
 
 

 

Adaptive Driving Agent 
From Driving a Machine to Riding with a Friend 

Claudia V. Goldman† 
 General Motors 

 Herzliya Pituach, Israel 
 claudia.goldman@gm.com 

Sarit Kraus 
 Computer Science Department 

 Bar Ilan University 
 Ramat Gan, Israel 
sarit@cs.biu.ac.il 

Albert Harounian 
 Computer Science Department 

 Bar Ilan University 
 Ramat Gan, Israel 

albert.harounian@gmail.com 

 

 

Ruben Mergui                     
General Motors 

 Herzliya Pituach, Israel  
 ruben.mergui@gm.com 

 

 

  

 

ABSTRACT 

The successful integration of automation in systems that affect 
human experiences requires the user acceptance of those 
automated functionalities. For example, the human comfort felt 
during a ride is affected by the automated control behavior of the 
vehicle. The challenge presented in this paper is how to develop 
an intelligent agent that learns its users’ driving preferences and 
adjusts the vehicle control in real time, accordingly, minimizing 
the number of otherwise required manual interventions. This is a 
hard problem since users’ preferences can be complex, context 
dependent and do not necessarily translate to the language of 
machines in a simple and straightforward manner. Our solution 
includes (1) a simulation test bed, (2) an adaptive intelligent 
interface and (3) an adaptive agent that learns to predict user’s 
driving discomfort and it also learns to compute corrective actions 
that maximize user acceptance of automated driving. Overall, we 
conducted three user studies with 94 subjects in simulated driving 
scenarios. Our results show that our intelligent agent learned to 
successfully predict how to adjust the automated driving style to 
increase user’ acceptance by decreasing the number of user 
manual interventions. 
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1 Introduction 
Advances in sensing and computational technologies pave the 
way for automating increasing number of driving functionalities. 
These engineering solutions result in improved vehicle control 
and in freeing the human from manually controlling the vehicle 
at times. Nevertheless, it is essential to recognize that humans are 
different, thus preferring different styles of driving when facing 
different routes, car occupancy, and driving contexts. Usually, 
default, engineering-based driving styles are pre-set to control the 
correct and safe performance of vehicles. There is a hidden 
assumption that humans will all accept this style under all 
circumstances. However, for different people, the same driving 
maneuver taken with different styles may be perceived as “too 
aggressive” by some, whereas others would consider it to be “too 
cautious” or “uncomfortable”.  Integrating these contextual 
preferences in a learning agent is a challenge. Understanding 
users’ needs and preferences is hard since these preferences are 
diverse, can change over time [11] and they are contextual [21,24]. 

This paper attempts to solve this challenge, which requires 
solving three problems: (1) how can an agent interact with human 
drivers or passengers to get and interpret their preferences, (2) 
how can this agent learn from these preferences and driving 
contexts to predict discomfort and (3) how can this agent learn to 
adjust online the driving style settings of the vehicle it controls to 
avoid predicted discomfort. The first problem is hard since people 
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might have difficulty in expressing their needs in such complex 
contexts as driving. The evaluation of users’ satisfaction may be 
also very expensive [8] (e.g., setting cameras inside the car, 
analyzing the passengers’ video/audio streams). Therefore, it may 
be more efficient to rely on inputs expressed by users in natural 
ways enabling them an interaction similar to one they would have 
with a taxi driver. Namely, we would like to develop an agent that 
would be able to interpret requests such as “Go faster” or “You’re 
too close” to changes in the technical configuration of the car 
without requiring users to give technical details how the vehicle 
should be achieving these requests (e.g., “use the gas paddle less 
smoothly” or “limit the acceleration”). Furthermore, we would like 
the agent to reduce the need of the human to make explicit 
comments by dynamically adjusting the cars’ parameters based on 
estimation of the human’s preferences. To solve the last two 
problems, we present a novel learning-based agent for the 
automatic adjustment of a car’s driving style configuration by 
processing and intelligently reacting to natural inputs from 
drivers or passengers. Our agent, named the Adaptive Car 
Controller Agent (ACCA), was developed and tested in a state-of-
the-art realistic simulation environment. Through extensive user 
studies, with 94 human participants, we show that the ACCA can 
significantly reduce user’s burden of adjusting the driving style 
manually to achieve acceptable satisfaction levels of comfort 
(measured with usability questionnaires and evaluated 
quantitively with the number of manual interventions required 
through the studies to express discomfort). We have applied a 
similar computational approach successfully in the thermal 
domain [18]. We developed an intelligent (intuitive to use) 
interface for drivers to change the settings of their automotive 
climate control system, reducing the number of manual 
interventions required. This interface was implemented on a 
tablet and used by all participants through all experiments, 
enabling them to choose what adjustments to make to the driving 
style through touching buttons and sliders with intuitive 
meaning. 

Our adaptive solution was developed in three stages, each one 
contributing an essential component combined eventually to  
build up a complete adaptive agent solution: (1) Automatically 
interpretation of user intuitive needs: we trained an 
intelligent agent with human data, provided through an adaptive 
intelligent interface, enabling users to express their driving needs 
without stating specific values for all related parameters. The 
agent was able to interpret these human inputs into actual driving 
control actions. (2) Automatically learning of human-
preferred driving style settings: our agent learned 3 human-
centered driving styles from data collected in the first experiment. 
(3) Automatically learning and mitigation of user 
discomfort prediction: our agent learned to predict driving 
discomfort and learned to avoid it in real time, by adjusting the 
driving style of the simulated car accordingly. It computed the 
control actions that attained the highest likelihood of being 
accepted by the users under similar driving situations. Our results 
showed that our agent adapted its control behavior successfully 
to its users’ expectations, increasing their acceptance of the 

automated control and decreasing the number of manual 
interventions required to accept this automated behavior. 

2 Related Work 
The personalization of human-vehicle interactions has been 
studied by researchers and practitioners over the years including: 
the personalization of a car’s climate control system [18], the 
adaptation of the cruise control system [20] and automatic speed 
control [25] to name a few. In the more complex context of 
adjusting a driving style, many car’s settings and their 
interdependencies affect the user experience (e.g., the smoothness 
of turning the steering wheel, or of pressing the pedals (gas / 
brake), acceleration rate), making existing approaches unsuitable 
for our task. Automating human-like driving was studied to 
provide personal comfort [3,4]. Our approach is distinct and novel 
since our agent (1) learns a model of human preferences for driving 
styles, (2) adapts its automated behavior online accordingly, (3) is 
evaluated with real subjects riding a simulated car and (4) 
intuitively interacts with humans overcoming difficulties 
encountered by drivers, when expressing what they need from the 
car in technical terms [6].  Natural interfaces [15] are commonly 
more intuitive for drivers and passengers to use and understand 
and can assist in personalizing the interaction [13, 17]. Most 
relevant to our task is the work by Geng et al. [9], who provide a 
scenario-adaptive driving style prediction ontology. The proposed 
ontology presents how a car’s driving style should adapt to 
different traffic scenarios to meet most drivers’ expectations. 
However, the proposed ontology is limited to a “generalized 
prediction” as opposed to a “personalized prediction” [19]. Namely, 
the ontology does not provide a car with the means to adapt to 
each user nor does it provide a way to adapt the prediction in real-
time. Other user studies in simulated driving environments 
analyzed driving styles and their effect on different users [1, 2]. 
However, these works collected data of user acceptance via 
questionnaires and not by interacting with an intelligent agent in 
real-time, as we do. Guna et al. [10] used driving data to predict 
driving styles given users’ activities. Mazzulla et al. [16] studied the 
relationship between drivers’ characteristics and driving styles. In 
all these works, the online adaptation of the driving style is missing 
and is presented as the next required step. In the control domain, 
Senouth et al. [22] developed a fuzzy rule to adaptively modulate 
and assist the driver and vehicle torque to keep the lane preferred 
by the driver. This solution was evaluated by numerical 
simulations and not by real interactions with subjects as we 
present here. Our work is novel due to the combination of human-
machine interactions with machine learning to provide one 
solution to interpret users’ preferences and then realize these into 
actual control actions with the aim of increasing acceptance. 

3 Simulation Set Up 
 
Our agent, user studies and evaluations were run in a Unity-based 
simulation environment of automated driving. Subjects playing 
the role of passengers sit on a physical car seat while watching 



  
 

 

three screens that simulate what they could see through the car’s 
windows and mirrors while driving. Users were told they were 
going to take a taxi-like ride with a simulated automated driver in 
the city of San Francisco. 

3.1  Simulation Scenarios 
We chose an area in San Francisco city for our simulated 
geographical urban area. The real content of the city was 
transferred into graphical content from videos taken in San 
Francisco. Fig. 1 shows the route arbitrarily generated in the city. 
Using this route, we designed four driving scenarios. Each 
participant experienced the same route with all eleven events, 
four times in random order (each simulated ride took around 5 
minutes). The events, distributed along the route (see Fig. 1) 
include common urban events such as pedestrian crossings, traffic 
jams, a jaywalker suddenly crossing the street or a cyclist riding 
next to the car, approaching a jam, driving in a jam or open road, 
encountering a car leaving its parking or lane, encountering 
hazards on road. These events were predefined to provide a rich 
driving context similar to real-world events. Each one of the four 
rides each participant experienced, differ in the settings assigned 
to each one of the eleven events, creating different driving 
contexts. We will examine the users’ reactions and desired 
changes to the car’s driving style in these scenarios.  

 

Figure 1: Simulator Route. Numbers indicate the locations 
of the events. 

3.2  Driving Styles 
A car's driving style is represented as a vector of driving 
parameters values. These parameters correspond to the control 
settings in the Unity simulator. We focused on the following ones, 
that affect the simulated driving behavior: 
1. Gas Smooth - Determines how hard or soft to press the gas 

pedal. Value: [0.1, 0.9] 
2. Brake Smooth - Determines how hard or soft to press the 

brake. Value: [0.1, 0.9] 
3. Gap Distance - Minimal distance to maintain when 

approaching an object. Value: [3, 17] 

4. Gap Time - Minimal stopping time to maintain while 
traveling behind another car. Value: [1, 4] 

5. Forward Approach Gas Smooth - Determines how abruptly 
to release the gas pedal when approaching another car. 
Value: [0.1, 0.9] 

6. Forward Approach Brake Smooth - Determines how hard or 
soft to press the brake pedal when approaching an object. 
Value: [0.1, 0.9] 

7. Acceleration Rate - The acceleration applied to reach the 
target speed. Value: [0.1, 25] 

8. Lane Centering - Determines the location of the car relative 
to the center of the lane. Value: [0.1, 0.9] 

9. Turn Speed - Determines the desired speed when 
performing turns. Value: [8, 40] 

10. Maximum Speed - Determines the maximum speed of the 
car on an unobstructed road. Value: [10, 50] 

 
Any combination of values to these parameters would result in 
(slightly) different driving styles. Table 1 presents two basic 
driving styles, calm and active, that we defined after having tested 
them in the simulator. These styles will serve as the initial default 
driving styles in the first experiment reported below. Subjects in 
our experiments, see the traffic on the road and see and hear the 
effects of their own vehicle driving through the screens and 
speakers, as they would do if they were sitting in a seat next to a 
driver in a regular car. The goal of our agent is to learn to adjust 
driving styles to those preferred by humans in real time. 

 
Parameter Name Calm  Active  

Gas Smooth 0.9 0.1 
Brake Smooth 0.8 0.1 
Gap Distance 10 3 
Gap Time 3 1 
Forward Approach Gas Smooth 0.9 0.2 
Forward Approach Brake Smooth 0.8 0.2 
Default Acceleration 4 25 
Maximum Speed 16 50 
Lane Centering 0 0 
Turn Speed 13 34 

Table 1: Basic (Default) Driving Styles 

3.3  Human Agent Interactions 
Adjusting the values of driving parameters would be easy if users 
could tell explicitly what they need in the language of the driving 
control system to attain driving comfort. However, this is not the 
case. In preliminary trials, participants were asked to express 
themselves as they would to a friend who is driving or a taxi 
driver. We noticed that participants were able to distinguish 
between the different driving styles and were able to discuss them 
in terms of their perceived safety and enjoyment. However, it 
turned out that participants were not able to satisfactorily express 
their preferences in terms of parameter values, resulting in many 
user inputs and general dissatisfaction, although they fully 
understand the role of each parameter. Specifically, participants 
were unable to determine which parameter they should change 



  
 

 

 

and to what extent to bring about the desired change. Moreover, 
we noticed that participants express different expectations based 
on road conditions and context (e.g., in a traffic jam vs an open 
road). Specifically, while it is reasonable to assume that users can 
distinguish between comfortable or not (e.g., feeling safe or in 
danger), it is unreasonable to assume that non-expert users would 
be able to quickly manually configure the above parameters. To 
that end, following these preliminary trials, we identified the 
following 8 terms which people often use to express their 
preferred driving style: 1) More Speed; 2) Less Speed; 3) More Gap; 
4) Less Gap; 5) More Sport; 6) More Comfort; 7) More to Right; 
and 8) More to Left. It is therefore our goal in this paper to develop 
an automated agent that is capable of intelligently translating 
these natural expressions to the desired set of values to assign to 
the technical parameters (Section 3.2). Fig. 2 shows the interface 
we implemented on a Samsung tablet for getting inputs from real 
users during the experiments. Users could express their desired 
changes in driving to the experimenter and the control agent 
through this interface by resizing the circle, relocating the circle 
(4 directions) or by moving the sports slider. The users did not 
have to assign a value for the change requested, just the desired 
direction of change. Subjects would sit on a car seat and will 
observe 3 wide screens showing what a passenger would see from 
the vehicle cabin. All rides occurred in the simulator screens, so 
the experience was safe and did not incur any risks to the 
participants. Driving settings was always kept under safety 
constraints.  

 

Figure 2: Adaptive Driving Agent: Natural Interface 

3.4  The Adaptive Control Agent 
The ACCA agent we developed was able to control the simulated 
vehicle through the route we defined. The agent could operate in 
two modes: fixed, or adaptive. The agent was always initialized 
with a driving style vector that determines the ranges of values of 
the driving parameters. The simulated vehicle applies these 
parameters to create the simulated physical dynamics of the 
driving context. In the adaptive mode, the agent could change the 
driving settings proactively during the ride, based on its learned 
models of the users’ preferences. Moreover, the agent could 
interact with the human subject, riding in the simulated vehicle. 
If the agent received external inputs from a subject through the 
natural interface, then the experimenter would interpret this 
input to the agent and instruct a set of changes to be made to the 

driving settings (that the agent will also log as training data). 
When the agent acted in adaptive mode, changes to settings were 
also made when the agent proactively predicted human 
discomfort and the agent decided on the changes to make to the 
driving parameters based on the learned models.  

 In the next sections, we describe the three experiments run with 
the adaptive driving agent. In all, we evaluate the performance of 
the agent by quantifying the number of human interventions 
needed to attain a comfortable ride. All data collected included the 
vehicle dynamics, driving contexts and subjects’ inputs if 
provided. 

4 Default Driving Agent 
The goal of the first experiment was to evaluate how many 
manual corrections would be requested by human subjects to 
adjust a default driving style during a set of simulated rides. Our 
hypothesis was that humans are different and therefore driving 
contexts will affect the preferred style of driving. We recruited 30 
subjects (17 males and 13 females), ranging in age from 21 and 50 
(avg. 33, s.d. 7.02). Participants were told that they were going to 
take a ride in a simulated taxi in San Francisco for 4 laps driven 
by a simulated automated driver. All subjects started 2 rides with 
the default calm driving style and 2 more rides with the aggressive 
style as in Table 1 (all runs were balanced). Users interacted with 
the simulated vehicle through the adaptive intelligent interface 
(see Fig. 2). When subjects entered any comment (by using the 
tablet), the experimenter paused the simulation and asked the 
subject for his actual intention. Then, the experimenter adjusted 
the driving parameters until a desired changed was achieved (e.g., 
when the comment was “The slowing down was harsh”, the 
correction included changing the values of the “Brake Smooth” 
and the “Forward Approach Brake Smooth” values). Any request 
for driving corrections remained in effect until the end of the 
current two rounds. A new driving style was implemented in the 
next two rounds. Fig. 3 shows a total of 633 comments received 
from the subjects (avg. of 21.1 per participant, s.d., 9.48); with 
26.7% of the comments being related to the events we predefined 
(these comments were provided up to 7 seconds following an 
event). For example, when a jaywalker crossed the street in front 
of the car, many participants commented “Less Speed” since the 
car was perceived to be approaching the walker too fast (despite 
having enough time to stop). 

From the usability questionnaires we collected, we found that 
66.66% of the subjects mentioned that the intelligent interface was 
very easy to mostly easy to use (average score of 3.2 out of 10, the 
lower the better). The subjects score the match between the 
driving corrections and their intent high with an average score of 
8.1 out of 10 (the higher the better). 



  
 

 

 

Figure 3: Total Manual Corrections Requested per Rides 
Laps 

5 Human Data-Driven Agent 
Our hypothesis was that the number of manual corrections can be 
reduced when users choose what driving style they prefer. 
Moreover, they chose from styles learned from the human-data 
collected in experiment 1. This data reflected the driving settings 
that converged towards the end of each round of experiment 1 
when the user did not make any further comments. We tested 
clustering this data to find the densest types of driving settings 
(i.e., all data points in one cluster that have the shortest distance 
from the centroid). That is, we scored a clustering method with 
the standard density measure that computed the average of 
distances between items inside the cluster from their centroid and 
then the average among clusters. Let ‘m’ be the number of 
clusters, ‘x’ be a vector pointing to the data point and ‘c’ be a 
vector pointing to some centroid. Then the distance ‘di’ to the 

centroid can be defined as: ඥሺ�⃗� −  𝑐ሻଶ and the density measure is 
the average of this value over the m clusters. The x vector 
comprised (1) the driving style parameters at the end of rounds 2 
and 4, (2) the number of each type of corrections made, (3) 
averages of speed, acceleration and jerk. Fig. 4 shows the 
clustering algorithms tested (K-means and DBSCAN [14,7]) and 
their corresponding scores (K-means was tested for various values 
of k: values equal to 2 and 3 are included in the table, larger values 
were not found to lead to better clustering solutions). Note that 
the types of corrections provided do not characterize the styles, 
but the driving dynamics do. DBSCAN was too sensitive to small 
changes in its parameters; it did not find a balanced division of 
points to styles. The winning clustering algorithms was K-means 
(on inputs 1 & 3); this is consistent with results presented in [24]. 
The novelty is that the styles were learned from human data rides 
that converged (see Table 2). Normal is situated between the two 
others. All scores are statistically significant different (tested with 
ANOVA). 

 

Figure 4: Human Data-Driven Driving Clusters 

 

Table 2: Human Data-Driven Driving Style Profiles 

In experiment 2, we recruited 30 new subjects (16 males and 14 
females), ranging in age from 23 and 47. The procedure of 
experiment 2 differs from that in experiment 1 in the users 
choosing the initial (learned) driving styles (in experiment 1, the 
initial driving styles were set as default styles, all participants 
experienced the same default styles with counterbalanced order). 
In this experiment, participants were asked to choose a driving 
style they would prefer in a taxi-like ride. They could choose a 
calm or sportier style or one in between these to reflect the three 
styles learned by our clustering algorithm. A reduction of 42% in 
the number of manual corrections was indeed attained by getting 
only a total number of 367 corrections from the 30 subjects (i.e., 
on average, subjects requested 12.2 corrections). We noted that 
even in a simulated study as we run, different users had different 
number of comments, meaning some are better with some style 
chosen and some requested some additional adjustments (some 
subjects had only a few corrections, while others had as many as 
21 comments). 

From the usability questionnaires we collected, we found that the 
subjects gave an average score of 3.2 (out of 10) to the easiness of 
use of the adaptive interface (the lower the better). The subjects 
score the match between the driving corrections and their intent 
high with an average score of 7.9 out of 10 (the higher the better). 

 



  
 

 

 

6 Adaptive Driving Agent Solution 
Our end goal was to show how an adaptive agent can improve 
human driving-comfort, by adjusting the automated driving 
settings in real time. We developed such agent that first, learned 
successfully a model of human discomfort from driving. Then, the 
agent learned what actual correction should be executed online, 
once discomfort is predicted. Our hypothesis is that when users 
choose their preferred initial driving style (from those learned 
from human data) and further interact with an agent that adapts 
its driving behavior to their expected preferences, users will be 
intervening the least, compared to the results in the previous 
experiments. The same experimental procedure was applied with 
the adaptive agent version implemented this time. 

[Offline] Discomfort Model - We first pre-processed the 
collected data such that each half a second time frame was 
associated with the next set of 24 features: 
1. Front Distance To - the distance from the car in front 
2. #Surrounding Cars - Number of cars in a fixed radius 
3. #Surrounding Cars (Adaptive) - Number of cars in a speed-

dependent radius 
4. Speed - Current speed of the car (Km/h) 
5. Acceleration - Current acceleration of the car (km/h2)  
6. Avg. Speed - average speed of the car for the last 8 seconds 
7. Avg. Acceleration (calculated the same way as above) 
8. Lateral Acceleration (m/s2) 
9. Longitudinal Acceleration (m/s2) 
10. Lateral Jerk (m/s3) 
11. Longitudinal Jerk (m/s3) 
12. Is Max Speed Reached? (1/0) 
13. Driving Behind Another Car? (1/0) 
14. – 24. 11 Predefined Events 
 
We chose 11 timeframes (equal to a total of 5.5 seconds) in a 
moving-window fashion to construct the training instances since 
users’ inputs are not instantaneous. Each instance is classified as 
satisfied (1) or unsatisfied (0) to represent the users’ comfort from 
driving with that vector assignments (SMOTE [5] was used to 
artificially balance the data set). We built classifiers to predict 
when these features’ settings will result in driving-discomfort for 
the user. Driving discomfort is understood as an event when the 
participant provides input to make an adjustment to the current 
driving settings. While the participant does not provide any input 
to adjust these settings, we assume that the participant is 
comfortable with the driving style experienced. We measured the 
quality of these classifiers with the standard Area Under the Curve 
(AUC) score [12]. Using data from experiment 1 as a training set, 
we evaluated different prediction models [23]. Random Forest was 
too simple to capture the dependencies between the driving 
settings and discomfort. Also, Linear Regression did badly since 
our data is not linearly separable (due to lack of space the graph is 
not included). However also the Multi-layer perceptron could not 
predict well. So, we evaluated networks that can capture the time 
sequence relationships in the data. CNN resulted as a better 
predictor than the Long-Short-Term Memory. Table 3 summarizes 
the AUC scores attained by all predictors tested. Increasing the 
training set with data from experiment 1 with data collected in 

experiment 2 (a total of 117,100 data points) and changing the 
number of filters and their size, improved the accuracy to 95.96% 
in training and 95.44% in testing with an AUC reaching 0.85. This 
retrained CNN could anticipate a user’s comment by 2.5 seconds.  
 [Online] Adaptation - Every half second the simulator sent data 
(time, position, driving settings, acceleration, jerk and predefined 
events) to the agent.  Every 5.5 seconds of simulation, the logs are 
processed into the 24 features that activate the CNN to predict the 
current user’s driving discomfort (see Fig. 5). If the agent predicts 
a state of discomfort, then the agent searches its training data set 
for corrections already executed in situations like the current one 
(see Fig. 6). The 9 samples closest to the current state are found and 
the correction with the highest probability (max vote) is chosen. 
For example: let ci (i = [1,9]) denote the 9 data points found closest 
to the current state; then without loss of generality assume: c1-
2=More Speed, c3-9=More Sport. Then, with probability of 7/9, 
More Sport will be chosen and More Speed, with probability of 2/9. 
Still, the user can enter their input using the interface at any time 
(e.g., to reject the correction performed by the agent).  
To evaluate the adaptive agent performance, we recruited 34 
subjects (19 males and 15 females), age range in 25-52. Fig. 7 shows 
the results comparing the 3 conditions tested; error bars indicate 
standard error. We can clearly see that (1) the use of human data-
driven driving styles brings about a significant decrease in the 
number of modifications made by the users, p < 0.05 (i.e., 12.2 
corrections on average vs. 20.9 when default driving styles were 
initialized with no user choice). (2) the adaptive agent successfully 
reduced this number compared to both other conditions in a 
statistically significant manner, p < 0.05 (i.e., only 7.4 corrections 
on average vs. 12.2 were required for the participants to achieve 
acceptable driving comfort). The statistical analysis was 
performed using an ANOVA test followed by post-hoc t-tests 
comparisons with Bonferroni correction. On average, our 
adaptive agent performed 19.7 autonomous changes to the driving 
settings during the ride (s.d. 6.3). On average, users accepted 16.2 
of these (accepted means that the agent predicted discomfort and 
consequently adjusted the driving settings even prior to the 
participant actually asking for these changes). On average, users 
corrected the agent only 3.75 times (meaning even when the agent 
predicted discomfort and adjusted the settings, the user either did 
not agree with the prediction or with the settings adjustment done 
automatically). Finally, on average, users gave 3.65 additional 
corrections (that the agent did not predict discomfort accurately). 
The number of requests depends on the initial driving style (see 
Fig. 8) and the time passed from the beginning of the drive. 

From the usability questionnaires we collected, we found that the 
subjects gave an average score of 3.6 (out of 10) to the easiness of 
use of the adaptive interface (the lower the better). The subjects 
score the match between the driving corrections and their intent 
high with an average score of 8.6 out of 10 (the higher the better). 

 



  
 

 

 

Table 3: Predicting Driving Discomfort 

 

Figure 5: Adaptive Driving Agent Behavior: Discomfort 
Prediction 

 

Figure 6: Adaptive Driving Agent Behavior: Discomfort 
Mitigation 

 

Figure 7: Average number of manual comments in all tests 

 

Figure 8: Average number of manual comments per chosen 
driving style 

7 Conclusions 
We introduced an automated agent for adapting driving profiles 
to users and contexts to reduce human driving discomfort. Human 
discomfort was expressed by the participants each time they 
provided input to adjust their current driving settings. Our agent 
decreased the number of manual interventions required to correct 
driving settings. We also introduced a new approach for human 
modeling, based on the Convolutional Neural Network (CNN) 
trained on data obtained through an adaptive intuitive interface. 
Using K-means clustering and the CNN, we showed that this 
algorithm can be used in training supervised deep network 
models. We conclude that we can successfully integrate human 
models of preferences into the automated control systems to 
improve their utilization and effectiveness. Instead of a unilateral 
interaction between a driver and an automated vehicle where the 
user just operates this machine, we created a bi lateral interaction 
where the machine is aware of its user. The machine learns from 
users’ inputs, it predicts users’ needs and proactively adjusts its 
own settings to increase user satisfaction and acceptance. The 
complete AI agent system together with the novel adaptive 



  
 

 

 

interface were tested and evaluated successfully through 3 user 
studies covering a total of 94 human participants in a simulated 
set up of automated driving scenes. 
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