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Abstract

The number of multi-robot systems deployed in field applications has risen dra-
matically over the years. Nevertheless, supervising and operating multiple robots
simultaneously is a difficult task for a single operator to execute. In this article
we propose a novel approach for utilizing automated advising agents in assisting
an operator to better manage a team of multiple robots in complex environments.
We introduce an advice provision methodology and exemplify its implementa-
tion using automated advising agents in two real-world human-multi-robot team
collaboration tasks: the Search And Rescue (SAR) and the warehouse operation
tasks. Our intelligent advising agents were evaluated through extensive field trials,
with over 150 human operators using both simulated and physical mobile robots,
and showed a significant improvement in the team’s performance.

Keywords: Human-Multi-Robot-Interaction, Human-Robot-Interaction,
Automated Agents, Advising Agents

1. Introduction

In recent years multi-robot systems have been applied to complex tasks that
used to be performed by humans alone. These tasks include fire-fighting [1], land-
mine detection [2], decontamination of radiation [3], agricultural work [4], con-
struction [5], underwater missions [6], warehouse operation [7] and Search And
Rescue (SAR) [8]. The use of multiple robots for executing these tasks increases
robustness and improves efficiency compared to the use of a single robot [9].
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In most multi-robot systems today, the part of the human worker is often as-
sumed to be marginal. Two hidden assumptions are made in this case: the first is
that the robots perform relatively smoothly, with the infrequent need for human
intervention; the second is that the human operator is only required to perform a
single task at any given moment. Reality, however, can be more complicated on
both accounts. The prioritization of the operator’s tasks has mostly been over-
looked in multi-robot system design, leaving the prioritization in each operator’s
hands. Sub-optimal prioritization of the operator’s tasks has been shown to result
in sub-optimal performance of the robot team and in a high cognitive workload
for the operator [10, 11, 12].

In this article, we present a novel methodology that enhances operators’ per-
formance by using an intelligent advising agent. The agent provides advice for
the operator regarding which actions s/he should take and acts as a smart filter be-
tween the robots’ requests and the human operator. Our methodology, which uses
a myopic search heuristic, is not restricted to any given hardware or algorithm
used by the robots.

We evaluate our approach in two distinct tasks; the warehouse operation [7]
and the SAR [8] tasks. The advising agents are designed, implemented and eval-
uated in extensive human experiments in two realistic real-world scenarios (in
simulated environments and physical deployment) using more than 100 human
subjects1 and 10 physical robots. Experimental results show that our advising
agents were able to significantly enhance the operators’ performance when man-
aging a large team of mobile robots in both the SAR and warehouse operation
tasks.

This article makes the following contributions;

1. The main contribution of the article is in showing, for the first time, that an
intelligent agent which provides advice for a human operator engaging in
multi-robot supervision and control can lead to better performance of the
human-multi-robot team.

2. We introduce the myopic advice optimization heuristic and demonstrate its
effectiveness in overcoming large state spaces such as the ones common in
multi-robot environments.

3. We show that in complex environments, such as the warehouse operation
task, simple advising policies which are based on shallow planning may
be outperformed by other policies which are based on deeper planning.

1All experiments were authorized by the corresponding IRB.
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However, we further identify a potential tradeoff in which generated ad-
vice by simple policies is shown to be followed significantly more often by
technically-oriented human operators.

The article is organized as follows. In Section 2, we survey related work.
In Section 3, we present our problem setting and our proposed myopic search
solution. In Section 4, we present the instantiation and evaluation of our advice
provision methodology in the warehouse operation and SAR tasks and in Section
5 we discuss the cross-task insights and findings. Finally, in Section 6, we provide
a summary and list recommendations for future work in this area.

2. Related Work

The deployment of robots in real-world environments has shown that they
usually face difficulties in completing their tasks. Specifically, failures are com-
mon. In such situations, a human operator must get involved in order to solve the
problem. That is, robots are usually semi-autonomous and should be supported
by a human operator whenever they cannot handle the situation autonomously.
For example, common household robotic vacuum cleaners may get stuck under-
neath a cabinet or on a thick carpet. The robots cannot then finish their task until
a person provides assistance. Furthermore, while robot technology consistently
becomes more autonomous and less prone to malfunctions, certain functions will
still remain in human hands for the foreseeable future due to the human’s ability to
understand macro implications of decisions, other humans’ intentions, and ethical
responsibilities [13].

Human operators may be occupied by numerous tasks simultaneously and may
be unable to provide the assistance the robots require instantaneously [14]. For
example, in a warehouse operation setting, human workers may be employed in
packing merchandise, refiling inventory and handling robot malfunctions, all at
the same time. Olsen et al. [15] define the notion of fan-out, which is the number
of robots that can be controlled by a single operator. They show that the effective-
ness of a task performed by multiple robots that are controlled by a single operator
reaches a plateau as the number of robots grows (the fan-out plateau). They pro-
vide a quantitative way of measuring the fan-out, the fan-out equation, which is
defined as the ratio between the time a robot operates effectively following an in-
teraction with the operator (the gain), and the duration of the interaction itself (the
cost). Wang et al. [16] claim that there exists a fan-out effect, which means that
the number of robots that a human operator can effectively operate at once lies

3



“somewhere between 4 and 9+ robots depending on the level of robot autonomy
and environmental demands”.

Expanding the human span of control over teams of semi-autonomous robots
and improving the performance of human supervised multi-robot systems can be
done using one (or both) of the following approaches (supported also by the fan-
out equation [15]): (1) Improving the robot’s hardware and software—thus relying
less on human supervision (making the robots more autonomous); or (2) Improv-
ing the efficiency of the Human-Robot Interaction (HRI). Assuming we are given
a team of robots, and we cannot control the reliability of its hardware or software,
this article deals with improving the HRI in order to allow a person to control a
team of many (possibly unreliable) robots (see [17] for a recent review of HRI
status and challenges). Specifically, we consider improving the HRI by using an
intelligent advising agent which provides advice for the operator regarding which
actions s/he should take.

It is well established in multi-robot system literature that a single operator
may get overwhelmed by the number of requests and messages from the robots,
resulting in sub-optimal performance. For example, Chien et al. [18] have studied
robots that could self-report encountered faults in SAR tasks. In their reported
experiment, participants performed a foraging task while assisted by an event log,
under different task loads (3 robots vs. 6 robots). The results show that partic-
ipants in the 6-robot scenario did not perform better than those controlling only
3, while some even performed significantly worse. The results also show that
operators devoted their resources in a sub-optimal way, leaving fewer resources
for more urgent and critical tasks. These findings are consistent with previous
studies with ground robots. For example, Velagapudi and Scerri [19] examined
a simulated urban SAR scenario where a human operator controlled 4, 8 and 12
robots. They reported a drop in the overall performance when the number of
robots increased from 8 to 12. In [20] the authors identified that it is possible to
allow the operator to control a larger team of robots by performing some of the
tasks asynchronously (i.e., offline). Namely, the authors divided their SAR mis-
sion into 2 main parts: The synchronous part, where the operator is required to
control the robots’ navigation and obstacle avoidance online while handling er-
rors as they occur. The asynchronous part consists of imagery analysis, namely
the operator views the recorded images or video in hindsight and not in real-time.
This approach allows a single operator to control a larger team yet it relies on the
assumption that such offline analysis is applicable. In this work, we assume all
tasks must be carried out in a synchronous manner.

Chen et al. [21] created RoboLeader, an agent that helps collaboration be-
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tween a human operator and a team of robots in a simulated search environment.
The agent’s responsibility is to interpret the operator’s intent into instructions to
the team, so that the operator will not need to interact directly with the robots.
The authors further investigate the influence of unreliable behavior of the system
on the operator in [22]. It was shown that by using RoboLeader the mission was
generally completed faster. Nevertheless, when comparing a system with 4 robots
to one which includes 8 robots, having more robots only harmed the total perfor-
mance, even while using RoboLeader. As apposed to the RoboLeader approach,
in our research the operator does interact directly with the robots, and the agent
assists the operator in deciding what task and robot to handle.

Methods for allowing n operators to oversee a team of more than n robots
is also examined in teams of autonomous aerial vehicles (UAVs). Cummings et
al. [23] note that the key factor for allowing one operator (or a small number
of operators) to efficiently control a large number of UAVs is maintaining a low
cognitive load on the human operator. The authors describe different degrees of
autonomous operation, from fully autonomous to fully (remotely) controlled, and
conclude that the performance of these systems relies on the cognitive abilities of
the human operator. Ramchurn et al. [24] focused on assisting human operators in
handling task-allocation decisions when controlling a team of UAVs, specifically
when needing to handle dynamic changes in the environment. In an experiment
with two operators jointly handling six UAVs, they show that when assisted by
an automated task allocation, the load on the operators was significantly lower
compared to manual task allocation, though the total performance of the system
was not always improved.

Rosenthal et al. [25, 26] shifts the responsibility for human assistance to the
robot. In their research, the robots should request (and receive) help from hu-
mans for actions they could not have performed alone due to lack of capabilities.
However, in the presence of many robots’ requests, Rosenthal’s approach could
(potentially) overwhelm an operator.

Several proposals have addressed the HRI ineffectiveness by providing intel-
ligent interfaces and interaction modes that have been shown to ease the human
operator’s burden and increase the system’s performance. Most common is the
use of gesture-based interaction means. For example, Micrie et al. [27] presented
and examined a hand and finger identification algorithm for controlling multi-
ple robots efficiently. In a similar fashion, Stocia et al. [28] provided a human-
friendly gesture-based system which maps human inputs into robotic commands.
However, other modalities can be leveraged as well. For example, in [29], the
authors allow a user to identify and classify an individual or a group of robots
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using haptic stimuli, and name them using a voice command. In [30], the authors
investigate the challenge of generating beneficial communication between robots
to a human teammate for the purposes of coordinating joint actions.

Özgelen and Sklar [31] propose and evaluate a model for capturing the com-
plexity of task scheduling problems from the human operator’s perspective. Dif-
ferent techniques have been proposed to address this operator’s challenge, for
example in [32], where the authors investigate the manipulation of an object by
a team of robots who follow a single human leader, thereby reducing the need
for the human operator to interact directly with the robots. In the same spirit,
Bevacqua et al. [33, 34] have investigated a framework in which the human op-
erator is also involved in the scene and is thus co-located with the robots. As a
result, the human operator cannot be fully dedicated to the robotic platforms, and
can only provide sparse and sketchy commands. In this work, however, we fo-
cus on settings in which the human operator is capable of being fully dedicated
and is needed for the smooth operation and supervision of the robots during their
operation due to their limitations.

Our proposed methodology is not restricted to any given hardware or algo-
rithm used by the robots. Namely, we consider these factors to be constants. How-
ever, if this assumption were to be relaxed, the human operator could also be asked
to assist in the optimization of the robots’ task allocation by taking an active part
in their computation and coordination. Such an approach was recently proposed
in [35]. The integration of this notion within our advice provision methodology is
left for future work.

It is well known that people’s cognitive abilities are limited [36]. Conse-
quently, people have been shown to seek advice in order to improve the outcomes
of their (imperfect) decisions [37, 38, 39]. That is, the person maintains her de-
cision autonomy yet includes others in her decision process. In this work, we
present automated advising agents for efficient human-multi-robot team collabo-
ration. The advice, in our setting, is a form of relating recommendations or guid-
ance from an automated agent to its human user. We focus our attention on agents
that offer their advice based solely on the observed behavior of the users and the
environment. This setting is referred to as implicit interaction [40]. Namely, the
agent refrains from requesting explicitly defined information from the user.

Advising agents have been investigated and deployed in different settings
where humans are in need of assistance. These agents have been shown to enhance
human positive behavior and decrease human negative behavior. For example, in
saving energy by setting a vehicular climate control system in a more beneficial
way [41, 42], presenting better arguments in discussions [43, 44], saving fuel by
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using better traffic routes [45] and in better economical behavior in buyer-seller
interaction [46, 47]. The interest in advice providing agents is manifested in a
special issue of the ACM transactions on interactive intelligent systems (TiiS)
dedicated to human interaction with artificial advice givers [48]. In its general
setting, an advising agent is faced with an optimization problem which it needs to
solve [49]. Unfortunately, in many real-world settings, as well as in our settings,
calculating optimal advice is intractable due to the exponential size of the state
space and the high uncertainty induced by the environment, robots and humans.
To the best of our knowledge, other than our preliminary work [50], no work
has addressed the possibility of utilizing advising agent technology in assisting a
human operator to better manage a team of robots in complex environments.

Myopic search, which is also known as lookahead search, is one of the most
widely used techniques for handling intractable decision optimization problems
[51]. In myopic search, instead of searching through the entire relevant state
space, an agent uses a local, bounded depth search tree of possible actions and re-
actions. The agent then chooses the action that maximizes its payoff in its search
space. Agents deploying myopic search are especially prominent in human-agent
negotiation [52], economical decision-making [53] and game playing [54].

We assume non-expert human operators, which are common in many real-
world applications. For example, fire-fighters which deploy robots in burning
buildings to detect flame sources or human victims, cannot be expected to train
solely on the control of robots and cannot be considered to be experts. Further-
more, we could not expect a fire squad to have a robot expert on hand at every
given moment. Nevertheless, we assume that the operator has decent technologi-
cal skills and has undergone some (basic) training with the robots.

We focus on situations where it is not feasible to collect data on each specific
operator. For example, when an operator has very little experience in robot super-
vision and control, and where such experience is expensive to attain. In particular,
the agent should be able to support the operator from its first interaction with the
system.

Note that the proposed approach is not limited to multi-robot systems and
could potentially be useful for single-robot and multiple-operator applications as
well. In this study we focus on environments in which a single operator supervises
and operates multiple robots.
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3. The Advice Optimization Problem

We consider a set of N robots engaged in a cooperative task. A single human
operator, denoted by O, is in charge of supervising the robots as well as perform-
ing different domain specific actions. The state space S consists of all information
regarding the robots (e.g., robot location, battery capacity, operational status) and
the task, which is domain specific. An instance of the state space is denoted by
s ∈ S. The operator, O, can perform actions during the task, at any time t, from a
predefined set -A. Note thatO can choose to execute no actions, i.e.,NULL ∈ A.
The task takes place during a predefined time interval T = [0, T ], where 0 denotes
the beginning time of the task and T is its termination time.

The advice optimization problem consists of several components:

• Advice: A piece of advice is defined as a possible action a ∈ A suggested
by an automated agent for the human operator to perform. In this study, we
assume that the agent can only provide one piece of advice at a time. The
operator is not obligated to accept the agent’s advice, namely, she does not
have to perform the suggested actions.

• Operator Model: In state s and time t, the operator, according to her abil-
ities, endures a cost (usually in terms of time) for performing action a, de-
noted by Co(s, a). If a is infeasible in state s (defined by the domain char-
acteristics), then Co(s, a) =∞. We assume that Co(s,NULL) = 0. In the
context of this study, we assume that the cost is measured solely in terms of
time. We refer to this cost function as the operator model.

• System Dynamics: Po(s1, a, s2, Co(s1, a)) provides the probability of reach-
ing state s2 given action a in state s1 and the operator model, Co(s1, a).
Note that the transition from s1 to s2 given a may not be instantaneous.
Specifically, during the transition from s1 to s2, intermediate states may be
experienced. The intermediate states may be the same as s1 (i.e., during a’s
execution, the world state does not change from s1) or they could be differ-
ent from s1 (i.e., during a’s execution a new state is experienced). We de-
fine the sequence of intermediate states as Int(s1, a, s2, Co(s1, a)). Namely,
Int(·) is a function specifying the sequence of intermediate states experi-
enced when performing action a in order to transition from state s1 to state
s2 given Co(s1, a). For simplicity, throughout this article we assume Int(·)
returns a single intermediate state s′ = Int(s1, a, s2, Co(s1, a)) which can
be the same as s1 or different. As a result, s′ = Int(s1, a, s2, Co(s1, a))
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does not depend on the time that has passed from the execution of action
a. For example, robot X has a low battery (s1). The operator decides to
change its battery (a), and therefore, for a time of Co(s1, a), the operator is
engaged in the task of changing the battery of the robot (s′). We assume s′

does not depend on time. Following a successfully battery change, a new
state in which the robot has a new battery is experienced (s2).

• System Reward: Ro(s) provides a real value representing the expected re-
ward of state s, usually in terms of task fulfillment. For example, in a game
setting, one can define Ro(s) to be the expected number of points gained
per one minute of game play given the current state s.

• Discounting: γ ∈ (0, 1] is the discount factor, which represents the differ-
ence between future (uncertain) rewards and present rewards. For instance,
γ can capture the uncertainty of receiving future rewards.

Ideally, we would like the operator to execute the optimal policy π∗o :S×T→
A which maximizes the expected accumulative reward from its deployment given
S,A, Po(·), Int(·), Ro(·),γ and Co(·), which are defined above. Finding π∗o nat-
urally translates into a Markov Decision Process (MDP) [55] consisting of state
space S, action spaceA, a transition model composed of Po and Int, a discounting
factor of γ and a reward function determined by Ro and Co. However, calculating
π∗o is intractable for real-world domains due to the exponential size of the state
space and the high uncertainty induced by the environment, robots and opera-
tors. This difficulty also stems from the complexity of many multi-robot prob-
lems, such as the task allocation problem which is NP-hard [56]. In this article,
we consider a more tractable advice optimization problem which uses a myopic,
k-steps-lookahead heuristic.

The k-Myopic Advice Optimization Heuristic
The k-Myopic Maximization Advice Optimization (k-max-MYAO) Heuristic

is defined as follows.
Given a state s ∈ S, time t and k ≥ 1, we define the V alue function captur-

ing the expected cumulative future reward by using k sequential pieces of advice,
starting at state s at time t. That is, given that the task had terminated (i.e., t /∈ T),
no future reward is possible. Otherwise, the agent can provide advice until it
exhausts its advice budget k. When a piece of advice is given, V alue weighs
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the possible resulting states using the system dynamics function Po(·), and con-
templates both the intermediate state Int(·) and the recursive calculation of the
expected cumulative reward by using k− 1 pieces of advice in the resulting state.

(1)V alue(a, s, t, k)

=


0 If t /∈ T∫
s′∈S Po(s, a, s

′, Co(s, a))(
∫ min{t+Co(s,a),T}
z=t

γz−tRo(Int(s, a, s
′, Co(s, a))dz If k ≥ 1.

+maxa′∈AV alue(a′, s′, t+ Co(s, a), k − 1))ds′)∫ T
z=t

γz−tRo(s) otherwise.

Using Equation 1, k-max-MYAO heuristic generates advice a∗ such that:

a∗ = argmaxaV alue(a, s, t, k) (2)

In words, in state s at time t, an agent suggests the action a∗ which maximizes
(minimizes) the expected k-steps-lookahead reward. Namely, in state s and time
t the value of providing advice a using a k-max-MYAO heuristic is calculated
as follows: given that the task has terminated, the value is naturally set to 0.
Otherwise, we integrate over all infinitesimal states and calculate the expected
reward from performing a and additional k − 1 actions from the resulting state.
That is, given the probability of reaching each state s′, we integrate over time and
calculate the discounted expected reward from both the intermediate state and the
resulting state recursively. Once the advising budget is exhausted the expected
reward is easily computed. Note that V alue(·) is monotonic non-decreasing in
k. The reason is that NULL ∈ A, and therefore, Equation 2 will not return any
a 6= NULL unless it improves the expected cumulative reward over suggesting
NULL, which is assumed to carry no cost (see the beginning of this section).

The K-min-MYAO problem is defined symmetrically by replacing argmax
and max with argmin and min, respectively.

Only in extremely small environments (i.e., small state space, action space and
T) can a dynamic programming approach be used to calculate and store V alue(·)
for every a, s, t, k. For example, in a simple grid-world of size 10 × 10 with 4
actions and T = 10, there are 4 · 10010 entries for V alue(·), which is impractical.
In realistic environments, such as the ones we examine in this article, V alue(·)
has to be calculated online given specific a, s, t, k.

Algorithm 1 solves the k-max-MYAO for a given k.
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Algorithm 1 k-Step-Lookahead Advice Provision
Require: k, T

1: s← InitialState()
2: t← 0
3: repeat
4: max← −∞
5: for each a ∈ A do
6: expRwd← V alue(s, a, t, k) . Eq. 2
7: if expRwd > max then
8: advice← a
9: max← expRwd

10: OUTPUT advice
11: s← GetCurrentState()
12: t← GetT ime()
13: until t ≥ T

Algorithm 1 runs in O(|A|k). A is assumed to be fixed for a given domain.
Nevertheless, iterating over the entire setA can be unnecessary when some actions
cannot be performed given state s. For example, if a robot has malfunctioned the
agent will not advise to tele-operate it, but it might advise to fix the robot (as long
as the operator has not fixed the robot already). Therefore, a simple enhancement
to Algorithm 1, which we use in this study, is to restrict the agent from considering
non-practical actions given state s. Practically, we use an efficient priority queue
in which all eligible tasks are maintained. Each task a is assigned with a priority
which is V alue(s, a, t, k), where s is the current state, t is the current time and
k is the search depth. A designated process adds and updates the priority of the
tasks every few seconds.

Scaling remains an issue for large values of k due to the recursive definition of
V alue(s, a, t, k). Therefore, for large k values, Algorithm 1 may be infeasible. In
our empirical evaluation (Section 4), we were able to solve the k-max-MYAO for
k = 1, 2 very quickly (less than 1 second of calculation time) using a PC with 2
CPUs, each with 6 cores, where each core operates at 2.8 GHz. For solving the 3-
MYAO (k = 3) heuristic in real-time (under 1 second for calculating the advice) a
more sophisticated, multi-threaded implementation of Algorithm 1 was deployed.
We were unable to efficiently solve for k = 4 in our setting. Therefore, in this
study, we focus on the k-max-MYAO heuristics of k < 4.

11



4. Empirical Evaluation

In this section we seek to investigate our working hypothesis, which is two-
fold: 1) We hypothesize that our advice provision methodology will enhance the
human-multi-robot team performance in real-world settings. 2) We hypothesize
that deeper search methods will bring about more beneficial pieces of advice in
terms of their long-term benefit. Therefore, we empirically evaluate our advice
provision approach in extensive human experiments. We performed the evalu-
ation in two realistic real-world scenarios (using both simulated environments
and physical deployment) with more than 150 human subjects. The experiments
demonstrate our approach’s benefit in two distinct simulated real-world scenarios
as well as with physical robots.

In order to correctly solve the optimization problem (Equation 2), we need to
define Co(·), Ro(·), Po(·), Int(·) and γ for the specific settings. However, advis-
ing agents should be able to support the operator from its first interaction with the
system. Therefore, throughout this section we use generalized models. Specif-
ically, our advising agents use four generalized models: an operator model to
approximate Co(·); a reward model to approximate Ro(·); a transition model to
assess Po(·); and an intermediate model to capture Int(·). Note that given person-
alized models, Co(·), Po(·) and Ro(·), our agent could also provide personalized
advice. However, these models are unavailable in the scope of this work, and will
be considered in future work.

In order to avoid overloading the above notations, we use a superscript to
indicate the domain, e.g., Rw(·) and Rs(·) represent the reward function of the
warehouse operation and the search and rescue domains, respectively.

Per evaluation domain, we will first define the domain’s task, followed by the
training of the generalized models and selection of γ as described above. Last, we
present the evaluation results.

4.1. Warehouse Operation
We instantiate the k-MYAO heuristic (Section 3) for providing advice in a

warehouse operation task2. We will first describe the warehouse operation task,
followed by our agents’ design and evaluation. The simulation specification and
code release are available in Appendix A.

2A short video summarizing the work presented in this section is available at http://www.
youtube.com/watch?v=rC1a4c6Voco
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4.1.1. The Warehouse Operation Task
Modern warehouses use robots to move merchandise from one location to an-

other. The robots move the requested merchandise to the packaging stations where
human workers fill orders. The human workers may also be required to handle dif-
ferent abnormal situations. For example, during the robots’ work, products may
fall in the work area, potentially causing the robots to get stuck. While advanced
methods are used to lay out the robots’ pathways and their actions, thus far, the
prioritization of the human workers’ tasks has been left in each operator’s hands.

To address this issue, we concentrate on a small warehouse acting as a fulfill-
ment center (also known as a packing center) where there is one human worker
and a large number of mobile ground robots. In our setting there are 10 robots.

For this work, a warehouse simulation system was designed and implemented
(see Appendix A for the system’s specification and code )3. Figure 1 provides a
snapshot of the warehouse simulation.

Figure 1: Simulated Warehouse Environment. The robots, represented in orange in the center of
the screen, move the merchandise to the packaging stations, represented on the left side.

When a robot needs the operator’s attention, for example when it gets stuck
or when it arrives at a packing station, it signals the operator using a designated

3During the time in which this work was conducted there was no standard simula-
tor for warehouse planning. Environments such as Amazon Robotics Picking Challenge
(https://www.amazonrobotics.com/#/pickingchallenge) focus on picking and stowing tasks which
should be performed autonomously. Therefore, such environments cannot be used in this study.
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graphical interface. For that purpose, we designed a GUI (Figure 2) that provides
real-time feedback on the task’s and robots’ states (see Appendix A for more
details).

Figure 2: The graphical user interface used for the warehouse operation task in this study.

Overall, the human worker has to make complicated decisions in real-time
while taking into consideration the active orders, the time, the movement of the
robots and her own personal task load.

4.1.2. Training
We will first define the task’s state space S. In a preliminary experiment we

found out that obstacles on the warehouse floor cause a substantial disturbance
to the robots. We allow the human operator to mark the position of an obstacle
and thereby instruct the robots to avoid the problematic spot. We refer to these
instructions as “restricted cells” (more details are available in Appendix Appendix
A). Similar to [31], we define an obstacle or a restricted cell as critical if it pre-
vents the completion of a task (e.g., if it blocks a robot’s only path to a packing
station). Specifically, if a robot cannot arrive at its destination due to the exis-
tence of an obstacle or a restricted cell, it is considered critical. We represent each
world state s ∈ S using the following set of state variables: the number of inac-
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tive robots (Inactive(s)); the number of active orders (Orders(s)); the number of
obstacles (Obstacles(s)); the number of critical obstacles (CObstacles(s)); the
number of restricted cells (Restricted(s)) and the number of critical restricted
cells (CRestricted(s)).

A is the action set that the operator can take. Recall that A is also the advice
set from which the agent can propose advice. We define A as the instantiations of
the following 7 action schemes: “Robot i is waiting for your command”, “Unload
item x at station y.”, “Complete the packing of order z.”, “Clear an obstacle from
the floor.”, “Obstacle was detected – restrict its cell.” “Clear a critical obstacle
from the floor.”, and “Critical obstacle was detected – restrict its cell.”.4

Training Rw(·):
We define Rw(s) as the expected number of filled orders per minute starting

at state s without human intervention. Namely, in order to learn Rw(·), we ran
150 hours of sessions, each one lasting 12.5 minutes, in our warehouse simula-
tion environment without a human operator present. During these sessions, the
system receives 26 orders which are uniformly distributed over the 12.5 minutes.
Two orders out of the 26 consist of 3 requested products, eight consist of 2 re-
quested products and the remaining orders consist of a single requested product.
The products requested in each order are selected at random. The described set-
ting was chosen empirically to allow sufficient load on the system yet avoid traffic
congestion over the warehouse floor. In order to learn the effect that fallen prod-
ucts have on the robots’ productivity, we use between 0 and 3 products that are
uniformly scheduled to fall on the warehouse floor during each session. As no
human operator is present during the session, the fallen products caused robots to
get stuck. Recall that the human worker can keep the robots from going through
problem spots by marking these spots as “restricted spots”. To quantify the effect
such restricted spots have on the robots’ productivity, during each session we set
between 0 and 3 restricted spots at random on the map.

Each recorded session was translated into 690 segments, each representing
one minute starting at a different second (each session lasts 750 seconds). Each
segment was translated into a set of state variables according to the system state

4There are 520 instantiations of the 7 action schemes: “Robot i is waiting for your command”
(10 options), “Unload item x at station y.” (480 options), “Complete the packing of order z.”
(26 options), “Clear the obstacle from the floor.” (1 option), “Obstacle was detected – restrict its
cell.” (1 option), “Clear a critical obstacle from the floor.” (1 option), and “Critical obstacle was
detected – restrict its cell.” (1 option) where i ∈ [1, . . . , 10], x ∈ [1, . . . , 60], y ∈ [1, . . . , 8] and
z ∈ [A,B, . . . , Z]. See Appendix A for more information.
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s at the beginning of the segment and labeled with the number of filled orders
during those 60 seconds. Specifically, from each state s, we extract Inactive(s),
Orders(s), Obstacles(s), CObstacles(s), Restricted(s) and CRestricted(s).

We model Rw(s) using the following Equation:

(3)Rw(s) = e−(α0Restricted(s)+α1CRestricted(s)+α2Obstacles(s)+α3CObstacles(s))

· α4Orders(s)− α5Inactive(s)
2

where α0, . . . , α5 are learned using non-linear, least squares regression [57].
This form of function assumes that only some of the active orders are eligible

for packing during the next minute. This portion is then reduced by the number
and types of obstacles and restricted cells in an exponential manner. It also as-
sumes that the squared number of inactive robots decreases the expected number
of filled orders to be completed in the next minute. This form of function was
compared to more than 100 other forms; Some of the other function forms that
were tested include other parameters that were found to be insignificant, such as
the distance between the robots, the number of open packing stations, etc. These
forms yielded a lower fit to the data we collected (as described next). All param-
eters are assumed to be positive, and in fact reached positive values.
Training Cw(s, a) and Pw(s, a, s′, C(s, a)): We define Cw(s, a) as the expected
time for completing a by the average human operator and Pw(s, a, s′, C(s, a)) as
the probability of transitioning from s to s′ using advice a, given C(s, a). To
learn the operator’s model Cw(s, a) and the transition model Pw(s, a, s′, C(s, a)),
we recruited 30 Computer Science senior undergraduate students, ranging in age
from 21 to 39 (mean=26, s.d.=2.8) with similar demographics, 19 males and 11
females, to participate in a warehouse operation task equipped with a naı̈ve ad-
vising agent. Our naı̈ve advising agent maintains an open list of possible advice.
The agent adds advice to the list once the advice is eligible, that is, once the ad-
vice can be carried out by the human worker. For example, once a shelf arrives
at the packing station, the agent adds the mission “Unload item x at station y.”
according to the relevant item and station. The agent provides the advice on a
first-come, first-served fashion (i.e., naı̈vely). If the advice at the top of the list
has become irrelevant or the advice was already performed by the operator, then
the advice is discarded and the next advice is used instead. The agent presents the
advice in both textual format (see Figure 2) as well as in a prerecorded, human-
voice message, played in the operator’s head-set. Note that the agent filters and
prioritizes robots’ messages, yet in a naı̈ve way. For motivation, subjects were
paid 1 NIS (about 25 cents) per order they pack, and 0.5 NIS per advice to which
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they adhere. Note that in this training phase we want to learn the time it takes for
a subject to complete different pieces of advice rather than to estimate the like-
lihood that one would choose to execute a piece of advice, which is captured in
Pw(s, a, s′, C(s, a)).

All pieces of advice that our agent gave were successfully executed and com-
pleted. Therefore, we set Pw(s, a, s′, C(s, a)) to be 1 whenever completing advice
a in s is possible and leads to s′, and 0 otherwise. Note that human workers are not
assumed to adhere to all pieces of advice provided by the agent when no motiva-
tion is given for doing so (as is the case in the following evaluation). However, we
do assume that successful completion of the agent’s advice is achievable given the
human worker’s capabilities. Due to the naı̈ve agent’s advice provision approach,
combined with the monetary reward for adhering to its advice, the subjects’ per-
formance was poor in terms of filled orders. On average, subjects filled less than
8 orders compared to over 20 in all tested settings without the naı̈ve agent in Sec-
tion 4.1.3. Therefore, the obtained data will not be used next in evaluating the
quality of the advice provision methods. When analyzing the operators’ behavior,
we were unable to find good cross-subject features that would help us to predict
the expected time it would take to complete a piece of advice. Therefore, we used
the mean execution time of a across our subjects as the estimation for Cw(s, a).
Estimating Intw(s, a, s′, C(s, a)): In order to estimate Int(s, a, s′, C(s, a)), which
returns the intermediate state experienced in the process of transitioning from
state s to s′ using a, we used the help of an expert. An expert-based function
S × A × S → S was articulated, mapping each < s, a, s′ > tuple to an interme-
diate state s′′. For example, when an obstacle falls on the warehouse floor (s) and
the action a = clean is performed, the state in which the robots cannot approach
the area is experienced (s′′) before reaching the state in which the obstacle has
been removed (s′).
Setting γ: In our setting, we do not distinguish between present and future re-
wards as we assume the task’s time (T) is predefined. Therefore, we chose to set
γ to 1.

Overall, 150 hours of simulations were used to train Rw(·), 30 human subjects
were recruited for training Cw(s, a) and Pw(s, a, s′, C(s, a)), and a single human
expert was needed for estimating Intw(s, a, s′, C(s, a)).

4.1.3. Experimental Design
We design and evaluate 3 agents, denoted as W-AID1,W-AID2 and W-AID3

that are aimed at solving the k-max-MYAO (k = 1, 2, 3) using Algorithm 1.
Namely, the agents provide the best advice (per their optimization problem defi-
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nition) to the human operator. The presented advice may change at time t if the
advice was successfully completed or when a more urgent and productive piece of
advice becomes available, making our agents adaptive to the changing environ-
ment.
Examining the potential benefit of W-AID1:

Preliminary testing with a few Computer Science students (who did not par-
ticipate in the data collection phase in Section 4.1.2) pointed out a significant
improvement in the operators’ performance when performing the task for the sec-
ond time. Therefore, we first use a between-subjects experimental design where
each subject performed the warehouse operation task twice (a week apart) and the
subjects’ results from the first session are disregarded. This procedure allowed
subjects to gain sufficient understanding of the system in their first trial yet avoid
potential biases such as the subjects remembering specific configurations for their
second trial.

We evaluate the W-AID1 agent compared to the condition in which no advis-
ing agent is deployed. We recruited an additional 30 Computer Science students,
who did not participate in the data collection phase in Section 4.1.2, to partic-
ipate in the warehouse operation task. Subjects were BSc and MSc Computer
Science students, ranging in age from 21 to 39 (mean=26, s.d.=2.8) with similar
demographics, 15 males and 15 females. Each subject was trained prior to the
experiment: s/he watched a short video explaining the task5, underwent a struc-
tured 1-on-1 hands-on tutorial on the system by our research assistant and had
to pass a short test. The test was conducted to make sure that the operator was
capable of successfully completing the task. During the test, the subject had to
fill 3 orders without any time limit while s/he encountered two simulated mal-
functions. Subjects were motivated to fill as many orders as possible during the
task using a small monetary reward (1 NIS per order). However, they did not re-
ceive any monetary reward for accepting the agent’s advice. Similar to the setting
used in Section 4.1.2, during each session the system receives 26 orders which
have been spread uniformly across the task’s 12.5 minutes. Two orders out of
the 26 consist of 3 requested products, eight consist of 2 requested products and
the remaining orders consist of a single requested product. Furthermore, 9 sim-
ulated malfunctions are set uniformly. In order to support our between-subjects
experimental design, all subjects experienced the same series in which orders and

5The tutorial video is available on http://www.youtube.com/watch?v=
q-0bxm8n3Hw (in Hebrew).
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malfunctions arrived at the system. All 30 subjects were first asked to perform
the task without the W-AID1 agent’s help to get an understanding of the system.
Then, a week afterwards, half of the subjects (15) were asked to perform the task
once again without the W-AID1 agent’s help while the other half were equipped
with the W-AID1 agent. Only the subjects’ second trial results were considered in
the following analysis.

In order to examine the possible influence that the advising agent may have
on the subjects’ perceived workload, upon completion of the task subjects were
asked to answer a standard NASA-TLX questionnaire [58]. The NASA Task Load
Index (NASA-TLX) is a widely used, subjective, multidimensional assessment
tool for perceived workload in a given task or setting.

Subjects were informed that they could turn off the advising agent if and when-
ever they choose.
Comparing W-AID1 to W-AID2:

We further evaluate the W-AID1 agent, this time as compared to the W-AID2
agent. We recruited 30 additional Computer Science students, who had not par-
ticipated in the study thus far, to participate in the warehouse operation task. The
subjects were senior BSc Computer Science students, ranging in age from 20 to
30 (mean=25, s.d.=2.2) with similar demographics, 20 males and 10 females. To
compare the agents, each subject performed the task twice (a week apart); once
equipped with the W-AID1 agent and once equipped with the W-AID2 agent. This
time, subjects were counter-balanced as to which condition was applied first. The
experiment protocol was the same as the one used above for comparing the W-
AID1 agent to the no-advising agent condition. Specifically, subjects experienced
the same series in which orders and malfunctions arrived at the system, and the
scores from their first sessions were disregarded.
Comparing W-AID2 to W-AID3:

This time, we evaluate the W-AID2 agent as compared to the W-AID3 agent.
Unfortunately, we were unable to recruit additional Computer Science students
from our university. Therefore, for this experiment, we required 30 Bachelor stu-
dents who major in other fields (6 Exact Sciences, 6 Humanities, 12 Social Sci-
ence, 6 Life Sciences). Naturally, these subjects had not participated in the study
thus far. Subjects were ranging in age from 19 to 27 (mean=23, s.d.=1.3) with
similar demographics, 16 males and 14 females. Similar to the comparison of
W-AID2 and W-AID1, each subject performed the task twice (a week apart); once
equipped with the W-AID2 agent and once equipped with the W-AID3 agent (sub-
jects were counter-balanced as to which condition was applied first). However,
unlike Computer Science students, this subject group was much more diverse in
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their technical abilities and knowledge, as shown by the high variance in their
experiment scores in Section 4.1.4. This fact prevents us from using a between-
subjects experimental design. therefore we used a within-subjects experimental
design where both of each subject’s trials were considered.

Unfortunately, in preliminary testing, we noticed that the previously used se-
ries in which orders and malfunctions arrive at the system makes the advice pro-
duced by W-AID2 and W-AID3 coincide in their provided advice in more than
90% of the cases compared to approximately 80% in the case with W-AID1 and
W-AID2. Therefore, a new series in which orders and malfunctions arrived at
the system was sampled. Following, in yet another preliminary testing, we made
sure that the W-AID2 and W-AID3 coincide in less than 85% of their provided ad-
vice. Note that as we use a within-subjects experimental design, we are no longer
restricted to using the same series as used before.

4.1.4. Results
When comparing the W-AID1 condition to the condition in which no agent

was deployed, the results show a statistically significantly higher average number
of filled orders under the W-AID1 condition for the subjects’ second trial. Subjects
equipped with the W-AID1 agent averaged 24 packed orders (out of a possible 26)
while subjects that were not assisted by an agent averaged 22 orders.

The results also show that subjects equipped with the W-AID2 agent packed
significantly more orders compared to subjects equipped with the W-AID1 agent.
Subjects equipped with the W-AID1 agent averaged 23.8 packed orders (out of a
possible 26) while subjects equipped with the W-AID2 agent averaged 25 orders.

Both of the above results were found to be significant using a standard t-test
with p < 0.05 (a Shapiro-Wilk Normality Test [59] was executed to ensure a valid
use of the t-test). See Figure 3 for a summary.

The results further show that while equipped with the W-AID3 agent, subjects
packed significantly more orders compared to the condition in which they were
equipped with the W-AID2 agent. Under the W-AID3 condition, subjects packed
21.2 orders on average, compared to 18.4 orders under the W-AID2 condition.
This result was found to be significant using a pairwise standard t-test with p <
0.05. As the subject group for this experiment was significantly different from the
one employed in the above two experiments and used a differently sampled order
and malfunction series, the results cannot be directly compared with the results of
the previous two experiments. See Figure 4 for a graphical summary.

Note that a high variance was recorded for this subject group compared to the
previous ones. Specifically, while in the Computer Science student group standard
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Figure 3: Average number of filled orders per advising condition in the warehouse operation task.
Error bars indicate standard errors.
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Figure 4: Average number of filled orders per advising condition in the warehouse operation task.
Error bars indicate standard errors.

devisions varied between 0.4 and 1.3 across the different conditions, here, for
students who do not major in Computer Science, subjects who used the W-AID2
and W-AID3 agents recorded standard deviations of 5.5 and 3.7, respectively.

We further analyze the subject’s acceptance rate of the agent’s advice. Advice
is considered accepted if it is performed by the subject while it is displayed on the
GUI.

In our first two experiments, under both the W-AID1 and W-AID2 conditions,
subjects were presented with approximately the same number of pieces of advice
(56.5 under the W-AID1 condition compared to 56.1 under the W-AID2 condition
with no statistically significant difference between the two). Nevertheless, con-
trary to what the authors initially expected, subjects equipped with the W-AID1
agent, which was found inferior to the W-AID2 agent in terms of packed orders,
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accepted significantly more of the agent’s advice than subjects equipped with the
W-AID2 agent. Specifically, while subjects were presented with approximately
the same average number of pieces of advice under both conditions, considering
the subjects’ second trial, subjects equipped with the W-AID1 agent accepted an
average of 51.8 pieces of advice (91.6% of the total number of pieces of advice
presented), which is significantly higher than subjects equipped with the W-AID2
agent, who accepted an average of 45.2 pieces of advice (80.6%), p < 0.05. Note,
however, that despite these results, W-AID2 is superior to W-AID1 in terms of
packed orders. Subjects’ acceptance rate for an agent’s advice is defined as the
percentage of accepted advice by all subjects combined. Figure 5 presents the
subjects’ acceptance rate per 1 minute of trial for both W-AID1 and W-AID2.
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Figure 5: Subjects’ acceptance rate per 1 minute for each of the tested agents. Results represent
the subjects’ second trials.

We now turn to analyze the subjects’ acceptance rate of the agent’s advice in
the third experiment. First, similar to the first two experiments, subjects received
approximately the same number of pieces of advice under both conditions (64.3
pieces of advice under the W-AID2 condition compared to 64.7 under the W-AID3
condition, without a statistically significant difference). However, a surprising re-
sult was found concerning the subjects’ acceptance rate: under both conditions,
subjects accepted more than 98% of the advice (98.6% under the W-AID2 con-
dition compared to 98.4% under the W-AID3 condition, without any statistically
significant difference between the two). There are two main possible answers to
explain the observed high acceptance rate: 1) as our subject pool consisted of
non-technically-oriented students, students heavily relied on the provided advice
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regardless of condition; 2) the newly sampled orders and malfunction series were
more complex than the previously tested series, which could explain why human
operators rely heavily on provided advice.

The results did not show a statistically significant difference in the reported
average workload using the TLX questionnaires under the tested conditions. An
average TLX score of 50 was recorded for the baseline condition, whereas W-
AID1 and W-AID2 averaged 55 and 53, respectively, in the first two experiments.
Similarly, W-AID2 and W-AID3 averaged 47 and 48, respectively.

Recall that the agent presents the advice in both textual format as well as in
a prerecorded, human-voice message, played in the operator’s head-set. These
messages may be distracting if the advice is not beneficial to the operator. De-
spite having the option, none of the subjects turned off their agents in any of the
examined conditions.

4.2. Search And Rescue
We further instantiate the k-MYAO heuristic (Section 3) for providing advice

in a Search And Rescue (SAR) task.6 We will first describe the SAR task, fol-
lowed by our agent’s design and evaluation. The simulation specification and
code release are available in Appendix B.

4.2.1. The SAR Task
Search And Rescue (SAR) involves the exploration of disaster scenes while

locating, identifying and rescuing victims. Rescue robots provide valuable assis-
tance to rescue workers, as seen in past disaster environments such as the 2001
World Trade Center collapse [60], the 2004 Mid Niigata earthquake in Japan, the
2005 Hurricanes Katrina, Rita and Wilma in the United States [61] and the 2011
Tohoku earthquake and tsunami in Japan [62] (see [63] for a comprehensive re-
view of the use of robotics in disaster environments and [8] for a more specific
review on robotic SAR settings). We focus on a SAR setting in which a single
human operator is required to search for certain objects7 using a large team of
unreliable robots. In our setting there are 10 robots. Namely, we focus on the
search for objects rather than the rescue of objects. The human operator remotely
supervises and controls the robots. The operator is also required to provide assis-
tance to the robot in both abnormal situations as well as when a suspicious object

6A short video summarizing the work presented in this section is available at https://www.
youtube.com/watch?v=mSh67zb0Zm4.

7The objects can be victims, flames, weapons, etc.
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is encountered. For example, when a robot gets stuck or disoriented, the human
operator can manually control it, and when a robot detects a suspected desired
object the human operator can manually drive the robot to get a better view of the
object and then prove whether or not the object is one that is desired by classifying
it.

Similar to the warehouse operation task (Section 4.1.1), in state-of-the-art
SAR applications, the robots’ pathways, actions and the automatic identification
of victims use sophisticated algorithms. However, the prioritization of the human
operators’ tasks has been left in each operator’s hands.

For this task, a SAR simulation system was built in which 2 simulation envi-
ronments were integrated. Unfortunately, we could not use a standard SAR simu-
lator (such as the Robocup SAR simulator8) since we wanted to test the method-
ology using real robots in a physical environment. Therefore, we constructed a
simulator to resemble the real deployment environment (see Appendix B for the
system’s specification and code release). Furthermore, existing simulators are
aimed at specific missions, such as modeling fires and their expansion. To the
best of our knowledge, these simulators are not used for search.

Our SAR task is conducted in two distinct environments:
Environment 1 – A real office building floor consisting of an “L” shaped, narrow
corridor with small and mid-sized offices (See Figure 7). We will next evaluate
Environment 1 in both simulation and physical deployment. Thus, we denote
the simulation as Environment 1s and the physical deployment as Environment
1p. Figures 6 and 7 provide snapshots of Environment 1s and Environment 1p,
respectively.

8http://roborescue.sourceforge.net/blog/
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Figure 6: Simulated SAR Environment. The robots are represented in gray in the center of the
screen, the black lines represent the structure walls and the red arrows and blue lines indicate the
robots’ planned trajectories. Note that this is not the user interface but only the simulation.

Figure 7: Enviorment 1p; one edge of the “L” shaped corridor of an office building floor (see
Figure 9 for the operator’s point of view of the environment).

Environment 2 – A simulated medium-sized factory yard taken from the pop-
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ular CounterStrike c© computer game called “Assault”. “Assault” is considered to
be very realistic and is one of the most popular maps in the whole CounterStrike c©

series9 (See Figure 8). Environment 2 was only evaluated in simulation and will
be denoted as Environment 2s.

Figure 8: Environment 2s - an open terrain model from CounterStrike c©.

In order to control and supervise the robots, we designed a GUI (Figure 9) that
provides real-time feedback on the task and robots’ states. When a robot needs the
operator’s attention, for example when it gets stuck or when it detects a suspected
victim, it signals to the operator using both prerecorded voice messages and visual
signals (see Appendix B for complete details on the SAR simulation and GUI).

9http://counterstrike.wikia.com/wiki/Assault
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Figure 9: The graphical user interface used for the SAR task in this study. 2D map of the terrain
including the robots’ reported positions and their footprints is available in 1, an enlarged camera
view of the robot of interest is available in 2 and the robots’ requests are presented in 3. The
agent’s advice is presented above the camera view.

Note that the SAR task is remarkably different from the warehouse operation
task in several aspects: (1) SAR task’s termination time is usually unknown dur-
ing task execution; (2) Unlike the fully stochastic process in which orders arrive at
the warehouse system, the target objects in SAR are revealed by the robots them-
selves. Namely, the modeling of potential rewards is much more challenging; (3)
The operator is likely to prefer rewards as early as possible in SAR as time is
critical (e.g., detecting fire sources, injured victims); (4) Robots are more likely to
face difficulties in completing their missions in SAR.

4.2.2. Training
We will first define the task’s state space S. We wish to define S in a generic

fashion to allow it to be used across different terrains (both in physical and sim-
ulated deployment as the ones described above). Therefore, we could not use
terrain specific features such as the robots’ positions, room sizes, the position of
obstacles, etc. We represent s ∈ S using the following set of state variables: the
number of active robots (Active(s)), the number of detected objects (Objects(s)),
the average Euclidean distance between robots (Distance(s)) and the minimal
Euclidean distance between a pair of robots (Minimal(s)).
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A is the action set that the operator can take. Recall that A is also the advice
set from which the agent can propose advice. We define A as the instantiations of
the following 7 action schemes: “Tele-operate robot i to a better position”, “Tele-
operate robot i away from robot j”, “Send robot i home for repairs”, “Robot i
is stuck, try to get it loose”, “Robot i detected an object”, “Robot i is waiting
for your command” and “Spread the robots around, they are too close to each
other”.10

Training Rs(·):
We define Rs(s) as the expected time to find the next desired object in its

environment. We model Rs(s) using the following Equation:

Rs(s) = α0 − α1 · ln(Active(s)) + α2 ·Objects(s)2−
α3 ·Objects(s)− α4 ·Distance(s)− α5 ·Minimal(s) (4)

Where α0, . . . , α5 are learned using linear least squares regression.
This form of function assumes that there is α0 time to find a desired object,

which is then reduced by the average distance between robots and the minimal
distance between a pair of robots in a linear way. It also assumes that the number
of active robots reduces the expected time in a marginally decreasing fashion. The
objects detected so far increase the expected time (as objects are harder to find),
yet, in the early stages of the task, finding the first objects is assumed to indicate
that the robots have achieved some effectiveness in terms of position. This form of
function was compared to more than 100 other forms. Some of the other functions
that were tested included one or more of the following modifications to the above
function: the use of Active(s) or Objects(s) as an additive variable; Active(s) as
having a multiplicative impact or Objects(s) as having an impact depending on
Distance(s) orMinimal(s). These other forms yielded a lower fit to the data we
collected in both simulated environments – Environment 1s and Environment 2s
(as described next). All parameters are assumed to be positive, and in fact reached
positive values.

10There are 141 instantiations of the 7 action schemes: “Tele-operate robot i to a better position”
(10 options), “Tele-operate robot i away from robot j” (90 options), “Send robot i home for
repairs” (10 options),“Robot i is stuck, try to get it loose” (10 options), “Robot i detected an
object” (10 options),“Robot i is waiting for your command” (10 options) and “Spread the robots
around, they are too close to each other” (1 option) where i, j ∈ [1, . . . , 10].
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In order to collect data to learn Rs(·), which can be very expensive as an oper-
ator is needed to support them, we suggest using a simulated utopic environment.
In a utopic environment, there will be no need for human interference with the
robots’ work, as the robots will never malfunction. To simulate an ideal environ-
ment, we use non-malfunctioning robots in virtual simulation. Accordingly, we
define Rs(·) to be the expected time to find the next object in the utopic environ-
ment. That is, we wish to learn from a simulated utopic environment and utilize
the gathered data to learn an advising policy which is tested in both physical and
simulated environments which are far from utopian (Section 4.2). Hence, in order
to learn Rs(·), we ran 150 1-hour sessions in each environment. During these
sessions, the robots autonomously searched for 40 randomly placed green objects
(the green objects represent the desired objects in our SAR settings). In each ses-
sion, we placed random obstacles and used a different number of robots ranging
from 1 to 10. To avoid the need for a human operator, we set an empty malfunc-
tion schedule and instructed the robots to avoid waiting for an operator’s response
about detected objects.

Each recorded session was translated into vectors, each representing 1-second
during the session. That is, every recorded second was translated into a vector con-
sisting of the representation of the state experienced in that second s, and labeled
with the time it took to find the next desired object in that session. Specifically,
from state s, we extract Active(s), Objects(s), Distance(s) and Minimal(s).
Training Cs(s, a) and P s(s, a, s′, C(s, a)):

We defineCs(s, a) as the expected time for completing a by an average human
operator and P s(s, a, s′, C(s, a)) as the probability for transitioning from s to s′

using advice a, given Cs(s, a). To train Cs(s, a) and P s(s, a, s′, C(s, a)), we
recruited 30 Computer Science undergraduate students, ranging in age from 18 to
34 (mean=25, s.d.=3.4) with similar demographics to participate in a simulated
SAR task equipped with a naı̈ve advising agent. Given state s, our naı̈ve agent
provided advice a which, upon completion, is expected to bring about a new state
s′, where Rs(s′) + 5sec < Rs(s). That is, the agent suggests advice that, if
completed successfully, will reduce (at least) 5 seconds from the expected time to
find the next object. Similar to the naı̈ve agent in the warehouse operation task
(Section 4.1.1), the agent only offers advice which can be completed and only if
the human operator is not currently engaged in the suggested task (for example, if
a robot has malfunctioned the agent will not advise tele-operating it, but it might
advise fixing the robot). The agent presents the advice in both textual format (see
Figure 2) as well as a prerecorded, human-voice message played in the operator’s
head-set. Note that the agent filters and prioritizes robots’ requests and messages,
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yet in a naı̈ve way. For motivation, subjects were paid 1 NIS (about 25 cents) per
green object they found, and 0.5 NIS per advice to which they adhere.

Similar to the training in the warehouse operation task (Section 4.1.2), all
of the advice that our agents gave was executed and completed. Therefore, we
set P s(s, a, s′, C(s, a)) to be 1 whenever completing a advice is possible, and 0
otherwise. Furthermore, when analyzing the operators’ behavior, we were unable
to find good cross-subject features that will help us predict the expected time it
would take to complete advice. Therefore, we used the mean execution time. That
is, Cs(s, a) is equal to the average execution time of a across our subjects.
Estimating Ints(s, a, s′, C(s, a)):

Due to the short time frames in which pieces of advice are executed (SAR is a
fast-paced task)
Setting γ:

In search and rescue settings, we assume that the termination time of the task
is unknown. Therefore we define T to be [0,∞]. We further assume that the
operator is likely to prefer rewards as early as possible in SAR settings as time is
critical. Therefore, γ is defined as the probability for the task to end, given the
task’s expected duration. We assume a geometrical distribution, so γ is set to 1-
(the calculation interval divided by the expected task duration).11 The calculation
interval was set to 1 second in our experiments.

Overall, 150 hours of simulations were used to train Rs(·) and 30 human sub-
jects were recruited for training Cs(s, a) and P s(s, a, s′, C(s, a)).

4.2.3. Experimental Design
In preliminary testing, we noticed that the 1-min-MYAO heuristic returns al-

most the exact same advice as 2-min-MYAO and 3-min-MYAO in our SAR settings
in both Environment 1s and 2s (in more than 95% of the cases we examined). This
finding made the myopic search of depth larger than 1 unnecessary (a discussion
of this phenomena is provided in Section 5). Therefore, we design and evaluate a
single agent named S-AID to solve the 1-min-MYAO using a minimization format
of Algorithm 1. The agent provides the best advice per its optimization problem
in both textual format (see Figure 2) as well as in a prerecorded, human-voice
message. The presented advice might change at time t if the advice was success-
fully completed or if more urgent and productive advice is available according to

11The geometric distribution was chosen to allow subjects to easily understand the nature of the
task. Naturally, other distributions may be considered as well.
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the current state st, making our agent adaptive to the environment. We used an
efficient priority queue and updating methods to avoid long calculations.

Unlike in the warehouse operation task evaluation (Section 4.1.3), we did not
encounter a significant improvement in operators’ performance when performing
the task for a second time in our preliminary testings. Therefore, in order to eval-
uate our agent we used a within-subject experimental design where each subject
performed the SAR task twice (a week apart); once without the agent and once
equipped with the agent. We recruited 32 subjects to participate in the simulated
SAR task (16 per simulated environment (Environments 1s and 2s)) and another
12 subjects participated in Environment 1p, totaling 44 subjects. Subjects who
participated in the simulated task were BSc and MSc Computer Science students,
ranging in age between 20 and 33 (mean 25), 16 females and 28 males, whereas
the 12 participants in Environment 1p were researchers and workers from our uni-
versity, ranging in age between 20 and 38 (mean 27), 8 males and 4 females, who
did not take part in warehouse operation experiments. Subjects were counter-
balanced as to which condition was applied first.

Each subject was trained before each run; they underwent a structured 1-on-1
hands-on tutorial on the system by our research assistant and had to pass a short
test. The test was conducted to make sure the operator was capable of successfully
completing the task. During the test, a subject was in control of 3 robots and
without any time limit had to find and classify 2 objects in the terrain while s/he
encountered 3 simulated malfunctions.

The SAR task took 40 minutes (in simulation) and 15 minutes (in physical
deployment) in which the subjects had to search for the green objects placed in
predefined (yet, randomly selected) positions in the environment. Physical de-
ployment was set to 15 minutes due to the ample effort in preparing and overseeing
such physical development trials. For example, each robot had to be charged, acti-
vated and placed prior to each trial, a highly time-consuming process was needed
to place the obstacles and objects prior to each trial and their removal immediately
afterwards to allow workers of the office floor to move around freely, etc. In all
tested environments, subjects were motivated to find and classify as many green
objects as possible using a small monetary reward (1 NIS per object). However,
they did not receive any monetary reward for accepting the agent’s advice. In En-
vironment 1s (simulated office building), we placed 40 green objects around the
office floor. We set a malfunction schedule such that each robot would encounter
1.5 malfunctions (on average) during the simulation. All robots started from the
main entrance of the floor. In Environment 1p (real deployment in an office build-
ing), we scattered 20 green objects (see Figure 7). We set a malfunction schedule
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such that every robot would encounter 0.8 malfunctions (on average) during the
deployment. Half of the robots started from the main entrance of the office space,
whereas the other half started from the back entrance. In Environment 2s (simu-
lated open terrain), we scattered 40 green objects. We set a malfunction schedule
such that every robot encounters 2 malfunctions (on average) during the simula-
tion. All robots started from the Assault deployment point (next to the Humvee
in Figure 8). After completing the task, subjects were asked to answer a standard
NASA-TLX questionnaire.

Subjects were informed that they could turn off the advising agent if and when-
ever they choose.

4.2.4. Results
Results reported in this section were found to be significant using the Wilcoxon

Signed-Rank Test [64] (an alternative to paired-sample t-test for dependent sam-
ples when the population cannot be assumed to be normally distributed).

In Environment 1s, the results show a statistically significant increase in the
average number of detected objects by the robots (37.7 vs. 31.2 objects, p <
0.001) as well as their average covered terrain (529 vs. 462 square meters, p <
0.05) for the condition in which the agent was present. Furthermore, a decrease
in the average time that robots stay idle (1540 vs. 1860 seconds, p < 0.05) and a
reduced average workload (55 vs. 62 TLX, p < 0.1) were also recorded.

In Environment 1p, a major 100% increase in the average number of detected
objects was recorded (14.1 vs. 7 objects, p < 0.001) as well as an increased aver-
age for covered terrain (462 vs. 305 square meters, p < 0.05). A significant de-
crease in the average time that robots stay idle (2720 vs. 3244 seconds,p < 0.05)
and a reduced average workload (55 vs. 62 TLX, p < 0.1) were also recorded.

Similarly, in Environment 2s, the results show an increased average number
of detected objects by the robots (34.1 vs. 30.1 objects, p < 0.001) as well as their
average covered terrain (1144 vs. 845 square meters, p < 0.05) for the condition
in which the agent was present. Furthermore, a significant decrease in the average
time that robots stay idle (1053 vs. 1455 seconds, p < 0.01) and a reduced average
workload (57 vs. 61 TLX, not statistically significant) were also recorded.

See Figure 10 for a graphical summary.
Overall, more than 95% of the advice was followed by the subjects without a

distinct pattern with respect to time.
All but 4 of the 44 subjects who participated across the 3 environments showed

an increased number of detected objects while equipped with our agent.
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Figure 10: Average number of detected objects across advising conditions and environments.
From left to right – Environment 1s, Environment 1p and Environment 2s. Error bars indicate
standard errors.

Recall that the agent presents the advice in both textual format as well as
in a prerecorded, human-voice message, played in the operator’s head-set. These
messages may be distracting if the advice is not beneficial to the operator. Despite
having the option, none of the subjects turned off the agent.

Despite major differences between our simulated, utopian training environ-
ment and the test environments, our approach yields solid advising policies used
in both non-utopian simulated environments and in physical deployment of robots.

5. Discussion

The proposed k-MYAO heuristic, which implements a k-steps-lookahead search,
was evaluated in both the warehouse and SAR tasks. In the warehouse operation
task, using a subject group of Computer Science students, the results show that
the 2-MYAO heuristic, deployed by the W-AID2 agent, significantly outperforms
the 1-MYAO heuristic deployed by the W-AID1 agent, which in turn significantly
enhanced human operator’s performance compared to the baseline condition of
no advising agent. Using an additional group of students, this time we evaluate
the 3-MYAO heuristic, deployed by the W-AID3 agent, which significantly out-
performs the 2-MYAO heuristic deployed by the W-AID2 agent. In the SAR task,
the results show that the 2-MYAO heuristic deployed by the S-AID significantly
enhanced human operator’s performance compared to the baseline condition of
no advising agent.

Interestingly, unlike the warehouse operation task, the 1-MYAO and 2-MYAO
heuristics return almost the exact same advice in the SAR task. We believe that
this phenomena is attributed to the major differences between the two tasks as
specified in Section 4.2.1. Particularly, we believe that the high uncertainty re-
garding future rewards and the high likelihood of robot malfunctions create a large
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incentive to prefer short-term rewards over long-term ones, which makes myopic
search deeper than 1 unnecessary.

Note that in our environments we were unable to run a 4-steps-lookahead
heuristic in real-time due to the large search space despite using a state-of-the-
art PC with 2 CPUs, each with 6 cores, each core operating at 2.8 GHz. There-
fore, we conjecture that in environments with a small number of possible actions
(small |A|) which are strongly connected, our k-steps-lookahead approach will
outperform simple 1-step-lookahead solutions. Namely, given a small number of
actions, our approach scales better with k. Furthermore, given that the actions
are interconnected and their order of execution can significantly effect the task’s
performance, there is a larger margin for improvement by deeper search meth-
ods which are deployed by k-steps-lookahead agents. Moreover, we believe that
in complex environments with relatively low uncertainty, such as our warehouse
operation task, k-steps-lookahead agents where k > 1 can enhance operators’
performance significantly more than a simple 1-step-lookahead heuristic as the
planning is more robust. However, additional factors such as the subjects’ likeli-
hood to accept different pieces of advice and the time-depth tradeoff have to be
considered.

The acceptance rate of advice suggested by W-AID2 was significantly lower
than for the advice suggested by W-AID1 for the group of Computer Science stu-
dents in the warehouse operation task. Human operators, like all people, are lim-
ited in their capacity to process and plan actions over long sequences [36] and
have been shown to use more intuitive mechanisms for problem solving over per-
forming lookahead searches [65]. Therefore, we conjecture that, in some cases,
subjects may not comprehend the reason for the suggested advice and therefore
did not follow it. This property is disadvantageous as people are more likely to
adhere to an agent’s advice which they can understand [46, 47]. Nevertheless, this
hypothesis is devalued given the results of the non-Computer-Science subjects we
recruited for evaluating the W-AID2 and W-AID3 in the warehouse operation task.
The results show that in almost all cases, subjects fully adhered to the provided
advice. Further study is needed to determine whether the technical abilities of the
operator should require special attention in the advice provision process.

The results from both domains show that operators rarely follow advice 100%
of the time. For actual deployment, the operator model can be updated to reflect
these findings. However, a deeper investigation is needed to resolve the question
of why a certain piece of advice was accepted in a given setting and time and
another was not accepted by an operator. The above is an open challenge at the
moment.
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In the SAR task, we used a simulated environment to train the different mod-
els which are deployed in physical settings. This approach was already shown to
be beneficial in learning robot control policies in the past [66]. Similarly, the re-
ward model R(·) was trained in utopic environments without human intervention.
These allowed for a faster and more economically efficient training process. Note
that despite the inherent inaccuracy that this approach induces, it results in a solid
advice provision agent that significantly enhances operators’ performance. For fu-
ture work, one can consider deploying the grounded simulation learning approach
which provides a more accurate way to transfer knowledge from simulation to the
real-world settings [67].

Interestingly, in the SAR task, the most significant difference was found in
physical deployment settings. This result corresponds with previous results which
show that people behave differently in simulation and real deployment [66]. We
conjecture that in physical deployment settings subjects felt more stressed and
pressured and, as a result, the advising agent had a larger margin for potential
improvement. For example, some subjects mentioned that they were afraid to
cause damage to the robots which is of course irrelevant in simulation. We find
support for this hypothesis in the fact that subjects engaged in the SAR task in
a physical deployment setting for less than half of the time they engaged in the
task in a simulation setting (15 minutes compared to 40 minutes, respectively)
yet reported the same average TLX scores for both conditions (55 for the agent
condition and 62 for the baseline condition).

For most tasks, including the warehouse operation and SAR tasks, the reward
model has to be learned. As there are presumably an infinite number of functional
forms, we used the following basic procedure to select the functional form: each
state feature was tested by itself and a single variable function was fitted to capture
the observed influence of that feature on the task’s reward. Then, we performed
an exhaustive search over all possible additive and multiplicative variations of the
single variable functions identified earlier. The function which provided the best
fit for the collected data was chosen.

6. Conclusions

In this work, we presented a new approach for the enhancement of operator
performance in multi-robot environments. Our extensive empirical study, with
over 150 human subjects in the warehouse operation and search and rescue envi-
ronments, both in simulation and real deployment, shows that intelligent agents
are able to significantly enhance the performance of operators in complex multi-
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robot environments. Our methodology can accommodate future advancements in
robotics hardware and algorithms and is not restricted to a certain type or quantity
of robots in the environment.

Despite enduring high uncertainty and noisy signals, operators manage to take
advantage of the agents’ advice and translate them into a better performance than
their baseline scores, demonstrating the benefit of our agents and approach.

We conclude that the use of automated advising agents in robotics, and es-
pecially in multi-robot environments, is essential in bringing about better perfor-
mance in real-world applications and enabling operators to control a larger number
of robots simultaneously.

We intend to expand our proposed methodology and use the insights provided
in this article to design and implement repeated-interaction agents. These agents
could learn from previous interactions with the operator and tailor an advising
policy for her. As part of this work we will examine the operator modeling for
multiple interactions and the ability to deduce insights from one environment to
another. Proceeding on a different path, we are currently working on adapting
our methodology to help operators in more complex environments where robots
engage in different tasks simultaneously. For example, a part of the robot team is
performing a patrolling task while the other performs a SAR task. One interesting
aspect, in this case, is to allow the human operator to indicate her preferences on
trade-offs between the tasks, allowing the agent to reason over a number of tasks
simultaneously and thus make its recommendations more suitable for the operator.
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cussed in Section 4.2 of this article.

Appendix A. Warehouse Simulation

In this article, the warehouse operation task is conducted in a simulated ware-
house which we built using the Gazebo robot simulation toolbox13 in C++. The
warehouse consists of 10 mobile ground robots capable of transporting shelves
from one place to another across the warehouse floor. There are 52 shelves in
the warehouse, each consisting of between 1 and 3 different products, which the
robots can transport to 8 packing stations. At a packing station, the human worker
can unload products from the shelves that have arrived.

In our simulated warehouse (which acts as a fulfillment center), when an order
(a customer’s requested set of products) arrives at the warehouse system, robots
are sent automatically to move the relevant shelves to the packaging stations. Each
task is assigned to the closest available robot. When a robot arrives at a packaging
station, it is the human worker’s job to remove the relevant merchandise from the
shelf. In our simulation, we off-load the merchandise using each product’s code
as it appears on the code sheet provided to the human worker. This is meant to
simulate the scanning of a product’s bar code in a physical warehouse. Once the
required products are unloaded from the shelf, the worker can send the robot off
to move the shelf back to its original position and to continue its work. When
an order has been filled, namely all requested products have been unloaded, the
human worker can pack and complete the order. This is done by pressing the
“package” button which appears after all of the necessary merchandise has been
off-loaded. The code that is received during the packaging stage once again simu-
lates the scanning process, this time the scanning of the address for delivery. The
code must be copied into an appropriate Excel file. This process is carried out in
order to make sure that the operator pays sufficient attention to her tasks. An order
is removed from the system once it is packed.

In addition, robots may malfunction. For example, during the robots’ work,
products may fall in the work area, potentially causing the robots to get stuck.
Once a product has fallen on the warehouse floor, the human worker can alert
the robots so that they will avoid the problematic spot or s/he can remove the

12Available at http://www.youtube.com/watch?v=mSh67zb0Zm4.
13www.gazebosim.com
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fallen product altogether. If the human worker decides to keep the robots from
going through the problematic spot, then the robots will work out new, and pos-
sibly longer, paths. However, if the human worker decides to remove the product
that fell on the warehouse floor, the robots will be restricted from approaching
the area in order to avoid any danger to the human worker. The human worker
decides when and where to restrict the robots’ movements. Namely, a spot can
be restricted even if no obstacle is present (e.g., keep it clear for future use) and
a spot may be unrestricted even if an obstacle is present (e.g., “taking a chance”
that the robot will not collide with the obstacle). The command to restrict (un-
restrict) a spot in the warehouse is executed instantaneously once given by the
human worker. Note that by restricting the robots’ movements, the completion
of the robots’ tasks may be impaired. In this work, we differ between two types
of obstacles or restricted cells: critical, which prevents the completion of a task
(e.g., if it blocks a robot’s only path to a packing station) and non-critical. The
robots can also malfunction regardless of fallen products. For example, a techni-
cal problem could cause one of the robots to deviate from its course. In such a
situation, the human worker will need to manually drive or guide the robot to its
destination.

The human operator is provided with a GUI (Figure 2) that provides real-time
feedback on the task’s and robots’ states. When a new order arrives, it is auto-
matically added to the active orders area, which presents all unpacked orders. The
robots’ and shelves’ positions are marked on a 2D grid-map of the warehouse floor
along with the robots’ planned paths. An enlarged camera view of the robot of in-
terest is available as well as a command panel for controlling that robot manually.
In order to set interest on a specific robot, the operator can click its thumbnail
within the thumbnails area or on its location on the grid map. When a robot needs
the operator’s attention, its graphical representation blinks for 5 seconds and the
interface plays a prerecorded, human-voice message in the operator’s headset. The
operator can view all of the robots’ requests and provide solutions using the alarm
log. For the operator’s convenience, we maintain a first-come-first-serve request
log indicating the (active) robot requests.

Overall, the operator can perform the following actions: (1) remove items
from shelves at the packing stations; (2) pack a consumer’s order when filled; (3)
toggle the robots’ status between manual and autonomous; (4) alert the robots
to avoid a problematic spot (either critical or not) on the warehouse floor; (5)
remove fallen objects from the warehouse floor; and (6) manually tele-operate a
robot using the joystick widget or the keyboard arrow keys.

Our simulation and agents are available at http://www.biu-ai.com/
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roboticAdvice/ for future research.

Appendix B. The SAR task specification

In the scope of our simulations (Environments 1s and 2s), we used the Gazebo
robot simulation toolbox. To create Environment 1s, we manually mapped an
office building floor (which is our lab floor at Bar-Ilan University, acting as Envi-
ronment 1p – Figure 7) using a 30-meter laser and constructed a 3D virtual model
to scale. To create Environment 2s, we obtained a 3D model of “Assault” terrain
from the CounterStrike source kit (see Figure 8). These models were mounted
to the Gazebo simulation alongside 1–10 robot models of type Hamster14 which
use the Robot Operating System (ROS)15. Hamster is an autonomous unmanned
ground vehicle (AUGV) at the off-the-shelf price of $1600 US16 per robot (See
Figure B.11). It is a 4WD rugged platform with a built-in navigation algorithm
that allows it to explore, map and localize in unknown areas. Hamster has 2 on-
board Raspberry PI Linux servers for algorithm execution and an Arduino for low-
level control. Hamster is mounted with an HD camera with h264 video streaming
over WiFi and a 360◦ 6-meter range LIDAR laser. Each Hamster is 190mm in
width, 240mm in length and 150mm in height.

Figure B.11: Hamster AUGV; one of the 10 identical robots used in this study.

The Hamster can be either in autonomous mode or manual mode. While in
autonomous mode, the Hamster travels through the terrain without the operator’s

14http://wiki.ros.org/Robots/Hamster
15http://www.ros.org/
162014 pricing.
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intervention. In our task, the robots are required to explore the environment, given
a 2D blueprint of the area (no mapping is required). However, the blueprint does
not include randomly placed objects and obstacles scattered in the environment,
for example bookstands and cupboards in Environment 1 and containers and bar-
rels in Environment 2. The robots are given their initial position (deployment
point) and localize using ICP laser matching [69] and the AMCL algorithm17. We
used C++ for the implementation.

The robots execute a simple exploration algorithm, based on the given map.
Given an estimation of the location of all robots in the team, a robot simply
chooses to travel away from its peers, to a less crowded area (thus, a less explored
area). The robot travels to its desired destination using the A∗ path planning algo-
rithm [70], and uses basic obstacle avoidance techniques to avoid both obstacles
and other robots while doing so.

We account for three malfunction types that the Hamster can experience:

Sensing The camera/laser stops working. In such cases, the operator can send the
robot back to home base, where the experiment operator can fix it.

Stuck The robot cannot move (for example due to an obstacle), and needs the op-
erator to help it get loose. In some cases, the Stuck malfunction is terminal.

WiFi The robot stops sending and receiving data and disappears from the map. In
such cases, the operator can mark the area where the robot was last seen as a
“no entrance” zone. Upon losing the WiFi signal, the robot is programmed
to return to its last point of communication.

In our simulations, the robots experience malfunctions according to a pre-
defined malfunction schedule which determines when and which malfunctions
will occur to each robot.

The GUI (see Figure 2) provides the operator with on-line feedback from the
cameras mounted on the robots (Thumbnail area), the 2D map of the terrain in-
cluding the robots’ reported positions and their footprints (area 1), an enlarged
camera view of the robot of interest (area 2), an action control bar, and a joy-
stick widget. The action bar’s commands and joystick functions are also available
using keyboard and mouse shortcuts inspired by strategic computer games. For
example, in order to set interest on a specific robot, the operator could click its

17http://wiki.ros.org/amcl
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thumbnail camera or location on the map or could click on its number on the
keyboard. Double clicking will center the map on the robot’s location.

The operator can perform the following actions: (1) change the mode for each
of the robots (autonomous or manual); (2) send a robot to a desired point on the
map using the mouse’s right click option (the robot would autonomously navigate
to the destination point, when possible); and (3) manually tele-operate a robot
using the joystick widget or the keyboard arrow keys. When a robot needs the
operator’s attention—in case of malfunctions or a detected green object that needs
classification—it changes its mode to manual and signals the operator by blinking
for 5 seconds and playing a prerecorded, human-voice message in the operator’s
headset. The operator can view the robots’ requests and provide solutions using
the alarm log (area 3). For the operator’s convenience, we maintain a first-come-
first-serve alarm log indicating the (active) alarms.

Our simulation and agents are available at http://www.biu-ai.com/
roboticAdvice/ for future research.
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