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Abstract

Colored Trails is a research testbed for analyz-
ing decision-making strategies of individuals or
of teams. It enables the development and test-
ing of strategies for automated agents that oper-
ate in groups that include people as well as com-
puter agents. The testbed is based on a conceptu-
ally simple but highly expressive game in which
players, working individually or in teams, make
decisions about how to deploy their resources to
achieve their individual or team goals. The com-
plexity of the setting may be increased along sev-
eral dimensions by varying the system parameters.
The game has direct analogues to real-world task
settings, making it likely that results obtained using
Colored Trails will transfer to other domains. We
describe several studies carried out using the for-
malism, which investigated the effect of different
social settings on the negotiation strategies of both
people and computer agents. Using machine learn-
ing, results from some of these studies were used to
train computer agents. These agents outperformed
other computer agents that used traditional game
theoretic reasoning to guide their behavior, show-
ing that CT provides a better basis for the design of
computer agents in these types of settings.

1 Introduction

As heterogeneous group activities of computer systems and
people become more prevalent, it is important to understand
the decision-making strategies people deploy when interact-
ing with computer systems. Colored Trails (CT) is a test-bed
for investigating the types of decision-making that arise in
task settings where the key interactions are among goals (of
individuals or of groups), tasks required to accomplish those
goals, and resources. The CT architecture allows games to
be played by groups comprising people, computer agents, or
heterogeneous mixes of people and computers. The purpose
of the CT framework is to enable to design, learn and evaluate
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players’ decision-making behavior as well as group dynamics
in settings of varying complexity.

The rules of CT are simple, abstracting from particular task
domains, enabling investigators to focus on decision-making
rather than the specification of domain knowledge. In this re-
spect CT is similar to the games developed in behavioral eco-
nomics[1]. However, unlike behavioral economics games,
CT provides a clear analog to multi-agent task settings, can
represent games that are larger in size, and provides situa-
tional contexts and interaction histories in which to make de-
cisions.

The CT environment allows a wide range of games to be
defined. Games may be made simple or complex along sev-
eral dimensions including the number of players and size of
the game; information about the environment available to dif-
ferent players; information about individual agents available
publicly to all players, to subgroups, or only privately; the
scoring rules for agents; the types of communication possible
among agents; and the negotiation protocol between agents.

At the heart of CT is the ability of players to communicate
with each other, enabling them to commit to and retract bar-
gaining proposals and to exchange resources. The conditions
of these exchanges, group dynamics and players’ behavior
towards others are some aspects that can be investigated in
these types of settings.

1.1 Rules of the Game
CT is played by two or more players on a rectangular board of
colored squares with a set of chips in colors chosen from the
same palette as the squares. For each game of CT, any number
of squares may be designated as the goal. Each player’s piece
is located initially in one of the non-goal squares, and each
player is given a set of colored chips. A piece may be moved
into an adjacent square, but only if the player turns in a chip
of the same color as the square.

Players are removed from the game if they reach the goal
state or have been dormant for a given number of moves, as
specified by a game parameter. When all players have been
removed, the game is declared over and each player’s score
is computed. The scoring function of a CT game can de-
pend on the following criteria: the position of a player on the
board; the number of chips the player possesses; the number
of moves made by the player throughout the game; the score
of other players in the game. It is possible to vary the ex-



Figure 1: A snapshot of a two-player game

tent to which the scoring function depends on any of these
parameters.

The game controller makes available to each player a list
of suggested paths to the goal that are displayed in a panel
on the screen. These paths are optimized for a given chip
distribution and player, as queried by the player, such that
they represent the best route given a player’s objectives. The
ability to access this information is contingent on a player’s
ability to view the board and chips, as specified by the game
parameters.

A snapshot of a two-player game is presented in Figure 1.
Here, the Main Window panel shows the board game, player
icons and the goal state, as well as the chip distribution for
the players. In this game, bothmeandsunplayers lack chips
to get to the goal. Themeplayer has queried the Path Finder
panel and has chosen a path, outlined on the board, for which
it lacks a red and cyan chip. It is about to ask thesunplayer
for these chips, using the Propose Exchange panel.

Players in CT negotiate with each other during specified
communication phases. Each message has a list of fields con-
taining the information embedded in the message. Messages
may be of the following types.

1. Propose an exchange.

2. Commit to a proposal.

3. Retract a proposal (i.e., a previous commitment).

4. Request/suggest a path to the goal.

5. Send chips to a player.

Note that messages (1) through (4) pass information between
players while message (5) transfers chips between players.
By setting the game parameters, agreements reached during
the communication phase may or may not be binding. For
example, a player whose offer was accepted by another player
may need to initiate the sending of chips should it1 wish to
fulfill its commitment.

1.2 Analogy with Task Domains
There is a correspondence between CT play and the planning
and execution of tasks by a group of agents. Colors corre-
spond to agent capabilities and skills required by tasks: an
agent’s possession of a chip of a certain color corresponds to

1we use gender neutral pronouns to refer to players in the game,
be they computer agents or people

having a skill available for use at a time; not all agents get all
colors much as different agents have different capabilities and
availability. Paths through the board correspond to perform-
ing complex tasks, the constituents of which are individual
tasks requiring the skills of the corresponding color. Various
kinds of requirements on goals and paths followed correspond
to different types of group activities and collaborative tasks.
For instance, the degree to which an agent’s score depends
on the performance of other agents may be used to distin-
guish collaborative teamwork from situations in which group
members act in other ways. Also, requiring only that a cer-
tain number of agents get to a goal square might correspond
to the need for agents to allocate tasks to subgroups or form
coalitions to accomplish the actions in a recipe for a collab-
orative task. Varying the amount of the board an agent can
“see” corresponds to varying information about task recipes
or resource requirements.

In addition, the inter-dependence between players can be
varied. For example, the scoring function may stipulate are-
ward dependenceby having the scores of a player depend in
some way on the scores of other agents. Second, atask de-
pendencearises whenever players lack the chips they need to
reach their goals and must depend on other players supplying
those chips.

In this paper, we present several studies that were carried
out using the CT framework at Harvard and Bar Ilan Uni-
versities. Each study is presented in increasing order of the
complexity of the CT setting. All results are statistically sig-
nificant in the 95% confidence interval range. Three types of
players interacted in these studies: people, computer agents
designed by the experimenters, and computer agents designed
by human subjects.

Section 2 describes how a model of human behavior in one-
shot games was devised and evaluated using a machine learn-
ing approach in a simple CT setting. Section 3 describes a
model for negotiation between computer agents in a setting in
which agents were uncertain about others’ resources as well
as their level of helpfulness. Section 4 outlines a study which
investigated the effect of reward dependency on the behavior
of people and of agents.

2 Learning Social Preferences in One-shot
Games

Research in behavioral economics[1] has established that
a multitude of sociological factors affect people’s behavior
when they interact with others. In particular, people have
been shown to exhibit preferences for choices that affect oth-
ers as well as themselves and to vary in the extent to which
these factors affect their play. Traditional game-theoretic
models cannot naturally capture the diversity of this behav-
ior [5]. In a series of studies[3; 6], we showed that com-
puter agents that explicitly represented social preferences in
their model and learned their extent of influence on people’s
behavior were able to outperform traditional game-theoretic
models. In particular, they were able to generalize to new
situations in the game as well as to new players.



2.1 The CT set-up
We used a version of CT in which two players played on 4x4
boards with a palette of 4 colors. Each player had full view of
the board as well as the other player’s tiles. The distribution
of tiles at the onset of the game was designed such that (1)
at least one of the players could reach the goal after trading
with the other player; (2) it was not the case that both players
could reach the goal without trading.

The scoring function was chosen so that while getting to
the goal was by far the most important component, if a player
couldn’t get to the goal it was preferable to get as close to
the goal as possible. Furthermore, a player’s outcome was
determined solely by its own performance.

In each game, one player deemed theallocator was al-
lowed to propose an offer for exchange of tiles to the other
player, deemed thedeliberator. The deliberator could ei-
ther accept or reject the allocator’s offer. If the allocator did
not make an offer, then both players were left with their ini-
tial allocation of tiles. The deliberator was not allowed to
counter the allocator’s offer with another proposal. The score
that each player received if no offer was made was identi-
cal to the score each player received if the offer was rejected
by the deliberator. We referred to this event as theno ne-
gotiation alternative. The score that each player received if
the offer was accepted by the deliberator was referred to as
theproposed outcomescore. Under the conditions specified
above, each game consisted of a one-shot negotiation deal
between the two players, and a deliberator’s reply to the ex-
change proposed by the allocator completely determines the
final outcome of the game.

2.2 Model Construction
Our model predicted whether the deliberator will accept a
given proposal, given a CT game. The inputs to the model
areNNA andNND, the no-negotiation alternative scores for
the allocator and deliberator, andPOA andPOD, the pro-
posed outcome scores for the allocator and deliberator.

To develop the model, we introduced the following fea-
tures, which represented possible social preferences that
might affect the deliberator for a given deal. Each feature
was derived using the no-negotiation alternative and proposed
outcome scores.

• self interest POD −NND

• social welfare (POD + POA)− (NND + NNA)

• advantageous inequality POD − POA

• fair trade (POD −NND)− (POA −NNA)

Given any proposed exchangex, a particular deliberator’s
utility u(x) is a weighted sum of these features. The weights
measure the relative importance of each of the social prefer-
ences to the deliberator.

We captured the fact that people make mistakes by imple-
menting a noisy decision function for the deliberator. We de-
fined the probability of acceptance for a particular exchangex
by a deliberator asP (accept | x, t) = 1

1+e−u(x) . This proba-
bility converges to 1 as the utility from an exchange becomes
large and positive, and to 0 as the utility becomes large and
negative.

The model assumed that people reason about the same
types of social factors, but that individuals weigh them dif-
ferently. We used a mixture model over types of people, with
a probability distributionP (t) over the set of types. Each type
t was associated with its own set of social preference weights,
defining a utility functionut.

Given that we have a model describing the deliberator’s
behavior, the next step was to incorporate this model into a
computer agent that played with humans. In our framework,
the computer agent played the allocator and a human played
the deliberator. The strategy of the allocator was to propose
the deal that maximized its expected utility. The expected
utility was the sum of the allocator’s utility of the proposal
times the probability the proposal is accepted, plus the allo-
cator’s no-negotiation alternative score times the probability
the proposal is rejected. We took the expectation of this sum
with respect to all of the deliberator utility functions.

To learn the parameters of the model, we estimated the
distributionP (T ) over deliberator types, and for each type
t ∈ T , we estimated the feature weights. We did this by in-
terleaving two optimization procedures, a version of the EM
algorithm[2] and the gradient descent technique. We began
by placing an arbitrary distribution over deliberator types and
setting the feature weights with particular parameter values.

2.3 Experimental Setup and Results
A total of 42 subjects participated in the experiment, 32 in the
data-collection phase and 10 in the evaluation phase. Each
phase was composed of playing a number of rounds of dif-
ferent games. A central server was responsible for matching
up the participants at each round and for keeping the total
score for each subject in all of the rounds of the experiment.
Participants were paid in a manner consistent with the scor-
ing function in the game. For example, a score of 130 points
gained in a round earned a $1.30 payment. We kept a running
score for each subject, revealed at the end of the experiment.

In the data-collection phase, 16 subjects played consecu-
tive CT games against each other Each subject played 24 CT
rounds, making for a total of 192 games played. The initial
settings (board layout, tile distribution, goal and starting point
positions) were different in each game. For each round of the
game, we recorded the board and tile settings, as well as the
proposal made by the allocator, and the response of the de-
liberator. The data obtained was then used to learn a mixture
model of human play, which included 2 types with probabil-
ities (0.36, 0.64). The feature weights learned for each type
were (3.00, 5.13, 4.61, 0.46) and (3.13, 4.95, 0.47, 3.30) for
individual-benefit, aggregate-utility, advantage-of-outcome
and advantage-of-trade. According to the learned model, both
types assigned high weights for social welfare, while still be-
ing competitive; one of the types cares more about advantage-
of-outcome, and the other type cares more about advantage-
of-trade.

The evaluation study consisted of two groups, each involv-
ing 3 human subjects and 3 computer players. At each round,
eight concurrent games of CT were played in which members
of the same group played each other. One of the human sub-
jects, designated as an allocator, played another human sub-
ject, designated as a deliberator; each computer player, des-



ignated as an allocator, played another human subject, desig-
nated as a deliberator.

The computer players, only playing allocators, were agents
capable of mapping any CT game position to some proposed
exchange. AgentSP proposed the exchange with the highest
expected utility, according to our learned social preferences
model. AgentNE proposed the exchange corresponding to
the Nash equilibrium strategy for the allocator. AgentNB
proposed the exchange corresponding to the Nash bargain-
ing strategy for the allocator, consisting of the exchange that
maximized the product of each player’s individual benefit.

The game settings, including board layout, start and goal
positions, and initial tile distributions, were the same for all of
the games played by members of the same group. Therefore,
at each round there were 4 matching CT games being played
by the eight members of each group.

The following table presents the results of the evalua-
tion phase for each of the models used in the experiment.

Model Total Reward Proposals Proposals No
Accepted Declined Offers

SP 2880 16 5 0
NE 2100 13 8 0
NB 2400 14 2 5
It lists the total monetary reward, the number of proposals

accepted, the number of proposals rejected, and the number
of times no offer was proposed. TheSP agent had achieved
a significantly higher utility than the other computer agents.
It also had the highest number of accepted proposals, along
with the allocations proposed by humans. The performance
of NE was the worst of the three. The computer allocator la-
beledNE always proposed the exchange that corresponded
to the allocator’s strategy in the (unique) sub-game perfect
Nash equilibrium of each CT game. This resulted to offering
the best exchange for the allocator, out of the set of all of the
exchanges that are not worse off to the deliberator. As a con-
sequence, many of the exchanges proposed by this agent were
declined. We hypothesize this was because they were not
judged as fair by the human deliberator. This result closely
follows the findings of behavioral game theory. The com-
puter allocator labeledNB consistently offered more to the
deliberator than theNE player did for the same game, when
the board and tile distribution enabled it. BecauseNB tended
to offer quite favorable deals to the deliberator, they were ac-
cepted more than the other computer players, provided that
an offer was made. but its overall reward was less thanSP .

While we have focused on one particular game for practi-
cal reasons, the learned models we used were cast in terms of
general social preferences, which did not depend on the spe-
cific features of the game and were shown to be exhibited by
people in many types of interactions.

3 Modeling Agents’ Helpfulness in Uncertain
Environments

When agents depend on each other to achieve their goals, they
need to cooperate in order to succeed, i.e. to perform actions
that mutually benefit each other. In open systems, there is no
central control for agents’ design, and therefore others’ will-
ingness to cooperate is unknown. To establish cooperative

relationships in such systems, agents must identify those that
are helpful and reciprocate their behavior, while staying clear
of those that are unhelpful. However, in open environments it
is difficult to identify the degree of helpfulness of other agents
based solely on their actions. This is further made difficult if
agents constantly change their strategies.

In this work [7], we built a model which explicitly repre-
sented and reasoned about agents’ level of helpfulness. The
model characterized helpfulness along two dimensions: co-
operation (the tendency to propose mutually beneficial ex-
changes of resources) and reliability (the tendency to fulfill
commitments).

We used a version of CT in which two or four players
played on boards of different sizes. Each player had knowl-
edge of the scoring function and full view of the board but
could not see the other player’s chips. Agreements reached
during the communication phase were not binding and thus
agents could deceive each other by not fulfilling their commit-
ments. A player was declared “out-of-game” if it reached the
goal state or if it stayed dormant for 3 moves, at which point
its score was computed. Each player’s outcome depended
solely on its own performance.

3.1 Model Construction
We wanted the model to be able to generalize to environments
which varied the number of players, the size of the board-
game, and the task dependency between players. To do this,
the model explicitly reasoned about others’ level of helpful-
ness, rather than their utility functions.

We described agents’ helpfulness along two dimensions
with range[0, 1).
• Cooperation(c) - measured an agent’s willingness to

share resources with others in the game through initi-
ating and agreeing to beneficial proposals.

• Reliability (r) - measured agents’ willingness to keep
their commitments in the game through delivering the
chips they had agreed to.

Given some actiona, opponentj, and states, an agent’s
utility function depended on the following features.

• The helpfulness measure of agenti, denotedPi.

• Agent i’s estimate of the agentj’s helpfulness, denoted
Pj . This was estimated as the fraction of timesj was
cooperative and reliable when interacting withi in the
past, decayed by a discount factor.

• The expected value of taking actiona given the state of
the environments, denotedEVi(a | s). This quantity
estimated the likelihood of getting to the goal, negatively
correlated with the number of chips lacked by the agent.

• The expected cost of future ramifications of taking ac-
tion a, denotedECi(a). This function rewarded actions
that were beneficial to agentj and punished actions that
reneged on commitments.

We constructed a utility function that was a linear com-
bination of these features associated with weights that were
tuned empirically. Agents negotiated using this utility func-
tion at each communication phase in the game, by performing



each action in the subset of actions that fulfilled the follow-
ing conditions: there were no two actions in the subset that
conflicted (for example, two exchange proposals that offered
the same chips); the combined utility value for the agent from
each action in the subset was highest compared to any other
subset with non-conflicting actions. Using this utility func-
tion, agents’ behavior was contingent on their perception of
others, as well as their own helpfulness.

3.2 Experimental Design
We used two class of agents in our study. The first con-
sisted of two types: Multiple-Personality (MP) and Single-
Personality (SP) agents. Both MP and SP class agents use the
model described earlier to make their decisions. However, the
cooperation and reliability levels of an SP agent were con-
stant, whereas an MP agent adopted different measures of co-
operation and reliability for each personality type of its oppo-
nents based on a matching scheme, derived empirically. Both
MP and SP agents were adaptive: they changed their behavior
as a function of their estimate of others’ helpfulness, given the
history of their observations. However, the MP agent adopted
a unique measure of helpfulness for each player, whereas the
measure of helpfulness for the SP agent was constant.

Another class of agents was Peer-Designed (PD) agents,
created by graduate-level computer science students at Bar
Ilan University who were not given any explicit instructions
regarding agents’ strategies and reasoning processes.

We classified PD and SP agents as either “helpful” or “un-
helpful”. Helpful SP agents were those that engaged in coop-
erative exchanges more than 50% of the time and reneged on
their commitments less than 20% of the time. We expected
helpful agents to realize opportunities for exchange with each
other more often than unhelpful agents and to exceed them in
performance, as measured by the score in the game. We also
expected that in some cases, unhelpful agents would be able
to take advantage of the vulnerability of those helpful agents
that allow themselves to be exploited. We hypothesized that
the MP agent would be able to identify and reciprocate help-
ful agents more quickly than SP or PD agents, while staying
clear of agents that are unhelpful. As a result, the MP agent
would perform better than all other agents in the game.

We evaluated the MP agent by playing a series of repeated
games with the other agents in the systems. We allowed
agents to update their model of others from game to game.
Each agent’s final outcome was the aggregate of its scores in
all of the games it participated in.

In our experiment we executed 5,040 games, played in
1,080 rounds of three consecutive games each. The board
games we used in each round varied the task dependency re-
lationships between players. The players in each game in-
cluded a MP agent, two SP agents, and one of the PD agents.
Each group of four players played all possible task depen-
dency roles, to control for any effect brought about by depen-
dency relationships. Table 1 presents the average score for the
MP agent when playing against helpful and unhelpful agents
across all games. The scores reported in the table sum over
the other players in the game.

The average score achieved by the MP agent was signifi-
cantly higher than all other agents, regardless of their level

MP agent PD and SP agents
Helpful 170.6 114.8

Unhelpful 142.5 98.2

Table 1: Average performance of MP agent against help-
ful/unhelpful agents (3 repeated games)

Exchange Helpful Unhelpful
Type agents agents

Reciprocal 60% 25%
Idle 20% 39%

Table 2: Percentage of exchange types proposed by MP agent

of helpfulness. Also, the MP agent’s score when playing
against helpful agents (170.6) was higher than its score when
playing against unhelpful agents (142.5). Helpful agents also
benefited from cooperating with the MP agent: their perfor-
mance was significantly higher than their unhelpful counter-
parts (114.8 vs. 98.2).

Further investigation revealed that the MP agent engaged in
cooperative exchanges with helpful agents significantly more
often than the other agents, while the amount of time the MP
agent remained idle when dealing with unhelpful agents was
longer than the amount of time other agents remained idle.

Another hypothesis was that any group of agents would
increase its overall social welfare when playing with an MP
agent, because the MP agent would help them to realize more
beneficial exchanges. To evaluate this claim, we ran a se-
ries of 2-player repeated games that included SP and PD type
agents, but did not include MP agents, and compared it to the
performance of each agent type after after including an MP
agent in the group. The results are described in Figure 2. The
performance of helpful and unhelpful agents increased signif-
icantly when interacting with the MP agent. As expected, this
increase was more profound for helpful SP and PD agents.
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Figure 2: Performance with/without MP agent

4 The Influence of Reward Dependencies on
Decision Making

In the work presented here[4], we investigated the effect of
social dependencies on players’ behavior in CT. We varied the



# reached Private
goal score

People RD = 0 2.47 151.3
RD > 0 2.8 252.34

PD RD = 0 1.1 82.4

Table 3: Results for people vs. PD agents

social dependency between players by including a ”reward
dependency factor”RD in the scoring function; IfRD was
zero, a player’s score was independent of the performance
of other players; if it was non-zero, a player’s score was a
combination of that player’s individual score and a weighted
average of the individual scores of all the other players.

We hypothesized that (1) higherRD will increase the
amount of cooperation between agents. In particular, we ex-
pected agents to give other agents chips more frequently and
to ask for fewer chips in exchange whenRD is higher. (2)
whenRD weight is high, agents will score higher and reach
the goal more often.

The CT games were played by groups of four players, the
board was 6x6, the palette was 5 colors, and there was a sin-
gle goal square for all players. Players were able to see the
full board but not each others’ chips. This restriction sep-
arates decisions about chip exchanges from scoring informa-
tion, thereby making helpful behavior distinct from score op-
timization computations.

Two classes of experiments were performed, one involv-
ing 4-player groups of people and the other two involving 4-
player groups of computer agents. The human player groups
were drawn from a population of upperclass and master’s
computer science students at Bar Ilan University who were
not experts in negotiation strategies nor in economic theo-
ries directly relevant to agent design (e.g., game theory, de-
cision theory). We compared their performance with that of
Peer Designed (PD) agents, who were constructed in a similar
fashion as described in Section 3.

A comparison of the results in Table 3 for human players
whenRD = 0 with those whenRD > 0 supports this hy-
pothesis. The average private score of all games played by
people in whichRD > 0 was significantly higher than in
the games whereRD = 0 In addition, the number of human
players who reached the goal in games in whichRD > 0 was
significantly higher than for games withRD = 0 This shows
that people realized more opportunities for exchange when
their performance depended on others. Thus, the main hy-
potheses regardingRD are supported by the results of games
played by people. Interestingly, the PD designs were not in-
fluenced by the reward dependencies, and agents did not act
significantly different in either condition. This suggests that
implicit mention of reward-dependence in the design specifi-
cation may not affect behavior. In contrast, this same inciden-
tal mention ofRD in instructions to people playing the game
did engender different behavior as discussed below.

Another interesting discovery was that the average private
score for people was significantly higher than the average pri-
vate score of the PDs in these games. Furthermore, the aver-
age number of people reaching the goal in these games was

significantly higher than the average number of PDs reaching
the goal. Further investigation revealed that this was because
people were significantly more likely to engage in coopera-
tive exchanges.

5 Conclusion and Future Work
In this paper, we have motivated the need for understanding
the decision-making strategies people deploy when computer
systems are among the members of the groups in which they
work. It has reviewed several studies, all using the CT frame-
work, which analyzed the effects of various social settings on
people’s behavior, and built computer agents to match peo-
ple’s expectations in these settings.

In the future, we plan to extend the CT formalism in sev-
eral realms. First, we are designing a system for evaluation
of CT models, which would be able to dynamically config-
ure dependent and independent variables, run a series of CT
games using an online database of game configurations, game
status, and results.

Second, we are constructing a model for repeated nego-
tiation between players which reasons about the reputation
of agents. This model will incorporate such features as re-
ward and punishment, and the affinity of players to each other
based on their actions. It will learn the extent to which these
features affect decision making through incorporating obser-
vations of people’s play.
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