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Abstract

We propose a policy improvement algorithm for Reinforcement Learning (RL) which is called Rerouted Behavior Im-
provement (RBI). RBI is designed to take into account the evaluation errors of the Q-function. Such errors are common in
RL when learning the Q-value from finite past experience data. Greedy policies or even constrained policy optimization
algorithms which ignore these errors may suffer from an improvement penalty (i.e. a negative policy improvement). To
minimize the improvement penalty, the RBI idea is to attenuate rapid policy changes of low probability actions which
were less frequently sampled. This approach is shown to avoid catastrophic performance degradation and reduce regret
when learning from a batch of past experience. Through a two-armed bandit with Gaussian distributed rewards exam-
ple, we show that it also increases data efficiency when the optimal action has a high variance. We evaluate RBI in two
tasks in the Atari Learning Environment: (1) learning from observations of multiple behavior policies and (2) iterative
RL. Our results demonstrate the advantage of RBI over greedy policies and other constrained policy optimization algo-
rithms as a safe learning approach and as a general data efficient learning algorithm. A Github repository of our RBI
implementation is found at https://github.com/eladsar/rbi/tree/rbi.

Keywords: Safe Reinforcement Learning, Constrained Policies Algorithms

Acknowledgements

This research has been partly supported by the Israel Innovation Authority and by the Ministry of Science and Technol-
ogy, Israel.

https://github.com/eladsar/rbi/tree/rbi


1 Introduction

While Deep Reinforcement Learning (DRL) is the backbone of many of the recent Artificial Intelligence breakthroughs
[14, 10], it suffers from several factors which inhibit deployment of RL systems to real-world tasks. Two of these elements
are: (1) data efficiency and; (2) safety. DRL is notoriously data and time inefficient, requires up to billions of history states
[6] or weeks of wall-clock time [5] to train to expert level. While it is partially due to the slow training process of deep
neural networks, it is also due to inefficient, yet simple to implement, policy improvement routines. For example, a
greedy policy improvement (with a fix exploration parameter) is known to have a higher regret than other methods such
as Upper Confidence Bound (UCB) [2], but the latter is much more difficult to adjust to a deep learning framework [3].
This transformation from the countable state space of bandit and grid-world problems to the uncountable state-space in
a DRL framework, calls for efficient improvement methods which fit into existing deep learning frameworks.

For some real-world problems, like autonomous cars [13], safety is a crucial factor. Random initialized policies and even
a RL algorithm that may suffer from sudden catastrophic performance degradation are both unacceptable in such envi-
ronments. While policy initialization may be solved with Learning from Demonstrations (LfD) algorithms [1], changing
the policy in order to improve performance is still a risky task. Largely since the Q-value of a current policy can only
be estimated from the past data. Therefore, for safe RL, it is desirable to design improvement algorithms that model the
accuracy of the Q-value evaluation and can mitigate between fast improvement and a safety level [4, 17].

In this work, we propose a policy improvement method that addresses both the sample efficiency of the learning process
and the problem of safe learning from incomplete past experience. We start by analyzing the improvement penalty of
an arbitrary new policy π(a|s) based on an estimated Q-function of a past behavior policy β(a|s). We find that under
a simplified model of learning the Q-values from i.i.d samples, the variance of a potential improvement penalty is pro-
portional to |β(a|s)−π(a|s)|2

β(a|s) . Therefore, we design a constraint, called reroute, that limits this term. We show that finding
the optimal policy under the reroute constraint amounts to solving a simple linear program. Instead of optimizing this
policy via a gradient descent optimization, we take a different approach and solve it in the non-parameterized space for
every new state the actor encounters. In order, to learn the new improved policy with a parameterized Neural Network
(NN), we store the calculated policy into a replay buffer and imitate the actor’s policy with a KL regression.

While RBI is designed for safe learning from a batch of past experience, we show that it also increase data efficiency with
respect to a greedy step and other constraints such as the Total Variation (TV) [7] and PPO [12]. In fact it is akin in practice
to the forward KL constraint [18], however, unlike the KL constraint, it does not require different scaling for different
reward signals and it is much more intuitive to design. We validate our findings both in simple environments such as a
two-armed bandit problem with Gaussian distributed reward and also in a complex distributed actors framework when
learning to play Atari.

2 Rerouted Behavior Improvement

Let us start by examining a single improvement step from a batch of past experience of a behavior policy. Define by β the
behavior policy of a dataset D and by Qβ , and Q̂β its true and approximated Q-functions. Theoretically, for an infinite
dataset with infinite number of visitations in each state-action pair, one may calculate the optimal policy in an off-policy
fashion [19]. However, practically, one should limit its policy improvement step over β when learning from a realistic
finite dataset. To design a proper constraint, we analyze the statistics of the error of our evaluation of Q̂β . This leads
to an important observation: the Q-value has a higher error for actions that were taken less frequently, thus, to avoid
improvement penalty, we must restrict the ratio of the change in probability π

β . We will use this observation to craft the
reroute constraint, and show that other well-known monotonic improvement methods (e.g. PPO and TRPO) overlooked
this consideration, hence they do not guarantee improvement when learning from a finite experience.

2.1 Soft Policy Improvement

Before analyzing the error’s statistics, we begin by considering a set of policies which improve β if our estimation of
Qβ is exact. Out of this set we will pick our new policy π. Recall that the most naive and also common improvement
method is taking a greedy step, i.e. deterministically acting with the highest Q-value action in each state. This is known
by the policy improvement theorem [16], to improve the policy performance. The policy improvement theorem may be
generalized to include a larger family of soft steps.

Lemma 2.1 (Soft Policy Improvement). Given a policy β, with value and advantage V β , Aβ , a policy π improves β, i.e. V π ≥
V β ∀s, if it satisfies

∑
a π(a|s)Aβ(s, a) ≥ 0 ∀s with at least one state with strict inequality. The term

∑
a π(a|s)Aβ(s, a) is called

the improvement step.1

1The proof adhere to the same steps of the greedy improvement proof in [16], thus it is omitted for brevity.
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Essentially, every policy that increases the probability of taking positive advantage actions over the probability of taking
negative advantage actions achieves improvement. Later, we will use the next Corollary to prove that RBI guarantees a
positive improvement step.

Corollary 2.1.1 (Rank-Based Policy Improvement). Let (Ai)
|A|
i=1 be an ordered list of the β advantages in a state s, s.t. Ai+1 ≥

Ai, and let ci = πi/βi. If for all states (ci)
|A|
i=1 is a monotonic non-decreasing sequence s.t. ci+1 ≥ ci, then π improves β.

2.2 Standard Error of the Value Estimation

To provide a statistical argument for the expected error of the Q-function, consider learning Q̂β with a tabular represen-
tation. The Q-function is the expected value of the random variable zπ(s, a) =

∑
k≥0 γ

krk|s, a, π. Therefore, the Standard
Error (SE) of an approximation Q̂β(s, a) for the Q-value with N i.i.d. MC trajectories is

σε(s,a) =
σz(s,a)√
Nsβ(a|s)

, (1)

where Ns is the number of visitations in state s in D, s.t. N = β(a|s)Ns. Therefore, σε(s,a) ∝ 1√
β(a|s)

and specifically for

low frequency actions such estimation may suffer large SE.2 Notice that we ignore recurrent visitations to the same state
during the same episode and hence, the MC discounted sum of rewards are independent random variables.

2.3 Policy Improvement in the Presence of Value Estimation Errors

We now turn to the crucial question of what happens when one applies an improvement step with respect to an inaccurate
estimation of the Q-function, i.e. Q̂β .
Lemma 2.2 (Improvement Penalty). Let Q̂β = V̂ β + Âβ be an estimator of Qβ with an error ε(s, a) = (Qβ − Q̂β)(s, a) and let
π be a policy that satisfies lemma 2.1 with respect to Âβ . Then the following holds

V π(s)− V β(s) ≥ −E(s) = −
∑
s′∈S

ρπ(s′|s)
∑
a∈A

ε(s′, a) (β(a|s′)− π(a|s′)) , (2)

where E(s) is called the improvement penalty and ρπ(s′|s) =
∑
k≥0 γ

kP (s
k−→ s′|π)) is the unnormalized discounted state distri-

bution induced by policy π.

Since ε(s′, a) is a random variable, it is worth to consider the variance of E(s). Define each element in the sum of Eq. (2)
as x(s′, a; s) = ρπ(s′|s)ε(s, a)(β(a|s′)− π(a|s′)). The variance of each element is therefore

σ2
x(s′,a;s) = (ρπ(s′|s))2σ2

ε(s′,a)(β(a|s
′)− π(a|s′))2 =

(ρπ(s′|s))2σ2
z(s′,a)

Ns′

(β(a|s′)− π(a|s′))2

β(a|s′)
.

To see the the need for the reroute constraint, we can bound the total variance of the improvement penalty∑
s′,a

σ2
x(s′,a;s) ≤ σ

2
E(s) ≤

∑
s′,a,s′′,a′

√
σ2
x(s′,a;s)σ

2
x(s′′,a′;s),

where the upper bound is due to the Cauchy-Schwarz inequality, and the lower bound is since ε(s, a) elements have a
positive correlation (as reward trajectories overlap). Hence, it is evident that the improvement penalty can be extremely
large when the term |β−π|2

β is unregulated and even a single mistake along the trajectory, caused by an unregulated
element, might wreck the performance of the entire policy. However, by using the reroute constraint which tame each of
these terms we can bound the variance of the improvement penalty.

While we analyzed the error for independent MC trajectories, a similar argument holds also for Temporal Difference
(TD) learning [16]. [8] studied ”bias-variance” terms in k-steps TD learning of the value function. Here we present their
results for the Q-function error with TD updates. For any 0 < δ < 1, and a number t of iteration through the data for the
TD calculation, the maximal error term abides

ε(s, a) ≤ max
s,a
|Q̂β(s, a)−Qβ(s, a)|≤ 1− γkt

1− γ

√
3 log(k/δ)

Nsβ(a|s)
+ γkt. (3)

While the ”bias”, which is the second term in (3), depends on the number of iterations through the dataset, the ”variance”
which is the square root of the first term in (3) is proportional to 1

β(a|s)Ns
, therefore, bounding the ratio |β−π|

2

β bounds the
improvement penalty also for TD learning.

2Note that even for deterministic environments, a stochastic policy inevitably provides σz(s,a) > 0.
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2.4 The Reroute Constraint

In order to confine the ratio |β−π|
2

β , we suggest limiting the improvement step to a set of policies based on the following
constraint.
Definition 2.1 (Reroute Constraint). Given a policy β, a policy π is a reroute(cmin, cmax) of β, if π(a|s) = c(s, a)β(a|s)
where c(s, a) ∈ [cmin, cmax]. Further, note that reroute is a subset of the TV constraint with δ = min(1 −
cmin,max( cmax−1

2 , 1−cmin

2 )).

With reroute, each element in the sum of (2.2) is proportional to
√
β(a|s)|1 − c(s, a)| where c(s, a) ∈ [cmin, cmax]. Unlike

reroute, other constraints such as the Total Variation (TV), forward and backward KL and PPO were not design to bound
the improvement penalty.

2.5 Maximizing the Improvement Step under the Reroute Constraint

We now turn to the problem of maximizing the objective function J(π) under the reroute constraint and whether such
maximization yields a positive improvement step. Maximizing the objective function without generating new trajectories
of π is a hard task since the distribution of states induced by the policy π is unknown. Therefore, usually we maximize
a surrogate off-policy objective function JOP (π) = Es∼β [

∑
a π(a|s)Aβ(s, a)]. It is common to solve the constrained max-

imization with a NN policy representation and a policy gradient approach [15, 11]. Here we suggest an alternative:
instead of optimizing a parametrized policy that maximizes JOP , the actor (i.e. the agent that interact with the MDP
environment) may ad hoc calculate a non-parametrized policy that maximizes the improvement step

∑
a π(a|s)Aβ(s, a)

(i.e. the argument of the JOP objective) for each different state. This method maximizes also the JOP objective since the
improvement step is independent between states. Note that with an ad hoc maximization, the executed policy is guaran-
teed to maximize the objective function under the constraint whereas with policy gradient methods one must hope that
the optimized policy avoided NN caveats such as overfitting or local minima and converged to the optimal policy.

For the reroute constraint, solving the non-parametrized problem amounts to solving the following simple linear pro-
gram for each state

Maximize: (Aβ)Tπ

Subject to: cminβ ≤ π ≤ cmaxβ

And:
∑

πi = 1.

(4)

Where π, β and Aβ are vector representations of (π(ai|s))|A|i=1, (β(ai|s))|A|i=1 and (Aβ(s, a))
|A|
i=1 respectively. We term the

algorithm that solves this maximization problem as Max-Reroute. Similarly, one may derive other algorithms that maxi-
mize other constraints.

Notice that Max-Reroute satisfies the conditions of Corollary 2.1.1, therefore it always provides a positive improvement
step and hence, at least for a perfect approximation ofQβ it is guaranteed to improve the performance. In addition, notice
that Max-Reroute uses only the action ranking information in order to calculate the optimized policy. We postulate that
this trait makes it more resilient to value estimation errors. This is in contrast to policy gradient methods which optimize
the policy according to the magnitude of the advantage function.

3 Two-armed bandit with Gaussian distributed rewards

To gain some insight into the nature of the RBI step, we examine it in a simplified model of a two-armed bandit with
Gaussian distributed rewards [9]. To that end, define the reward of taking action ai as ri ∼ N (µi, σ

2
i ) and denote action

a2 as the optimal action s.t. µ2 ≥ µ1. Consider the learning curve of off-policy learning where a behavior policy is mixed
with a fix exploration parameter, i.e. β(a) = π(a)(1 − ε) + ε

na
(where na is the number of actions and ε = 0.1). The

Q-function is learned with Qπ(a) = (1 − α)Qπ(a) + αr, where α is a learning rate, possibly decaying over time. We
evaluate several constrained policies: (1) RBI with (cmin, cmax) = (0.5, 1.5), (2) PPO with ε = 0.5, (3) TV with δ = 0.25, (4)
greedy step and; (5) forward KL with λ = 1. RBI, TV and PPO were all maximized with our maximization algorithms
(without gradient ascent). To avoid absolute zero probability actions, we clipped the policy such that π(ai) ≥ 10−3. In
addition we added 10 random sample at the start of the learning process. The learning curves are plotted in Figure 1.

The learning curves exhibit two different patterns. For the scenario of σ1 > σ2, a fast convergence of all policies was
obtained. Essentially, when the better action has low variance it is easy to discard the worse action by choosing it and
rapidly improving its value estimation and then switching to the better action. On the other hand, for the case of σ1 < σ2

it is much harder for the policy to improve the estimation of the better action after committing to the worse action. We
see that RBI defers early commitment and while it slightly reduces the rate of convergence in the first (and easy) scenario,
it significantly increases the data efficiency in the harder scenario.
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In the second scenario, RBI has the best and KL has the second-best learning curves in terms of initial performance.
However, there is another distinction between the ideal learning rate (LR) of α = 1

n and a constant rate of α = 0.01. In
the ideal LR case, the advantage of RBI and KL reduces over time. This is obvious since a LR of α = 1

n takes into account
the entire history and as such, for large history, after a large number of iterations, there is no need for a policy which
learns well from a finite dataset. On the other hand, there is a stable advantage of RBI and KL for a fix LR as fix LR does
not correctly weight the entire past experience. Notice that in a larger than 1-step MDP, it is unusual to use a LR of 1

n
since the policy changes as the learning progress, therefore, usually the LR is fixed or decays over time (but not over state
visitations). Hence, RBI has a positive advantage over greedy policies through the entire training process.
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Figure 1: Different constrained policies performances in a two-armed bandit with Gaussian distributed reward setting

4 Experiments in the Atari environment

Figure 2: RBI in a distributed RL setting

We implemented an RBI learning agent in the Atari Learning Envi-
ronment. We adopted a distributed learning setting, similar to the
setting of Ape-X [6]. In this experiment we set out to verify: (1)
whether RBI is a good approach for Deep RL in terms of better final
performance and (2) whether our approach of solving the optimal
policy in the non-parametrized space as part of the actor’s routine,
can be generalized to iterative Deep RL.

To that end, we designed an actor that fetches a stored parametrized
policy πθk and Q-function Qπφk

. The actor solves the non-
parametrized reroute constrained optimization problem (Eq. (4))
and generates an optimized constrained policy π. Our centralized
learner imitates the actor’s policy with a parametrized policy πθk+1

by minimizing a KL divergence loss DKL(π, πθk+1
). The learner

keeps track of the history Q-function by minimizing the Huber
loss L(Qπφk+1

− R), where R is an n-steps target value R(s, a) =∑n−1
k=0 γ

krk + γn
∑
a′ π(s

′, a′)Qπ
φ̄
(s′, a′). Performance curves of 4

Atari games are presented in figure 3 and compared to our Ape-X
algorithm implementation. The initial results demonstrate the ben-
efit of using RBI as an efficient general RL learning algorithm.
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Figure 3: Performance curves of 4 Atari games. The second and third quartiles are shadowed.
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