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Abstract— This paper considers a new, complex problem of
UAV/UGYV collaborative efforts to search and capture attackers
under uncertainty. The goal of the defenders (UAV/UGYV team)
is to stop all attackers as quickly as possible, before they
arrive at their selected goal. The uncertainty considered is
twofold: the defenders do not know the attackers’ location
and destination, and there is also uncertainty in the defenders’
sensing. We suggest a real-time algorithmic framework for the
defenders, combining entropy and stochastic-temporal belief,
that aims at optimizing the probability of a quick and successful
capture of all of the attackers. We have empirically evaluated
the algorithmic framework, and have shown its efficiency
and significant performance improvement compared to other
solutions.

I. INTRODUCTION

Searching and capturing attackers (intruders) that wish
to arrive at a specific goal is an important problem that
can benefit from the deployment of aerial and ground au-
tonomous vehicles. Algorithms that identify strategies for
the defenders need to take into consideration the diverse
capabilities, movement models and topological environments
where the attackers’ and the defenders’ vehicles (ground and
aerial) are operating. Finding intruders is time critical; hence,
real-time algorithms are necessary.

Simplified versions of this challenging problem have been
studied in previous work by two models: Minimum Time
Search (MTS), and Reach-Avoid Games. In the MTS prob-
lem, one or more targets (in our case attackers) are in un-
known locations and need to be found as quickly as possible.
In the reach-avoid game, one or more attackers attempt to
reach one or more goals while the defenders seek to prevent
the attackers from arriving at their goals. In this paper, we
study a complex, realistic model involving real-time, UAV
and UGV teams facing multiple goal-oriented attackers in
an unknown location. The defenders have imperfect bounded
sensing capabilities traveling in two different environment
models: a grid for the UAVs and a graph modeling the roads
traversed by the UGVs.

We introduce the UAV/UGV Search and Capture of goal-
Oriented Uncertain Targets (SCOUT). In SCOUT we have
two types of defenders: Unmanned Aerial Vehicles (UAVs)
and Unmanned Ground Vehicles (UGVs). The attackers are
grounded, and their objective is to reach one of the goals.
An attacker chooses its goal at random, and travels in the
environment according to a (random) movement model that
is known to the defender. However, the specific chosen goal
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is unknown to the defenders. The defenders aim to prevent
all attackers from reaching their goals. Within the defenders,
the UAVs’ and UGVs’ task is to detect the attackers, so
defenders with an interception capability could stop the at-
tackers’ movement. The uncertainty in our model is twofold:
First, the UAVs have imperfect detection probability. Second,
the attackers’ movement model is stochastic, and the goal
selection is probabilistic.

We propose a two-stage approach: The first stage is when
the attackers’ location is unknown and the defenders’ task
is to search for the attackers. The second stage starts when
an attacker is spotted by a defender. This defender will track
the attackers while a team of defenders with interception
capabilities move according to their movement capabilities
(on a grid or a graph) and maximize the probability of
stopping the attacker. Note that the attacker’s goal and the
path to this goal remain unknown. Tracking the attacker is
only one way to solve the problem. For example, if the
attacker can, for a while, move on only one road, the defender
can proceed to another task. Our objective is to maximize
the probability of stopping all attackers before reaching their
goals.

SCOUT is a dynamic problem with high dimensionality
since the world representation of a grid and a graph is
enormous, adding to the multiple defenders and attackers
with uncertainty regarding the attackers’ location. Hence,
online computation of an optimal solution for the defender is
intractable for a multi-player problem. Note that the solution
is intractable even when only one defender and one attacker
are involved [1].

The main contribution of this paper is a combination of:
the algorithmic infrastructure for efficiently solving SCOUT
and MTS problems for a general graph, introducing goal-
oriented attackers, and considering imperfect detection capa-
bility of the defenders with moving targets. This algorithmic
infrastructure is generic and can be adapted to solving the
problem with heterogenous defenders and attackers, multiple
attacks and coping with environmental constraints such as a
no flying zone [2].

We tested our algorithms on a realistic border defense sim-
ulation demonstrating its high success rate in the detection
and interception of the attackers.

II. RELATED WORK

Our first problem is to search for the attackers when
there is incomplete information about their location. This
is a generalization of the MTS problem, where one or more



targets are in unknown locations and need to be found as
soon as possible. There are many approaches for handling
the MTS problem under the assumption of a static target [3],
[4], [5], [6]; however, we are interested in moving targets.

Lanillos et al. [7] address the MTS problem using a
Partially Observable Markov Decision Process (POMDP)
[39] formulation with a single attacker and a single defender.
The attacker has a Markovian movement model and is not
affected by the defender’s location, but the attacker and the
defender have the same velocity, and the defender has perfect
detection, meaning that if the attacker is in the defender’s
detection range, the latter will detect the former. Ru et al.
[8] present an algorithm for the MTS problem under the
assumptions that the UAVs have uncertainty regarding their
location and have restrictions over their movement capability
(they can move by 45 degrees at each step). In their solution,
the environment is represented as a grid with the assumption
that each attacker is located in a different cell of the grid at
each time step. Perez-Carabaza et al. [2] presented a variant
of the MTS problem where the defenders have to avoid
collisions and added a constraint of places containing no
flying zones. They represented the environment as a grid and
presented a heuristic approach for finding a single attacker
using multiple UAVs when the attacker’s movement model
is given as a Markovian model. Perez-Carabaza et al. [9]
presented a heuristic based ant colony optimization [10]
for the MTS problem for multiple defenders and a single
attacker. The environment is formed as a grid representation,
and the target model is given in advance. However, the UAVs
and the attacker have the same velocity, and the UAVs have
perfect detection probability and therefore their proposed
solution is not applicable for SCOUT.

In our searching solution, we use the entropy measurement
[11], a standard measurement for estimating uncertainty; it
is commonly used for problems with incomplete information
[12], [13], [14]. For example, Kaufman et al. [13] introduced
an algorithm to explore a grid map using robots where the
probability of each cell being either occupied or free was
considered. The robot chooses the trajectory that maximizes
the map information gain. Blanco et al. [14] presented an
entropy-based algorithm for the robot localization problem.
They proposed an approach to measure the certainty of a
robot’s location based on its previous estimated location.

Previous work on reach-avoid games commonly assume
that the objective function of the attackers is to arrive
at a goal as quickly as possible, and therefore no model
is considered for the attackers’ actions beyond the limits
imposed by the attackers’ capabilities and the defenders’
location. The classic reach-avoid game is also assumed to
have perfect information of the attackers’ and defenders’
locations [15], [16], [17], [18], [20], [21], [22], [23], [25].

Huang et al. [15] presented a framework for analyzing
and solving a two-player capture-the-flag game with full
knowledge as a zero-sum differential game. This work was
extended in Huang’s thesis [16] where he presented a for-
mulation of the reach-avoid game as a differential problem
and solved the related Hamilton-Jacobi-Isaacs (HJI) equation

[24]. Unfortunately, computing solutions to HJI equations are
computationally infeasible for large problems. Even smaller
problems such as 2-player games typically cannot be solved
in real-time. In a more recent work, Huang et al. [17]
presented a variant of the game where there are also safe
places that attackers can travel freely without worrying that
a defender will intercept their movements. They presented
an algorithm for the defender that stops the attacker from
reaching a goal, also considering these safe locations. A
further study [18] addresses this same variant of the reach-
avoid game, and uses an MST solver [19] to find the safest
path for the attacker to reach a goal. However, there is no
reference in their solution to the position or movement of
the defenders (only maximization of the safest path).

Zhou et al. [20] presented an open loop reach-avoid game
for two players and extended the solution for more players
in [21]. Their approach is based on assuming the worst
case for every player and acting accordingly. They do not
assume to have an attacker model; hence, each game is
played conservatively from the perspective of one player.
Maximizing the cost of the game represents the part of the
attackers, and minimizing this value represents the defenders.

Chen et al. [22], [23] introduced a multi-player reach-avoid
game where the number of the attackers and the number of
the defenders are equal. They presented a few methods of
matching between an attacker and a defender and solved the
game for each as a two-player game using HJI [24]. They
elaborate their solution where the number of attackers and
the number of defenders are not equal, as in [25]. However,
HIJI equations are computationally infeasible for multi-player
problems and do not apply for online settings.

In all of these works, the attackers aim to reach a goal
as fast as possible, and there is no assumption of the
attackers” movement model. As opposed to all of these
methods we will present a new variant of the reach-avoid
game that combines complete and incomplete information
about the attackers’ location and destination. We assume that
an attacker movement model exists. Our solution works for
attackers with a simple movement model such as moving to
a goal as quickly as possible (as in previous work) and more
complex models such as deceptive attackers [26].

Our defenders are assumed to be UAVs and UGVs. The
combination of UAVs and UGVs has gained much attention
in recent research and in the development community due
to their strong potential in high-risk missions [27], [28],
[29], [30]. For example, Phan et al. [27] presented coop-
erative control of UAVs and UGVs in forest fire monitoring,
detection and fighting. Bertolaso et al. [29] introduced an
algorithm using UAV/UGV cooperation for a landing task
problem.

III. SCOUT FORMULATION

We consider a problem where a team of m defenders D =
{d;}, attempt to stop a set of n attackers A = {a;} .
The environment is modeled as a graph G = (V, E) nested
in a 2D environment, representing the roads on which the
attackers and the ground defenders can move. Each attacker’s



objective is to reach a specific goal chosen in advance, where
this goal is unknown to the defenders. Each goal O; is a
subset of the graph G' as shown in Figure la, and the entire

k
goal set is denoted by O = |J O;. The defenders try to

protect this set of goals and prel;e}nt all of the attackers from
reaching their goal. The defenders are familiar with the set O
but do not know the specific goal(s) chosen by the attackers.
Denote the location of a defender d; € D and attacker a; € A
at time t > 0 by I, € F and I}, € F, respectively.

(a) Circled in green are the goals O; C G, circled in blue are the

UAVs’ detection range and in red the UGVs’ detection range.

The border is the orange line.
1]

(b) Zoom-in view of the graph nested in a 2D environment.
Between every two vertices is a straight line.

Fig. 1: 1a shows the environment overview from the bird’s eye and
1b shows an example of the graph.

A. Defenders’ Model

As mentioned before, we assume to have two types of
defenders: UAVs and UGVs. We denote the UAV team by
D, = {d;}* and the UGV team by D, = {d;};", where
D =D,UD, (m= my + m,). The UAVs and UGVs
have limited visibility, hence we denote the detection range
(radius) of defender d; as r;. Denote the UAVs’ minimum
detection range by r = 1<r11gl<ir;1 {r;}. Defender d; can detect

and track an attacker if it is within its detection range r;.
We assume that only a UGV can stop an attacker'. A UGV
can stop an attacker if it is within its detection range. The
UAVs have imperfect detection probability. That is, if an
attacker is within the detection range of a UAV defender d;,
it will detect it with a probability of 0 < p¢ < 1. Denote the

minimum probability of detection by p¢ = i d.

We assume perfect detection probability for every UGV
d; € D, (that is, pf = 1). The UAVs and UGVs have
different movement capabilities. This will be elaborated in

section IV.

B. Attackers’ Model

We initially assume that all n attackers are assumed to
enter the graph at the same arbitrary location? denoted
by 1. Each attacker selects a goal O; at random (if not
specified otherwise we assume with uniform distribution).
The attacker follows a Markovian movement model towards
its chosen goal. For each edge e; € E, M,(e;) defines the
probability distribution that an attacker coming from edge e;
will choose to move to any of its neighbors {e’}. That is,
Ma(e:) = {(e].p))} and Sp] = 1. Ma(e;) = {(}.p})}
defines the probability distr]ibution that an attacker coming
from edge e§ will choose to move to edge e;. We use a
general model and could apply different movement models
to the different attackers, for simplicity in this paper, we will
assume the attackers are homogeneous and therefore use the
same movement model (though their actual random choices
may be different).

C. Problem Formulation

Given a team of defenders and attackers as defined above,
the game starts at time ¢ = 0 when the attackers are located
at 1. All players move simultaneously according to their
movement capabilities.

We say that a UGV defender d; stopped an attacker a; if
and only if 3¢ such that lflj is within the detection range of
d; (which is located at I ) and lflj ¢ 0.

If 3t such that lfli € O, then the defenders lose. Hence,
the defenders’ goal is to prevent all attackers from arriving at
their goals. Our objective is to determine, for each defender
d € D at each time ¢, a destination that will maximize the
probability that the team of defenders will stop all attackers.

Giving the UAVs the ability to stop the attacker would simplify the
problem.

2We can generalize SCOUT to include heterogeneous attackers with
different possible entry points. (See discussion in section VI



IV. SOLVING SCOUT

We divide the solution concept into two main steps: search
and intercept. First, we search for the attackers when we only
know their initial location and movement model. When an
attacker is spotted, we move to the second step. A defender
would track the attacker’s progress and try to intercept its
movement. If there is more than one attacker, some defenders
will search for attackers while the other defenders try to
catch the attackers that have already been found. The robot
heterogeneity dictates that not all robots can perform all
tasks, hence we address the problem sequentially. The UAVs’
defenders will perform the search task, mainly because they
are fast and have no limitation on where they can move, as
opposed to the UGVs that can only travel along the graph’s
edges. If a UAV detects an attacker, it will track it while
a subset of UGVs is assigned to intercept its movement.
Although the location of the attacker is now known, the
problem is still not a solved version of the reach-avoid
game since the attacker is heading towards a specific goal
(unknown to the defenders) and not just any goal. Predicting
the attacker’s path to any destination is a difficult task. In
our case, we need to predict the attacker’s path to any of
the goals and choose the most likely one. The prediction
error in our case could be crucial because the goals are not
necessarily close to each other. Adding to the complexity of
our problem is that each attacker could choose a different
goal.

We create a probabilistic belief model P(e;,t). That is,
our belief as to the possibility that an attacker is located at
edge e; € E at time ¢, and V¢t Y. P(e;,t) = 1. Note that

e, €FE
P(19,0) = 1 and Ve; € E,e; # 1% P(e;,0) = 0, as [0 is
the initial location of the attackers. The transition between
P(ej,t) to P(e;,t + 1) is described in Eq. 1 and depends
on the attackers’ movement model M,(e;) (described in
subsection I1I-B).

Plej,t+1) = >

(e?pi)EMale))

P(e},t) x p} (1)

The state space is huge (for example, in our simulation
|E| = 16000), and we need to propose an online real-
time solution. Thus, we create the following infrastructure
that combines offline preprocessing to support the online
decision-making.

A. Offline Preprocessing To Generate a Grid/Graph

The UAV is not limited to traveling along the graph. Thus,
when a UAV is located on an edge e, it will potentially
gain information from all edges in G that are within its
detection range. Therefore, we create a grid representation
C = {c;}Y, layered on top of the graph (see Figure 2).
Each cell ¢; in the grid is of size V2r x 4/2r, that is the
maximum square that is contained in a circle with radius r
(the minimum detection range capability of the UAVs).

After constructing the grid and layering it on top of the
graph, we will cut the roads (edges of G) into multiple edges
(and vertices) so that each edge will be in a single cell.

Fig. 2: A grid layered on top of the graph

The attackers move along the graph edges. But the length
of each edge is different because this graph is constructed
from a roadmap. To achieve higher resolution for the proba-
bility belief of the attackers’ location, we defined a threshold
Th® and split all edges (roads) with a length of more than
The® into new edges (and vertices) with a length that is less
than or equal to Th®.We split an edge e to [|e|/Thc] edges.
All new edges are of length Th® aside from one edge that
could be less than or equal to Th®.

This offline process produces a new graph G = (V, E) and
a grid representation C' = {c;}¥.,. We denote by P(c;,t) our
belief as to the possibility that an attacker is located in cell
c; € C at time t. P(Ci,t) = Z P(éj,t).

e;Ec;

B. Search task

The defenders’ goal is to stop the attackers before the
latter arrive at their goals. Although only the UGVs can
stop the attackers, the UAVs can reduce the uncertainty on
the attackers’ location during the search. A search strategy
for a UAV should specify to which cell to move in order
to perform detection of an attacker. We first considered
the Monte Carlo Tree Search (MCTS) approach since the
SCOUT problem can be modeled as a POMDP. Given the
MCTS’s failure to solve the SCOUT problem (see Section
IV-B.1), we propose the entropy-based heuristic called Max
Gain max Probability (MGP) and show its success.

1) MCTS Approach: MCTS [31] is a simulation-based
search algorithm for finding optimal strategies. Informa-
tion set MCTS (ISMCTS)[32] is an extension of MCTS
to Imperfect Information games. ISMCTS variations have
shown great success in imperfect information games such as
poker and hedge. For the UAV search phase, the Smooth-
UCT [33] variation was implemented. While Smooth-UCT
does not guarantee convergence to Nash-Equilibrium, it does
converge to a sub-optimal strategy much faster than other
variations that offer such guarantees (e.g. Online Outcome
Sampling [34]). For this reason, Smooth-UCT was selected
as the online MCTS algorithm in our simulations. However,
the search space was proven to be more challenging than
what ISMCTS can handle in a real-time environment. More
specifically, for a grid size of 16 by 30, there are 480
possible actions a single defender/UAV can perform. For
multiple UAVs, the number of possible actions the defenders
can perform are 480% where k is the number of UAVs. In
addition, the average number of steps in each simulation
is 35. This results in an approximate search space size of
1092 2 48035 for a single UAV. This search space increases
exponentially as the number of UAVs grows. Furthermore,
in our settings, the defenders have 10 seconds to calculate



their route and make a decision on where to deploy the
UAVs. In our simulations, the Smooth-UCT was able to
perform approximate 250k simulations, which is an order of
magnitude less than what is needed to converge to an optimal
strategy. For compression, the search space in computer
poker is 10'® [35], and at least 10 million simulations are
used [33]. This suggests that it is more plausible to use a
heuristic based approach to the UAV’s deployment problem.
2) MGP Approach: We first consider the entropy mea-
surement to greedy allocate cells for the UAVs in this task.
The entropy measure based on our belief model is defined
by:
E(C,t) = =) P(ci,t)log(P(c;, 1)) )
c,eC
Denote by k the number of UAVs that search for the
attackers (kK < m,,). Assume that a UAV is located in cell ¢;
at time ¢. If the UAV detects an attacker, then the search
task is done for this UAV, and it will start tracking the
attacker. However, if the UAV did not detect an attacker
this is not necessarily because the attacker is not located
in cell ¢;. The probability that an attacker is at cell ¢; and
the UAV did not detect it is 1 — p?. Therefore, if a UAV did
not find an attacker at cell ¢; at time ¢, we will update the
belief model for each e; € ¢; according to the probability
(P(es,t) = (1 — p)P(e;,t)). The delta between these two
beliefs would split relatively between all cells, similar to a
POMDP update (see Eq. 3 for single cell update).

P(e;,t) e )
P(e;,t) = { I;Eg»igif(’f_pd) Tf ei € ¢ 3)
W if e; € ¢;

The entropy of our belief at time ¢t was defined in Eq. 2.
The temporal entropy E, ({c;}¥_,,t) returns the new entropy
after sending k£ UAVs to k cells under the assumption that
the UAVs did not detect any attacker (shown in Alg. 1).

Algorithm 1 Entropy Update: E,({c;}F_,,1)
Z P (c’ia t) X pd

{ei}f_,
for all ¢; € C do
if ¢; € {ci}le then

P(cj, —p?
Ptemp(cj7t): (Jt>»>,]<(1 p)

n=1-

else
Premp(cj,t) = Lcnj’t)
end if
end for
return — 3 Premp(cj,t)l0g2(Premp(c;,t))

c;€C

Therefore, we define the entropy gain G(C,t, k) as the
sum of entropy difference. The entropy difference when a
UAV detects an attacker is p? x P(c;, t)(E(C,t)—0) (because
the new entropy is zero). Added to the entropy difference is
the probability that the attacker is in this cell but it did not
detect it, or the probability that the attacker is not in this
cell, that is (1 — p? x P(c;,t))(E(C,t) — E,({c;i}r_1,1))).
The final entropy gain is shown in Eq. 4.

G(C,t,k) =E(C,t)— [ (-p"xP(ei,t)Eu({ci}iy,t)
{Ci}le

“)

Note that finding a subset of k cells that maximize the

entropy gain is equivalent to finding a subset of k cells that
minimize [ (1 — P(c;, t)p?)Eu({ci}fi,t).

{eiti
Finding k cellls that maximize the entropy gain is shown

in Eq. 5.

GWL(Cat7k) = arg min
{eitf,eC {eitioy

(1= p"P(es, 1)) Eu({ci}ing, 1)

4)

Entropy is a submodular function [36], [37], meaning that
we can use an online greedy algorithm for a near-optimal
solution [38] for determining the best assignments of k¥ UAVs
to k cells (without checking all (],: ) combinations of cells).

Lemma 4.1: When p? = 1 then G,,(C,t,k) (Eq. 5)
returns the k cells with the highest probability of being the
attacker’s location (that is, argmax Y. P(c;,t)).}

{Ci}i?:lec {ci}i?:l

If p? < 1, the maximum entropy gain is not necessarily
the maximum cell probability. For example, consider the
simple case of two cells C' = {c;, ca}, with a probability of
P(cq,t) = 0.9 and P(cg,t) = 0.1 that there is an attacker
located in that cell at time ¢ and pd = 0.9. In this case,
according to Eq. 4 the entropy gain from sending a UAV
to c; and cp is 0.28 and 0.39, respectively. Using only the
entropy measurement, the assignment for this UAV would be
to co although the probability of having an attacker there is
only 0.1. However, we are not interested only in reducing the
entropy, but in detecting the attacker. Therefore, we propose
a Max Gain max Probability (MGP) approach that combines
maximum gain and maximum probability. We will assign a
UAV to search the cell with the maximum probability, and
all other k£ — 1 UAVs will search according to the maximum
gain (see Algorithm 2).

We define a threshold ThP (hyperparameter) such that if
there is a cell ¢; at time ¢ with P(c;,t) > ThP, we will assign
a UAV to search this cell, and all other £—1 UAVs will search
according to the maximum gain (see Algorithm 2). Note that
when choosing threshold Th? = 1, MGP will assign all k
UAVs according to the entropy gain. For Th? = 0, MGP will
assign one UAV to the cell with the maximum probability
and the rest according to the entropy gain.

Algorithm 2 Cell Search Subset

if 3¢; € C such that P(c;j,t) > ThP then
return Cj UGm(C \ Cj,t, k— 1)

else
return G,,(C,t, k)

end if

3Due to space constraint the proof can be found at https://www.
dropbox.com/s/grfz7voryhowkf3/Proof.pdf?d1=0



C. Tracking task

When a UAV detects an attacker, it is assigned with a
tracking task to continue following this attacker. Hence, the
location of the attacker is known. Now we can assign a UGV
subset to begin the interception task. Note, if there are still
attackers with an unknown location, the UAVs that are not
tracking an attacker are still assigned with the search task.

D. Interception task

An attacker’s location is known (a UAV is tracking the
attacker), but the chosen path of the attacker is unknown. Our
goal is to predict the attacker’s location and to send a UGV
to intercept its movement. We present two algorithms: the
Maximize Probability min Distance (MPD) algorithm and the
Min Max Probability (MMP) algorithm. In both heuristics
we take two factors into consideration: first, the probability
that the attacker will be in a specific location. Second, the
distance of that location from the UGV’s location.

Denote by LP(a;,t + 1) and LP(d;,t + 1) the set of
possible locations of an attacker a; and a defender d;,
respectively, at time ¢t 4+ 1 (as shown in Figure 3). MPD
(Alg. 3) chooses the UGV’s next location while taking into
account all the possible locations of the attacker, and MMP
(Alg. 4) considers only the maximum probability location.
D(e;, e;) denotes the shortest path between edges e; and e;
(as shown in Figure 3).

. UGV
possible

UGV « 'location

possible n
location BNy

Attacker. e
possible UGVs
possible

Shortest 1
location

path

Attacker.
Npossible
lacation

Fig. 3: Possible locations of attacker and defender at ¢ + 1

Algorithm 3 MPD

E;=L(dj,t+1)

E, = L(ai,t + 1)

return argmax ». P(eq,t+1)(1/D(eq,eq))
eq€Ey eqn€E,

Algorithm 4 MMP

E;=L(dj,t+1)

eq*® = argmax Pleq,t+ 1)
eq€L(a;,t)

return argmin D(e;*®
eq€L(dj,t)

76d)

V. EXPERIMENTAL EVALUATION

To evaluate our MGP algorithm we used the Simax Smart
scenario Generator (SSG)*, a graphical online real-time
simulation, which simulates a border protection scenario. In
this simulation, the defenders have three goals to protect
(0] = 3). There are a total of 105,000 roads in the
environment (see partially Fig. 1a). We assume that we have
the nested roadmap mapped as a graph.

We have simulated a real-life scenario, in which the math-
ematical Markovian model of the attacker’s movements is not
given to us, but its strategy is known. In our experiments,
the attacker’s strategy is to select an entry point and a goal
at random, then choose a set of locations from a predefined
radius around the goal, and follow the shortest path towards
a randomly-selected location from that set (for creating
deception).

We have extensively evaluated the performance of our
algorithms in the two stages of SCOUT: the search and
the interception. In the experiments, we varied the number
of UAVs, the number of UGVs, the number of attackers
and the detection probability p® of the UAVs. In all cases,
the velocity of the UAVs is 100km/h, the UGVs travel at
50km/h, the attacker travels at a random velocity between
8 — 10km/h, and the attackers’ initial location is chosen
randomly.

A. Search Stage

We have compared our solution to three alternative algo-
rithms, as described in Table 1. The Rand algorithm chooses
naively to go to k cells with a non-zero probability. In
addition, we wanted to evaluate the two components of the
MGP algorithm: the component that aims at maximizing
the probability of immediately locating the attacker and the
component that aims at minimizing the uncertainty by max-
imizing the entropy gain. The MaxProb algorithm chooses
to go to the k cells with the maximum probability (this is
equivalent to choosing threshold Th? = 0 for a single UAV.)
The EntropyGain algorithm chooses to go to the k cells that
maximize the gain (see Eq.4) (this is equivalent to choosing
threshold Th? = 1). As mentioned in Section IV-B, MGP is a
combination of the MaxProb algorithm and the EntropyGain
algorithm.

We focused on a challenging setting where the UAVs are
located far away from the location on the border where the
attackers enter. This allows the attacker to progress towards
its goal before the UAVs begin the search. All of the results
presented below are the average of at least 40 simulation
runs. There were a total of more than 2500 simulations.

Fig. 4 presents the ThP that maximizes the success of
detecting the attacker as p? changes. As seen, the lower
the detection probability is, the higher the chosen threshold
is. Meaning that as the uncertainty of the UAVs increases,
the more impact the entropy measurement will have on the
selection of the cells (rather than moving to the cell with the
highest probability).
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l ‘ Name Algorithm ‘ ‘
MaxProb argmax P(c;,t)
{ci}f_,eC
Rand argrand P(c;,t) # 0
{e;}f_ eC
EntropyGain Gm(C,t,k)
MGP Alg.2 Using ThP? = 0.4

TABLE I: Algorithms to compare the search algorithms

0.40 1

0.35 1

0.30

0.25 1

0.20 4

Threshold

0.15 A

0.10 1

0.05 4

0.00 -

0.7
Detection Probability

Fig. 4: The threshold T'h? that maximizes the detection probability

Next we wanted to check the influence of the number of
UAVs on the MGP’s detection performance. We considered
one, two and three attackers (the initial location was chosen
randomly). As the number of UAVs increases, the success
rate of capturing the attackers increases. In particular, when
the number of UAVs is at least the number of attackers +1,
then the success rate is perfect (1) (see Fig. 5b). The results
presented in Fig. 5a indicate that as the number of UAVs
increases the average detection time decreases.

As seen from Fig. 6a, MGP’s detection time is the lowest
compared to all three algorithms (statistically significant
using the ANOVA test, with p — value = 3.7e — 05). Fig.
6b presents the failure rate (the attacker reached the goal).
MGP outperforms the other three algorithms. MGP’s search
algorithm performance is higher not only in detecting all
attackers but also in finding them faster.

B. Intercept Stage

We have compared our methods, the MPD and MMP, to
the Rand algorithm that chooses to send a UGV defender
d; to a possible location (edge e € L(dj,t)). The UAVs
start tracking the attacker from the border, to compare the
time regardless of the searching time. The detection time in
MPD and MMP is almost the same (MPD is slightly better),
however both algorithms perform much better than random
(as can be seen in Fig. 7a). Fig. 7b presents the interception
time for a changing number of UGVs with one attacker and
one UAV. As can be seen in the figure, as the number of
UGVs increases the interception time decreases.

Time

success

uav Vs

(a) Detection time. (b) Success rate.

Fig. 5: MGP performance in the search stage for one to three
attackers and one to four UAVs with Th? = 0.2 and p? = 0.7.

MG MaxProb Rand Entropy
MGP. Maxprob Entropy Rand

(a) Detection time. (b) Failure rate.

Fig. 6: Comparing search algorithms for one UAV, one UGV and
one attacker where p? = 0.7, Th? = 0.2.

60 1000

Time.

20 40 60
vav

(b) Comparing MPD algo-
rithm for one UAV, one at-
tacker with a changing num-
ber of UGVs.

360
Mp Rand P>

(a) Comparing interception al-
gorithm for one UAV, one
UGV and one attacker.

Fig. 7: Intercepting algorithm comparison.

VI. CONCLUSION

In this paper, we introduced the problem of searching and
capturing attackers that wish to arrive at a specific goal, under
uncertainty (SCOUT). We presented an algorithmic infras-
tructure for efficiently solving SCOUT and MTS problems
for a general graph nested in a 2D environment, assuming
imperfect detection of the robots. We have shown an entropy-
based algorithm that also refers to the maximum likelihood
of finding an attacker. Our suggested algorithmic solution
was tested in a realistic simulation, showing the real-time
efficient performance of our framework, also compared to
other solutions. For future work, we plan to extend our
empirical evaluation to the case of several entry points of
the attackers (initial location) and a different start time for
every attacker. We would also like to examine the framework
in other settings, for example search and rescue.
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