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Abstract. In many settings, there is an organizer who would like
to divide a set of agents into k coalitions, and cares about the friend-
ships within each coalition. Specifically, the organizer might want
to maximize utilitarian social welfare, maximize egalitarian social
welfare, or simply guarantee that every agent will have at least one
friend within his coalition. However, in many situations, the orga-
nizer is not familiar with the friendship connections, and he needs to
obtain them from the agents. In this setting, a manipulative agent may
falsely report friendship connections in order to increase his utility.
In this paper, we analyze the complexity of finding manipulation in
such k-coalitional games on graphs. We also introduce a new type
of manipulation, socially-aware manipulation, in which the manip-
ulator would like to increase his utility without decreasing the so-
cial welfare. We then study the complexity of finding socially-aware
manipulation in our setting. Finally, we examine the frequency of
socially-aware manipulation and the running time of our algorithms
via simulation results.

1 Introduction
In many situations, there is an organizer who would like to divide a
group of agents into k non-empty coalitions. For example, consider
a manager who would like to divide his employees into k teams in
order to execute k tasks. The interpersonal friendship connections
between potential team members play an important role in such a
setting. Indeed, different managers may treat friendship differently.
One manager may be interested in maximizing the number of friend-
ship connections within all of the coalitions. Another manager may
consider the welfare of an employee who is worse off than the oth-
ers, and thus be interested in maximizing the minimum number of
friendship connections that this employee has within his coalition.
It is also possible that a manager would simply require that every
employee have at least one friend within his coalition.

The organizer may be familiar with all of the friendships among
the agents. However, in some real-world scenarios, the organizer is
unfamiliar with the friendships and thus needs to elicit them from the
agents. For example, when dividing students into classes, it is com-
mon practice to ask them about their social relationships [1]. In such
situations, a manipulative agent, who is familiar with all the friend-
ships among the agents, might have an incentive to misreport his
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friendship connections. Indeed, it is possible that such manipulation
cannot be found efficiently.

In this paper, we analyze the complexity of finding manipulation in
k-coalitional games 6, with fixed k. We assume that the agents’ util-
ities depend on the friendship connections. Specifically, the friend-
ship connections are represented by an unweighted graph, where the
vertices are agents, and the edges represent the friendships among
the agents. The utility of an agent is the number of friends he has
within his coalition. There is an organizer who would like to divide
the agents into exactly k coalitions, but he builds the graph from
the agents’ reports. We analyze the settings where one manipulative
agent would like to misreport his friendship connections by hiding
some or reporting fake connections.

We study the objective of maximizing the egalitarian social wel-
fare (Max-Egal), and show that finding an optimal manipulation is
computationally hard. Moreover, even deciding if a given report is
beneficial for the manipulator is a hard problem. We then study a
less demanding objective, in which the organizer requires that every
agent has at least one friend within his coalition (At-Least-1). In-
deed, finding an optimal manipulation or deciding if a given report
is beneficial are still computationally hard problems. Arguably, the
most natural organizer’s objective is to maximize the utilitarian so-
cial welfare (Max-Util), and deciding if a given report is beneficial
in this setting can be done efficiently. The complexity of finding an
optimal manipulation with Max-Util remains open, but we provide
an XP algorithm for this problem.

In addition, we introduce a new type of manipulation for coali-
tional games, socially-aware manipulation (SAM), in which the ma-
nipulator would like to increase his utility without decreasing the
social welfare. This manipulation models social situations in which
a manipulator interested in his own welfare will not want to harm the
welfare of society. For example, consider an employee in a company
or a player in a sports team. In these settings, the manipulator would
like to maximize his utility without decreasing the social welfare,
since it reduces the overall productivity or the teams’ performance.
Before analyzing the complexity of finding an SAM, we show that
for every objective (Max-Util, Max-Egal, and At-Least-1), there are
scenarios in which SAM is possible. We then show that finding an
optimal SAM or deciding if a given report is an SAM are still compu-

6 We refer to our model as “k-coalitional game” although we do not con-
sider the notion of collusion and do not use, for example, the core. This is
based on previous papers that considered non-strategic agents in Hedonic
games, focusing on agent division toward maximizing some social welfare
functions (e.g., Aziz et al. [5]).
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tationally hard problems with Max-Egal or At-Least-1. Indeed, both
problems can be solved in polynomial time with Max-Util. Finally,
we provide simulation results based on a real social network. The
results show that SAM is quite frequent and demonstrate the effec-
tiveness of our XP algorithm.

2 Preliminaries
Let G = (A,E) be a directed graph representing a social network,
where the vertex set A represents a set of agents and the edge set
E represents friendship connections between the agents. The graph
is directed since friendship connections are not necessarily symmet-
ric, and an edge (a, a′) ∈ E represents that a considers a′ as his
friend. We denote by E(a) the set of edges from a, and the set of
neighbors of a ∈ A by N(a) = {a′ ∈ A|(a, a′) ∈ E(a)}. For a
subset S ⊆ A, we denote the set of neighbors of a from the subset
S by N(a, S) = N(a)∩ S. In our setting, there is an organizer who
would like to divide the agents into exactly k coalitions. Formally,
the organizer seeks a partition P of G, which is a partition of the
set A into k disjoint and non-empty sets C1, C2, . . . , Ck; we refer to
these sets as coalitions. Since k is small in many settings, we further
assume that k is fixed. Let Πk be the set of all partitions of size k.
We denote by u(a,P) the number of friends that agent a has within
his coalition in partition P , i.e, if a ∈ Ci then u(a,P) is |N(a,Ci)|.
When the organizer partitions the agents into coalitions, he may want
to maximize a certain objective. In this paper, we examine three types
of objectives:

Definition 1 (Max-Egal). The organizer wants to find a partition P∗

that maximizes the minimum number of connections that an agent has
within his coalition. That is, P∗ = argmaxP∈Πk mina∈A u(a,P).

Definition 2 (At-Least-1). The organizer wants to find a partitionP∗

such that every agent has at least one connection within his coalition.
That is, P∗ such that ∀a∈Au(a,P∗) > 0.

Definition 3 (Max-Util). The organizer wants to find a partition
P∗ that maximizes the total number of connections within the same
coalition. That is, P∗ = argmaxP∈Πk Σa∈Au(a,P).

Let Oobj(G) be the set of all partitions that sat-
isfy the objective of the organizer. For a ∈ A, let
LBobj(G, a) = minP∈Oobj(G) u(a,P), and let UBobj(G, a) =
maxP∈Oobj(G) u(a,P). That is, LBobj(G, a) and UBobj(G, a) are
lower and upper bounds (respectively) on the number of friends that
an agent a can have in a partition satisfying the objective obj.

Note that when the objective of the organizer is At-Least-1 it is
possible that there is no feasible partition in G, i.e., OAt-Least-1(G) =
∅. In such a case, we define the utility of all the agents to be 0.

Each agent a ∈ A reports to the organizer a set of friendship con-
nections, ER(a), which is not necessarily equal to E(a). That is,
the organizer learns about the graph structure solely from the reports
of the agents, and if all of the agents are truthful then this graph is
equal to G. 7 A manipulator agent m ∈ A reports a set of friendship
connections ER(m) ̸= E(m), so that the organizer will choose a
partition that is better for m than the partition that would have been
chosen with m’s truthful report. In this case, we refer to ER(m) as
the manipulation of m. We assume that there is a single manipulator,

7 Since friendship connections are not necessarily symmetric, we assume that
G is a directed graph. If we assume that friendship connections are always
symmetric, then G is an undirected graph, which requires further assump-
tions on how the organizer builds the graph. We provide the definitions and
results for undirected graphs in the appendix.

m, that has full information regarding the other agents’ reports, and
the organizer’s objective. We examine two different types of manip-
ulators, m+ and m−.

Definition 4 (m+). A manipulator who can only add edges, m+ ∈
A, reports a set of connections ER(m+) = E(m+) ∪ E+(m+),
where E+(m+) ⊆ {m+} ×A.

Definition 5 (m−). A manipulator who can only remove edges,
m− ∈ A, reports a set of connections ER(m−) = E(m−) \
E−(m−), where E−(m−) ⊂ E(m−) is the set of connections that
m does not report to the organizer.

Note that since G is directed, m is able to add and remove only
outgoing edges. Let G(m) = (A, (E ∪ E+(m)) \ E−(m)) be the
graph after the manipulation of m. Note that m may have more than
one possible manipulation, e.g., ER

1 (m) and ER
2 (m), which result

in different graphs, G1(m) and G2(m), respectively.
We emphasize that u(a,P) depends on the real graph G (and not

on G(m)). That is, the utility of every agent is computed on the real
graph. Therefore, if the manipulator adds an edge, this edge is not
considered in u(a,P). Similarly, if the manipulator removes an edge,
this edge is still considered in u(a,P). The manipulator influences
only the beliefs of the organizer.

Given the organizer’s objective, there may be several partitions
that satisfy the objective, but the utility of the manipulator might be
different in each such partition. We thus study four types of manipu-
lations, following [23]:

Definition 6 (Lower Bound Manipulation (LBM)). A manipulation
ER(m) is LBM if LBobj(G(m),m) > LBobj(G,m). The im-
provement of an LBM is LBobj(G(m),m)− LBobj(G,m).

Definition 7 (Upper Bound Manipulation (UBM)). A manipulation
ER(m) is UBM if UBobj(G(m),m) > UBobj(G,m). The im-
provement of a UBM is UBobj(G(m),m)− UBobj(G,m).

That is, the goal of an LBM is to eliminate partitions with low
utility (u(m,P)), while the goal of an UBM is to add partitions with
high utility.

Definition 8 (Weak-Improvement Manipulation (WIM)). A manip-
ulation ER(m) is WIM if LBobj(G(m),m) > LBobj(G,m) and
UBobj(G(m),m) > UBobj(G,m). The improvement of a WIM
is (LBobj(G(m),m) + UBobj(G(m),m)) − (LBobj(G,m) +
UBobj(G,m)).

Definition 9 (Strict-Improvement Manipulation (SIM)). A manipu-
lation ER(m) is SIM if LBobj(G(m),m) > UBobj(G,m). The im-
provement of an SIM is (LBobj(G(m),m) +UBobj(G(m),m))−
(LBobj(G,m) + UBobj(G,m)).

Let type be one of the manipulation types (LBM, UBM, WIM
or SIM). Given ER(m) and type, we denote by Itype(E

R(m)) the
improvement of ER(m); if ER(m) is not a manipulation of the spe-
cific type, then Itype(E

R(m)) = 0. Given type, we say that ER
1 (m)

is better than a ER
2 (m) if Itype(ER

1 (m)) > Itype(E
R
2 (m)), and an

optimal manipulation is a manipulation with the maximum improve-
ment. See Figure 1 for an illustration of the four types of manipula-
tions.

Note that in WIM and SIM both the the lower bound and the upper
bound increase. Therefore, we define the improvement for both these
types as the sum of the improvements of the lower bound and the
upper bound for both types.



Figure 1: An illustration of the four types of manipulations.

We say that an objective is susceptible to LBM by adding edges
if there exists at least one graph in which there exists m+ with an
LBM. Susceptibility by removing edges and to the other manipula-
tion types is defined similarly. Whenever an objective is susceptible
to manipulation, our main goal is to find an optimal manipulation (if
the given instance is manipulable). Formally,

Definition 10 (The Manipulation Problem). Given a graph G, an
objective obj, a manipulator m ∈ A, and a manipulation type type,
we are asked to find an optimal manipulation ER(m) (if such ma-
nipulation exists).

We also study an even simpler problem, which is to compute the
improvement of a given report.

Definition 11 (The Improvement Problem). Given a graph G, an
objective obj, a manipulator m ∈ A, a manipulation type type, and
a report ER(m), we are asked to compute Itype(E

R(m)).

3 Background

Our setting, in which the utility of an agent is the number of neigh-
bors that he has within his coalition to which he is assigned [22], is
a special case of Additively Separable Hedonic Games (ASHGs),
which have been extensively studied [8, 15, 2, 3]. However, very
few papers consider the problem of manipulation in ASHGs. In-
deed, Dimitrov and Sung [10] analyzed ASHGs where agents have
both positive and negative edges, and provided a strategyproof algo-
rithm for finding stable outcomes. Rodríguez-Álvarez [21] discussed
strategyproof core stable solutions’ properties. They proved that sin-
gle lapping rules are necessary and sufficient for the existence of a
unique core-stable partition. Aziz et al. [4] proved that, with appro-
priate restrictions over the agents’ preferences, the serial dictatorship
mechanism is strategyproof. Flammini et al. [12] studied the utilitar-
ian social welfare in ASHGs and fractional hedonic games, and they
proposed strategyproof mechanisms at the cost of non-optimal social
welfare. They extended their analysis to friends and enemies games
in a subsequent work [13]. Wright and Vorobeychik [24] considered
a model of ASHG that is very similar to ours, but they restricted
the size of each coalition instead of restricting the number of coali-
tions. In their work, they proposed a strategyproof mechanism that
achieves good and fair experimental performance, but with no the-
oretical guarantee. All of these works focused on developing strate-
gyproof mechanisms, while we study the computational complexity
of finding manipulation.

The work that is closest to ours is by Waxman et al. [23]. They
provided an extensive set of results specifying for each objective
whether or not it is susceptible to manipulation. Specifically, they
show that Max-Egal is susceptible to SIM by removing edges (and
thus, obviously, it is also susceptible to LBM, UBM, and WIM),

but it is not susceptible to any manipulation by adding edges. At-
Least-1 is only susceptible to LBM by removing edges (and not to
UBM, WIM, or SIM), and it is not susceptible to any manipulation
by adding edges. Max-Util is susceptible to SIM by adding or remov-
ing edges. Indeed, [23] did not study the computational complexity
of finding manipulation.

Alon [1] considered the At-Least-1 objective, and studied a differ-
ent type of manipulation: whether a set of manipulators can guaran-
tee to be in the same coalition. Alon showed that such manipulation
is almost always impossible.

In our paper, we introduce a new type of manipulation, which we
refer to as a socially-aware manipulation (Section 5). In this manip-
ulation, the manipulator m would like to increase his utility without
decreasing the social welfare. The tension between maximizing one’s
own utility and social welfare has been studied extensively in the so-
cial sciences (e.g., [11, 18]). However, to the best of our knowledge,
all of the works on manipulation in ASHGs assume that the manipu-
lator aims to maximize his individual utility and does not care about
the organizational social welfare.

Table 1 summarizes our complexity results with the Max-Util ob-
jective. With the Max-Egal and At-Least-1 objectives, both Manipu-
lation Problem and Improvement Problem are computationally hard,
for all settings susceptible to manipulation. Table 2 summarizes the
susceptible results from [23].

Manipulation Socially-Aware Manipulation
Improvement Problem P (T5) P (T13)
Manipulation Problem ? XP (T8) P (T16)

Table 1: Complexity results for Max-Util

Add Remove
Max-Util SIM SIM

At-Least-1 No M LBM, No UBM
Max-Egal No M SIM

Table 2: Summary of susceptible results from [23].

4 The Complexity of the Manipulation and the
Improvement Problems

We begin with the Max-Egal objective. Recall that manipulation is
possible only by removing edges. Indeed, finding any type of optimal
manipulation is computationally hard. Moreover, we show that even
deciding whether a SIM exists for a given instance is computationally
hard.

Theorem 1. Given a graph G, and a manipulator m− ∈ A, de-
ciding whether any type of manipulation exists when the objective is
Max-Egal is co-NP -hard.

The reduction is from the complementary problem of the NP-
complete 3-SAT problem.

Definition 12 (3-SAT problem). Let F be a Boolean CNF formula,
such that each clause has three literals. We are asked whether there
exists a truth assignment that satisfies F .

Our gadget for the hardness proof is a ring graph, which represents
a CNF Boolean formula, as was introduced by [7].
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Figure 3: (a) An illustration of a ring graph for F = (x1∨ x̄2∨x3)∧
(x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x̄3) (b) The ring graph for the same F
with the additions of clause vertices.
Definition 13 (Ring graph). Let F be a Boolean CNF formula with
m clauses, C1, . . . , Cm, and n variables, x1, . . . , xn. A switch s
is a directed K2,2 graph, that is, s = ({a1, a2, b1, b2}, {a1, a2} ×
{b1, b2}) (see Figure 2). The ring graph is composed of n switches,
s1, . . . , sn, where si is connected to si+1 with two directed paths (in
the case that i = n we connect sn to s1), one from bi,1 to ai+1,1 (the
positive path) and another from bi,2 to ai+1,2 (the negative path).
For each positive (negative) occurrence of xi in F we add a vertex
to the positive (negative) path. We refer to these vertices as literal
vertices (see Figure 3a).

In addition to the basic ring graph structure, given a CNF formula
we add m clause vertices, c1, . . . , cm. For each positive (negative)
occurrence of xi in Cj we add an edge from cj to one of the literal
vertices on the positive (negative) path between sj and sj+1, that has
no incoming edge from another clause vertex (see Figure 3b).

Note that a ring graph can be partitioned into exactly two disjoint
cycles, where each cycle defines a truth assignment. This is due to the
fact that in the switch, there is an option to choose between the posi-
tive path (bi,1 to ai+1,1) and the negative path (bi,2 to ai+1,2). There
is only one directed path from bi,1 to ai+1,1 and only one directed
path from bi,2 to ai+1,2. Therefore, a cycle that uses the positive path
from bi,1 to ai+1,1 represents a truth assignment in which xi is true,
and a cycle that uses the negative path from bi,2 to ai+1,2 represents
a truth assignment in which xi is false.

Our proof works as follows. Given a Boolean CNF formula F , we
construct a graph G with a vertex m− that we identify as the ma-
nipulator, such that m− has a manipulation if and only if F is not
satisfiable. In particular, we show that if a satisfying truth assign-
ment exists, then there exists a graph partition where each vertex has
at least 8 neighbors (i.e., outgoing edges within his coalition). Since
the manipulator has 8 neighbors in G there is not any type of manip-
ulation. On the other hand, if there is no satisfying truth assignment,
we show that any optimal partition (according to the Max-Egal ob-
jective) guarantees that each vertex gets at least 7 neighbors in his
coalition, and the manipulator m− gets exactly 7 neighbors in his
coalition. However, the manipulator has a SIM, denoted as E−(m−),
such that LB(G(m−),m−) = 8. As SIM makes the lower bound
after the manipulation greater than the upper bound before the ma-
nipulation, every SIM is also LBM, UBM, and WIM. Therefore, the
proof holds for all manipulation types. Due to space constraints, the
full proof and several other proofs are deferred to the appendix.

We now show that the improvement problem is also computation-
ally hard. Moreover, even deciding whether a given report is a ma-
nipulation is computationally hard. The proof is almost identical to
the proof of Theorem 1

Theorem 2. Given a graph G, a manipulator m− ∈ A, a
manipulation type type, and a report ER(m), deciding whether
Itype(E

R(m)) > 0, when the objective is Max-Egal is co-NP -hard.

The At-Least-1 objective is less demanding than the Max-Egal ob-
jective. In addition, it is susceptible only to LBM by removing edges.
However, finding an optimal LBM is computationally hard.

Theorem 3. Unless P = NP , there is no polynomial time algorithm
for finding an optimal LBM for a manipulator m− when the objective
is At-Least-1.

The reduction is from a variant of the 3-SAT problem, in which
each variable appears in at most 3 clauses, each literal appears in at
most 2 clauses, and each clause has 2 or 3 literals. The improvement
problem is also computationally hard.

Theorem 4. Given a graph G, a manipulator m− ∈ A, and a report
ER(m), deciding whether ILBM (ER(m)) > 0 when the objective
is At-Least-1 is NP -hard.

The reduction is from the same variant of 3-SAT that is used in the
proof of Theorem 3.

The Max-Util objective is susceptible to all types of manipulations,
with either m+ or m−. For the analysis of the Max-Util objective, we
use the following definitions.

Given a directed graph G = (A,E), we can naively convert G
to a weighted undirected graph GU = (A,EU ) by creating an edge
(u, v) whenever either (u, v) or (v, u) exists in G. If both (u, v) and
(v, u) exist in G, then the edge weight is set to 2. Otherwise, the
edge weight is set to 1. Given an undirected graph GU = (A,EU ),
a set of edges Y ⊆ EU is a k-cut of GU if G′ = (A,EU \ Y ) is
a graph that contains at least k connected components. We refer to
2-cut simply as cut. A k-cut Y ∗ is a min-k-cut if

∑
y∈Y ∗ w(y)

is minimal amongst all possible k-cuts of GU . We denote Y ∗ by
min-k-cut(G). Note that any partition has a corresponding k-cut,
and a Max-Util partition of G has a corresponding min-k-cut in GU

(Based on Lemma 1 from [9]). For simplicity, we will refer to the
cuts in GU as cuts of G.

Unlike with the Max-Egal and At-Least-1 objectives, we show
a polynomial time algorithm for solving the improvement problem
with the Max-Util objective.

Theorem 5. The improvement problem can be solved in polynomial
time when the objective is Max-Util, with any type of manipulator,
and any manipulation type.

Proof. The number of min-k-cuts of any graph isO(n2(k−1)) [17],
and the set of all the min-k-cuts can be computed in polynomial
time for a fixed k (e.g., using the algorithm of [14]). Since we as-
sume that k is fixed, the set OMax-Util(G), which contains the cor-
responding partitions for every min-k-cut of G, can be computed
in polynomial time. Similarly, the set OMax-Util(G(m)), which con-
tains the corresponding partitions for every min-k-cut of G(m),
can be computed in polynomial time. Clearly, given OMax-Util(G)
and OMax-Util(G(m)), we can compute LB(G,m), LB(G(m),m),
UB(G,m), and UB(G(m),m). Therefore, for any manipula-
tion type, the improvement problem can be solved in polynomial
time.

As a consequence, given two reports, ER
1 (m) and ER

2 (m), we can
decide whether ER

1 (m) is better than ER
2 (m) in polynomial time.



We believe that finding an optimal manipulation with the Max-Util
objective is computationally hard, and we leave it as an important
open problem. Indeed, we present a general XP algorithm for find-
ing any type of optimal manipulation, with any type of manipulator.
The algorithm is parameterized by MMC, the maximum size of the
min-k-cut that can result from any possible manipulation. Formally,
MMC = maxER(m) |min-k-cut(G(m))|.

We first define a connection between a partition and a report of a
manipulator.

Definition 14. Let P = {C1, C2 . . . Ck} be a partition and let m ∈
C1. When m = m+, we say that a report ER(m+) respects P if
E+(m+) ⊆ {{m+} ×C1} and {{m+} ×C1} ⊆ ER(m+). When
m = m−, we say that a report ER(m−) respects P if E−(m−) ⊆
{{m−}×Ci|i ∈ [2, k]} and ER(m−)∩{{m−}×Ci|i ∈ [2, k]} =
∅.

That is, a report ER(m+) respects a partition P if the manipula-
tor adds only edges to vertices within his coalition (C1), and G(m+)
contains all the edges between m+ and the vertices within his coali-
tion. Similarly, a report ER(m−) respects a partition P if the ma-
nipulator removes only edges to vertices outside of his coalition, and
G(m−) does not contain any edge between m− and the vertices out-
side of his coalition. Note that a report ER(m) that respects a parti-
tion P is not necessarily better for m than the truthful report E(m).
If ER(m) respects a partition P and ER(m) is better for m than
E(m), we say that ER(m) is a manipulation that respects a partition
P .

We now define a specific set of partitions, P̄ . P̄ contains every
partition P , which is surely beneficial for m, that the organizer may
select as a result of a manipulation of m. That is, there is no ma-
nipulation by m such that P ∈ OMax-Util(G(m)) and u(m,P) >
LBMax-Util(G,m) but P /∈ P̄ .

Our XP algorithm, Algorithm 2, works as follows. It first calls Al-
gorithm 1 for computing P̄ . It then iterates over all the partitions in
P̄ . For each P ∈ P̄ , the algorithm computes the report ER(m) that
respects P . The algorithm then compares ER(m) with the current
best manipulation and updates it accordingly. The algorithm returns
the best manipulation that respects a partition in P̄ (if such manipu-
lation exists).

In order to prove the correctness of Algorithm 2, we first show that
Algorithm 1 correctly computes the set P̄ .

Algorithm 1 Compute the set P̄ .
Require: G = (A,E),m ∈ A
Ensure: The set P̄

1: Let ER
all(m) = {(m,a)|a ∈ A}

2: if m = m+ then
3: maxSize← |min-k-cut(Gall(m))|
4: else {/ ∗m = m− ∗ /}
5: maxSize← 2 · |min-k-cut(G)|
6: for all k-cut Y in G of size at most maxSize do
7: P ← the corresponding partition of Y
8: if u(m,P) > LBMax-Util(G,m) then
9: Add P to P̄

10: return P̄

Lemma 6. Algorithm 1 correctly computes the set P̄ .

Proof. Assume by contradiction that there is a manipulation ER
1 (m)

such that P ∈ OMax-Util(G1(m)) and u(m,P) > LBMax-Util(G,m)

Algorithm 2 Manipulation for Max-Util objective

Require: G = (A,E),m ∈ A
Ensure: ER(m)

1: Compute the set P̄ by Algorithm 1
2: manip← E(m)
3: for all P ∈ P̄ do
4: Compute ER(m) that respects P
5: if ER(m) is better then manip then
6: manip← ER(m)
7: if manip = E(m) then
8: return No manipulation
9: return manip

but P ̸∈ P̄ . Let Y1 be P’s corresponding k-cut in G1(m). Since any
manipulation does not change the number of vertices, a partition in
G1(m) is also a partition in G. Let Y be P’s corresponding k-cut in
G.

• If m = m+: Adding edges can only increase the size of
the min-k-cut of a graph. That is, |min-k-cut(G)| ≤ |min-
k-cut(G1(m))|. Since ER

all(m) consists of all of the edges from
m, |min-k-cut(G1(m))| ≤ |min-k-cut(Gall(m))| = maxSize.
Thus, |Y | ≤ |Y1| = |min-k-cut(G1(m))| ≤ maxSize. Therefore,
by the algorithm’s construction, P ∈ P̄ . A contradiction.

• If m = m−: Removing edges can only decrease the size of the
min-k-cut of a graph. Hence: |Y1| ≤ |min-k-cut(G)|. In addition,
the difference between the sizes of Y and Y1 is at most the number
of edges that m is able to remove. That is, |Y |−|Y1| ≤ |Y ∩E(m)|.
Therefore,

|Y | − |Y ∩ E(m)| ≤ |min-k-cut(G)| (1)

Let PLB ∈ OMax-Util(G) be a partition such that u(m,PLB) =
LBMax-Util(G,m), and let YLB be the corresponding k-cut. Recall
that YLB is a min-k-cut in G. Since u(m,P) > LBMax-Util(G,m),
then |Y ∩ E(m)| < |YLB ∩ E(m)| ≤ |min-k-cut(G)|. Combined
with (1) we get that |Y | < 2 · |min-k-cut(G)| = maxSize. There-
fore, by the algorithm’s construction, P ∈ P̄ . A contradiction.

We now show that if there is a manipulation ER
∗ (m), then there

exists a partitionP ∈ P̄ such that the report that respectsP , ER(m),
is a manipulation, and ER

∗ (m) is not better than ER(m). Our proof is
for LBM by a manipulator m−. The proof for m+ is very similar, and
we provide it in the appendix. It is also straightforward to adapt both
proofs for UBM. However, for WIM and SIM the proofs are very
similar, but they are slightly different from the proofs for LBM and
UBM. We thus provide the proof for WIM and m− in the appendix.

Lemma 7. If ER
1 (m−) is an LBM in which

LBMax-Util(G1(m
−),m−) = x, then there is a manipulation

ER
2 (m−) such that (i) ER

2 (m−) respects a partition P ∈ P̄ and (ii)
LBMax-Util(G2(m

−),m−) = x.

Proof. Given an LBM ER
1 (m−) in which

LBMax-Util(G1(m
−),m−) = x, let P be a partition such

that P ∈ OMax-Util(G1(m
−)) and u(m−,P) = x. Let

P = {C1, C2 . . . Ck} and m− ∈ C1. By definition of P̄ ,
P ∈ P̄ . Let ER

2 (m−) be the report that respects P . We need
to show that LBMax-Util(G2(m

−),m−) = x. We do so by
showing that OMax-Util(G2(m

−)) ⊆ OMax-Util(G1(m
−)) and

P ∈ OMax-Util(G2(m
−)).

Let Y be the k-cut that corresponds to P in G, and let Yi be the k-
cut that corresponds toP in Gi(m

−), where i ∈ {1, 2}. GivenP ′ ̸∈



OMax-Util(G1(m
−)), let Y ′ be its corresponding k-cut in G, and let

Y ′
i be its corresponding k-cut in Gi(m

−), where i ∈ {1, 2}. Given
P ′′ ∈ OMax-Util(G1(m

−)), let Y ′′ be its corresponding k-cut in G,
and let Y ′′

i be its corresponding k-cut in Gi(m
−), where i ∈ {1, 2}.

Let q = |Y2| − |Y1|, let q′ = |Y ′
2 | − |Y ′

1 | and let q′′ = |Y ′′
2 | − |Y ′′

1 |.
We begin by proving the following claim:

Claim 1. q ≤ q′ and q ≤ q′′.

Proof. We divide the set E−
1 (m−) ∪ E−

2 (m−) into the following
three disjoint sets:

1. The set H1 = E−
1 (m−) ∩ E−

2 (m−).
2. The set H2 = E−

1 (m−) \H1.
3. The set H3 = E−

2 (m−) \H1.

The set H1 is contained in both E−
1 (m−) and E−

2 (m−), and thus
the edges from H1 are in neither G1(m

−) nor G2(m
−). That is,

the edges from H1 are not in Yi, Y ′
i and Y ′′

i , for i ∈ {1, 2}. Since
q = |Y2| − |Y1|, q′ = |Y ′

2 | − |Y ′
1 | and q′′ = |Y ′′

2 | − |Y ′′
1 |, then the

values of q, q′ and q′′ do not depend on the edges from H1.
Now consider the set H2. The edges from H2 are not in G1(m

−)
but they are in G2(m

−). Therefore, the edges of H2 are not in Y1,
Y ′
1 , and Y ′′

1 . The manipulation ER
2 (m) respect P , and thus H2 ⊆

{(m−, x) | x ∈ C1}. Therefore, the edges of H2 are not included
in any k-cut that corresponds to P , i.e., the edges of H2 are also not
in Y2. That is, the value of q does not depend on the edges from H2.
However, the edges of H2 may be in Y ′

2 or in Y ′′
2 , and each edge from

H2 that is in Y ′
2 or in Y ′′

2 increases the value of q′ or q′′, respectively.
Finally, consider the set H3. The edges from H3 are not in

G2(m
−) but they are in G1(m

−). Therefore, the edges of H3 are
not in Y2, Y ′

2 , and Y ′′
2 . The manipulation ER

2 (m) respects P , and
thus H3 ⊆ {(m−, x) | x ∈ {Ci|i ∈ [2, k]}}. Therefore, the edges
of H3 are in any k-cut that corresponds to P , i.e., the edges of H3

are in Y1. That is, each edge from H3 decreases the value of q. In ad-
dition, the edges of H3 may be in Y ′

1 or in Y ′′
1 , and each edge from

H3 that is in Y ′
1 or in Y ′′

1 decreases the value of q′ or q′′, respectively.
Overall, q ≤ q′ and q ≤ q′′.

We now show that P ∈ OMax-Util(G2(m
−)), and we do

so by showing that Y2 is a min-k-cut in G2(m
−). P ′ ̸∈

OMax-Util(G1(m
−)), and thus Y ′

1 is not a min-k-cut in G1(m
−).

On the other hand, P ∈ OMax-Util(G1(m
−)), and thus Y1 is a min-

k-cut in G1(m
−). That is, |Y1| < |Y ′

1 |. From Claim 1 we have
that q ≤ q′, and thus |Y2| < |Y ′

2 |. Now, P ′′ ∈ OMax-Util(G1(m
−))

and P ∈ OMax-Util(G1(m
−)). That is, both Y1 and Y ′′

1 are min-k-
cuts in G1(m

−). Therefore, |Y1| = |Y ′′
1 |. From Claim 1 we have

that q ≤ q′′ and thus |Y2| ≤ |Y ′′
2 |. Overall, |Y2| < |Y ′

2 |, and
|Y2| ≤ |Y ′′

2 |. That is, the size of Y2 is at most the size of any k-
cut. Therefore, |Y2| is a min-k-cut in G2(m

−).
It remains to show that OMax-Util(G2(m

−)) ⊆ OMax-Util(G1(m
−)).

Indeed, we showed that |Y2| < |Y ′
2 |. Thus, Y ′

2 is not a min-k-cut in
G2(m

−). Therefore, P ′ ̸∈ OMax-Util(G2(m
−)).

Overall, we get:

Theorem 8. Algorithm 2 solves the manipulation problem with the
Max-Util objective in time O(n2(maxSize+k)).

Proof. The correctness of the algorithm is a direct consequence of
the Lemmas 6 and 7. As for the running time, Algorithm 2 calls Al-
gorithm 1 for computing P̄ . Algorithm 1 computes all the k-cuts
of size at most maxSize, and checks if the corresponding parti-
tion is beneficial for m. There are at most (n2)

maxSize subsets of

edges of size at most maxSize. In addition, computing the cor-
responding partition for each subset of edges and checking if the
partition is beneficial for m takes at most O(n2). Therefore, the
running time of Algorithm 1 is O(n2maxSize · n2). After comput-
ing P̄ , Algorithm 2 iterates over all P ∈ P̄ . In each iteration, the
algorithm first computes ER(m) that respects P , which takes at
most O(n2). It then checks if ER(m) is better than manip, and
thus it needs to iterate over all the min-k-cuts of G(m). Com-
puting all the min-k-cut takes at most O(n2k) [14]. Overall, the
running time is O(n2maxSize · n2 + n2maxSize · (n2 + n2k)) =
O(n2(maxSize+k)).

Recall that MMC is the maximum size of the min-k-cut that
can result from any possible manipulation. Now, removing edges
can only decrease the size of the min-k-cut of a graph. Therefore,
if m = m−, MMC = |min-k-cut(G)| = 1

2
maxSize. Adding

edges can only increase the size of the min-k-cut of a graph. There-
fore, if m = m+, MMC = |min-k-cut(Gall(m))| = maxSize
(since ER

all(m) consists of all of the edges from m). Therefore, The-
orem 8 essentially shows that Algorithm 2 is an XP algorithm, pa-
rameterized by MMC.

Note that for m−, it is possible to slightly improve Algorithm 2,
to get a running time of O(n

1
2
maxSize+2k)). The details are in the

appendix.

5 Socially-aware Manipulation
We now introduce a new type of manipulation, which we call
Socially-aware Manipulation (SAM). In SAM, the manipulator m
would like to increase his utility without decreasing the social wel-
fare. That is, Oobj(G(m)) ⊆ Oobj(G), and thus SAM is necessarily
an LBM.

Definition 15 (Socially-Aware Manipulation (SAM)). A manip-
ulation ER(m) is SAM if Oobj(G(m)) ⊆ Oobj(G) and
LBobj(G(m),m) > LBobj(G,m).

Note that term SAM may remind the concept of Pareto optimality.
However, in SAM, the manipulator aims to increase his utility with-
out decreasing the social welfare. That is, the manipulator would not
want to harm the organizer’s objective, but his manipulation may de-
crease the utility of one of the agents, unlike the notion of Parteo
optimality.

5.1 The Existence of SAM

Before analyzing the complexity of finding an SAM, we establish the
existence of SAM.

Theorem 9. The susceptibility of SAM is equivalent to the suscepti-
bility of LBM. Specifically, Max-Util is susceptible to SAM by adding
or removing edges, but Max-Egal and At-Least-1 are susceptible to
SAM only by removing edges.

Proof. Consider the graph as depicted in Figure4a. Assume that
k = 2, the organizer’s objective is Max-Util, and m = m+. Note
that |min-cut(G)| = 2. In addition, P1 = {{m}, {a, b, c, d}} ∈
OMax-Util(G), and u(m,P1) = 0. Thus, LBMax-Util(G,m) = 0. By
adding the dashed edge (from m to a), the size of min-cut(G(m))
is still 2. That is, for each P ∈ OMax-Util(G(m)) the size of the corre-
sponding cut in G(m) is 2. Since m does not remove any edge, the
size of P’s corresponding cut in G is 2, and thus P ∈ OMax-Util(G).



That is, OMax-Util(G(m)) ⊆ OMax-Util(G). In addition, every cut in
G(m) that contains both (m, c) and (m, d) is of size at least 3.
Therefore, every min-cut in G(m) contains at most one edge from
m. That is, LBMax-Util(G(m),m) > 0, and the manipulation is SAM.

Figure 4b shows a graph in which SAM is possible with Max-Util
and m = m−. Figure 4c shows a graph in which SAM is possible
with Max-Egal and m = m−. The full proof is in the appendix.

For At-Least-1, we will show below that any LBM is also SAM
(Theorem 12). Therefore, since At-Least-1 is susceptible to LBM by
removing edges, it is also susceptible to SAM by removing edges.

Finally, it was already shown by [23] that Max-Egal and At-Least-
1 are not susceptible to LBM by adding edges. Therefore, they are not
susceptible to SAM by adding edges (since each SAM is an LBM).

Note that the equivalence between the susceptibility of SAM and
LBM (as shown in Theorem 9) means that any setting (i.e., objective
and type of manipulator) that is susceptible to LBM is also suscepti-
ble to SAM.

(a) (b) (c)
Figure 4: Graphs for Theorem 9. A dashed line is an edge that is
added by m. A dotted line is an edge that is removed by m. A square
represents a clique of size 10, and an edge with a number represents
a set of edges.

5.2 The Complexity of the Manipulation and
Improvement Problems for SAM

We begin with the Max-Egal objective. Similar to LBM, deciding
whether an SAM exists (and thus also finding an optimal SAM) is
computationally hard.

Theorem 10. Given a graph G, and a manipulator m− ∈ A, decid-
ing whether an SAM exists when the objective is Max-Egal is co-NP-
hard.

The improvement problem is also hard.

Theorem 11. Given a graph G, a manipulator m− ∈ A, and a
report ER(m), deciding whether ISAM (ER(m)) > 0 when the ob-
jective is Max-Egal is co-NP-hard.

With the At-Least-1 objective, we show that every LBM is also
an SAM, and thus the manipulation and improvement problems for
SAM are computationally hard.

Theorem 12. For At-Least-1, every LBM by removing edges is also
SAM by removing edges.

Proof. Assume by contradiction that there exists a graph G =
(A,E), and a manipulator m ∈ A, such that exists an LBM,
E−(m) that is not SAM. i.e., LB(G(m),m) > LB(G,m) but
OAt-Least-1(G(m)) ̸⊆ OAt-Least-1(G). Let P be a partition such that

P ∈ OAt-Least-1(G(m)) but P ̸∈ OAt-Least-1(G). Therefore, there is a
vertex a ∈ A such that u(a,P) = 0 in G. However, m can only
remove outgoing edges, and thus u(a,P) = 0 in G(m) too. That is,
P ̸∈ OAt-Least-1(G(m)). A contradiction.

Now, with the Max-Util objective, the improvement problem for
SAM can be solved in polynomial time.

Theorem 13. The improvement problem for SAM can be solved in
polynomial time when the objective is Max-Util.

Proof. As in the proof of Theorem 5, OMax-Util(G) and
OMax-Util(G(m)) can be computed in polynomial time. We also
need to check whether OMax-Util(G(m)) ⊆ OMax-Util(G), which takes
at most O(|OMax-Util(G(m))| · |OMax-Util(G)| · n) steps.

Interestingly, the manipulation problem for SAM with the Max-
Util objective can also be solved in polynomial time. Indeed, we only
need to change line 1 in Algorithm 2, so that P̄ ← OMax-Util(G). To
prove the correctness, we first show an essential property of every
report that respects a Max-Util partition.

Lemma 14. If ER(m) is a report that respects P ∈ OMax-Util(G)
then OMax-Util(G(m)) ⊆ OMax-Util(G).

Proof. Let P ∈ OMax-Util(G), and let ER(m) be the report that re-
spects P . Let Y be the min-k-cut that corresponds to P in G. Given
P ′ ̸∈ OMax-Util(G) let Y ′ be its corresponding k-cut in G. Since Y
is a min-k-cut and Y ′ is not a min-k-cut, we have that |Y | < |Y ′|.
Let Y1 be the k-cut that corresponds to P in G(m) and Y ′

1 be the
k-cut that corresponds to P ′ in G(m).

• If m = m−, since ER(m) respects P , E−(m) ⊆ Y . Therefore,
|E−(m) ∩ Y | = |E−(m)| ≥ |Y ′ ∩ E−(m)|. Thus, |Y1| = |Y | −
|E−(m) ∩ Y | < |Y ′| − |Y ′ ∩ E−(m)| = |Y ′

1 |. That is, P ′ ̸∈
OMax-Util(G(m)).

• If m = m+, since ER(m) respects P , E+(m) ∩ Y1 = ∅.
Therefore, |Y1| = |Y | + |E+(m) ∩ Y1| = |Y | < |Y ′| ≤ |Y ′| +
|E+(m) ∩ Y ′

1 | = |Y ′
1 |. That is, P ′ ̸∈ OMax-Util(G(m)).

We now show that if there is an SAM ER
∗ (m), then there exists a

partition P ∈ P̄ such that the report that respects P , ER(m), is an
SAM, and ER

∗ (m) is not better than ER(m). We provide the proof
for m−. The proof for m+ is a straightforward adaptation.

Lemma 15. If ER
1 (m−) is an SAM in which

LBMax-Util(G1(m
−),m−) = x, then there is an LBM ER

2 (m−)
such that (i) ER

2 (m−) respects a partition P ∈ P̄ and (ii)
LBMax-Util(G2(m

−),m−) = x.

Proof. We use the same definitions and claims as in the proof of
Lemma 7 Indeed, here P̄ is OMax-Util(G), but since ER

1 (m−) is SAM
then P is in OMax-Util(G), as required.

Theorem 16. Algorithm 2, in which line 1 is P̄ ← OMax-Util(G),
solves the manipulation problem for SAM with the Max-Util objective
in time O(n2(2k−1)).

Proof. The correctness of the algorithm follows directly from Lem-
mas 14 and 15. As for the running time, we use the same analysis
as in the proof of Theorem 8, but now |P̄| is O(n2(k−1)). Thus, the
running time is O(n2(2k−1)).



6 Experiments
In order to examine the frequency of SAM and the effectiveness of
our XP algorithm with the Max-Util objective, we ran some simula-
tions 8 on graphs that are based on the Twitter followers dataset [19].
Since it was too large, we sampled 150 subgraphs of the network.
Specifically, we sampled subgraphs of sizes 5, 10, 15, 20, and 25.
For each graph size, we first sampled at least 9 graphs: we randomly
chose a vertex and ran BFS where in each iteration we added only
2 of the neighbors to the queue. The search was terminated when it
reached the desired graph size. In order to vary the number of edges
we repeated this process once when we added 4 neighbors to the
queue, and then when we added 6 neighbors. If we did not reach
the desired graph size, we sampled again an initial vertex (up to 100
times).

We set k = 2 and m = m+. Note that we concentrated on manip-
ulation by adding edges, since it was quite common; e.g., we found
an LBM in around a third of the instances. In contrast, manipula-
tion by removing edges was much less common (e.g., we found an
LBM in 0.5% of the instances). We also concentrated on the Max-
Util objective, since we do not have efficient algorithms for finding
manipulations with Max-Egal and At-Least-1. For each graph, we
considered every vertex that has the potential to be a manipulator.
Specifically, we computed all the min-cuts, and considered only the
vertices that have an edge in a min-cut as potential manipulators.
Overall, we had 368 instances. For each instance, we ran our XP al-
gorithm (that finds LBM, UBM, WIM, and SIM) and the algorithm
that finds an SAM. We also ran a brute-force algorithm, which iter-
ates over all subsets of edges that the manipulator can possibly add.
We set a timeout of one hour and terminated each algorithm that did
not finish till the timeout.

Figure 5: Average running time (seconds).

Frequency of SAM. For each graph size, we compared the number
of instances in which we found an LBM with the number of instances
in which we found an SAM. Overall, our results indicate that SAM
is quite frequent. Specifically, when the graph size was 5, 10, 15, 20,
or 25, the percentage of instances in which there was an SAM out
of the instances in which there was an LBM was 90%, 68%, 50%,
67%, and 64%, respectively.

Effectiveness of the XP algorithm. As expected, the algorithm
that finds SAM was very effective: in all of the instances, it finished
in less than a second. With a graph size of 5, the XP and the brute
force algorithms also finished in less than a second. The results with
the other graph sizes are depicted in Figure 5. Note that we consid-
ered only instances in which both algorithms finished their run till the
timeout. The average running time of the brute force algorithm sig-
nificantly increased as the graph size increased. On the other hand,
the XP algorithm was very effective when we increased the graph
size. Note that the average running time of the XP with a graph size

8 Our code is available in github: https://github.com/hodayaBen/The-
Complexity-of-Manipulation-of-k-Coalitional-Games-on-Graphs. In our
implementation we compute all-min-cuts by using a sub-routine from
VieCut that computes the Cactus of a graph [16].

of 25 was lower than with graph sizes of 20 or 15, due to the time-
outs: with a graph size of 25, the brute force algorithm timed out in
86% of the instances, and thus there were fewer instances in which
we tested the algorithms. Indeed, if we do not remove the instances
in which the brute force algorithm timed out, the average running
time of the XP algorithm becomes 176 seconds. Overall, the brute
force algorithm timed out on 0%, 49%, and 86% of the instances
with graph sizes of 15, 20, and 25, respectively. In comparison, the
XP algorithm timeout on just 6%, 8%, and 20% of the instances with
the corresponding graph sizes.

As the brute force timed out on 86% of the instances with graph
sizes 25, we run only the XP algorithm on sampled subgraphs of size
30 − 100, that were sampled in same way as above. We observe an
increasing trend in the frequency of timeouts, but in a relatively slow
rate, see Figure 6.

Figure 6: Percentage of timeouts of the XP algorithm on graphs with
30− 100 vertices.

7 Conclusions and Future Work
In this paper, we initiate the study on the complexity of finding ma-
nipulation in k-coalitional games. We also introduce a new type of
manipulation, the socially-aware manipulation. We showed that both
the manipulation and improvement problems are computationally
hard with Max-Egal and At-Least-1, even for SAM. With Max-Util,
we provide a general algorithm that finds an optimal manipulation.
The algorithm is XP for LBM, UBM, WIM, and SIM, and it runs in
polynomial time for SAM. Our experiments show that SAM is quite
frequent, and demonstrate the effectiveness of our algorithm.

The main problem that is still open is classifying the complexity
of the manipulation problem for LBM, UBM, WIM, and SIM with
Max-Util. In addition, we showed that the manipulation problem for
SAM with Max-Util can be solved efficiently when k is fixed. If k is
a parameter, our polynomial-time result becomes an XP-membership
result, which naturally leads to the question of whether one can do
better (i.e., provide an FPT result). Finally, it will be interesting to
extend our model to the case of multiple manipulators.
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Figure 7: An illustration of the graph G, from the reduction in the
proof of Theorem 1, forF = (x1∨x̄2)∧(x̄1∨x2). The color of each
arrow indicates the number of edges from the vertex to arbitrary ver-
tices in the clique. Blue represents one edge, orange represents two
edges, green represents five edges, yellow represents six edges and
purple represents seven edges. The black arrows represent the edges
of the ring. Note that, to keep the graph size small in the illustration,
the example uses a small formula that does not contain 3 literals in
each clause.

A Omitted Proofs
A.1 Proof of Theorem 1

Reminder of Theorem 1. Given a graph G, and a manipulator
m− ∈ A, deciding whether any type of manipulation exists when
the objective is Max-Egal is co-NP -hard.

As mention in the paper, for the reduction, we use the complemen-
tary problem of the NP-complete 3-SAT problem. And our gadget for
the hardness proof is a ring graph, which represents a CNF Boolean
formula. It was introduced by [7].

Proof. Given a formula F , we construct a graph G = (A,E) with a
manipulator m−.

The construction of G: We start by adding a ring graph to G
based on F , where T represents the set of ring vertices. For each
t ∈ T , we add to G a clique of 9 vertices, denoted as Qt. Each
vertex t ∈ T has the following outgoing edges:

• 5 outgoing edges to Qt

• outgoing edges to the next vertex on the ring (or 2 next vertices if
it is an ai,j vertex that has two next vertices in the ring), following
from the ring’s definition.

• 2 outgoing edges to vertices within the clique of the next vertex.
(or 4 outgoing edges, if it is an ai,j vertex)

In addition to the previous construction, we add a vertex ci for each
clause Ci ∈ F , which we refer to as clause vertices. If xj ∈ Ci, we
add an outgoing edge from ci to one of the occurrences of xj in the
positive path between sj and sj+1, and another edge to one vertex in
the corresponding clique of xj . If x̄j ∈ Ci, we add an outgoing edge

from ci to one of the occurrences of x̄j in the negative path between
sj and sj+1, and another edge to one vertex in the corresponding
clique of x̄j . Note that each literal vertex on the ring has only one
incoming edge from a clause vertex.

We also add an additional clique with 9 vertices, denoted as Qr .
Each vertex ci corresponding to clause Ci, has 6 outgoing edges to
vertices of Qr . Let G′ be the subgraph of G containing all the ver-
tices and edges defined up to this point. To complete the construction,
we add to G a clique with 9 vertices, denoted as Qm. Additionally,
we add one more vertex, m−, which is defined as the manipulator.
m− has 7 outgoing edges to vertices of Qm. We also connect m− to
one vertex of Qr with an outgoing edge. See Figure 7 for illustration
of the structure of G for F = (x1 ∨ x̄2) ∧ (x̄1 ∨ x2)..

Properties of partitions of G′. First, we show that the graph G′

has a partition to two coalitions, such that each vertex has at least 8
neighbors if F is satisfiable. Conversely, if F is not satisfiable then
every partition of G′ has at least one vertex that gets only 6 neighbors
in his coalition.

1. Vertices of the cliques: To attain a minimum degree of at least 7,
each vertex must be kept in the same coalition as the other vertices
in the clique to which it belongs, as they have no other outgoing
edges. Notice that if all vertices of a clique is in the same coalition
then the utility of each vertex in this clique is 8.

2. Vertices of the ring: These vertices have 5 outgoing edges to ver-
tices of their clique, 1 or 2 outgoing edges to the next vertices of
the ring, and 2 or 4 outgoing edges to vertices of the clique of the
next vertices of the ring. Therefore, to attain at least 7 neighbors,
every vertex on the ring must be in the same coalition as his cor-
responding clique, and with at least one of the next vertices. This
implies that in order to achieve at least 7 neighbors, the ring graph
can only be partitioned into 2 cycles, or alternatively, all vertices
of the ring can be kept in the same coalition. Notice that if a com-
plete cycle is in a coalition, the utility of each vertex in the cycle
is at least 8.

3. Vertices of the clauses: These vertices have 6 outgoing edges to
vertices of Qr and additional 6 outgoing edges to vertices of the
ring. To attain a minimum degree of at least 7 every vertex ci must
be in the same coalition as Qr , and with at least one of his neigh-
bors from the ring, i.e., a vertex that satisfies this clause. Note that
if a clause vertex is in the same coalition with both Qr and at least
one of his neighbors from the ring, denoted by t, and t also has
a degree of at least 7, then it implies that the clause vertex has a
degree of at least 8 since it has an edge also to the clique corre-
sponding to t.

Hence, if F is satisfiable it is possible to achieve a minimum degree
of 8 or more in the partition of G′, otherwise, F is not satisfiable and
the maximum that can be achieved is 6 in any partition of G′.

Adding it all together. Based on this, we will prove that if F is
satisfiable, then there is no manipulation. Conversely, if F is unsat-
isfiable then there is manipulation.

First, we show that if there is a satisfying truth assignment of F
then there is no manipulation. This is because there exists a parti-
tion of G where each vertex has at least 8 neighbors (the maximum
possible since some vertices have exactly 8 friends), the manipulator
has only 8 neighbors and hence in such a partition, it is necessary
that m− gets all of his neighbors in his coalition. The organizer can
partition G into two coalitions using τ as follows: The first coalition
includes all the vertices in the cycle that corresponds to τ as well as
all clauses vertices ci. It also includes the clique Qm and the ma-
nipulator. The second coalition includes all the vertices in the cycle



that correspond to τ̄ . In this case, the organizer must choose a par-
tition such that m− will be with Qr and with all of his friends in
Qm, in order for the minimum utility still be 8. Hence there is no
manipulation.

On the other hand, if F is not satisfiable, then, each partition of
G that in which the the vertices of G′ are splitted into two differ-
ent coalitions, achieves a minimum utility of at most 6. However,
the organizer can achieve a minimum degree of 7, by defining the
vertices of Qm and the manipulator m− as one coalition and in-
cluding all vertices of G′ in the second coalition. In this case, the
manipulator, m−, has a manipulation by removing edges: m− can
remove two of his outgoing edges to vertices in Qm, and then m−

must be in the same coalition with Qr in order to achieve 6 friends
in G(m−). Notice that there are partitions of G′ that achieve a min-
imum degree of 6; For example, one possible partition divide the
ring into 2 cycles, placing each cycle in one coalition, and includ-
ing all ci with Qr in one of the coalitions. In such a case, ev-
ery ci vertex has 6 neighbors, while all other vertices of G′ has 8.
With this manipulation m− gets all his friends, and it holds that:
LB(G(m−),m−) = 8 > UB(G,m−) = 7, hence, there is a SIM
(which is also LBM, UBM, and WIM).

A.2 Proof of Theorem 2

Reminder of Theorem 2. Given a graph G, a manipulator m− ∈
A, a manipulation type type, and a report ER(m−), deciding
whether Itype(E

R(m−)) > 0 when the objective is Max-Egal is
co-NP -hard.

Proof. The reduction is from the complementary problem of 3-SAT.
Given a Boolean CNF formulaF , we construct the same graph struc-
ture as in the proof of Theorem 1. In addition, we set ER(m−) to be
the report in which m− removes two edges to vertices in Qm. Fol-
lowing the same claims as in the proof of Theorem 1, we get that F
is unsatisfiable if and only if Itype(ER(m−)) > 0.

A.3 Proof of Theorem 3

Reminder of Theorem 3. Unless P = NP , there is no polynomial
time algorithm for finding an optimal LBM for a manipulator m−

when the objective is At-Least-1.

For the proof, we need the following lemma:

Lemma 17. Each coalition C in an At-Least-1 partition contains
at least one directed cycle. In addition, every vertex in C that is not
part of a directed cycle in C, is part of a directed path that ends at a
directed cycle in C.

Proof. Assume by contradiction that there is a coalition in an At-
Least-1 partition without any directed cycle. Start with an arbitrary
vertex, v, and consider the longest directed path, p, which is started in
v. Denote by u the last vertex of p. u has no outgoing edge to a vertex
in the coalition, but not in p. Otherwise, p is not the longest path. In
addition, u cannot have an outgoing edge to a vertex in p. Otherwise,
there would be a directed cycle in the coalition. Therefore, u has no
neighbors in the coalition, in contradiction to the assumption that this
is a coalition in an At-Least-1 partition.

We can now prove Theorem 3. As in the proof of Theorem 1, our
gadget for the hardness proof is a ring graph [7], which represents a
CNF Boolean formula.

Proof. We show a reduction from a variant of the 3-SAT problem,
in which each variable occurs in at most 3 clauses, each literal in
at most 2 clauses, and each clause has 2 or 3 literals. This variant
is also known as an NP-hard problem [6]. Given a formula F , we
construct a graph G with a manipulator vertex m− such that based
on the optimal manipulation of m−, we know whether there is a truth
assignment that satisfies F .

The construction of G: We first add to F an additional clause
Cm+1 = (a ∨ ā), where a is a new variable, and denote the resulted
formula with F ′. We build a graph G = (V,E) that contains a ring
graph with respect to F ′. In addition, we add to G a vertex ci that
corresponds to clause Ci, for every Ci ∈ F ′. We refer to these ver-
tices as clause vertices. If xj ∈ Ci then we add an outgoing edge
from ci to one of the occurrences of xj in the positive path between
sj and sj+1. If x̄j ∈ Ci then we add an outgoing edge from ci to
one of the occurrences of x̄j in the negative path between sj and
sj+1 (see Figure 3b for an illustration). Note that each literal vertex
on the ring has only one incoming edge from a clause vertex.

For every i ∈ [1,m] we create 2 additional vertices c′i,1 and c′i,2
and connect c′i,1 and c′i,2 with an outgoing edge to ci. We also add 5
vertices c′m+1,1, . . . , c

′
m+1,5 and the edges (c′m+1,i, cm+1) for 1 ≤

i ≤ 5.
In addition, we add to G the D8 graph described in Figure 8 (where

i = 8).
Finally, we add to G a vertex m− that represents the manipulator.

We add the following edges from m−

• outgoing edge to every ci, where i ∈ [1,m+ 1].
• outgoing edge to every c′i,j , where i ∈ [1,m] and j ∈ [1, 2].
• outgoing edge to c′m+1,j for j ∈ [1, 5].
• outgoing edge to all xi vertices of D8.

Properties of G: Before we proceed we emphasize the following
properties of G:

1. In every At-Least-1 partition each c′i,j is in the same coalition as
ci, since c′i,j has only one outgoing edge. (Notice that this implies
that if m− is in the same coalition as ci then m− is also in the
same coalition as c′i,j , and vice versa).

2. The graph that we build has one cycle in the D8 structure. Ev-
ery other cycle in G is part of the ring graph. The ring graph can
be partitioned into exactly two disjoint cycles. Each cycle corre-
sponds to a truth assignment of F ′.
Note that from Lemma 17, it follows that in every At-Least-1
coalition there is at least one cycle and all other vertices that are
not in a cycle, are in a directed path to a cycle. Combine this with
the fact that the ring can be only partitioned into two disjoint cy-
cles, we get that in every coalition in an At-Least-1 partition, that
has at least one vertex beside m− and D8 vertices, there is a cycle
of the ring that corresponds to a truth assignment for F ′. More-
over, a clause vertex ci is in a coalition that contains a cycle that
corresponds to a truth assignment that satisfies Ci, otherwise, ci
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is in a coalition that does not contains a cycle that corresponds to
a truth assignment that satisfies Ci, and hence, Ci does not have
any friends in his coalition.

Possible At-Least-1 partition of G: Following the properties of G
described above, the following At-Least-1 partitions of G are the only
possible At-Least-1 partitions:

1. m− with D8 in the first coalition, and all other vertices in the
second coalition.

2. D8 in the first coalition and all other vertices in the second coali-
tion.

3. Split the ring graph into two disjoint cycles and then the first coali-
tion contains one of the cycles of the ring graph. The second coali-
tion contained the other cycle of the ring graph and the vertices
of D8. The clause vertices are partitioned between the coalitions
such that each clause vertex ci is in a coalition that contains a cy-
cle that corresponds to a truth assignment that satisfies Ci. In such
a case, m− is either in a coalition that contains at least one clause
vertex or in a coalition that contains the vertices of D8.

Now we show that if there is a truth assignment, τ , that satisfies the
formula F , then in the optimal manipulation, m− keeps only edges
to D8, and removes all its other edges.

Claim 2. There is a truth assignment, τ that satisfies the formula F ,
if and only if the manipulator in the optimal manipulation has edges
only to D8.

Proof. First, we show that if there is a truth assignment that satis-
fies the formula F , then, the optimal manipulation of m− is to keep
edges only to D8, and to remove all other edges. Note that with a
manipulation that keeps only edges to D8, m− will get at least 8
friends in his coalition, since all vertices of D8 must be in the same
coalition.

With any other manipulation, that keeps edges to some other ver-
tex, v, which is not in D8 (even if it is in addition to edges to vertices
of D8), we will show that the lower bound for m− in G(m−) is less
than 8. The vertex v is one of following vertices:

1. v is either ci,j or c′i,j for 1 ≤ i ≤ m. The organizer can look at
truth assigning τ ′ such that all variables get their value according
to τ except, perhaps, one of the variables that are in ci, so that ci
will be satisfied by τ̄ ′. τ ′ does not satisfies at most two clauses
(the clause Ci and Ck). This is due to the fact that the reduction is
from a variation of 3SAT so that each literal is in at most 2 clauses
and therefore changing the value of a single variable can change
the value of at most two clauses. Thus, it can be that one coalition
will contain D8, the vertices of Cm+1 and the cycle corresponding
to τ ′, and all clause vertices except the vertices of one or maybe
2 clauses Ci and Ck. The second coalition will contain the sec-
ond cycle, that corresponds to τ̄ ′, the vertices of one or maybe 2
clauses Ci and Ck, and the manipulator m−. In such a partition,
m− gets between 3 to 6 friends in his coalition.

2. v is a vertex of Cm+1. The organizer can build the partition ac-
cording to τ , such that one coalition will contain D8, a cycle in
the ring that corresponds to τ , and all clause vertices except the
vertices of Cm+1. The second coalition will contain the second
cycle from the ring, that corresponds to τ̄ , the vertices of Cm+1,
and the manipulator m−. In such a partition m− gets 6 friends in
his coalition.

Now, we turn to show that if the optimal manipulation is to keep
edges only to D8, and to remove all other edges, then there is a truth

assignment that satisfies the formula F . Assume that ER(m−) that
contains only vertices from D8 is an optimal manipulation, and as-
sume by contradiction that F is not satisfiable. We will show that
the manipulation that keeps the edge to a vertex of Cm+1 achieves
higher lower bound for m−. If m− has an edge to D8 the organizer
can choose a partition such that m− is with D8 in the first coalition,
and all other vertices in the second coalition. In such a case m− will
get 8 friends. But if ER(m−) contains edges only to the vertices of
Cm+1, then m− must be with these vertices in the same coalition,
and with one cycle of the ring (in order that the vertices of Cm+1 get
at least one neighbor). Since F is not satisfiable, and a clause vertex
gets at least one neighbor in his coalition, only if it is in the same
coalition with a cycle of the ring graph that corresponds to a truth
assignment that satisfies it, it follows that this coalition must contain
the vertices of at least one more clause. Hence m− will get at least
9 friends. In contradiction to the assumption that manipulation that
keeps edges to D8 is an optimal manipulation.

A.4 Proof of Theorem 4

Reminder of Theorem 4. Given a graph G, a manipulator m− ∈
A, and a report ER(m−), deciding whether ILBM (ER(m−)) > 0
when the objective is At-Least-1 is NP -hard.

Proof. We show a reduction from the 3-SAT problem. Given a for-
mula F in a CNF form, we construct a graph G, with a manipulator
m−, and a manipulation ER(m−) such that there is a truth assign-
ment that satisfies F if and only if ER(m−) is an LBM.

The construction of G: We first add to F an additional clause
Cm+1 = (a ∨ ā), where a is a new variable, and denote the resulted
formula with F ′.

We build a graph G = (V,E) that contains a ring graph with
respect to F ′. In addition, we add to G a vertex ci that corresponds
to clause Ci, for every Ci ∈ F ′. We refer to these vertices as clause
vertices. If xj ∈ Ci then we add an outgoing edge from ci to one
of the occurrences of xj in the positive path between sj and sj+1.
If x̄j ∈ Ci then we add an outgoing edge from ci to one of the
occurrences of x̄j in the negative path between sj and sj+1. (See
Figure 3b) Notice that each literal vertex on the ring has only one
incoming edge from a clause vertex.

For every i ∈ [1,m] we create an additional vertex c′i and con-
nect c′i with an outgoing edge to ci. Notice that we only add m such
vertices and the vertex cm+1 currently has no incoming edges.

Finally, we add to G a vertex m− that represents the manipulator.
We connect m− with an outgoing edge to every ci, where i ∈ [1,m+
1], and to every c′i, where i ∈ [1,m].

We set E−(m−) = {(m−, cm+1)}.
Properties of G: Before we proceed, we emphasize some proper-

ties of G that follow from its definition.

1. In every At-Least-1 partition each c′i is in the same coalition as
ci, since c′i has only one outgoing edge. (Notice that this implies
that if m is in the same coalition as ci then m is also in the same
coalition as c′i, and vice versa).

2. Every cycle in G contains only vertices from the ring and the ring
itself can be partitioned only into two disjoint cycles. Each cycle
corresponds to a truth assignment of F ′.
(Notice that from Lemma 17 it follows that in every At-Least-1
coalition there is at least one cycle. Combine this with the fact that
the ring can be partitioned only into two disjoint cycles we get that



in every coalition in an At-Least-1 partition of G there is one cycle
that corresponds to a truth assignment for F ′. Moreover, a clause
vertex ci is in a coalition that contains a cycle, which corresponds
to a truth assignment that satisfies Ci. Otherwise, ci does not have
any friends in his coalition)

Claim 3. There is a satisfying truth assignment of F if and only if
ER(m) = E(m) \ E−(m−) is an LBM.

First, we show that if there is a satisfying truth assignment of F
then ER(m−) is an LBM.

Let τ be a satisfying truth assignment of F . The organizer can
partition G into two coalitions using τ in the following manner.

The first coalition includes all the vertices in the cycle that corre-
spond to τ and the vertices ci, c

′
i, where 1 ≤ i ≤ m. The second

coalition includes all the vertices in the cycle that correspond to τ̄ ,
the vertex cm+1 and the manipulator m−. In such a partition m−

gets only one friend and this is the worst possible scenario for m−.
The manipulation ER(m−) of m− is to remove the edge

(m, cm+1). Therefore, the above partition is not a valid At-Least-1
partition when m− removes the edge (m−, cm+1). In any valid At-
Least-1 partition of G(m−) it holds that m− must be with at least
one friend. The only outgoing edges of m− are to ci and c′i, where
i ∈ [1,m]. As we explained earlier (see 1) above) ci and c′i are al-
ways in the same coalition so m− must have at least two friends. So
after removing the edge (m, cm+1)m

− has at least two friends, and
hence E−(m) is a manipulation.

Now, we show that if ER(m) is an LBM then there is a satisfying
truth assignment of F . Since ER(m) is an LBM it follows that there
is a partition P that was valid in G but is not valid in G(m). If as
a result of the removal of (m, cm+1) the partition P is no longer an
At-Least-1 partition then it is because m− has no friends after the re-
moval of (m, cm+1), thus cm+1 must be the only one friend of m−

in the same coalition in P . So in partition P all clause vertices ci,
where i ∈ [1,m], must be in the second coalition and as mentioned
above in 2 each one of them must be in a coalition that contains a
cycle that represent a truth assignment that satisfies the correspond-
ing clause, so we get that there is a truth assignment that satisfies all
clauses of F , and F is satisfiable.

A.5 Equivalents to Lemma 7

Lemma 7 is proved for LBM by a manipulator m−. Here we show
equivalent lemmas, for LBM by m+ and for WIM by m−.

Lemma 18. If ER
1 (m+) is a LBM in which

LBMax-Util(G1(m
+),m+) = x, then there is a manipulation

ER
2 (m+) such that (i) ER

2 (m+) respects a partition P ∈ P̄ and (ii)
LBMax-Util(G2(m

+),m+) = x.

Proof. Given an LBM ER
1 (m+) in which

LBMax-Util(G1(m
+),m+) = x, let P be a partition such

that P ∈ OMax-Util(G1(m
+)) and u(m+,P) = x. Let

P = {C1, C2 . . . Ck} and m+ ∈ C1. By definition of P̄ ,
P ∈ P̄ . Let ER

2 (m+) be the report that respects P . We need
to show that LBMax-Util(G2(m

+),m+) = x. We do so by
showing that OMax-Util(G2(m

+)) ⊆ OMax-Util(G1(m
+)) and

P ∈ OMax-Util(G2(m
+)).

Let Y be the k-cut that corresponds to P in G, and let Yi be the k-
cut that corresponds to P in Gi(m

+), where i ∈ {1, 2}. Given P ′ ̸∈
OMax-Util(G1(m

+)), let Y ′ be its corresponding k-cut in G, and let
Y ′
i be its corresponding k-cut in Gi(m

+), where i ∈ {1, 2}. Given

P ′′ ∈ OMax-Util(G1(m
+)), let Y ′′ be its corresponding k-cut in G,

and let Y ′′
i be its corresponding k-cut in Gi(m

+), where i ∈ {1, 2}.
Let q = |Y2| − |Y1|, let q′ = |Y ′

2 | − |Y ′
1 | and let q′′ = |Y ′′

2 | − |Y ′′
1 |.

We begin by proving the following claim:

Claim 4. q ≤ q′ and q ≤ q′′.

Proof. We divide the set E+
1 (m+) ∪ E+

2 (m+) into the following
three disjoint sets:

1. The set H1 = E+
1 (m+) ∩ E+

2 (m+).
2. The set H2 = E+

1 (m+) \H1.
3. The set H3 = E+

2 (m+) \H1.

The set H1 is contained both in G1(m
+) and G2(m

+), hence it
does not affect the value of q, q′ and q′′.

Consider the set H2. The set of edges E+
1 (m+) \ E+

2 (m+) is in
G1(m

+) and not in G2(m
+). Notice also that H2 ⊆ {(m+, x) |

x ∈ C2}, since otherwise a manipulation that respects P would also
add them. So, in the worst case, the values of q, q′ (and q′′) are af-
fected in the same way. (Since all of these edges cross the cut of
partition P and are in G1 but not in G2, each one of them decrease
the value of q, and if these edges also cross the cut of P ′ or P ′′ it
decrease the value of q′ or q′′ at most affected in the same way.)

The set H3 adds edges only to the set of G2(m
+). H3 is only

edges between vertices from C1 and hence only |Y ′
2 | and |Y ′′

2 |) may
increase.

We now show that P ∈ OMax-Util(G2(m
+)), and we do

so by showing that Y2 is a min-k-cut in G2(m
+). P ′ ̸∈

OMax-Util(G1(m
+)), and thus Y ′

1 is not a min-k-cut in G1(m
+).

On the other hand, P ∈ OMax-Util(G1(m
+)), and thus Y1 is a min-

k-cut in G1(m
+). That is, |Y1| < |Y ′

1 |. From Claim 4 we have
that q ≤ q′, and thus |Y2| < |Y ′

2 |. Now, P ′′ ∈ OMax-Util(G1(m
+))

and P ∈ OMax-Util(G1(m
+)). That is, both Y1 and Y ′′

1 are min-k-
cuts in G1(m

+). Therefore, |Y1| = |Y ′′
1 |. From Claim 4 we have

that q ≤ q′′ and thus |Y2| ≤ |Y ′′
2 |. Overall, |Y2| < |Y ′

2 |, and
|Y2| ≤ |Y ′′

2 |. That is, the size of Y2 is at most the size of any k-
cut. Therefore, |Y2| is a min-k-cut in G2(m

+).
It remains to show that OMax-Util(G2(m

+)) ⊆ OMax-Util(G1(m
+)).

Indeed, we showed that |Y2| < |Y ′
2 |. Thus, Y ′

2 is not a min-k-cut in
G2(m

+). Therefore, P ′ ̸∈ OMax-Util(G2(m
+)).

Hence P is a Max-Util partition in G2 and the
UBMax-Util(G2(m

+),m+) = y. Since OMax-Util(G2(m
+)) ⊆

OMax-Util(G1(m
+)), it hold that LBMax-Util(G2(m

+),m+) ≥ x.

Lemma 19. If ER
1 (m−) is a WIM in which

LBMax-Util(G1(m
−),m−) = x, and UBMax-Util(G1(m

−),m−) =
y, then there is a manipulation ER

2 (m−) such that (i) ER
2 (m−)

respects a partition P ∈ P̄ and (ii) LBMax-Util(G2(m
−),m−) ≥ x

and UBMax-Util(G2(m
−),m−) = y.

Proof. Given an WIM ER
1 (m−) in which

LBMax-Util(G1(m
−),m−) = x, and UBMax-Util(G1(m

−),m−) = y.
Let P be a partition such that P ∈ OMax-Util(G1(m

−)) and
u(m−,P) = y. Let P = {C1, C2 . . . Ck} and m− ∈ C1.
By definition of P̄ , P ∈ P̄ . Let ER

2 (m−) be the report that
respects P . We need to show that LBMax-Util(G2(m

−),m−) = x
and UBMax-Util(G2(m

−),m−) = y. We do so by show-
ing that OMax-Util(G2(m

−)) ⊆ OMax-Util(G1(m
−)) and

P ∈ OMax-Util(G2(m
−)).



Let Y be the k-cut that corresponds to P in G, and let Yi be the k-
cut that corresponds toP in Gi(m

−), where i ∈ {1, 2}. GivenP ′ ̸∈
OMax-Util(G1(m

−)), let Y ′ be its corresponding k-cut in G, and let
Y ′
i be its corresponding k-cut in Gi(m

−), where i ∈ {1, 2}. Given
P ′′ ∈ OMax-Util(G1(m

−)), let Y ′′ be its corresponding k-cut in G,
and let Y ′′

i be its corresponding k-cut in Gi(m
−), where i ∈ {1, 2}.

Let q = |Y2| − |Y1|, let q′ = |Y ′
2 | − |Y ′

1 | and let q′′ = |Y ′′
2 | − |Y ′′

1 |.
We begin by proving the following claim:

Claim 5. q ≤ q′ and q ≤ q′′.

Proof. We divide the set E−
1 (m−) ∪ E−

2 (m−) into the following
three disjoint sets:

1. The set H1 = E−
1 (m−) ∩ E−

2 (m−).
2. The set H2 = E−

1 (m−) \H1.
3. The set H3 = E−

2 (m−) \H1.

The set H1 is contained in both E−
1 (m−) and E−

2 (m−), and thus
the edges from H1 are in neither G1(m

−) nor G2(m
−). That is,

the edges from H1 are not in Yi, Y ′
i and Y ′′

i , for i ∈ {1, 2}. Since
q = |Y2| − |Y1|, q′ = |Y ′

2 | − |Y ′
1 | and q′′ = |Y ′′

2 | − |Y ′′
1 |, then the

values of q, q′ and q′′ do not depend on the edges from H1.
Now consider the set H2. The edges from H2 are not in G1(m

−)
but they are in G2(m

−). Therefore, the edges of H2 are not in Y1,
Y ′
1 , and Y ′′

1 . The manipulation ER
2 (m) respect P , and thus H2 ⊆

{(m−, x) | x ∈ C1}. Therefore, the edges of H2 are not included
in any k-cut that corresponds to P , i.e., the edges of H2 are also not
in Y2. That is, the value of q does not depend on the edges from H2.
However, the edges of H2 may be in Y ′

2 or in Y ′′
2 We get that each

edge from H2 that is in Y ′
2 or in Y ′′

2 increases the value of q′ or q′′,
respectively.

Finally, consider the set H3. The edges from H3 are not in
G2(m

−) but they are in G1(m
−). Therefore, the edges of H3 are

not in Y2, Y ′
2 , and Y ′′

2 . The manipulation ER
2 (m) respects P , and

thus H3 ⊆ {(m−, x) | x ∈ {Ci|i ∈ [2, k]}}. Therefore, the edges
of H3 are in any k-cut that corresponds to P , i.e., the edges of H3

are in Y1. That is, each edge from H3 decreases the value of q. In
addition, the edges of H3 may be in Y ′

1 or in Y ′′
1 . We get that each

edge from H3 that is in Y ′
1 or in Y ′′

1 decreases the value of q′ or q′′,
respectively.

Overall, q ≤ q′ and q ≤ q′′.

We now show that P ∈ OMax-Util(G2(m
−)), and we do

so by showing that Y2 is a min-k-cut in G2(m
−). P ′ ̸∈

OMax-Util(G1(m
−)), and thus Y ′

1 is not a min-k-cut in G1(m
−).

On the other hand, P ∈ OMax-Util(G1(m
−)), and thus Y1 is a min-

k-cut in G1(m
−). That is, |Y1| < |Y ′

1 |. From Claim 5 we have
that q ≤ q′, and thus |Y2| < |Y ′

2 |. Now, P ′′ ∈ OMax-Util(G1(m
−))

and P ∈ OMax-Util(G1(m
−)). That is, both Y1 and Y ′′

1 are min-k-
cuts in G1(m

−). Therefore, |Y1| = |Y ′′
1 |. From Claim 5 we have

that q ≤ q′′ and thus |Y2| ≤ |Y ′′
2 |. Overall, |Y2| < |Y ′

2 |, and
|Y2| ≤ |Y ′′

2 |. That is, the size of Y2 is at most the size of any k-
cut. Therefore, |Y2| is a min-k-cut in G2(m

−).
It remains to show that OMax-Util(G2(m

−)) ⊆ OMax-Util(G1(m
−)).

Indeed, we showed that |Y2| < |Y ′
2 |. Thus, Y ′

2 is not a min-k-cut in
G2(m

−). Therefore, P ′ ̸∈ OMax-Util(G2(m
−)).

Hence P is a Max-Util partition in G2 and the
UBMax-Util(G2(m

−),m−) = y. Since OMax-Util(G2(m
−)) ⊆

OMax-Util(G1(m
−)), it hold that LBMax-Util(G2(m

−),m−) ≥ x.

zu v

V’u’

b

a

(a) A4

satisfiable

𝑢 𝑣

𝑎ଵ,ଵ

𝑎ଵ,ଶ

𝑏ଵ,ଵ 𝑏ଵ,ଶ

𝑎ଶ,ଵ

𝑎ଶ,ଶ

𝑏ଶ,ଵ

𝑏ଶ,ଶ

𝑣ଵ,ଵ 𝑣ଵ,ଵ

𝑎ଷ,ଵ𝑎ଷ,ଶ

𝑏ଷ,ଵ𝑏ଷ,ଶ

𝑣ଶ,ଵ

𝑣ଶ,ଵ

𝑣ଵ,ଶ

𝑣ଷ,ଵ𝑣ଷ,ଵ

𝑣ଷ,ଶ

𝑣ଶ,ଵ

𝑢′ 𝑣′

satisfiable

𝑥

satisfiable

𝑧

(b) W4

satisfiable

𝑢 𝑣

𝑎ଵ,ଵ

𝑎ଵ,ଶ

𝑏ଵ,ଵ 𝑏ଵ,ଶ

𝑎ଶ,ଵ

𝑎ଶ,ଶ

𝑏ଶ,ଵ

𝑏ଶ,ଶ

𝑣ଵ,ଵ 𝑣ଵ,ଵ

𝑎ଷ,ଵ𝑎ଷ,ଶ

𝑏ଷ,ଵ𝑏ଷ,ଶ

𝑣ଶ,ଵ

𝑣ଶ,ଵ

𝑣ଵ,ଶ

𝑣ଷ,ଵ𝑣ଷ,ଵ

𝑣ଷ,ଶ

𝑣ଶ,ଵ

𝑢′ 𝑣′

satisfiable

𝑥

satisfiable

𝑧

(c) Z4

Figure 9: Structures for Theorems 20

A.6 The Full Proof of Theorem 9

Reminder of Theorem 9. The susceptibility of SAM is equivalent
to the susceptibility of LBM. Specifically, Max-Util is susceptible to
SAM by adding or removing edges, but Max-Egal and At-Least-1 are
susceptible to SAM only by removing edges.

Proof. Consider the graph as depicted in Figure4a. Assume that
k = 2, the organizer’s objective is Max-Util, and m = m+. Note
that |min-cut(G)| = 2. In addition, P1 = {{m}, {a, b, c, d}} ∈
OMax-Util(G), and u(m,P1) = 0. Thus, LBMax-Util(G,m) = 0. By
adding the dashed edge (from m to a), the size of min-cut(G(m))
is still 2. That is, for each P ∈ OMax-Util(G(m)) the size of the corre-
sponding cut in G(m) is 2. Since m does not remove any edge, the
size of P’s corresponding cut in G is 2, and thus P ∈ OMax-Util(G).
That is, OMax-Util(G(m)) ⊆ OMax-Util(G). In addition, every cut in
G(m) that contains both (m, c) and (m, d) is of size at least 3.
Therefore, every min-cut in G(m) contains at most one edge from
m. That is, LBMax-Util(G(m),m) > 0, and the manipulation is SAM.

Consider the graph as depicted in Figure4b. Assume that k = 2,
the organizer’s objective is Max-Util, and m = m−. Note that |min-
cut(G)| = 4, since G contains the dotted edges. In addition, there
are only two partitions in OMax-Util(G): P1, in which m is in the same
coalition as the vertices of the cliques A and B, and P2, in which
m is in the same coalition as the vertices of the cliques B and C.
Therefore, u(m,P1) = 12, and u(m,P1) = 14. By removing the
dotted edges (from m to vertices of A),P2 remains the only partition
in OMax-Util(G(m)). That is, the manipulation is SAM.

Consider the graph as depicted in (4c). Assume that k =
2, the organizer’s objective is Max-Egal, and m = m−. For
P1 = {{m, d, e, f}{a, b, c}}, mina∈A u(a,P1) = 2. Similarly,
for P2 = {{a, b, c,m}, {d, e, f}}, mina∈A u(a,P2) = 2. Since
there are vertices in G that have only two outgoing edges, P1,P2 ∈
OMax-Egal(G), and these are the only partitions in OMax-Egal(G). Note
that u(m,P1) = 2, and u(m,P2) = 3. By removing the dot-
ted edges (from m to d and e), P2 remains the only partition in
OMax-Egal(G(m)). That is, the manipulation is SAM.

Finally, for At-Least-1, we will show below that any LBM is also
SAM (Theorem 12). Therefore, since At-Least-1 is susceptible to
LBM by removing edges, it is also susceptible to SAM by remov-
ing edges.

A.7 Proof of Theorem 10

Reminder of Theorem 10. Given a graph G, and a manipulator
m− ∈ A, deciding whether an SAM exists when the objective is
Max-Egal is co-NP-hard.



Proof. We show a reduction from the complementary problem of 3-
SAT. Given a Boolean CNF formula F , we build a graph G with
a vertex m that we identify as the manipulator, such that m has a
manipulation if and only if F is not satisfiable.

Each edge in the construction between vertices v and u is replaced
by two directed edges: (v, u) and (u, v), unless stated otherwise..
First we add to G the graph G′ in the same structure as defined by [6]
in their proof of Theorem 3.6 for the specific case of k1 = k2 = 4.
They use a ring graph which encodes F and adds vertex ci for each
clause (as in Figure 3b). Add vertices u1, u2 . . . un and connect each
ui by two edges (ui, ai,1) and (ui, ai,2), where ai,1 and ai,2 are
vertices from the ring. Similarly, add the vertices u′

1, u
′
2 . . . u

′
n, and

connect each u′
i by two edges (u′

i, bi,1) and (u′
i, bi,2).

In addition, they added one more vertex, r, that is connected to all
vertices H = {u1, u2 . . . un, u

′
1, u

′
2 . . . u

′
n, c1, c2, . . . , cm}, how-

ever the connection is not by edge but via three new vertices - i.e., the
W4 structure (depicted in Figure 9b) such that r is u and v is a vertex
from H . This manner of connection ensures that in each partition in
which every vertex gets at least 4 neighbors, r will be with all of the
vertices in H .

For each vertex, v, such that v ∈ H or v is part of the ring, they
add to the graph 5 new vertices. These vertices are in the structure
of Z4 (illustration in 9c) and the ′z′ vertex of the structure Z4 is the
vertex v.

For our setting, we define the A4 graph structure as depicted in
Figure 9a and set the manipulator m to be the a vertex of A4. We also
connect m to the vertex r by an outgoing edge from m to r. It follows
from the proof of Theorem 3.6 in [6], when we chose k1 = k2 = 4,
that the graph G′ has a partition such that each vertex has at least 4
neighbors if and only if F is satisfiable. Based on this we will prove
that there is a manipulation if and only if F is not satisfiable. For this
we will prove that if F is satisfiable then there is no manipulation,
and that if F is unsatisfiable then there is manipulation.

If F is satisfiable then G′ has a partition such that each vertex has
at least 4 neighbors, and if A4 will be in the coalition with r we will
get a minimum degree of 4, which is the maximum that is possible
since there are vertices in the graph that have only 4 neighbors. In
this case the organizer must choose a partition such that m will be
with r and with all of his neighbors in A4, in order for the minimum
degree to still be 4. Hence there is no manipulation.

On the other hand, if the given formula is not satisfiable, then the
maximum that the organizer can achieve is 3 neighbors for each ver-
tex. Thus, he can choose a partition such that m and r will not be in
the same coalition. Then, m has a LBM:

1. Manipulation by removing edges: m can remove his edge to the
vertex b in A4, and then m must be in the same coalition with
r in order to achieve a minimum degree of 3. m must be with
all of the vertices in A4, since m must get his 2 other neighbors
from A4 in order to have 3 neighbors. His neighbors must get 2
more neighbors from A4 and then b, and one more vertex must be
with them in order to get 3 neighbors. In this way m gets all his
neighbors, hence this is a LBM.

2. Manipulation by adding edges: m can add edges to the cj , and
then there is a partition that achieves a minimum degree of 4. In a
Max-Egal partition of G(m), in order to achieve minimum degree
of 4, the cj vertices, must be with r, and there is at least one clause
vertex that is not satisfied, hence m must with it, and then m will
get r in his coalition. In addition, m must be with A4 since there
is a vertex in A4 that has only 3 neighbors in addition to m. In this
way m gets all of his neighbors and hence this is a LBM.

Note that this LBM is SAM.

A.8 Proof of Theorem 11

Reminder of Theorem 11. Given a graph G, a manipulator m− ∈
A, and a report ER(m), deciding whether ISAM (ER(m)) > 0
when the objective is Max-Egal is co-NP-hard.

The reduction is from the complementary problem of 3-SAT.
Given a Boolean CNF formulaF , we construct the same graph struc-
ture as in the proof of Theorem 10. In addition, we set ER(m)
to the report in which m from the proof of Theorem 10. Follow-
ing the same claims, we get that F is unsatisfiable if and only if
ISIM (ER(m)) > 0.

B An Improved Algorithm for Manipulation By
Removing Edges with Max-Util

In the paper we presented Algorithm 2, which is a general XP algo-
rithm for finding any type of optimal manipulation, with any type of
manipulator. Here we present Algorithm 3, which is suitable only for
m−, and it slightly improves the running time of Algorithm 2.

The correctness of the algorithm is straightforward, since m
should remove only edges that are part of a k-cut that m wants that
the organizer will choose. In addition m can remove edges only from
the wanted k-cut in order to achieve a manipulation. Hence he should
not remove more edges then he loses in the partition of G. For each
such manipulation we check the improvement and return the opti-
mal manipulation (if exist). As for the running time, note that the
number of edges that m loss in the partition of G is bounded by the
cost of the min-k-cut, hence in this case, it gets better complexity
to check each possible manipulation. i.e., set of edges ER(m−) of
size at most N(m−)−LB(G,m−)− 1, for each such set it checks
if E′ is better than manip, and thus it needs to iterate over all the
min-k-cuts of G(m−). Computing all the min-k-cut takes at most
O(n2k) [14]. Overall, the running time is O(n

1
2
maxSize+2k)), and

maxSize = 2 ·mim-k-cut.

Algorithm 3 Compute manipulation for m−

Input: G = (A,E),m− ∈ A
Output: ER(m−).

1: manip← E(m−)
2: max− size← N(m−)− LB(G,m−)− 1
3: for all possible report ER(m−) of size at most max− size do
4: if ER(m−) is better then manip then
5: manip← ER(m−)
6: if manip = E(m−) then
7: return No manipulation
8: return manip

C The Complexity of the Manipulation and the
Improvement Problems in Undirected Graphs

C.1 Definitions

When the organizer decides to build an undirected graph, he needs
to choose a policy of how to handle inconsistencies, i.e., if (b, a) ∈
ER(b) but (a, b) /∈ ER(a). Clearly, there are two possible options:

1. Weak-edges: the organizer decides that (a, b) ∈ E if either
(b, a) ∈ ER(b) or (a, b) ∈ ER(a).



2. Strong-edges: the organizer decides that (a, b) ∈ E only when
both (b, a) ∈ ER(b) and (a, b) ∈ ER(a).

The weak-edges policy is implemented in scenarios involving com-
munication issues, where the organizer acknowledges the possibility
that agent a may report on agent b as a friend, but this information
may not reach the organizer due to communication issues.

The strong-edges policy is implemented when the organizer rec-
ognizes that individuals may have varying perceptions of friendship.
Under this policy, a friendship is considered valid only when both
parties involved mutually consider each other as friends. If G is an
undirected graph, then a manipulation by adding edges is relevant
only when the organizer uses the weak-edges policy. On the other
hand, a manipulation by removing edges is relevant only when the
organizer uses the strong-edges policy. Therefore, a manipulation in
which edges are both added and deleted is impossible when G is an
undirected graph. Note that we assume that the manipulator is famil-
iar with how the organizer builds the graph from the reports.

Table 3 summarizes the susceptible results from [23] for undi-
rected graph in full information setting.

Add Remove
Max-Util SIM SIM

At-Least-1 SIM LBM, no UBM
Max-Egal LBM, UBM, no WIM SIM

Table 3: Summary of susceptible results from [23] for undirected
graphs in full information setting.

C.2 Max-Egal

In undirected graphs, Max-Egal is susceptible to LBM and to UBM,
but not to WIM by m+. It is also susceptible to SIM by m− [23].
We show that deciding whether an LBM exists for a given instance is
computationally hard. We conjecture that this problem is hard even
for the other manipulation types.

Theorem 20. Given an undirected graph G, and a manipulator m ∈
A, deciding whether an LBM exists when the objective is Max-Egal
is co-NP -hard.

Proof. We show a reduction from the complementary problem of 3-
SAT. Given a Boolean CNF formula F , we build a graph G with
a vertex m that we identify as the manipulator, such that m has a
manipulation if and only if F is not satisfiable. First we add to G
the graph G′ in the same structure as defined by [6] in their proof
of Theorem 3.6 for the specific case of k1 = k2 = 4. They use a
ring graph which encodes F and adds vertex ci for each clause (as
in Figure 3b). Add vertices u1, u2 . . . un and connect each ui by two
edges (ui, ai,1) and (ui, ai,2), where ai,1 and ai,2 are vertices from
the ring. Similarly, add the vertices u′

1, u
′
2 . . . u

′
n, and connect each

u′
i by two edges (u′

i, bi,1) and (u′
i, bi,2).

In addition, they added one more vertex, r, that is connected to all
vertices H = {u1, u2 . . . un, u

′
1, u

′
2 . . . u

′
n, c1, c2, . . . , cm}, how-

ever the connection is not by edge but via three new vertices - i.e., the
W4 structure (depicted in Figure 9b) such that r is u and v is a vertex
from H . This manner of connection ensures that in each partition in
which every vertex gets at least 4 neighbors, r will be with all of the
vertices in H .

For each vertex, v, such that v ∈ H or v is part of the ring, they
add to the graph 5 new vertices. These vertices are in the structure
of Z4 (illustration in 9c) and the ′z′ vertex of the structure Z4 is the
vertex v.

For our setting, we define the A4 graph structure as depicted in
Figure 9a and set the manipulator m to be the a vertex of A4. We
also connect m to the vertex r by an edge. It follows from the proof
of Theorem 3.6 in [6], when we chose k1 = k2 = 4, that the graph
G′ has a partition such that each vertex has at least 4 neighbors if
and only if F is satisfiable. Based on this we will prove that there
is a manipulation if and only if F is not satisfiable. For this we will
prove that if F is satisfiable then there is no manipulation, and that if
F is unsatisfiable then there is manipulation.

If F is satisfiable then G′ has a partition such that each vertex has
at least 4 neighbors, and if A4 will be in the coalition with r we will
get a minimum degree of 4, which is the maximum that is possible
since there are vertices in the graph that have only 4 neighbors. In
this case the organizer must choose a partition such that m will be
with r and with all of his neighbors in A4, in order for the minimum
degree to still be 4. Hence, there is no manipulation.

On the other hand, if the given formula is not satisfiable, then the
maximum that the organizer can achieve is 3 neighbors for each ver-
tex. Thus, he can choose a partition such that m and r will not be in
the same coalition. Then, m has an LBM, which depends on the type
of the manipulator:

1. Manipulation by removing edges: m can remove his edge to the
vertex b in A4, and then m must be in the same coalition with
r in order to achieve a minimum degree of 3. m must be with
all of the vertices in A4, since m must get his 2 other neighbors
from A4 in order to have 3 neighbors. His neighbors must get 2
more neighbors from A4 and then b, and one more vertex must be
with them in order to get 3 neighbors. In this way m gets all his
neighbors, hence this is a LBM.

2. Manipulation by adding edges: m can add edges to the cj , and
then there is a partition that achieves a minimum degree of 4. In a
Max-Egal partition of G(m), in order to achieve minimum degree
of 4, the cj vertices, must be with r, and there is at least one clause
vertex that is not satisfied, hence m must with it, and then m will
get r in his coalition. In addition, m must be with A4 since there
is a vertex in A4 that has only 3 neighbors in addition to m. In this
way m gets all of his neighbors and hence this is an LBM.

C.3 At-Least-1

C.3.1 Manipulation by removing edges

In undirected graphs, the At-Least-1 objective is susceptible to LBM
by removing edges [23]. We show that an LBM by removing edges
can be computed in polynomial time.

For simplicity, we consider first the case of k = 2. We later show
how to extend our result for the case of k > 2.

For a ∈ A, let N1(a) denote the set of vertices where a is their
sole neighbor, that is, v ∈ N1(a) if and only if N(v) = {a}. Sim-
ilarly, for a, b ∈ A, let N1(a, b) be the set of vertices for which a
and b are their only neighbors, that is, v ∈ N1(a, b) if and only if
N(v) = {a, b}.

Let V (a, b) be the set of vertices that, in any At-Least-1 partition
in which both a and b are in the same coalition, are guaranteed to be
part of that coalition. Note, we define that a, b ∈ V (a, b). We prove
the following lemma:

Lemma 21. In undirected graphs, for every a ∈ A, it holds that
V (m−, a) = N1(a) ∪ N1(m−) ∪ N1(a,m−). Moreover, there



exists an At-Least-1 partition in which both a and m− are in the
same coalition, but every b /∈ V (m−, a), is in the second coalition.

Proof. Assume that there is an At-Least-1 partition in G. We will
prove both : (1) in any At-Least-1 partition in which both a and m−

are in the same coalition, every vertex c ∈ N1(a) ∪ N1(m−) ∪
N1(a,m−), guaranteed to be part of that coalition. (2) exist an At-
Least-1 partition in which both a and m− are in the same coalition,
but every b /∈ N1(a) ∪ N1(m−) ∪ N1(a,m−), is in the second
coalition.

(1) Let c ∈ N1(a) ∪ N1(m−) ∪ N1(a,m−). The vertex c has
only one or two neighbors and N(c) ⊆ {a,m−}. Hence, in every
partition P such that u(c,P) > 0, it holds that if c ∈ C1, then there
exists v ∈ N(c) such that v ∈ C1. However, N(c) ⊆ {a,m−}
and m− and a are in the same coalition and hence it holds that
a,m− and c are all in C1. Therefore, c ∈ V (m−, a) and we
get that N1(a) ∪ N1(m−) ∪ N1(a,m−) ⊆ V (m−, a). (2) Let
b /∈ N1(a) ∪ N1(m−) ∪ N1(a,m−). Hence, b has a neighbor d,
such that d ̸∈ {m−, a}. Since G in an undirected graph, d has b as
his neighbor, and hence b, d can be in the second coalition without
m− and a. And we get that b /∈ V (m−, a). Moreover, since it holds
for every b /∈ N1(a) ∪N1(m−) ∪N1(a,m−) we gets that all the-
ses vertices can be together in the second coalition without m− and
a.

Algorithm 4 LBM with the At-Least-1 objective in undirected
graphs

Require: G = (A,E),m− ∈ A
Ensure: ER(m−)

1: if N1(m−) ̸= ∅ then
2: return No manipulation
3: maxV ← −1, maxA← m−

4: minV ← |A|+ 1
5: for all a ∈ N(m−) do
6: compute V (m−, a)
7: if |N(m−, V (m−, a))| ≥ maxV and |V (m−, a)| < |A|

then
8: maxV ← |N(m−, V (m−, a))|
9: maxA← a

10: if minV ≥ |N(m−, V (m−, a))| then
11: minV ← |N(m−, V (m−, a))|
12: if minV = maxV then
13: return No manipulation
14: return ER(m−) = {(m−,maxA)}

Our algorithm, Algorithm 4, works as follows. It first searches for
a vertex a ∈ N(m−) that has the largest number of m− neighbors in
the set V (m−, a). If such a vertex is found, then m− reports only the
edge (m−, a). It might be that for every a ∈ N(m−), the number of
m− neighbors in the set V (m−, a) is the same. In such a case, the
algorithm reports that there is no manipulation.

We now show the correctness of the algorithm. Intuitively, if an At-
Least-1 partition exists in G(m−), then it guarantees that m obtains
both vertex a and all the vertices in the set V (m−, a). Note that, if
there is no At-Least-1 partition in G, the manipulator m− cannot per-
form a manipulation since he can only remove edges. Consequently,
in G(m−), there still will not be an At-Least-1 partition.

Theorem 22. In undirected graphs, Algorithm 4 finds an optimal
LBM by m− with the At-Least-1 objective in polynomial time.

Proof. If m− has a neighbor a such that a ∈ N1(m−), and m− does
not report on the edge (m−, a), it would result in a graph G(m−)
such that OAt-Least-1(G(m−)) = ∅. Hence, m− must report on the
edge (m−, a). In such a case, a partition C1, C2 such that C1 =
{m−}∪N1(m−) and C2 = A \C1 is in OAt-Least-1(G(m−)). In ad-
dition, in every At-Least-1 partition in G all vertices from N1(m−)
were in the same coalition as m−. Therefore, the LB(G,m−) =
LB(G(m−),m−) and there is no manipulation.

Consider now the case that N1(m−) = ∅, Algorithm 4, compute
for each a ∈ N(m−) the set V (m−, a), and chose to report on only
one edge to the vertex that the number of m− neighbors in the set
V (m−, a) is highest.

As proven in Lemma 21, if there is an At-Least-1 partition
in G(m−), it is guaranteed that m− will be with all vertices
of V (m−,maxA), but all other vertices have neighbors in A \
V (m−,maxA) and hence can be in the second coalition. In
Algorithm 4, m− verifies that V (m−, a) ̸= A, ensuring that
OAt-Least-1(G(m−)) is not empty. In this way, Algorithm 4, guaran-
tees a maximum improvement of the lower bound.

Algorithm 4 operates in polynomial time since the computation of
V (m−, a) is a polynomial-time operation and it is performed only
once for each vertex.

The algorithm can be extended for any k > 2, as follows. The set
V (m−, a) is computed in the same way. However, instead of verify-
ing that |V (m−, a)| < |A|, in line 8 of Algorithm 4, the manipula-
tor needs to ensure the existence of an At-Least-1 (k − 1)-partition
of the rest of the graph. This is equivalent to the maximum match-
ing problem, which can be solved in polynomial time (e.g., using the
algorithm from [20]).

C.3.2 Manipulation by adding edges

In undirected graphs, the At-Least-1 objective is susceptible to SIM
by adding edges [23]. Note that when the objective is At-Least-1,
since m+ can only add edges, every At-Least-1 partition in G is also
At-Least-1 partition in G(m+). So m+ can only transform non-At-
Least-1 partitions into At-Least-1 partitions. We will prove that a ma-
nipulation is possible only when there was no At-Least-1 partition
initially, and the manipulation results in a graph with an At-Least-1
partition in which m+ must get at least one real neighbor.

Lemma 23. By m+, the only possible manipulation is when there
was no At-Least-1 partition in G, but there is an At-Least-1 partition
in G(m+), i.e., OAt-Least-1(G) = ∅ but OAt-Least-1(G(m+)) ̸= ∅.

Proof. Assume, by contradiction, that there exists a graph G =
(V,E), a manipulator m+ ∈ V , and an organizer with the At-
Least-1 objective, such that there is an At-Least-1 partition in G, but
there is a manipulation such that LB(G,m+) < LB(G(m+),m+)
or UB(G,m+) < UB(G(m+),m+). First, LB(G,m+) <
LB(G(m),m+), is not possible since every At-Least-1 partition in
G remains an At-Least-1 partition in G(m+).

Now, assume, by contradiction, that there exists a manipulation
E+(m+) such that UB(G,m+) < UB(G(m),m+), and let P =
(C1, C2) be the partition with this new upper bound in G(m+),
where m+ ∈ C1. Let P ′ = (C′

1, C
′
2) denote the partition that is

identical to P except for the relocation of each vertex a ∈ C′
1 that

m+ add an edge to him, and doesn’t have other edges in C′
1 to C′

2.
The partition P ′ is an At-Least-1 partition in G. (Since there is At-
Least-1 partition in G, it implies that each vertex has at least one
neighbor in G, and if a vertex does not have a real neighbor in C′

1



it implies that he has in C′
2). However, we encounter a contradiction

when comparing the utility function u(m+,P ′) = u(m+,P) as it
contradicts the premise that E+(m+) increases the upper bound for
m+.

Lemma 24. If there is no At-Least-1 partition, but each vertex has
at least one edge, then no manipulation exists for m+.

Proof. If the organizer selects an At-Least-1 partition in which m+

is placed within a coalition that has only fake neighbors, i.e., vertices
that m+ added edges to them, his actual utility will be 0, and this
situation does not qualify as manipulation. Otherwise, if the manipu-
lator m+ has at least one real neighbor within his coalition, denoted
by C1 the coalition of m+. For each vertex to which m+ added an
edge and lacks additional neighbors within C1, has a neighbor in
another coalition and can be relocated to another coalition without
reducing m+’s utility. Consequently, the added edges do not provide
any advantage to m+.

Hence, we can conclude this and get the following way of solving
the SIM problem.

Theorem 25. In undirected graphs, it is possible to find an SIM by
m+ with the At-Least-1 objective in polynomial time.

Proof. In undirected graphs, when the objective of the organizer is
At-Least-1, the only feasible manipulation for m+ is to add edges
to vertices that have no neighbors. This manipulation works if (1)
m+ has at least one neighbor, denoted as a, such that N1(a) = m+

(2) the resulting graph has At-Least-1 partition. The result of the two
previous lemmas is that manipulation in this case can only be accom-
plished by adding edges to vertices that have no neighbors.

Assume that m+ adds edges to vertices that have no neighbors,
and there exists an At-Least-1 partition in G(m+).

We will prove the theorem by considering different scenarios of
manipulation:

(1) If m+ has at least one neighbor a with N1(a) = {m+}, then
m+ gets these neighbors in every At-Least-1 partition, and after his
manipulation, there is an At-Least-1 partition.

(2) If m+ lacks a neighbor a with N1(a) = {m+}, there is At-
Least-1 partition such that m+ end up with only fake neighbors, re-
sulting in a real utility of 0, when all his real neighbors are in another
coalition.

Note that the computation of N1(a) and the check if there is a
vertex with no neighbors can be done in polynomial time.

Theorem 26. In undirected graphs, it is possible to find a UBM by
m+ with the At-Least-1 objective in polynomial time.

It is also possible to find a UBM by m+ with the At-Least-1 objec-
tive in polynomial time, in a relatively similar way. However, that if
OAt-Least-1(G,m) = ∅ and there is a neighbor of m, denote by a, that
can be with m in the same coalition, and still, every other vertex will
have at least one neighbor (i.e., |V (m+, a)| < |A|). Then we can
say that there is a UBM, since there was no At-Least-1 partition in
G, but in G(m) there are At-Least-1 partitions and in some of them
m gets at least one neighbor.

C.4 Max-Util

In undirected graphs, the Max-Util objective is susceptible to SIM.
Fortunately, Algorithm 2 can also solve the manipulation problem in
undirected graphs.
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