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Abstract We present an approach for learning models that obtain accurate classification
of data objects, collected in large-scale spatio-temporal domains. The model generation is
structured in three phases: spatial dimension reduction, spatio-temporal features extraction,
and feature selection. Novel techniques for the first two phases are presented, with two alter-
natives for the middle phase. We explore model generation based on the combinations of
techniques from each phase. We apply the introduced methodology to data-sets from the
Voltage-Sensitive Dye Imaging (VSDI) domain, where the resulting classification models
successfully decode neuronal population responses in the visual cortex of behaving animals.
VSDI is currently the best technique enabling simultaneous high spatial (10,000 points) and
temporal (10 ms or less) resolution imaging from neuronal population in the cortex. We dem-
onstrate that not only our approach is scalable enough to handle computationally challenging
data, but it also contributes to the neuroimaging field of study with its decoding abilities.
The effectiveness of our methodology is further explored on a data-set from the hurricanes
domain, and a promising direction, based on the preliminary results of hurricane severity
classification, is revealed.
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1 Introduction

There is much interest in applying machine learning in domains with large-scale spatio-
temporal characteristics. Examples range from learning patterns and discriminating cognitive
brain states using functional Magnetic Resonance Imaging (fMRI) [1,4,10,16,18–20,23,33,
34], to developing techniques for classification of brain signals in Brain Computer Interfaces
(BCI) [5,14,22,25,32,35], performing automated video classification [30], computer worm
detection [26] and many more.

However, many existing techniques prove insufficient when the data is temporally and
spatially large (consisting of a large number of variables associated with locations in space,
whose values may change over a relatively long period of time). Classification in such cases
often becomes computationally infeasible. Raw data collected along the time course in a high-
resolution space results in hundreds of thousands of features, for which classical, straight-
forward machine learning approaches become ineffective in practice. While there have been
attempts at addressing these challenges (e.g., [5,34]), they have proven insufficient.

In this work, we present a methodology for both overcoming the scalability challenge and
exploiting the spatio-temporal properties of the data for classification. Our methodology is
based on common machine learning elements and is comprised of three phases. First, we
present a greedy pixel selection technique, i.e. choosing the most discriminative spatial char-
acteristics within the full spatial range in a sample’s space, based on the random subspace
method [13]. Second, we provide two alternative feature extraction procedures, applied to the
spatially reduced samples produced by the first phase: features as pixels in time and spatial
averaging of pixel groups based on inter-pixel correlation. Finally, we employ a simple and
yet effective feature selection based on information gain filtering. We evaluate the methods
in two distinct domains, described in the next paragraphs.

First, we evaluate our methodology in the neuroimaging domain and demonstrate how
it can be used to decode neuronal population responses in the visual cortex of monkeys,
collected using Voltage-Sensitive Dye Imaging (VSDI) [24]. VSDI is capable of measur-
ing neuronal population responses at high spatial (10,000 pixels of size 60 × 60 to 170 ×
170µm2 each) and temporal (10 ms or less) resolutions. The data generated consists of tens
of thousands of pixels (numeric values, correlated to locations in space), rapidly changing
during the time course. Using the methods we develop, it is possible to carry out high-quality
classification of such massive data, in a computationally feasible manner. We show how to
identify those specific properties of the data that carry the most discriminative nature. While
first attempts to decode neuronal population responses collected using VSDI were performed
in [3], no machine learning methods were used—a specially designed statistical approach of
pooling rules was developed (relying on the amplitude of the response and other neuronal
characteristics). To the best of our knowledge, this is the first time where machine learning
techniques are applied in the VSDI imaging domain.

We then further evaluate the methods using hurricane data. Here, we analyze historical data
of the Atlantic region—satellite images and hurricane tracks—in attempt to classify the hur-
ricane severity group by generating a data-set based on plain periodical satellite shots along
the time course. The kind of application we explore here examines how our methodology
handles the challenges proposed in a domain highly different than the VSDI.

The rest of this document is organized as follows: Sect. 2 is the core section of this work
which describes the three phase methodology for spatio-temporal classification. Section 3
presents the empirical evaluation in the VSDI domain, including thorough analysis of the
experiment results. In Sect. 4, we introduce the first results of applying our methods in the
hurricanes domain, after presenting the challenges and discussing the differences between
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the two domains. The insights on the performance of our methodology are discussed in detail
in Sect. 5. Section 6 contains a review of related work. Section 7 concludes.

2 Spatio-temporal classification process

In this section, we present a three phase methodology for building scalable models for spatio-
temporal data classification. To describe our methodology, we first formalize the problem
in Sect. 2.1. We then provide a brief overview of the main phases of the methodology used
and describe each of the phases in detail. Finally, we provide a detailed example run of the
algorithms.

2.1 Problem formalization

A spatio-temporal domain contains n pixels that constitute the global pixel set P = {
p1, p2,

. . . , pn
}
. Every pixel pi , i ∈ {1, . . . , n} represents a concrete location in space, in which

a series of m contiguous values in time is measured. The intervals between each two con-
sequent values in time are equal. In turn, pt

i , i ∈ {1, . . . , n} , t ∈ {1, . . . , m} indicates the
specific time-frame t along the time course, at which the value of pi is measured. In fact, pt

i
represents the pixel-in-time combination of pixel pi and time t .

A finite training samples set of size k in the spatio-temporal domain is defined as: S =
{s1, s2, . . . , sk}, where a single sample sl , l ∈ {1, . . . , k} is a set of vectors: sl = {p1, . . . , pn},
where a vector pi =

〈
vi

1, . . . , v
i
m

〉
, vi

t ∈ R, t ∈ {1, . . . , m} denotes the actual m values along
the time course, measured for the pixel pi in the sample sl . Each training sample sl ∈ S is
labeled with a class label c ∈ C . For an infinitely large universal set U of all possible unla-
beled samples u = {p1, . . . , pn} , u ∈ U , the classification problem is to build a model that
approximates classification functions of the form f : U −→ C , which map unclassified
samples from U to the set of class labels C .

In the next sections, we describe each of the phases of our methodology in detail.
Section 2.2 presents G I RSS, a technique for selecting the pixels that have the most discrim-
inative characteristics within the full spatial range of a sample’s space. Next, in Sect. 2.3,
we introduce two alternative techniques for extracting the features from the pixels selected
in the first phase—the P I T , a simple pixel-in-time approach, and the IPCOSA, a spatial
averaging method based on inter-pixel correlation. The third phase described in Sect. 2.4
presents an effective application of feature selection on the product of the second phase, to
further improve the abilities of the remaining features that constitute the generated models.
Figure 1 sketches the outline for our methodology.

2.2 Pixel selection via greedy improvement of random spatial subspace

Below, we describe G I RSS (Greedy Improvement of Random Spatial Subspace). The tech-
nique uses common machine learning tools in order to reveal the most informative pixels,
which will define the features to be used for classification. The discriminative nature of the
selected pixels stems from analyzing their measured values along the sample time course.
Due to the high spatial and temporal resolutions of the domains in question, the data is
comprised of hundreds of thousands of data-points. Hence, using the most granular, basic
values of the sample’s space as features will lead to an extremely high dimensional fea-
ture space, rendering classification, or even feature dimensionality reduction techniques,
unfeasible.
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Fig. 1 The outline of the classification process methodology

We present here a greedy approach based on the random subspace method [13]. The
method selects (by iterative refinement) the set of pixel subsets from which we can eventu-
ally derive the sought-after pixel set.

2.2.1 The G I RSS algorithm

In Algorithm 1, we randomly generate r pixel subsets of a requested size u (number of pix-
els in a subset). Handling small pixel subsets yields an easier handling of a reduced spatial
dimension. However, in order to cover a large portion of pixels (features) in the data and to
determine their usefulness, we need to rely on a wide-enough exploration of such subsets.

The classification capabilities of each of the generated pixel subsets are roughly evaluated
using our pixel set evaluation method (Algorithm 2). This method is a heuristic for giving
an evaluation score to a pixel subset, which in fact builds a small classification model based
on it. Here, pixel values in time (all pixel-time pairs) are defined as features (step 2), as
was done in [19]. Then, a feature selection heuristic based on information gain (InfoGain,
as implemented in [29]) is applied, selecting only the features with positive InfoGain scores
(step 3). This usage of InfoGain for ranking features by mutual information with respect to
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the class is inspired by [34]. The resulting feature set is cross-validated using linear-kernel
SVM (as implemented in [29]) to obtain an evaluation score (cross-validation accuracy of the
evaluated set). The produced scores are then ordered in a descending order, and the greedy
phase begins.

Algorithm 1 Greedy Improvement of Random Spatial Subspace—G I RSS (S, C, u, r)

Input: Sample set S, label set C , size of random spatial subspace u, number of random spatial subspaces r
Output: Pixel set P∗ = {

p∗1 , p∗2 , . . . , p∗u
}

(top u spatial subspace representatives).

1. Initialize pixel subsets evaluation scores vector: Z [1 : r ]←− 0
2. for i = 1 to r do:

(a) Generate the random permutation vector: ni = permute ({1, 2, . . . , n})
(b) Generate the index vector: di =

{
ni

1, ni
2, . . . , ni

u

}

(c) Select pixel subset (random spatial subspace) indicated by di : P̃di ⊂ P
(d) Save the pixel subset’s evaluation score:

Z [i]←− evaluatePixelSet
(

S, C, P̃di
, u

)

3. Produce sorted indices vector IZ [1 : r ]←− indices (sort (Z [1 : r ])) to contain indices of Z [1 : r ] in
the order matching the sorted scores of Z [1 : r ] (highest scores leading).

4. Initialize the set of pixel subsets � with the highest-ranked pixel subset:

�←−
{

P̃d IZ [1]
}

5. Initialize z with the score of the highest-ranked pixel subset: z←− Z [IZ [1]]
6. for j = 2 to r do:

(a) �′ ←− � ∪
{

P̃d IZ [ j]
}

(b) P ′ ←−extract Highest Ranked Pixels
(
S, C, �′, |�′|, Z [1 : r ]

)

(c) z′ ←− evaluatePixelSet
(
S, C, P ′, u

)

(d) if z′ > z, update the � and its score: z←− z′, �←− �′.
7. P∗ ←− extract Highest Ranked Pixels (S, C, �, u, Z [1 : r ])

The goal of the greedy phase is to produce one desirable pixel set based on the randomly
generated sets. It is desirable to consider all possible subsets of any combinations of the
randomly generated sets. However, since we consider large-scale problems, this will lead to
exponential time complexity. Thus, we propose a greedy approach. The evaluation of a pixel
depends on the value of the subset it belongs to and its own contribution, which leads to
several greedy-based decisions as described below.

First, we consider the randomly generated pixel sets according to their rank. This is moti-
vated by the preference given to pixels that belong to highly ranked sets. We maintain a
set � of pixel subsets, of which the desirable pixel set can be derived at any time. Initially,
� is initialized with the highest-ranked pixel subset (along with its evaluation score). In
each iteration over the ranked pixel subsets list, the next subset in the list joins �. A set
of pixels of size u is then extracted from � (refer to Algorithm 3), and evaluated (again,
using Algorithm 2). If the resulting evaluation score is higher than the existing evaluation
score of �, the current pixel subset remains in � (this is the greedy step). Otherwise, it is
discarded.

Discarding sets that are not capable of producing good feature sets is motivated by the
importance of considering the value of single pixels. Note, however, that a given pixel may
belong to more than one subset, and thus highly valued pixels belonging to a greedily dis-
carded subset may still belong to the final generated set. This way � maintains only those
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pixel subsets along the way which are capable to produce a highly evaluated pixel subset
(whose size is equal to the size of any of the pixel subsets in �), in any requested time. Finally,
when the iteration over the pixel subsets is over, the desirable set of pixels is extracted from
� to serve as the pixel selection.

The decision to use a linear-kernel SVM was based on empirical evaluation. We had
experimented with a selection of classifiers other than SVM, and with SVM classifiers with
various kernels—including Radial Basis Function (RBF) and polynomial kernels with vary-
ing exponents. We finally decided on the linear-kernel SVM since it provided good accuracy
with low run-times.

Algorithm 2 Pixel Set Evaluation—evaluatePixelSet
(
S, C, P ′, u

)

Input: Sample set S, label set C , sorted pixel set P ′, size of the random spatial subspace u.
Output: Evaluation score z.

1. P ′′ ←− pi ∈ P ′ | i ∈
{

1, . . . , min
(

u, |P ′ |
)}

.

2. Extract feature-set: F =
{

pt
j | t ∈ {1, . . . , m} , ∀p j ∈ P

′′}
over the sample set S.

3. Perform feature-selection in F to obtain reduced feature set F ′, using I n f oGain (S, F, C), producing

scores: I G
(

pt
j

)
, ∀pt

j ∈ F . Select only features having I G
(

pt
j

)
> 0.

4. z←− Accuracy score of a 10-fold cross-validation of F ′ applied on S using SV M
(
S, F ′, C

)
.

The extraction of the highest-ranked pixels set from � (Algorithm 3), at any stage of
G I RSS, is done as follows: each individual pixel subset in � is turned into a feature set,
where pixel values in time are defined as features (step 2a). An InfoGain-based feature selec-
tion is applied on this feature set, and the InfoGain scores for each feature are taken (step
2b). The score for each individual pixel is calculated by averaging (along the number of
pixel instances) the weighted averages of InfoGain scores (along the pixel’s time course in
each of the feature sets) (step 2c). The evaluation score of each pixel subset in � is used as
the weight for computing the grand-average, effectively giving higher weight to pixels and
features stemmed from highly evaluated pixel subsets.

Algorithm 3 Highest-Ranked Pixels Extraction—
extract Highest Ranked Pixels (S, C, �, u, Z [1 : r ])
Input: Sample set S, label set C , set of pixel subsets � = {P1, P2, . . .}, size of the random spatial subspace
u, pixel subsets score vector Z [1 : r ].
Output: Top u ranked pixels pIρ [l] ∈ P, l ∈ {1, . . . , u}.
1. Initialize pixels score vector: ρ [1 : n]←− 0 and pixels instances vector: ι [1 : n]←− 0.
2. for ∀Pi ∈ � do:

(a) Extract feature-set: F =
{

pt
j | t ∈ {1, . . . , m} , ∀p j ∈ Pi

}
over the sample set S.

(b) Rank features in F using I n f oGain (S, F, C) producing scores:

I G
(

pt
j

)
, ∀pt

j ∈ F .

(c) for ∀p j ∈ Pi do: ρ [ j] = ρ[ j]·ι[ j]+Z [i]·
∑m

t=1 I G
(

pt
j

)

m
ι[ j]+1 , ι [ j] = ι [ j]+ 1.

3. Produce sorted pixel indices vector Iρ [1 : n]←− indices (sort (ρ [1 : n])) to contain indices of ρ [1 : n]
in the order matching the sorted scores in ρ [1 : n] (highest scores leading).
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2.2.2 Complexity analysis

The time and space complexity of Algorithm 2, the evaluatePixelSubset , is linear in the
number of all combinations of pixel-in-time pairs per sample—i.e., in the number of basi-
cally defined features. Therefore, the first two steps in the algorithm have a cost of O (kmu),
and so is the InfoGain feature selection step (which is linear in the number of features). An
efficient, state-of-the-art SVM implementation is linear in the number of samples (inherently,
features), so our cross-validation using the SVM also has a bound of O (kmu). Thus, the
overall time and space complexity of Algorithm 2 is O (kmu).

In extract Highest Ranked Pixels, Algorithm 3, the size of � is bounded by r , so the
algorithm’s single loop is performed at most r times. The cost of each iteration of the loop is
O(kmu), for the reasons stated earlier in the analysis of Algorithm 2 (feature set extraction,
InfoGain ranking and values averaging). Besides the loop, we initialize and sort a vector of
length n. This results in the overall time complexity of the algorithm of O(n log n + rkmu).
The space complexity is different: we only need O(n) storage for the scores vector, and an
additional O(kmu) space for a single loop iteration. Therefore, the space complexity of the
algorithm is O(n + kmu).

The time complexity of the main Algorithm 1, the G I RSS, is analyzed as follows. Each
iteration of the first loop, repeated r times, has a cost of O(n) added to the cost of Algorithm 2,
the evaluatePixelSubset , resulting in an iteration cost of O(n + kmu). Therefore, the
loop’s total cost is O(r(n+ kmu)). Each iteration of the second loop, which is also repeated
r times, has a cost of Algorithm 3, the extract Highest Ranked Pixels, added to the cost
of evaluatePixelSubset—resulting in the total cost of O(r(n log n + rkmu)). Lastly, we
sort a vector of length r once, a step that costs O(r log r). Overall, the time complexity of
G I RSS is O(r(log r + n log n + rkmu)).

As for the space complexity of G I RSS, it is O(r + n) for the evaluation scores vector
and random permutation vectors generation, O(n + kmu) for the calls to Algorithm 3, and
O(kmur) for the maintenance of the data structures during the executions of the loops inside
the G I RSS. Altogether, this results in the space complexity of O(n + rkmu).

We believe that there is space for further complexity reduction. However, we were sat-
isfied with the performance of the presented version during the experimental evaluation, as
detailed in Sect. 3, so the current implementation was retained.

2.3 Feature extraction

Methods described here are applied on the pixel selection results of the first phase (Sect. 2.2).
We present two alternative feature extraction approaches in order to cope with variability evi-
dent in different spatio-temporal data-sets. Even when the data-sets originate from the same
domain, they can bear different spatial characteristics, expressed in the noise level and the
resolution of the signal collected during the data-set construction. The alternatives provided
here are each aimed at a different data-sets sector.

2.3.1 Features as pixels in time—P I T

One straightforward approach for extracting a feature set F from a given pixel set P∗ ={
p∗1, p∗2, . . . , p∗u

}
over the sample set S is to define it as all pixel-in-time combinations

F =
{

pt
j | t ∈ {1, . . . , m} , ∀p j ∈ P∗

}
, yielding u ·m features. We call this approach P I T

(Pixels In Time), and use it in Sect. 2.2 for ranking pixel subsets and feature sets. While for
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simpler classification tasks, this is satisfactory—fast, simple and effective (Sect. 3), a method
described next is suggested for more complex tasks.

2.3.2 Spatial averaging of pixel groups based on inter-pixel correlation

The motivation for this method is to overcome the negative effects of a possibly noisy data
by performing a spatial-level averaging of pixels that share a common nature. This requires
that the trends of their change along the time course will have similar characteristics. Two
questions raised here are

− How to measure similarity between the pixels?
− How to choose “similar” pixels in space, designated for averaging?

The way we measure similarity is by employing Pearson’s product moment coefficient [9]
between pairs of pixels. This method is simple, suitable with the type of data we have and
was successfully used for calculation of correlation scores in multivariate time series (where
correlation is employed for discrimination of target classes [23,32]).

As a reminder, the Pearson correlation coefficient between vectors a and b of length n is
defined as follows:

ρ =
∑n

i=1(ai − μa)(bi − μb)

(n − 1)σaσb

where µa and µb are the respective means of vectors a and b, and σa and σb are their
respective standard deviations. The coefficient ρ represents the linear correlation between
the variables. It ranges from −1 (perfect negative linear correlation) to 1 (perfect positive
linear correlation), whereas 0 indicates no linear correlation (in which case we assume a and
b are independent).

As for the second question, we perform pixel averaging within groups of “similar” neigh-
boring pixels. The reason for this lies in the nature of our data—a non-trivial negative cor-
relation exists between all pixel-pairs correlations and all pixel-pairs distances,1 showing
that higher distances between pixels lead to lower correlations between them. Therefore,
choosing neighboring groups of pixels as a whole, having a high inter-group similarity, has
the potential to reveal stronger discriminative characteristics—rather than picking individual
pixels from the same group.

The IPCOSA algorithm We present IPCOSA (Inter-Pixel Correlation-based Spatial
Averaging; Algorithm 4) below. We show how the neighborhood formation for pixel groups
generation is done. This formation is based on a given pixel set, a product from the previous
phase introduced in Sect. 2.2—we refer to this set as “the seeds”. First, we calculate a cor-
relation coefficient matrix C and a distances matrix D between all pixel pairs (step 3); these
matrices are symmetric (only one triangle above or below the diagonal is essential). Then
we define the set of pixel subsets �, which will eventually hold the groups of neighboring
pixels that share a similar nature. Next, we employ a graded group formation phase (step 5),
where the correlation strength dictates the group formation order: groups having the stron-
gest inter-similarity are generated first, ensuring that the eventually formed groups exploit
the similarity property to its full extent (only positive correlation coefficient thresholds are
used).2

1 During the experimental evaluation of all VSDI data-sets (Sect. 3), the coefficient between all pixel-pairs
correlations and all pixel-pairs distances was within the range of ≈ −0.45± 0.5.
2 Our choice of τ was 0.05 in all our experiments.
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The group formation is subject to the following guidelines: a group of pixels must contain
at least one seed within it to base the group on. Once chosen, the seed’s proximate neighbors’
correlation scores are examined. Neighbors with scores that fit the graded correlation thresh-
old join the seed’s group. Recursively, the correlation scores of the neighbors of each of the
newly joined group members are tested, and additional pixels conforming to the correlation
and the proximity requirements join the group. Eventually, a group stops expanding once
none of the group members’ neighbors fits the requirements. At this step, a formed group
joins �, and its members are no longer available for formation of new groups. A group may
consist of a sole seed (step 6). At the end of the group formation phase, � contains groups of
neighboring pixels, each based on one or more seeds. Some groups have stronger inter-sim-
ilarity than the others, but due to our graded group formation phase, even the weaker groups
are generally based on non-negligible positive correlation scores.3

At the final phase of our algorithm, the feature extraction is based on �’s pixel groups:
pixel values at each of the points in time are averaged along their spatial dimension—across
all pixels within each of the groups of �.4 The resulting features represent the average-
in-time of similar pixels, as opposed to the pixel-in-time approach presented in Sect. 2.3.1.
For seeds pixel set of size u, there will be at most u · m features (number of formed groups
will not exceed the number of seeds, as each group must contain at least one seed).

Complexity analysis For the analysis of time complexity, the IPCOSA has three major parts:
the initialization and the calculation of the correlation and the distance matrices, the groups
formation and the maintenance of �, and the spatial average calculations. The first part has
a cost of O((knm)2). The second part has a complexity of O(n), thanks to the fact that the
groups formation in grids is done by exploring the finite and bounded set of only the closest
neighbors of each of the pixels, where each pixel relation evaluation is done only once—
resulting in the number of such evaluations being linear in the number of pixels. Since �

contains at most u groups (due to the property of at least one seed per group), the cost of the
third part is simply O(um), u << n. Overall, the time complexity of IPCOSA is O((knm)2).

The space complexity of IPCOSA is, therefore, O(n2) for building the matrices in the
first part, O(n) for storing the group formation information in � during the execution of the
second part, and O(um) for the feature generation step in the third part. Altogether, the space
complexity is O(n2 + um).

However, it is easy to notice that the version of the algorithm presented here is suboptimal,
mainly for the purpose of clarity—there is no need for the initial calculation, nor the storage,
of the correlation and the distance matrices. Their values can be computed on demand, while
the calculations spread pattern in the grid-formatted space guarantees that only O(n) calcu-
lations will be performed (during the second part of the algorithm). Thus, the actual optimal
implementation of IPCOSA has complexities of O(knm) for time and O(n+ um) for space.

2.4 Feature selection

To further improve model quality and reduce the feature-space dimensionality, feature selec-
tion is applied on the extracted features. InfoGain-based feature selection [29] is applied on
the given feature set F of the samples set S, producing scores: I G(S, f ), ∀ f ∈ F . Then,
only the features with positive InfoGain scores: I G(S, f ) > 0 are selected.

3 As our empirical evaluation of VSDI data shows (Sect. 3), in most cases the weakest formed groups are
based on a correlation coefficient of at least 0.4.
4 Various seeds-based spatial averaging methods were tested during our empirical evaluation of VSDI data,
in order to choose the most appropriate method. Please refer to Sect. 5.3 for additional details.
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Algorithm 4 Inter-Pixel Correlation-based Spatial Averaging—IPCOSA (S, C, P∗, τ )

Input: Sample set S, label set C , seeds pixel set P∗ of size u, correlation threshold step τ ∈ [0, 1].
Output: Feature set F∗ over the sample set S.

1. Set neighboring distance threshold μ (e.g. for spatially grid-formatted domains: μ = √2). p1 and p2 are
neighbors iff distance (coords (p1) , coords (p2)) ≤ μ.

2. Initialize correlation coefficient matrix: C = 0n×n and distance matrix: D = 0n×n (symmetric).
3. for ∀pi ∈ P do:

(a) Vectorize all pi values of pi over the sample set S = {s1, s2, . . . , sk } to produce super-vector of
length m · k with all of concatenated pi values:

qi =
〈〈

vi
1, . . . , vi

m

〉

s1
· · ·

〈
vi

1, . . . , vi
m

〉

sk

〉

(b) for ∀p j ∈ P, pi = p j do (for every pair pi , p j ):
i Vectorize all p j values of p j over the sample set S = {s1, s2, . . . , sk } to produce super-vector

of length m · k with all of concatenated p j values:

q j =
〈〈

v
j
1 , . . . , v

j
m

〉

s1
· · ·

〈
v

j
1 , . . . , v

j
m

〉

sk

〉

ii Compute correlation coefficient: C(i, j) = correlation
(
qi , q j

)
.

iii Compute distance: D(i, j) = distance
(
coords (pi ) , coords

(
p j

))
.

4. Initialize �, the set of pixel subsets: �←− ∅, and R, the retaining pixel set: R←− P .
5. for r ∈ {1, 1− τ, 1− 2τ, . . . , τ } do:

(a) while ∃p ∈ R s.t. p ∈ P∗ (p is a seed) and ∃ p̂ ∈ R s.t. C( p̂,p) ≥ r − τ and D( p̂,p) ≤ μ:
i Initialize G, pixel subset group, G ←− {p}.

ii R←− R \ {p}
iii while ∃p

′ ∈ R and ∃ p̃ ∈ G s.t. C(
p̃,p′

) ≥ r − τ and D(
p̃,p′

) ≤ μ:

A G ←− G ∪
{

p
′}

B R←− R \
{

p
′}

iv �←− � ∪ {G}
6. for ∀p ∈ R s.t. p ∈ P∗ (p is a remaining seed in R) do:

(a) R←− R \ {p}, G ←− {p}, �←− � ∪ {G}
7. Initialize feature-set F∗ over the sample set S, F∗ ←− ∅.
8. for t = 1 to m and ∀G ∈ � do:

(a) Define f t —the average of values of all pixels in G at time t :

f t =
∑|G|

i=1 vi
t

|G| , s.t. pi =
〈
vi

1, . . . , vi
m

〉
, vi

t ∈ R, t ∈ {1, . . . , m} , ∀pi ∈ G

(b) F∗ ←− F∗ ∪ {
f t }

The motivation: the features produced in Sect. 2.3 are based on pixel selection from
Sect. 2.2, where the whole time-spectrum of pixels or pixel groups is preserved. However,
points along the time course exist, during which the spatial discriminative nature is not real-
ized (e.g. long before the onset of the signal in VSDI). Not only that these points in time are
ineffective for the emphasis of the spatial characteristics, but they sometimes obscure their
discriminating potential. InfoGain filtering drops those unwanted features with negligible
scores, whose contribution is neutral or negative.

2.5 Example

In this section, we provide a concrete example of our algorithms, applied to a real
Gabors data-set—which will be introduced in Sect. 3.1. This example is a part of a single
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experimental trial, among the 10 trials performed on the Gabors data-set. The model eval-
uation described here uses the G I RSS pixel selection technique in combination with each
of the two feature extraction techniques—the P I T and the IPCOSA. The particular sin-
gle trial addressed here was comprised of 10 cross-validated folds and has yielded an
average (between the folds) accuracy of 79.74% for {G I RSS, P I T } and of 81.7% for
{G I RSS, IPCOSA}. Our description focuses on a single fold among the 10 folds—
specifically, fold 4.

2.5.1 Phase 1—Pixel selection using the G I RSS

Input

− S: 138 samples are used as the training set in fold 4 (out of the total 153 Gabors samples,
where 15 samples are reserved for the test set). Each line in a sample file represents a
pixel. There is a rectangular grid of 100 × 100 pixels, thus 10,000 pixel lines in each
file. A pixel is indexed by the line’s number (e.g., pixel 101 is represented by line 101).
Each line contains 51 values measured for its specific pixel—one value for each of the
51 consecutive time-points in which the value was measured.

− C : 6 class labels (0, 1, 2, 3, 4, 5). Each of the 138 training samples from S is labeled
with one of the 6 labels of the Gabors data-set.

− u: 100—The size of a random spatial subspace, i.e. the size of a single pixel subset (in
each subset, there will be 100 pixels). This parameter is provided manually.

− r : 150—The number of random spatial subspaces, i.e. the number of pixel subsets gen-
erated by the algorithm. This parameter is also provided manually.

Flow

1. Initialization of the evaluation scores vector Z [1 : r ] with values of 0.
2. Generation of 150 pixel subsets (subset1, . . . , subset150). Each subset represents 100

randomly selected pixels. For example, subset1 contains the following 100 pixel indices:
70, 128, 200, 359, 415, 422, 483, 489, 619, . . . , 9, 664, 9, 681, 9, 845.

3. Each of the 150 pixel subsets is being evaluated, and given an evaluation score, using
Algorithm 2. This algorithm defines the feature set of each subset as a pixel-in-time
combination, using each pixel’s complete time range. For instance, the feature set of
subset1 contains the following features:

pixel70timepoint1 pixel70timepoint2 . . . pixel70timepoint51
pixel128timepoint1 pixel128timepoint2 . . . pixel128timepoint51

...
...

...
...

pixel9845timepoint1 pixel9845timepoint2 . . . pixel9845timepoint51

Measured values of pixel 70 at time-point 1, pixel 70 at time-point 2, and so on—until
pixel 9845 at time-point 51— are picked for each of the 138 training samples. After
the features of the composed training set are screened via the application of the Info-
Gain filter, only the features with positive scores remain in the feature set. In the case
of subset1, only 384 pixel-in-time combinations (out of 100 · 51 = 5,100 potential
features) remain. Therefore, the partial list of these features is as follows (ordered by the
evaluation score—the right-most column):

123



538 I. Vainer et al.

pixel6948timepoint33 0.66
pixel6847timepoint39 0.586
pixel6847timepoint34 0.578
pixel7640timepoint38 0.563

...
...

pixel2659timepoint43 0.138
pixel5426timepoint31 0.131

The samples defined in this way are 10-fold cross-validated using the SVM. The accu-
racy score of the cross-validation is the output of Algorithm 2. In case of subset1, the
accuracy score is 69.57. Evaluation scores vector Z [1 : r ], therefore, contains the value
of 69.57 at its first index (corresponding to subset1), the value of 72.46 at its second
index (corresponding to subset2), and so on, until the last subset—subset150, the value
of which is 72.46.

4. Having each of the pixel subsets given a score, the scores are sorted and stored in the
indices vector IZ [1 : r ]. In our example, the partial list of the produced evaluation scores
is (ordered by the evaluation score—the right-most column):

subset39 79
subset124 78.26
subset64 78.26
subset35 77.54

...
...

subset1 69.57
...

...

subset90 58.7
subset87 57.25
subset128 51.45

Therefore, the vector IZ [1 : r ] contains: 39, 124, 64, 35, . . . , 1, . . . , 90, 87, 128.
5. � is initialized with the highest-ranked pixel subset, subset39, and z is initialized with

its score of 79.
6. In this loop, the first thing that happens is that subset124 joins �, which now holds the

pixel subset indices of {39, 124}. Highest-ranked pixels are extracted from � using Algo-
rithm 3. Since the weight of subset39 is 0.79, and the weight of subset124 is 0.78, an
example of (positive only) weighted InfoGain scores for the features created during the
run of Algorithm 3 is (ordered by the weighted InfoGain score—the right-most column):

pixel7148timepoint37 0.58
pixel7047timepoint30 0.48
pixel7148timepoint39 0.47

...
...

pixel3741timepoint47 0.19

The subset eventually produced by Algorithm 3 contains the following pixel indices
in Iρ[1 : n] (highest-ranked pixels first): 7148, 7542, 7737, 7047, 7453, 7843, 6945,
6930, 3328, . . . ,2463, with the corresponding scores of each pixel in the list being:
0.18,0.17,0.15,0.14,0.13,0.11,0.106,0.105,0.104,. . .,0.002. The first 100 pixels from this
set are evaluated by Algorithm 2, producing the evaluation score of 79.71. Since this score
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is higher than the currently leading score of 79, subset124 remains in �, and z is updated
with the new score.
In the next iteration, subset64 joins �, which now holds the pixel subset indices of
{39, 124, 64}. Algorithm 3 extracts the following ranked pixel indices into Iρ[1 : n]:
7148, 7542, 7737, 6851, 7447, 6848, 7047, 7453, 7843, . . . , 2463. The evaluation score
given by Algorithm 3 using the first 100 pixels is 81.88, thus z is updated again, and �

is retained as is.
At the third iteration, subset35 joins �, the pixel subset indices in which become {39, 124,

64, 35}. However, the evaluation score produced this time is 79.71—lower than z. Fol-
lowing this event, subset35 is discarded and is not retained in �. Similarly, the next subset
in line, subset74, is being discarded too.
In a similar way, all 150 subsets are joining �, tested, and eventually retained or discarded.
Right before the last iteration, � holds the pixel subset indices of {39, 124, 64, 134, 11,

47, 59, 48, 73, 29, 90}, and z is 89.13. The addition of the last subset, subset128, to �,
yields a result lower than z, thus the final � remains as it was prior to the last loop
iteration.

7. At this stage, Algorithm 3 is applied on the final �, and the following highest-ranked
100 pixels are extracted from it: 7148, 7542, 7345, 7737, 7139, 7240, 7538, 6851, 7738,

. . . , 5226. These pixels are the seeds set—P∗, the output of G I RSS.

Output P∗, as detailed above.

2.5.2 Phase 2 (alternative 1)—Feature extraction using the P I T

In P I T , the features are defined as every pixel-in-time combination on the given pixel set.
Using P∗ as the input, the produced feature set contains the following features:

pixel7148timepoint1 pixel7148timepoint2 . . . pixel7148timepoint51
pixel7542timepoint1 pixel7542timepoint2 . . . pixel7542timepoint51

...
...

...
...

pixel5226timepoint1 pixel5226timepoint2 . . . pixel5226timepoint51

2.5.3 Phase 3 (alternative 1)—Selection of P I T -extracted features

After applying the InfoGain filter to the features of the composed training set, 2251 pixel-
in-time combinations (out of 100 · 51 = 5, 100 features) remain. Therefore, the partial list
of these features is as follows (ordered by the evaluation score—the right-most column):

pixel7148timepoint37 0.742
pixel7542timepoint34 0.689
pixel7052timepoint34 0.671

...
...

pixel3265timepoint13 0.128

Training a classification model using the resulted feature set and applying the model to
the 15 reserved test samples results in the final accuracy of 86.67% for the combination of
{G I RSS, P I T } in fold 4 of this trial.
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2.5.4 Phase 2 (alternative 2)—Feature extraction using the IPCOSA

Input

− S, C : Same as the S and C input parameters for G I RSS (phase 1).
− P∗: The seeds pixel set produced by G I RSS in phase 1, pixel indices of which are:

7148, 7542, 7345, 7737, 7139, 7240, 7538, 6851, 7738, . . . , 5226.
− τ : 0.05—The correlation threshold step for the graded formation of groups. This param-

eter is provided manually.

Flow

1. Initialization of μ as
√

2 (the pixels are spread over a rectangular grid).
2. Initialization and population of the correlation coefficient matrix C and the distance

matrix D. For example: D(1, 2)=1, . . . , D(1, 5)=4, . . . , D(1, 100)=99, D(1, 101)=
1, D(1, 102) = √2, . . . , D(1, 9901) = 99, . . . , D(9999, 10000) = 1. For brevity, we
skip concrete examples of correlation coefficients in C .

3. Initialization of � with ∅, and of the retaining set R with P (the complete 10,000 pixels
set).

4. In this loop, the first thing to happen is the exploration of the range of correlation
(0.95 − 1]. Every seed from P∗ with a correlation to a neighboring seed in this range
forms a pixel subset group G—with neighboring pixels added recursively to each of the
groups of the corresponding seed. In our example, only one group is formed in the first
iteration: group0.951 : {3224, 3325}—the seed of which is 3325. This single produced
group joins �, which now contains: {group0.951}. Pixels from this group are removed
from the retaining set R.
Next, the range of correlation (0.9–0.95] is explored. As a result, the following two
groups are produced: group0.91: { 2842, 2843, 2844, 2943, 2944 }–the seed of which
is 2943, and group0.92 : { 3130, 3131 }–the seed of which is 3131. Again, the two new
groups join �, which now contains: {group0.951, group0.91, group0.92}. Pixels from
the newly joined groups are removed from the retaining set R.
In turn, the correlation range of (0.85–0.9] produces 4 new groups: group0.851: {2946,
2947, 2948, 2949, 2950, 2951, 2952, 3046, 3047, 3048, 3049, 3050, 3051, 3052}, the two
seeds of which are 3047 and 3050; group0.852: {3227, 3228, 3229, 3327, 3328}—the
seed of which is 3328, group0.853: {2651, 2652, 2653}—the seed of which is 2652,
and group0.854: {3230, 3231}—the seed of which is 3231.
Finally, at the end of the loop, � contains 78 groups—with the last group, having the
weakest inter-correlation, being group0.451: {5614, 5615, 5616}—the seed of which is
5615.

5. This phase, responsible for generating pixel groups based on the remaining sole seeds,
produces 5 new groups—each based on one of the remaining seeds. These groups ulti-
mately join the set �: sole seed group1 ({2881}), sole seed group2: ({3547}), sole
seed group3: ({6848}), sole seed group4: ({6377}) and sole seed group5: ({5769}).
Eventually, the set � contains 83 groups of pixels.

6. Feature set F∗ is initialized with ∅.
7. For every time-point t from 1 to 51 and for every group G in �, feature f t in F∗ will

represent the average of all pixel values in G corresponding to time t . Therefore, in our
example, the produced feature set F∗—containing all group-average-in-time combina-
tions, will hold the following features:
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group0.951 average, timepoint1 . . . group0.951 average, timepoint51

group0.91 average, timepoint1 . . . group0.91 average, timepoint51

group0.92 average, timepoint1 . . . group0.92 average, timepoint51

...
...

...

group0.451 average, timepoint1 . . . group0.451 average, timepoint51

Output The output is F∗, as detailed above.

2.5.5 Phase 3 (alternative 2)—Selection of IPCOSA-extracted features

After filtering via the InfoGain filter, 2043 pixel-in-time combinations (out of 83 ·51 = 4233
features) remain. Eventually, the partial list of these features is (ordered by the evaluation
score—the right-most column):

group0.81 average, timepoint29 1.0242
group0.84 average, timepoint33 0.9858
group0.81 average, timepoint32 0.9451

...
...

group0.52 average, timepoint24 0.1535
group0.810 average, timepoint49 0.1465

Training a classification model using the resulted feature set and applying the model to
the 15 reserved test samples results in the final accuracy of 100% for the combination of
{G I RSS, IPCOSA} in fold 4 of this trial.

3 Empirical evaluation using VSDI data

The primary goal in our work is to suggest a combination of effective techniques for obtain-
ing scalable and accurate classification in large-scale spatio-temporal domains. To reach this
goal, we demonstrate how our techniques are evaluated in the VSDI domain and applied
to VSDI data-sets. The accuracy of the classification is validated by the evaluation of our
classification performance. The scalability of our methods is shown by exploring their fea-
sibility from the run-time perspective. This is done by emphasizing the lessons learned from
the experience we had with applying approaches similar in nature to the ones reviewed in
Sect. 6. Many of these approaches use the most granular values of the sample’s space for
feature selection and classification, which eventually leads to an extremely high dimensional
feature space. Our failure in employing these approaches is compared to the success of show-
ing the feasibility of our methodology. We additionally compare our results to those achieved
by a domain expert faced with the same tasks.

3.1 Experiment methodology

We first collected three data-sets, each based on a single imaging experiment performed in
the visual cortex of one animal and composed from multiple trials. Then, a domain expert
was requested to provide an ROI(s) (Region Of Interest) of pixels for each data-set. This was
used for the evaluation of the pixel selection technique G I RSS presented in Sect. 2.2.

We then constructed classification models using both G I RSS and the domain expert
(called Oracle) in the first phase, in combination with the two feature extraction techniques
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Fig. 2 Stimuli for the Oriented
Gratings data-set: a drifted
square gratings at vertical
orientations; b drifted square
gratings at horizontal
orientations; c blank control
image (not presented)

in the second phase: {Oracle, G I RSS} × {P I T, IPCOSA}, and with the application of the
feature selection (Sect. 2.4) in the third phase. We used several sets of u and r parameters
for G I RSS. Their selection is discussed in Sect. 5.1.

The resulting models were evaluated using a 10-fold cross-validation of the multi-class
SVM with linear kernel [29]. Each model’s evaluation was performed a number of times
(each trial yielding a different random 10-fold division), as specified in the results tables
below.

In each experiment, the monkey was shown a set of different visual stimuli, one specific
stimulus per trial. Each stimulus presentation was repeated 20–30 times. Neuronal popula-
tion responses in the visual cortex evoked by the stimulus were recorded using VSDI. The
imaged area was divided into a grid of pixels, and population response (summed membrane
potentials of all neuronal elements) of each pixel was recorded during the time window of
the trial [24]. Each trial in an experiment is a sample in our sample space. A sample consists
of all pixels of the recorded area, where a pixel is a time-series of values collected along the
time course of the trial.5 These values are raw data-points—with no averaging across trials,
whether in time or space—directly reflecting unprocessed measurement points. Hence, the
VSDI decoding we did was performed at a single trial level. Each sample is labeled with
a class that represents the appropriate stimulus. The data-sets differ in the number and the
type of the presented stimuli, both affecting the complexity of the decoding. Being able to
perform successful classification of these data-sets, is being able to “read” what the monkey
has seen without seeing it ourselves.

Data-set 1: Oriented Gratings (simple). The monkey was presented with two different
drifted square gratings at horizontal and vertical orientations, and a blank con-
trol image with no stimulus (Fig. 2). Each of the 293 samples in the data-set
had 2162 pixels (a 46× 47 matrix) along 51 time points. The three classes had
almost uniform distribution where the mode class constitutes 34.13% of the
population (setting the baseline accuracy using a Zero-R [29]).

Data-set 2: Contours (moderate). The monkey was presented with four different Gabor-
based Contours in space and a blank control image (see Fig. 3). The four Gabor-
based Contours divide into two pairs, where the differences between the classes
in each pair are very subtle and hardly noticeable. Each of the 124 samples had
10,000 pixels (a 100× 100 matrix) along 61 time points. The five classes had
almost uniform distribution where the mode class constitutes 23.39% of the
population (Zero-R baseline accuracy).

Data-set 3: Gabors (complex). The monkey was presented with five different Gabor-based
orientations in space and a blank control image (see Fig. 4). Each of the 153
samples had 10,000 pixels (a 100 × 100 matrix) along 51 time points. The

5 See below for visualization examples of the raw VSDI data.
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Fig. 3 Example of stimuli for the Contour data-set: a circle 1; b masked circle 1; c circle 2; d masked circle
2; e blank control image (not presented)

six classes had almost uniform distribution where the mode class constitutes
18.95% of the population (Zero-R baseline accuracy).

To illustrate the data-sets, we present a fragment of the VSDI raw data. Visualizing data
composed of thousands of pixels is not an easy task. Thus, we chose to present only a small
number of pixels, taken from a single sample for each of the stimuli types. In Fig. 5 below,
we display the values of 1% of 2,162 pixels close to the RO I1 area of the Oriented Gratings
data-set. Each graph in the Figure is based on a single sample out of 293 samples, each
of which represents one specific stimulus out of the three possible types. Visual compari-
son of the different stimuli samples of the Oriented Gratings by a naked eye hints that the
classification of this data-set can be a difficult task.

3.2 The Oracle

We define the Oracle pixel selection method, as a best-effort attempt by a human expert to
provide a pixel set which, in her professional opinion, has the most potential to successfully
discriminate between the different classes of the training samples set. The Oracle is asked
to manually pick a set of pixels of some size: � = {p1, p2, . . .}, � ⊆ P , also known as
the ROI (Region Of Interest). This set serves as a “gold standard” for comparison with the
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Fig. 4 Stimuli for the Gabor data-set (the numbers and the degrees on the white axes are not part of the
stimuli; blank control image not presented). The circle represents the fixation point location

Fig. 5 Visualization of three samples from the Oriented Gratings data-set, labeled with: a class 1; b class 2;
c class 3 (blank control image). Only the values of 1% of the pixels close to the RO I1 area are displayed for
each of the samples along the full interval of sampling

G I RSS pixel selection technique. The goal is to build an accurate classification model using
the most discriminating pixels.

In the experiments, the domain expert was requested to provide an ROI(s) of pixels for
each data-set:

− For the Oriented Gratings data-set, we were given a single ROI along the time course of
our experiments, the RO I1.

− In the case of the Gabors, after the first line of experiments with RO I1—the original
ROI— we were given RO I2, an improved version based on the results of using RO I1.

− With the Contours case, three different ROIs of pixels were given in advance, each for
individual evaluation by our techniques.
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Fig. 6 Gabors data-set,
RO I2(218). The imaged area of
pixels is depicted on the grid (all
pixels are in V1)

Fig. 7 Gabors data-set, sample
fold result—the imaged area of
pixels depicted on the grid. The
results of applying G I RSS with
u(100) and r(125) to produce a
seeds pixel set are shown in large
circles. Neighborhoods of pixels
for averaging are formed around
the seeds (small circles, having
the seeds’ colors). The different
sizes of pixels between the
neighborhoods express the
strength of the inter-correlation
within each neighborhood,
compared to the other ones

3.3 G I RSS vs. human Oracle results

In general, there are significant differences between the pixels selected by G I RSS and the
ROI pixel sets selected by the human domain expert. These differences can be seen by
comparing the ROI pixels to the G I RSS pixels in the different data-sets.

First, we see differences in the Gabors data-set pixel selection. Fig. 6 shows the best
performing Oracle’s ROI pixel set, RO I2(218). In contrast, Fig. 7 shows results from a
G I RSS run.

Similar differences between the pixel set selected by the human domain expert, and
G I RSS, can also be observed in the Contours data-set case. Here, the pixels selected by
G I RSS cover a wide area spread, again, along multiple sites in the visual cortex. RO I3, the
best performing Contours ROI is shown in Fig. 8. The results from G I RSS are shown in Fig. 9.

With the rather simplistic case of the Oriented Gratings, where the types of the visual
stimuli are noticeably different, and the decoding task at hand is far from being complex, the
pixel sets produced by G I RSS show a wide spread across the cortical area (which is almost
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Fig. 8 Contours data-set,
RO I3(155)—the best
performing Oracle’s ROI pixel
set. The imaged area of pixels is
depicted on the grid

Fig. 9 Contours data-set, sample
fold result—the imaged area of
pixels depicted on the grid. The
results of applying G I RSS with
u(151) and r(100) to produce a
seeds pixel set are shown in large
circles. Neighborhoods of pixels
for averaging are formed around
the seeds (small circles, having
the seeds’ colors). The different
sizes of pixels between the
neighborhoods express the
strength of the inter-correlation
within each neighborhood,
compared to the other ones

five times smaller than the tested area in the other data-sets). This spread of pixels, being 7.1%
of the complete pixel range, seems to almost uniformly cover the whole area. Comparing the
accuracies of the pixels selected by G I RSS to those provided in the ROI (concentrating in
one specific spot), we reveal approximately the same high accuracy results. These findings
only strengthen the claim that the Oriented Gratings data-set is a comparatively easy task.
The differences are shown in Figs. 10 and 11.

3.4 Classification results

The overall results are presented in Tables 1, 2, and 3, in order of increasing difficulty of
the learning (as we can see from the Zero-R baseline results). Each table is divided into
two sections, which contrast the results for each of the pixel selection methods: The human
domain expert (Oracle) and the G I RSS technique. For each of these, we contrast the aver-
age classification accuracy achieved with the two feature extraction techniques, P I T and
IPCOSA. In the tables, RO Ix (y) denotes an ROI pixel set x of size y.
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Fig. 10 Oriented Gratings
data-set, RO I1(154)—the single
Oracle’s ROI pixel set. The
imaged area of pixels is depicted
on the grid

Fig. 11 Oriented Gratings
data-set, sample fold result—the
imaged area of pixels depicted on
the grid. The results of applying
G I RSS with u(154) and r(20) to
produce a seeds pixel set are
shown in large circles.
Neighborhoods of pixels for
averaging are formed around the
seeds (small circles, having the
seeds’ colors). The different sizes
of pixels between the
neighborhoods express the
strength of the inter-correlation
within each neighborhood,
compared to the other ones

Table 1 Results in the Oriented Gratings data-set

PIT IPCOSA t-test p

Oracle RO I1(154) 95.4± 0.4%(10) 79.3± 3.2%(10) 0.000000436
GIRSS u (154) , r (20) 94.9± 1.3%(10) 88.5± 4.0%(10) 0.004

Baseline for accuracy is 34.13%. The last column shows the significance (p) of a paired one-tailed t-test

Table 2 Results in the Contours data-set

PIT IPCOSA t-test p

Oracle RO I1(151) 44.9± 2.3% (10) 40.2± 3.1% (10) 0.0038
RO I2(227) 50.6± 2.4% (10) 47.6± 3.0% (10) 0.0068
RO I3(155) 73.3± 1.6% (10) 65.7± 1.8% (10) 0.000025

GIRSS u(151), r(100) 71.9± 2.8% (10) 72.4± 2.7% (10) 0.297
u(500), r(100) 69.6± 2.8% (10) 73.1± 2.1% (10) 0.00025

Baseline for accuracy is 23.39%. The last column shows the significance (p) of a paired one-tailed t-test
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Table 3 Results in the Gabors data-set

PIT IPCOSA t-test p

Oracle RO I1(104) 55.0± 1.5% (10) 57.2± 3.3% (10) 0.054
RO I2(218) 68.8± 1.1% (10) 71.0± 2.4% (10) 0.019

GIRSS u(100), r(150) 79.1± 1.7% (10) 81.8± 1.4% (10) 0.00015
u(100), r(125) 78.4± 2.1% (10) 81.8± 2.3% (10) 0.0006
u(100), r(100) 79.0± 1.8% (10) 80.7± 1.7% (10) 0.006

Baseline for accuracy is 18.95%. The last column shows the significance (p) of a paired one-tailed t-test

The numbers in brackets for u (number of pixels in a random pixel subset) and r (number
of random pixel subsets) are their respective values. The results of the form μ ± σ%(n)

have µ representing the average accuracy between the trial runs, σ representing the standard
deviation and n representing the number of trial runs. The entries in bold represent the best
accuracies obtained per each pixel selection method of each of the data-sets.

4 Classifying hurricane severity

In this section, we present the results from a smaller-scale evaluation of the techniques we pre-
sented earlier, on a very different domain than VSDI classification. We apply the techniques
to classifying hurricane severity based on weather satellite imagery. Section 4.1 describes
the experiment configuration. Section 4.2 discusses the results.

4.1 Hurricane data and experiment configuration

Tropical cyclones are storm systems that originate in tropical areas near the equator, over
large bodies of warm water. They form during the hurricane season, mostly from June to
November. During their life time, tropical cyclones change intensity (strength) and location.

Tropical cyclones in the Atlantic and in the Northeast Pacific are classified into three main
groups of ascending severity: tropical depressions, tropical storms, and hurricanes. Within
the hurricanes group, the Saffir-Simpson Hurricane Scale [21] divides the hurricanes into five
categories (denoted simply 1–5) by the intensities of their sustained winds. They produce
extremely powerful winds, heavy rain and flood, and when near coastal regions, they are able
to cause severe damage. A hurricane typically begins as a low-severity tropical cyclone (i.e.,
a tropical depression), then moves along its path (called track) for a number of days, while
changing its strength (respectively, its severity) during its life course, and finally dissipates.

An obviously important task in this domain is to be able to predict the maximum severity
that a tropical cyclone will reach, based on initial measurements. As a first step toward this
goal, we tackle a more modest task: distinguishing between low- and high- severity cyclones,
based on 15 days’ worth of weather satellite images. As we show below, even this modest
task is quite challenging, and will serve to evaluate the scope of the techniques we presented.

We utilize satellite images data, taken from the Global ISCCP B1 Browse System (GIBBS)
repository 6 [12], a comprehensive weather satellites data resource. The relevant Atlantic area
satellite imagery is the “full disk” images (full earth) taken by the Geostationary Operational
Environmental Satellites GOES-8 and GOES-12. The infrared images produced by these two
satellites are taken from the same angle and are aligned to the same longitude and latitude

6 The GIBBS repository is available at http://www.ncdc.noaa.gov/gibbs/.
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Fig. 12 GOES-12 infrared (IR) image of the Atlantic region. Famous hurricane Katrina from the 2005 season
can be seen in the South area of the United States, affecting Louisiana, Mississippi, South Florida, etc

lines. Images are available from the beginning of the hurricane season of 1995 to the current
day, taken every 3 h. An example of a full sized image is presented in Fig. 12.

There are a number of challenges involved in processing these images. First, the size of
each image is 1,200 × 1,200 pixels, significantly larger than the 100 × 100 VSDI images.
In addition, the relative temporal duration is longer (i.e., the number of images in a sequence).
The produced data-sets are between 40 and 80 times larger than VSDI.

A second challenge concerns missing, corrupt, or partial data. Unlike the VSDI data
available to us, images from specific times may be missing, or incomplete in some fashion.
An example of a partial, incomplete image appears in Fig. 13.

A third important challenge concerns the internal coherence and variance of the data
itself, both spatially and temporally. In particular, hurricanes appear everywhere within the
target regions, take different paths, and last for various durations (a few days to weeks).
In comparison, the VSDI classification relied on static regions of activity, of fixed dura-
tion. Furthermore, different cyclones of different severity levels sometimes overlap in time
and space. In contrast, the VSDI samples are each restricted to a single, isolated type of
stimuli (class). To make things worse, the severity of the hurricanes changes unpredictably
throughout their lifespan.

Taking these challenges into account, we have built the hurricane data-set as follows. First,
each sample was defined to start at the precise start time of an individual hurricane, and to
end after a fixed period of 15 days—based on a series of 120 consecutive images (the number

123



550 I. Vainer et al.

Fig. 13 An incomplete GOES-8 infrared (IR) image of the Atlantic region

of points in time). The gray-scale values (0–255) of the pixels in the image were taken as the
basic values in each image in the sequence.

We manually selected data in which spatio-temporal overlapping between cyclones is
minimal (though overlapping still exists in the samples; it cannot be completely discarded).
From each “full disk” image, an area of interest of size 540 × 300 pixels was identified
as the sample’s spatial dimension. This area within the image was defined according to the
geographic location which most of the hurricane tracks pass through. This area is depicted
in Fig. 14. The remaining part of the image is mostly irrelevant, as the biggest part of it does
not contain hurricane tracks most of the time.

Coping with missing data was carried out as follows. Any pixels missing or corrupt (i.e.,
a part of a corrupt area) are marked missing. They are then ignored in all processing during
the processes described above. These include, among the rest, feature set generation for all
classification purposes with feature values marked as missing when using our selected SVM
implementation [29] (which is capable of handling missing data), correlation calculation (by
ignoring missing data) during the execution of Algorithm 4 (IPCOSA), and spatial averaging
of pixel groups in IPCOSA (feature values are marked as missing and ignored). In a case
where a whole image is missing, we treat each of the pixels in the image as individually
missing (an edge case of a missing area of pixels, that covers the whole image).

Finally, each sequence’s class was defined as follows—if the severity of the cyclone,
along its 15-day duration, was between tropical depression and a category 2 hurricane, and
no overlapping hurricanes surpassed category 2, the sequence was labeled L OW . However,
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Fig. 14 GOES-12 infrared (IR) image of the Atlantic region from Fig. 12, with the area of interest defined
by the square

if the severity of the hurricane is category 3 and above, disregarding the severity of the other
overlapping hurricanes, the sample was labeled H I G H .

Using the above procedure, we have constructed a data-set consisting of 55 samples labeled
as L OW and of 45 samples labeled as H I G H , from the years of 1995 to 2008 (inclusive).
The baseline accuracy of this data-set (i.e. ZeroR [29]) is 55%. As we lack a human expert to
select pixels for us, we use only the G I RSS pixel selection technique. We then fed the results
into both the P I T and IPCOSA feature extraction techniques, for comparative evaluation,
with the application of the feature selection (Sect. 2.4) in the third phase. The resulting mod-
els were evaluated using a 5-fold cross-validation of the multi-class SVM with linear kernel
[29]. Using 5-fold cross-validation instead of using the standard 10-fold cross-validation is
due to the long running times of each experiment. Each model’s evaluation was performed
more than once (each trial yielding a different random 5-fold division), as specified in the
results Table 4.

4.2 Results

The results for the hurricanes data-set are presented in Table 4. The table shows the results of
combining the G I RSS pixel selection method with each of the feature extraction techniques,
P I T and IPCOSA. The table caption provides the legend for the entries.
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Table 4 The results of applying P I T and IPCOSA, on top of G I RSS in the hurricane classification domain

PIT IPCOSA

GIRSS u(1620), r(150) 64.50± 2.2% (4) 62.50± 2.29% (4)

u(2430), r(100) 64.67± 3.30% (3) 57.67± 1.25% (3)

u(3300), r(70) 65.00± 4.32% (3) 59.33± 1.70% (3)

The numbers in brackets for u (number of pixels in a random pixel subset) and r (number of random pixel
subsets) are their respective values. The results of the form μ ± σ%(n) have μ representing the average
accuracy between the trial runs, σ representing the standard deviation and n representing the number of trial
runs. The entry in bold represents the best accuracy obtained. Baseline accuracy is 55%

The table shows that the P I T technique outperforms IPCOSA in all settings. The reason
for this behavior in the VSDI experiments, as will be shown in Sect. 5, is related to high
spatial frequency of the data, for which averaging over space has caused the loss of signal. In
the case of the hurricanes, this hypothesis for a possible explanation has not been confirmed.
Interestingly, settings with small number of pixels yield results that are not inferior to the
results produced in settings with large number of pixels, demonstrating the potential scalabil-
ity of the techniques we introduced. The results are statistically significant when compared
to the baseline and appear well above the chance level.

When we take into account the differences between the VSDI and the hurricanes domains,
we discover that in practice, even though the two domains share common spatio-temporal
characteristics, the key differences between them are fundamental. Nevertheless, these results
imply that the methodology presented has the potential to handle classification tasks that orig-
inate in extremely varied spatio-temporal domains.

5 Discussion

The results above provide a number of insights on the performance of G I RSS versus a
human domain expert, as well as on the performance of the P I T and IPCOSA methods for
feature selection. We discuss these in detail in the following sections.

5.1 G I RSS parameters

One important issue to discuss is the selection of the u and r parameters, which were man-
ually set in the experiments described above. Initially, we were comparing our performance
accuracy to the ROIs provided by the human domain expert (Oracle). Since she provided,
as the initial ROI, a pixel set of size 104, we compared it to our G I RSS technique with
u = 100. In order to make sure, we cover a wide enough selection of pixels, we arbitrarily
set r = 150, which makes for u × r = 1.5 times the number of pixels.

Once this initial constraint on the parameters was set, we attempted to maintain it, while
keeping in mind the selection size of the human domain expert: thus u was usually around
1–2% of the number of pixels, and r was adjusted appropriately. In VSDI, the human-selected
ROI of the Oriented Gratings (and subsequently, the u) was 7% of all the pixels. In the Gabors
data-set, it was 1% of the pixels. And in Contours, it was 1.5%.

In the hurricane data-set, we have tried working with u =1, 1.5 and 2% of all the pixels
(hence the three different u and r combinations in the results table). r was set in such a way
that u × r = 1.5 times the number of pixels.
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Table 5 The results of applying P I T and IPCOSA in the different data-sets

Data-set Baseline (%) Best PIT (%) Best IPCOSA (%)

Hurricanes 55.00 64.67 62.50
Oriented Gratings 34.13 94.90 88.50
Contours 23.39 73.30 73.10
Gabors 18.95 79.10 81.80

The best results in each data-set are shown, together with the baseline results which indicate the complexity
of the learning task

5.2 P I T vs. IPCOSA

The results of the experiments can lead to conclusions as to the conditions under-which P I T
and IPCOSA can be expected to perform well, and for one of them to outperform the other. We
find that when the learning task is relatively easy, P I T can be expected to be better. Indeed,
notice the change in the relative performance of the two techniques between the different
data-sets (Table 5). As the baseline accuracy drops (indicating a more difficult learning task),
there is a transition from P I T being better, to IPCOSA being better.

5.3 Spatial averaging contribution

When designing the IPCOSA feature extraction technique (Sect. 2.3.2), we examined six
different ways for calculating the spatial average value. The question is how to calculate
the average of a pixel group having one or more seeds within it and formed in a phase that
has a particular graded correlation threshold (the τ ). We contrasted the different calculation
methods.

Each pixel group is a pixel set P ′ = {
p′1, p′2, . . .

}
. The seeds group is a pixel sub-

set P∗ = {
p∗1, p∗2, . . .

}
of P ′ : P∗ ⊆ P ′. The group P− = {

p−1 , p−2 , . . .
}

is defined as:
P− = P ′ \ P∗. Each pixel p in any of the defined sets has only one value in time: p =
〈vT 〉 , vT ∈ R, T ∈ {1, . . . , m} (since the averaging is done in a specific fixed point in time
T ), so for simplicity we will refer to the pixel’s single value in time using the pixel’s notation
(e.g. p will denote vT ). The averaging methods are

1. Plain average:
∑

p′∈P ′ p′
|P ′|

2. Weighted average:
∑

p∗∈P∗ p∗+τ
∑

p−∈P− p−
|P∗|+τ |P−|

3. Square weighted average:
∑

p∗∈P∗ p∗+τ 2 ∑
p−∈P− p−

|P∗|+τ 2|P−|

4. Group and seeds split weighted average:
|P−|
|P∗|

∑
p∗∈P∗ p∗+∑

p−∈P− p−

2|P−|

5. Thresholded group and seeds split weighted average:
|P−|
|P∗|

∑
p∗∈P∗ p∗+τ

∑
p−∈P− p−

(1+τ)|P−|
6. Seeds only average:

∑
p∗∈P∗ p∗
|P∗|

Figure 15 compares the average accuracies of the spatial averaging methods above, as
well as P I T , applied on each of the 7 experimental runs executed on the Gabors data-set.
The best method is the plain average method. This was the method used in the experiments.

Due to the high resolution of the signal in the Oriented Gratings, we see that the spatial
averaging only worsens the results instead of improving them. This is an expected result—
the signal in this case arises from small orientation columns, while averaging over space

123



554 I. Vainer et al.

Fig. 15 Comparison of seed-based pixel groups averaging methods: 0 accuracy of applying P I T ; 1 accuracy
of applying IPCOSA with plain average; 2 accuracy of applying IPCOSA with weighted average; 3 accuracy of
applying IPCOSA with square weighted average; 4 accuracy of applying IPCOSA with group and seeds split
weighted average; 5 accuracy of applying IPCOSA with thresholded group and seeds split weighted average;
6 accuracy of applying IPCOSA with seeds only average

smears them out, causing the loss of signal—hence, the loss of the data’s essential properties.
However, with the Gabors and the Contours, we see quite the opposite—spatial averaging
provides additional enhancement to the classification abilities. Being much harder to distin-
guish than with the first data-set case, the types of the visual stimuli of these two data-sets
lead to collection of data in which the activation has, at least partially, low spatial frequency
characteristics, as opposed to the Oriented Gratings (some of the information in this case has
to do with the retinotopic activation). In conclusion, the spatial averaging role depends on
the size of the neuronal spatial modules that encode it, leaving space for improvement by the
advanced feature extraction technique in data-sets characterized by low spatial frequency.

5.4 Ruling out over-fitting

To disproof the likelihood of high accuracy rates due to over-fitting, we proceeded with
additional validation of the results. In VSDI data in particular, the significance of each of
the stimuli conditions is realized only after the visual stimulus onset. That is to say, the
discrimination between the different stimuli (i.e., the classification of the different classes),
is only possible after the stimuli were shown to the monkey, and the appropriate neuronal
population responses were provoked. Had we observed the responses of the same neuronal
populations, solely before the onset of the stimuli, we would not expect to have the ability to
discriminate between them—simply because of the fact that the behavior of these responses
is expected to be similar to the ones provoked by the blank control image, where no stimulus
is presented (which is exactly the case). Based on this reasoning, we establish the following
validation procedure.

We repeat the same experiments as detailed in Sect. 3.1, but in all our data-sets, we used
only the first part of each sequence of sample points, limiting the examples to the intervals
before the onset of stimuli (see the results tables discussed below for details). We then apply
G I RSS again. We expect the classification results to be close to the baseline accuracies
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Table 6 Results in the modified Oriented Gratings data-set (using only the first 10 points in time before
the visual stimulus onset)

PIT IPCOSA

GIRSS u(154), r(20) 31.6± 1.8% (5) 34.0± 1.3% (5)

Baseline accuracy is 34.13%, chance: 33.33%

Table 7 Results in the modified Contours data-set (using only the first 3 points in time before the visual
stimulus onset)

PIT IPCOSA

GIRSS u(151), r(100) 21.0± 2.3% (5) 22.7± 0.6% (5)

u(500), r(100) 19.0± 2.9% (5) 22.4± 0.6% (5)

Baseline accuracy is 23.39%, chance: 20.00%

Table 8 Results in the modified Gabors data-set (using only the first 10 points in time before the visual
stimulus onset)

PIT IPCOSA

GIRSS u(100), r(150) 17.5± 1.6% (5) 15.4± 2.1% (5)

Baseline accuracy is 18.95%, chance: 16.67%

of each of the data-sets, as the examples now lack the sample points corresponding to the
different stimulus responses.

The results from this evaluation are presented in Tables 6, 7 and 8. The tables present the
validation experiment results for each of the VSDI data-sets, using both feature extraction
techniques, P I T and IPCOSA. The numbers in brackets for u (number of pixels in a random
pixel subset) and r (number of random pixel subsets) are their respective values. The results
of the form μ± σ%(n) have μ representing the average accuracy between the trial runs, σ

representing the standard deviation and n representing the number of trial runs.
The results displayed in the tables show that lacking the sample points after the exposure

to the stimuli, the techniques we develop are no longer able to classify the different examples
into the target classes. In fact, the classification rates drop to chance level. Thus, we can con-
clude that indeed the learning techniques use the information present in the sampled signals,
as a response to the stimuli.

5.5 Scalability and feasibility

Before basing our pixel selection methods on random subspace [13], we had initially
attempted other methods for handling the VSDI data. In particular, we employed techniques
that base their feature extraction, selection and classification on the full spatio-temporal
range (resembling methods proposed in [15,16,19,28]). However, these attempts ended with
impractical running times and memory requirements.

Here’s a concrete example for one such early trial. The RO I1 set of the Gabors data-set,
which includes 104 pixels, was turned into a feature-set using the P I T approach (Sect. 2.3.1),
resulting in 5304 features. The features were ranked with InfoGain scores (as in Algorithm
3, step 2b), and sorted top down (lowest-ranked feature at the bottom of the list). Iteration
over the feature set was performed in an RFE-like [8] manner (but with a different feature
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weighting mechanism): first, the whole feature set was preserved, the data-set was trained
using the SVM classifier, either InfoGain filtered as in Sect. 2.4 or not filtered at all, and
10-fold cross-validated; the evaluation score of this step was written down. In the second
iteration, the lowest-ranked feature was removed from the feature set, training and validation
was repeated, and a new evaluation score was written down. In this recursive manner, the
process was repeated for all the features, until the last and only, top-ranked feature, remained
in the feature set. The number of top-ranked features to choose for the model construction
was the one with the highest evaluation score collected during the execution of this procedure.

Without judging the quality or the motivation for the above scenario, the magnitude of
its running times is roughly the same as of the methods having a resembling nature (such as
[16,19]), where a classifier is trained for each pixel-time combination during the process. The
running times of this scenario applied to the Gabors RO I1 is between 25 and 50 h, depending
on whether the InfoGain filtering was applied. Had we managed to run this scenario on the
full Gabors pixel set rather than on RO I1, this would at first seem like it would have taken
between 10 and 20 days; however, this relation is not linear—although these estimates are
for classifier training and evaluation based on 10,000 pixels, as opposed to only 104, they
are based on a recursion that starts from 104 pixels only. A more correct estimate would be
based on running times of ∼ 30 min per pixel on average, resulting in an initial estimate of,
and easily surpassing, 200 days.

Moreover, we were not even able to run this scenario, neither a few other ones having a
resembling pixel-time pairs-based iterative nature, due to the impractical I/O and memory
requirements. The basic instances initialization during the initial loading of the Gabor data-
set would take tens of minutes due to an intensive I/O, only to crash later on insufficient
memory (albeit using a 32 bit architecture OS); this would happen before completing the
initialization—not to speak of moving to the next step of basic low profile operations such as
InfoGain-based filtering. While the Contours data-set has about the same impractical mag-
nitudes, with Oriented Gratings the experience is slightly different. Here, the loading of a
data-set based on only 2 out of 3 available classes, having a 5 times smaller pixels number,
but having twice as bigger number of samples, would succeed after less than a few minutes.
After additional few minutes of cross-validation though, approximately at the 5th fold, the
process would crash—yet again—on insufficient memory.

Finally, the memory obstacle remains relevant even if we remove the run-time challenges
of training classifiers for each pixel-time combination. It is enough to see that we cannot
load the initial data based on all the available raw values, even before moving to any feature
selection or classifier training steps.

However, with G I RSS and IPCOSA, we were able to build models using a single-threaded
Java application on a Core 2 Duo machine with 2GB of RAM, in less than 2 h for the Ori-
ented Gratings, roughly 8 h for the Gabors, and between 8 and 13 h for the Contours data-sets.
Using the P I T instead of the IPCOSA lowers these times by up to an order of magnitude.
This demonstrates that P I T and IPCOSA are not only feasible, but practical.

5.6 Sliding windows: averaging along the time course

During our work, we performed various experiments with a time-course reduction using a
simple Sliding Window (SW) technique. The motivation for this kind of work comes from
two reasons. First, applying SW technique is appropriate with data-sets in which the time
dimension poses a dimensionality threat. In such cases, effective reduction in the time dimen-
sion makes the classification process more feasible. In addition, this technique can reduce
the influence of a noisy data along the time course. However, the first reason was irrelevant,
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having the number of time points in our data significantly lower than the number of pixels.
In regard to the second reason, one of the experimental techniques is detailed in the next
paragraphs.

When using a SW, two parameters are defined: the time window size w and the overlap
factor o. The w specifies the number of consecutive points in time along which the aver-
aging is performed. The o specifies the extent of the overlap between each two consecutive
time windows. For instance, having w = 3 and o = 1, indicates averaging in the following
manner:

average (timepoint1, timepoint2, timepoint3)
average (timepoint3, timepoint4, timepoint5)

...

average (timepointm−4, timepointm−3, timepointm−2)

average (timepointm−2, timepointm−1, timepointm)

Note that the following will always hold: w ≥ 2, o ≤ w − 1; we have also defined that
overlap must exist: o ≥ 1.

Given the 51 time points in the Gabor data-set, we have tried every possible combination
conforming to the following definition: 2 ≤ w ≤ 10, 1 ≤ o ≤ w − 1 (resulting in 45
different combinations). We then randomly generated 70 pixel subsets, each having a 100
pixels in a subset. For each of these subsets, and for each of its SW variations (resulting in
(1 + 45) · 70 = 3,220 of both regular and time-averaged pixel subsets), we have applied a
slight variation of our pixel set evaluation method (Algorithm 2), one that handles the values
averaged over the time course. The evaluation scores produced by this method were then
compared and analyzed, and a comparison between the “regular” (baseline) pixel subsets
and the time-averaged pixel subsets was made.

We thus reach the following conclusion: while the sliding window can significantly
improve the evaluation score of an arbitrary pixel subset by up to 11.1% (the improve-
ment gain), this improvement will be significant only for the weaker pixel subsets—the ones
that in the first place, prior to averaging, were producing low evaluation scores. In fact, the
higher the evaluation score of a baseline pixel subset was, the lower was the gain in accu-
racy (the delta) of applying any of the 45 sliding window variations. The highest-ranked
baseline pixel subsets do not benefit from the application of the sliding window. To support
this claim, we checked the correlation between the evaluation scores of the baseline pixel
subsets, compared to the maximal delta among all 45 possible deltas of the same subset,
and revealed a negative correlation coefficient of−0.62. Figure 16 illustrates these findings.
Nevertheless, it is important to mention that the SW had never decreased the evaluation score
of the time-averaged pixel subsets—there were no negative deltas.

In a different type of experiment, a wide variety of sliding windows was applied on the
Gabors RO I1 subset (as opposed to applying them on randomly generated pixel subsets).
While the evaluation of this subset, along with the evaluation of its SW variations, was differ-
ent than the techniques introduced in this work (e.g. different usage of InfoGain, application
of a feature discretization technique, etc.), the comparison still showed that the maximal
gained evaluation score of RO I1 of ∼57% could not be surpassed by any of the tested SW
variations. When a computationally intensive, RFE-like procedure (resembling the one dem-
onstrated in Sect. 5.5) was applied on every SW variation, after much effort and weeks of
waiting, a combination of features was found that had produced an evaluation score of 60.8%.
While this may show that an apparent benefit can be gained from applying SW, finding this
appropriate feature combination using these methods is impractical, for the reasons detailed
in Sect. 5.5. Moreover, even if there exists a practical way of extracting the appropriate feature
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Fig. 16 Comparison of the evaluation scores of baseline pixel subsets to the maximal improvement gained
(maximal delta) in the evaluation scores of these subsets, after applying the 45 sliding window variations. The
chart is ordered by ascending evaluation scores of the baseline pixel subsets. A linear trend-line is displayed
for the maximal delta series

combination, the conclusion from the previous type of experiment discussed above shows
that the gain in the evaluation score is apparent only for the more inferior pixel subsets, such
as RO I1.

6 Related work

The techniques described in this section are used for feature extraction and feature selec-
tion of problems that handle either spatial, temporal or spatio-temporal data. We explore the
methods relevant for our work and survey the classification algorithms being used.

Approaches ignoring temporal aspects. Machine-learning methods in fMRI-based neuro-
imaging do not usually take into account the temporal aspect of the domain, and instead
focus on spatial properties alone. This is because fMRI measures metabolic changes, and as
such its temporal resolution is at least two orders of magnitude slower than neural activity
(which measures in tens of ms). Spatial features in this domain included picking the top
n most active voxels based on t-test [15] or on average between the voxels [28]; picking
the top n most discriminating voxels, based on training a classifier per each voxel [16]; or,
picking the n most active voxels per Region Of Interest (ROI) [16]. The classifiers used in
such studies were mostly Gaussian Naïve Bayes (GNB), Support Vector Machine (SVM),
and k-Nearest Neighbor (kNN). While these studies managed to produce moderate to high
accuracy results, they relied on relatively small resolutions of data (where training a classifier
per voxel was admissible), or on expert knowledge (defining an ROI). Given the large-scale
characterization of our domains, these methods are not applicable to our problems. Fur-
thermore, as was shown in our experiments, our automated method generates features that
yield an accuracy at least as high as those of the ROI features and in some settings even
higher.

When facing higher-resolution fMRI neuroimages, one method employed uniform sam-
pling of the data [4] to reduce the number of features. While sampling is indeed a reasonable
tool when handling high-resolution data, a uniform sampling is lacking in a sense that it
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does not choose the more discriminative data-points, in favor of the less discriminative ones.
Hence, while our pixel selection technique is also based on sampling, it adopts elements from
the random subspace selection method presented in [13] rather than basing its selection on
uniform sampling which does not use domain knowledge to target the sampling.

The multivariate search technique applied on a subspace randomly selected that were pre-
sented in [13] chooses randomly t sets of features. Then the features’ weight is a combination
of the results of all iterations and the highest-ranked features are selected. Since our domains
consist of both spatial and temporal aspects, we extended this method by not using all the
randomly selected subsets for evaluating features but by choosing a smaller subset using
a greedy approach. This allows us to explore a major part of our large set of pixels while
maintaining a reasonable time complexity.

In [6], a classification was carried out of very high- resolution panchromatic images from
urban areas. A spatial (area) filter was used to extract information about the inter-pixel depen-
dency. Using a linear composition of kernels, a kernel was defined using both the spectral
(i.e. the original gray level of each pixel) and the spatial information, reaching partial suc-
cess in some types of areas. While this domain resembles the domains in our focus only
in its spatial nature, we liked the idea of exploring the inter-pixel dependency and further
developed it for our feature extraction technique in the IPCOSA algorithm when forming
neighborhoods. However, while in [6]’s approach, the neighborhood of one given pixel is
defined as the resulting connected zone of the self-complementary area filter, in our IPCOSA
algorithm neighborhoods are defined to include at least one seed (pixels that were generated
in the G I RSS algorithm) and pixels that are spatially located near the given seed but also
very similar to it.

Another interesting work of [7] studied large-scale classification at multiple spatial res-
olutions from remote sensing raster data. They proposed methods to reduce computational
time significantly using context but do not face the temporal aspect of the spatial data and
their method is not applicable to our domains of single resolution.

Spatio-temporal machine learning. Classification in large-scale spatio-temporal domains
often requires both spatial and temporal dimensionality reduction. With respect to the reduc-
tion of the temporal dimension, proven methods from time-series processing include the
Discrete Fourier Transform (DFT) and the Discrete Wavelet Transform (DWT).

Vlachos et al. [27] have used DWT for dimensionality reduction of time series. Their objec-
tive was to find a data representation at a lower dimensionality that preserves the original
information, describing the original shape of the time series data as closely as possible. As
a result, they have introduced an improved version of k-means clustering algorithm that was
shown to have results superior to k-means. DWT and DFT were also successfully employed
in [17] for time series data mining, where each time series was compressed with wavelet or
Fourier decomposition.

However, our methods consider the spatial dimension much more significantly than the
temporal dimension—for which we chose a rather simplistic approach. The reason for taking
the spatial-first approach lies in the nature of the data that was used during the develop-
ment of our methods. The spatial resolution of our data places a much greater scalability
challenge than the temporal resolution, which poses a considerably smaller dimensionality
threat.

Despite comparatively small efforts to reduce the temporal dimension, we did, however,
attempt to apply simple Sliding Window (SW) techniques for temporal reduction while
designing our methodology—but without any apparent advantage. These attempts were
described in detail in Sect. 5.6.

123



560 I. Vainer et al.

Palatucci [19] exploited the following heuristic in processing fMRI neuroimages using
also temporal information: features were defined as voxel-timepoint pairs, ranked by how
well they individually classify a training set, and the top 100 features for the final classifier
were chosen. Individual training of classifiers for all time-space combinations is computa-
tionally impractical in our large- scale domains and thus we had to carefully select pixels
before considering the time aspect. However, in specific places in our algorithms, we could
adopt the time-space combination approach, thanks to the reduced pixel set:

− First, when evaluating pixels of a given randomly generated set in the G I RSS algorithm
all pixel-time pairs are considered.

− Second, the P I T method takes all pixel-time pairs of the pixels selected by the G I RSS
algorithm.

− Finally, in the IPCOSA algorithm averaging of neighboring pixels in the generated neigh-
borhoods is done for each time point.

We consider that in addition to the temporal deficiency of fMRI, it samples the space in
voxels of one to a few millimeters (only a few thousands of voxels, or well-defined regions of
interest). As opposed to it, VSDI is capable of measuring neuronal population responses at
high spatial and temporal resolutions. Therefore, it provides a true insight as to the neuronal
dynamics from both spatial and temporal aspects. An early work on the decoding of neuronal
population responses to visual detection tasks using VSDI is [3]. A specially designed method
based on six neuronal population responses pooling rules was used here, with no machine
learning use whatsoever. This method relied on the amplitude of the response, and other
neuronal characteristics—tailored strictly for VSDI. While this method has produced nearly
perfect results, it incorporates a domain-specific knowledge—rendering it as not general
enough for use in spatio-temporal domains other than VSDI.

Additional work that has inspired us is [34], which introduced a technique for feature
selection by defining voxel-specific time-series analysis, by ranking features by mutual infor-
mation with respect to the class variable. From the ranked features, the n highest ranked were
selected, and closeness of each pair of voxels’ time series was measured. Though yielding
high success rates, the techniques in [34] are computationally expensive since they consider
a time series for each pixel. This is not applicable in large-scale domains such as ours and
therefore we had to introduce the G I RSS algorithm which selects a subset of pixels before
considering the time aspect.

Yang et al. [32] presented a method for maintaining the correlation information between
spatial time-series items by utilizing the correlation coefficient matrix of each such item as
features to be employed for classification. Then, Recursive Feature Elimination (RFE) is
used for feature subset selection of time-series data-sets. RFE was first proposed for gene
selection problem in [8], where the SVM’s weight factor was used as ranking criterion for
features, and the features with the smallest ranking criterion were recursively eliminated.
However, applying RFE or an RFE-like procedure, in a similar manner, on the data discussed
in this paper is computationally expensive, as we show experimentally. Nevertheless, we do
adopt the approach of correlation between spatial elements in the IPCOSA algorithm when
we form the neighborhoods around seeds.

A last example from spatio-temporal domains is automated video genre classification
[30]. Here, classification was carried out by first computing a spatio-temporal combined
audio-visual feature vector (of very high dimensionality). Then, the feature vector was further
processed using Principal Component Analysis (PCA) to eliminate redundancy while exploit-
ing the correlations between feature elements. Such PCA-based techniques in multivariate
time-series data-sets are known to be difficult to scale. The complexity of the PCA-based
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techniques is considered in [31], but the proposed solution is still too time consuming for our
domains.

In terms of more general spatio-temporal learning, a few recent examples are related,
especially on the issue of scalability. Chan et al. [2] tackle graph-mining, in graphs that
evolve over space and time. Our work does not represent images as graphs, and thus differs
from this work. Kang et al. [11] face typical graph mining tasks in graphs of several Giga-,
Tera- or Peta-bytes. While our spatio-temporal data is much smaller, it still does not fit into
main memory and is more complex since it cannot be described using graphs.

7 Conclusions

In this paper, we introduced a combination of novel techniques for handling spatio-temporal
classification tasks of large scale. We evaluated the techniques in two very different domains:
VSDI neuroimaging and hurricane images. In both, we have demonstrated that the techniques
work well, at human expert level or above it. This, despite significant conceptual differences
that exist between the two domains. We therefore believe that the techniques presented carry
great potential.

We plan to continue to investigate techniques for machine learning in large-scale domains,
and in particular in the two domains presented above. In addition, we believe that our methods
are currently naïve in that they do not take significant steps to reduce the temporal dimen-
sionality of the data. We believe that complementing our methods with other proven methods
from time-series processing, such as Discrete Fourier Transform [17] or Discrete Wavelet
Transform [27] can be of great benefit in this respect.
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