environment variables could be, given the agent’s beliefs. An
agent is then said to believe a proposition if that proposition is true in all that
agent’s possible worlds. To adopt this approach for our scheme, first recall that
VE is the set of possible valuations for the environment variables ΦE . Then, the
beliefs of agent i are given as a subset βi ⊆ VE , and we assume that vE ∈ βi
(i.e., each agent i considers the actual valuation of the environment variables
to be possible). Where ϕ ∈ L, we will write Biϕ (“agent i believes ϕ”) to mean
that v |= ϕ for all v ∈ βi .

Given this model, we can define updates of beliefs with respect to arbitrary
formula, as follows. Where an announcement α is a formula of propositional
logic over the variables ΦE , we denote by βi ⊕ α the set:

βi ⊕ α = {v ∈ βi | v |= α}.

Thus, in computing the update βi⊕α in this case, we simply eliminate from the
set βi of epistemic alternatives for agent i all possibilities that are not consistent
with the new information α. Notice that since we require announcements to be
truthful (i.e., any announcement α must satisfy the requirement that vE |= α),
and that vE ∈ βi , then the update βi ⊕ α will always be well defined and the
result of the update will always be non-empty.

The great advantage of this approach is that it allows us to capture un-
certainty about the state of environment variables. Agent i may have βi =
{v1, v2}, with v1(p) = > and v2(p) = ⊥ and meaning that i believes it is pos-
sible that p is true, and also believes it possible that p is false. Furthermore, i
may have v1(q) = ⊥ and v2(q) = >. Thus we have Bi(p ∨ q) but not Bip or
Biq .
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The key difficulty with this approach with respect to our basic model is how
to define utility: our original formulation of (subjective) utility required that an
agent had a definite opinion about all environment variables in order to compute
subjective utility, whereas in the new model, an agent can be uncertain about
the values of environment variables. How should such uncertainty be reflected
in an agent’s subjective assessment of utility? There seems to be no clearcut
answer to this question, but the simplest approach might be a pessimistic view:
the utility an agent i believes it will get from an outcome (v1, . . . , vn) is the
utility it would get if the worst case possibility were true, according to its beliefs
βi ⊆ VE . We define pessimistic subjective utility through a function ûi(· · ·) as
follows:

ûi(v1, . . . , vn) = min{ui(v1, . . . , vn , v
′) | v ′ ∈ βi}.

We can then define Nash stability with respect to the utility functions ûi , and
the same basic approach discussed above can then be applied. Note, however,
that with this approach, it is possible for the principal to make arbitrary truthful
statements about the values of the environment variables. For example, if there
are two environment variables, p and q , both of which are in fact true, then
the principal could announce p ∨ q , thereby revealing that one of them is true
without revealing that both are true.

5. Related Work

In the sense that the main thrust of our work is to design announcements
that will modify games in such a way that certain outcomes are achieved in
equilibrium, our work is similar in spirit to mechanism design/implementation
theory, where the goal is to design games in such a way that certain outcomes
are achieved in equilibrium [18]. However, we are aware of no work within the
AI/computer science community that addresses the problem of manipulating
games in the same way as we do – through communication.

Similar ideas to our dependency graph are used in the analysis of games in,
e.g., [12, 5]. For example, Gottlob et al. investigate cases where it is compu-
tationally easy to compute pure strategy Nash equilibria in games; their main
results relate to games in which the “neighbourhood graph” (which is essen-
tially our dependency graph) is “small”. They show that while this condition is
not sufficient in itself to guarantee tractability, by combining it with a further
condition, tractability can be obtained.

Work that has considered manipulating games within the AI/computer sci-
ence community has focussed on the design of taxation schemes to influence
behaviour [19, 2, 9]. For example, Endriss et al. consider the possibility of
overlaying Boolean games with taxation schemes so that, if every player acts
rationally, then a certain objective, represented as a Boolean formula Υ, will
be satisfied in some Nash equilibrium of the resulting system [9].

Our work is also about the effect of making announcements, and in this
sense it has some affinity with the growing body of work on dynamic epistemic
logic (del) [7]. del tries to give a logical account of how the knowledge states of
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agents in a system are affected by announcements that take the form of logical
formulae. Of particular interest in del are announcements that themselves
refer to the knowledge of participants, which can affect systems in subtle and
complex ways.

Also relevant is the substantial body of work on speech acts. Theories of
speech acts are pragmatic theories of language: theories concerning the way
that language is used. The theory of speech acts is usually seen as originat-
ing in the work of John Austin in the 1960s. In his seminal book How to Do
Things With Words, he observed that certain types of natural language utter-
ance change the state of the world [1]. To take a paradigm example, if a priest
or other legally empowered individual utters the sentence “I now pronounce
you man and wife” in the appropriate circumstances, then after the utterance,
the legal relationships between the individuals involved in the utterance will
have changed. Other examples of “formal” speech acts include christening and
declaring war. In this way, utterances can be understood as changing the world
in ways beyond their immediate physical effects (such as shouting and causing
an avalanche). Now, a fundamental tenet of speech act theory is that utterances
are actions, which are made by rational agents in the furtherance of their goals
and preferences. And if they are actions, then this suggests that formalisms de-
veloped for reasoning about actions can be applied to reasoning about speech
acts; such formalisms include Floyd-Hoare logic [17], dynamic logic [15], and the
STRIPS formalism [11]. This observation led researchers to apply formalisms
developed for reasoning about actions to the formalisation of speech acts; for
example, Cohen and Perrault [6] used a STRIPS-style notation to formalise
speech acts, where the pre- and post-conditions of speech acts are formulated
with respect to the beliefs and desires of the participants in the communicative
act. It would be intriguing to investigate the links between speech acts and our
work: our announcements are, after all, nothing more than declarative speech
acts. More generally, we could see speech acts as actions performed by players
in a game, with the intention of modifying the resulting behaviour of other
players in the game.

6. Conclusions

We have considered the general problem of manipulating games through com-
munication: by making announcements in a game, we change the beliefs of the
players of the game, and in this way we can perturb their choices. We have
focussed mainly on the idea of stabilising games.

There are many obvious avenues for future research. We might consider
richer models of belief (probabilistic and Bayesian models [14]), and of course,
mixed strategy equilibria. We might consider the possibility of the principal
lying, and of noisy communication. We might also consider announcements
that refer to the epistemic state of agents (“player one knows the value of x”);
this would take us close to the realm of dynamic epistemic logic [7].
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