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Abstract

We propose a policy improvement algorithm for
Reinforcement Learning (RL) termed Rerouted Be-
havior Improvement (RBI). RBI is designed to take
into account the evaluation errors of the Q-function.
Such errors are common in RL when learning the Y-
value from finite experience data. Greedy policies or
even constrained policy optimization algorithms that
ignore these errors may suffer from an improvement
penalty (i.e., a policy impairment). To reduce the
penalty, the idea of RBI is to attenuate rapid policy
changes to actions that were rarely sampled. This ap-
proach is shown to avoid catastrophic performance
degradation and reduce regret when learning from a
batch of transition samples. Through a two-armed
bandit example, we show that it also increases data
efficiency when the optimal action has a high vari-
ance. We evaluate RBI in two tasks in the Atari
Learning Environment: (1) learning from observa-
tions of multiple behavior policies and (2) iterative
RL. Our results demonstrate the advantage of RBI
over greedy policies and other constrained policy
optimization algorithms both in learning from ob-
servations and in RL tasks.

1 Introduction

While Deep Reinforcement Learning (DRL) is the backbone of
many Artificial Intelligence breakthroughs [Silver er al., 2017;
OpenAl, 2018 accessed May 20201, factors such as safety and
data efficiency may inhibit deployment of RL systems to real-
world tasks. DRL is notoriously data and time inefficient — it
requires up to billions of history states [Horgan et al., 2018] or
weeks of wall-clock time [Hessel er al., 2017] to train to expert
level. While it is partially due to the slow training process of
deep neural networks, it is also due to inefficient, yet simple
to implement, policy improvement routines. For example, an
e-greedy policy improvement is known to have a higher regret
than other methods such as Upper Confidence Bound (UCB)
[Auer et al., 2002]. However, the latter is much more challeng-
ing to adjust to a deep learning framework [Bellemare er al.,
2016]. This transformation from the countable state space of
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bandit and grid-world problems to the uncountable state-space
in a DRL framework, calls for efficient improvement methods
that fit into existing deep learning frameworks.

For some real-world problems, like autonomous cars
[Shalev-Shwartz et al., 2016], safety is a crucial factor. Ran-
domly initialized policies and even an RL algorithm that may
suffer from sudden catastrophic performance degradation are
both unacceptable in such environments. While policy ini-
tialization risks may be avoided with Learning from Demon-
strations (LfD) algorithms [Argall ef al., 2009], changing the
policy to improve performance is still a risky task, mainly
since the ()-value of the current policy can only be estimated
from the past data. Therefore, for safe RL, it is desirable
to design improvement algorithms that model the accuracy
of the -value evaluation and can mitigate between fast im-
provement and a safety level [Garcia and Ferndndez, 2015;
Thomas et al., 2015; Pirotta et al., 2013b].

In this work, we propose a policy improvement method that
addresses both the sample efficiency of the learning process
and the problem of safe learning from incomplete experiences.
We start by analyzing the improvement penalty of an arbi-
trary new policy 7(a|s) based on an estimated Q-function of
a past behavior policy 8(a|s). We find that under a simpli-
fied model of learning the ()-values from i.i.d samples, the
variance of a potential improvement penalty is proportional

to W Therefore, we design a constraint, called

reroute, which limits this term. We show that finding the opti-
mal policy under the reroute constraint amounts to solving a
simple linear program. Instead of optimizing this policy via
a gradient descent optimization, we take a different approach
and solve it in the non-parameterized space for every new state
the actor encounters. To learn the new, improved policy with a
parameterized Neural Network (NN), we store the calculated
policy into a replay buffer and imitate the actor’s policy with
a KL regression.

RBI is designed for safe learning from a batch of experi-
ence, yet we show that it also increases data efficiency with
respect to a greedy step and other constraints such as the Total
Variation (TV) [Kakade and Langford, 2002] and PPO [Schul-
man et al., 2017]. In fact, it is akin in practice to the forward
KL constraint [Vuong er al., 2019], however, unlike the KL
constraint, it does not require different scaling for different
reward signals, and it is much more intuitive to design. We



validate our findings both in simple environments such as a
two-armed bandit problem with Gaussian distributed reward
and also in the Atari Learning Environment.

2 Related Work

Many different algorithms have been suggested to address the
problems of efficiency and safety in RL. For safety, [Kakade
and Langford, 2002; Pirotta er al., 2013a] introduced the
concept of constrained policy optimization in RL for guaran-
teed monotonic improvement. TRPO [Schulman ez al., 2015]
adopted it to NN parametrized policies, and its successor PPO
[Schulman et al., 2017] established better empirical results
with a much simpler algorithm. More recent constrained pol-
icy iterations are Smoothing Policies [Papini er al., 2019]
and optimization via Importance Sampling [Metelli ez al.,
2018]. However, these algorithms assume that the Q-function
is known, and the safety issue arises due to the step size in
the gradient optimization. While they provide improvement
guarantees when the ()-value is known, they do not address
the problem of imperfect Q-value approximation.

Another line of works, Double Q-learning [Hasselt, 2010;
Van Hasselt ef al., 2016], and its policy gradient variant TD3
[Fujimoto erf al., 2018] addressed the errors in the (Q-function
from a different perspective. It is known that standard Q-
learning [Watkins and Dayan, 1992] introduces a bias towards
high-value actions; therefore, they use two different estimators
of the Q)-function to reduce this bias. Still, they do not address
other error elements in the ()-value estimator, which result
from learning from incomplete, imperfect data.

3 Preliminaries

We consider a model-free RL paradigm for solving Markov
Decision Process (MDP) problems [Puterman, 2014] with
states s € S, actions a € A and rewards r € R. Our
objective is to learn a policy m which maximizes the ex-
pected discounted return, also known as the objective function
J(m) = E[> )50 7"rk|7], where 0 < v < 1 is the discount
factor. The value of a state as V™ (s) = E[>_, <, v*rkls, 7] is
the total discounted reward followed by a visitation at s. Ac-
cordingly, the @Q)-value of a state-action pair is Q™ (s,a) =
E[>;>07*rk|s,a,7]. The advantage of an action A™ is
the difference between its Q-value and the state’s value,
ie. A™(s,a) = Q7(s,a) — V™ (s). For convenience, we
may simply write 7; to denote 7(a;|s) (omitting the state’s
dependency). In the paper, two important distance func-
tions between policies are discussed. The first is the To-
tal Variation (TV) §(mw,7') = 3>, |m — mj| and the sec-
ond is the KL divergence Dy (r||n') = =3, m;log 7*.
These metrics are often used to constrain the updates of

a learned policy in RL algorithms [Schulman et al., 2015;
Schulman et al., 2017].

4 Rerouted Behavior Improvement

Let us start by examining a single improvement step from
a batch of experience of a behavior policy. Define by g the

behavior policy of a dataset D and by Q7, and Q7 its ex-
act and approximated @-functions. Theoretically, for an in-
finite dataset with an infinite number of visitations in each
state-action pair, one may calculate the optimal policy in an
off-policy fashion [Watkins and Dayan, 1992]. However, prac-
tically, one should limit its policy improvement step over 3
when learning from a realistic finite dataset. To design a
proper constraint, we analyze the statistics of the error of our
evaluation of Q?. This leads to an important observation:
the Q-value has a higher error for actions that were taken
less frequently, thus, to avoid the improvement penalty, we
must restrict the ratio of the change in probability % We will
use this observation to craft the reroute constraint and show
that other well-known monotonic improvement methods (e.g.,
PPO and TRPO) overlooked this consideration. Hence they
do not guarantee improvement when learning from a finite
experience.

4.1 Soft Policy Improvement

Before analyzing the error statistics, we identify a set of poli-
cies that improve 3 if our estimation of Q” is exact. Out of
this set, we will pick our new policy 7. Recall that the most
common improvement method is taking a greedy step, i.e., de-
terministically acting with the highest -value action in each
state, which is known by the policy improvement theorem
[Sutton and Barto, 2017] to improve the policy performance.

It can be readily shown that the policy improvement theorem
may be generalized to also include stochastic policies which
satisfy >, m(a|s) AP (s, a) > 0 Vs where A is the advantage
function of 5. In other words, every policy that increases
the probability of taking positive advantage actions over the
probability of taking negative advantage actions achieves im-
provement. Later, we will use the next lemma to show that an
RBI iteration improves the previous policy.

Lemma 4.1 (Rank-Based Policy Improvement). Let (Az)ll“j1

be an ordered list of the 3 advantages in a state s, s.t. A; 11 >
Ay, and let ¢; = m;/B;. If for all states (cz)ll“;u1 is a monotonic
non-decreasing sequence s.t. ¢;11 > ¢;, then T improves 3
(proof in the appendix).

4.2 Standard Error of the Value Estimation

To provide a statistical argument for the expected error of the
Q@-function, consider learning Q" with a tabular representation.
The @Q-function is the expected value of the random variable
2™(s,a) = Y150 7¥7k|s, a, m. Therefore, the Standard Error
(SE) of an approximation Qﬁ(s7 a) for the @-value with N
i.i.d. MC trajectories’ is

O2%(s,a)
Oc(s,a) = ~ a7
: V/N.B(als)

where N is the number of visitations in state s in D, s.t. N =
a|s)N,. Therefore o.(, ) x ———, and specifically for
B(als) (s,0) o p y

"Notice that MC rollouts from s, a are indeed independent random
variables when averaging only over the first occurrences of the state-
action pair s, a in each episode.

(D



low frequency actions such an estimation may suffer from very
large errors.’

4.3 Policy Improvement in the Presence of Value
Estimation Errors

We now turn to the crucial question of what happens when
one applies an improvement step with respect to an inaccurate

estimation of the @)-function, i.e., Qﬂ .

Theorem 4.2 (The Improvement Penalty). Ler QF = V2 AP

be an estimator of Q° with an error £(s, a) = (Q° —QP)(s, a)
aAna’ let w be a policy that satisfies lemma 4.1 with respect to
AP Then the following holds

V7(s) = VP(s) > —E(s) =
=Y P"(s's) Y els a) (Blals’) = w(als)), (@)

s'eS acA
where E(s) is called the improvement penalty and p™ (s'|s) =

Y im0V P(s LA §'|m)) is the unnormalized discounted state
distribution induced by policy T (proof in the appendix).

Since £(s’, a) is a random variable, it is worth considering
the variance of £(s). Define each element in the sum of Eq.
(2) as z(s',a;8) = p™(s'|s)e(s,a)(B(al|s’) — w(als’)). The
variance of each element is therefore

Ui(s’,a;s) = (pﬁ(s/‘s))Qag(s’,a) (5(&'8’) - 7r(a|s’))2 =

(P"(s'18))%0% 4 0y (B(als') — 7(als'))?
N, B(als’) '

To see the need for the reroute constraint, we can bound the
total variance of the improvement penalty

§ 2 2 2 2
Ou(s’ as8) = Ie(s) = Z \/Jm(s',a;s)o'w(s”’a’;s)’
s',a

s a,s" a’

where the upper bound is due to the Cauchy-Schwarz inequal-
ity, and the lower bound follows from the fact that (s, a)
elements have a positive correlation (as reward trajectories
overlap).

Hence, it is evident that the improvement penalty can be

— 2 .
enormous when the term % is unregulated and even a

single mistake along the trajectory, caused by an unregulated
element, might severely hurt the performance. However, by
using the reroute constraint, which tames each of these terms,
we can bound the variance of the improvement penalty.
While we analyzed the error for independent MC trajecto-
ries, a similar argument also holds for Temporal Difference
(TD) learning [Sutton and Barto, 2017]. [Kearns and Singh,
2000] studied “bias-variance” terms in k-steps TD learning
of the value function. Here we present their results for the
Q@-function error with TD updates. For any 0 < § < 1 with

“Note that even for deterministic environments, a stochastic policy
inevitably leads to 0, (5,q) > 0.

probability at least 1 — §, and a number ¢ of iterations through
the data for the TD calculation, the maximal error term abides

(s,0) < max |Q° (5, a) — Q”(s,0)

1=~ [3log(k/d) 1
< . @3
=T\ Nplals) T ©

While the “bias”, which is the second term in (3), depends on

the number of iterations through the dataset, the “variance”,

which is the square of the first term in (3), is proportional to
1 : . |B=w?

FlalsIN > therefore bounding the ra%tlo 3

improvement penalty for TD learning.

also bounds the

4.4 The Reroute Constraint

2
In order to confine the ratio %, we suggest limiting the

improvement step to a set of policies based on the following
constraint.

Definition 4.1 (Reroute Constraint). Given a policy (3, a pol-
icy m is a reroute(Cmin, Cmax) of B if w(a|s) = ¢(s, a)B(als)
where ¢(s,a) € [Cmin,Cmax]- Further, note that reroute
is a subset of the TV constraint with 6 = min(l —

Crmin, max(c"‘gi"_l, %)) (proof in the appendix).

With reroute, each element in the sum of Eq. (2) is propor-

tional to \/3(als)|1 — ¢(s, a)| where ¢(s,a) € [Cmin, Cmax)-

Let us now consider other popular constraints. Clearly, with
2
TV§ > 5>, |Bi —m the ratio ‘B_Tﬂl is uncontrolled since

actions with a zero probability may increase their probability
up to 6. For the PPO constraint, we prove in the appendix

|B—|?

that it does not force any constraint on the ratio and,

moreover, its optimal solution is non-unique.

Next, there are two possible KL constraints, forward KL
Dk (r||8) < 6 and backward KL Dk (8||7) < 6. The
authors in [Vuong et al., 2019] have shown that the non-
parametric solution for the backward constraint, which is im-

plemented in TRPO, is 7(als) = % where A, N

are chosen such that the KL constraint is binding. However,

2
the backward KL does not restrict the ratio 2= simply be-

cause actions with zero behavioral probabilities, i.e. 3; = 0,
do not contribute to the constraint (see appendix for a simple

example). On the other hand, the forward KL constraint with

its non-parameteric solution of w(als) = %e“‘ﬂ(s*“)/*(s)

indeed bounds the w ratio since 3; = 0 forces m; = 0.
However, this bound depends on the specific size of the advan-
tages and it differs from state to state, hence it requires prior
knowledge of the rewards or alternatively inferring A from the
stochastic data (which is another source for errors).

4.5 Maximizing the Improvement Step under the
Reroute Constraint

We now turn to the problem of maximizing the objective
function J(7) under the reroute constraint and whether such
maximization improves the previous policy. To do so, we
may maximize the advantage of 7 over S which equals



Algorithm 1 Max-Reroute

Require: s, 3, A®, (Cuin, Comax)
A— A
A <+—1—cuin
m(als) «— cminfB(als) Va € A
while A > 0 do
a = argmax, ; A%(s, a)
Aa = min{A, (Cmax - Cmin)B(a|s)}
A+— Ala
A+—A-A,
m(als) «— m(als) + A,
end while
return {r(als), a € A}

to JA(m, B) = Esur[>, m(als)AP(s,a)] [Schulman et al.,
2015]. Maximizing J# without generating new trajectories
of 7 is a hard task since the distribution of states induced by
the policy 7 is unknown. Therefore, one usually resorts to pol-
icy gradient techniques which optimize a surrogate off-policy
objective function JOF (7, 8) = Es (>, m(als)AP (s, a)].
However, to avoid large state distribution shifts, this ap-
proach can only be applied when the behavior policy is
relatively closed to the new policy [Sutton ez al., 2000;
Schulman er al., 2015].

Here we suggest an alternative: instead of optimizing a
parametrized policy that maximizes JF, the actor (i.e., the
agent that interacts with the MDP environment) may ad hoc
calculate a non-parametrized policy that maximizes the im-
provement step Y, 7(a|s) AP (s, a) (i.e., the argument of the
JA(m, B) objective) for each different state. This method di-
rectly maximizes the J4 objective since the improvement step
is independent between states. Therefore, it lifts the require-
ment for a small state distribution shift between § and 7.

Non-parametric maximization bears another important ad-
vantage. Contrary to policy gradient methods where the op-
timization may fail to converge to a global maximum (due
to sub-optimal optimization routines), it is possible to design
algorithms that are guaranteed to maximize the objective un-
der the constraint. For example, for the reroute constraint,
solving the non-parametrized problem amounts to solving the
following simple linear program for each state

Maximize: (A°)Tw

Subject to: CpinB < T < CmaxB 4)

And: Zm =1,
A

where 7, 3 and A” are vector representations of (7(a;|s));Z},
(ﬂ(ai|s))iﬁ‘1 and (AP (s, ai))iﬁ‘l respectively. While it may
be solved with the Simplex algorithm [Vanderbei and oth-
ers, 2015], we present here a straightforward solution, termed
Max-Reroute (Alg. 1). Max-Reroute is a special case of the
extended value iteration with the Bernstein bound [Dann and
Brunskill, 2015; Fruit et al., 2017]. Similar to Max-Reroute,
one may derive other algorithms that maximize other con-
straints (see Max-TV and Max-PPO in the appendix). We will
use these algorithms as baselines for the performance of the
reroute constraint.

Notice that Max-Reroute, Max-TV and Max-PPO satisfy
the conditions of lemma 4.1. Therefore they always improve
the previous policy, and hence, at least for a perfect approxima-
tion of Q7 they are guaranteed to improve the performance.
In addition, they all use only the action ranking information
to calculate the optimized policy. We postulate that this trait
makes them more resilient to value estimation errors. This
is in contrast to policy gradient methods, which optimize the
policy according to the magnitude of the advantage function.

5 Two-armed Bandit with Gaussian
Distributed Rewards

To gain some insight into the nature of the RBI step, we
begin by examining it in a simplified model of a two-armed
bandit with Gaussian distributed rewards [Krause and Ong,
2011]. To that end, define the reward of taking action a; as
ri ~ N(u;,02) and let action ay be the optimal action s.t.
e > pp. Let us start by considering the regret of a single
improvement step from a batch of transition samples. In this
case, the regret is defined as

R™ = pp = V™ = pp — Z Elr(a;)r:]

i=1,2

Specifically, we are interested in the difference between the
behavior policy regret and the modified policy regret, i.e. R° —
R™, which is equal to

R — R™ = PIVF + (1 — PA)VF - VP

where [ is an indicator of the clean event when 75 > 71 (where
7, 1s the empirical mean of r; over the batch data). Since 7 and
9 have Gaussian distributions, we can easily calculate P(7).
In Figure 1 we plot the curves for 41 = —1 and ps = 1 for a
different number of batch sizes and different variances. As a
baseline we plot the difference in regret for a greedy step. First,
we see that for poor behavior policies s.t. S(az2) < f(a1), itis
better to make a greedy step. This is because the suboptimal
action has a sufficiently accurate estimation. However, for
good behavior policies s.t. 5(az) > ((a1) (which is generally
the case when learning from demonstrations and even in RL
after the random initialization phase), the greedy regret grows
significantly s.t. it is better to stick with the behavior policy.
Intuitively, when the behavior policy reaches the optimum, an
overestimation of 7; triggers a bad event I which leads to a
significant degradation. On the other hand, an RBI step is safe
s.t. it always has a lower regret than 3. In addition, its regret
is lower than the greedy regret for good behavior policies.

To find out how RBI performs in an iterative RL process
we continue with the bandit example, but now we consider
the learning curve of off-policy learning where the behavior
policy is mixed with a fixed exploration parameter, i.e. 8(a) =
m(a)(1 —€) + ;= (where n, is the number of actions and
¢ = 0.1). The Q-function is learned with Q7 (a) = (1 —
a)Q™(a) + ar, where « is a learning rate, possibly decaying
over time. We evaluate several constrained policies: (1) RBI

*Note that a choice of too large cmax is not safe, specifically
Cmin = 0, and cmax — 00 converges to the greedy step.
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Figure 2: Different constrained policies’ performances in a two-
armed bandit with Gaussian distributed reward.

with (Cmin, Cmax) = (0.5,1.5); (2) PPO with ¢ = 0.5; (3)
TV with 6 = 0.25; (4) greedy step; and (5) forward KL. with
A = 1. RBI, TV and PPO were all maximized with our
maximization algorithms (without gradient ascent). To avoid
absolute zero probability actions, we clipped the policy such
that 7(a;) > 1073, In addition we added 10 random samples
at the start of the learning process. The learning curves are
plotted in Figure 2.

The learning curves exhibit two different patterns. For the
scenario of o; > o9, rapid convergence of all policies was
obtained (note the x-axis logarithmic scale). Intuitively, when
better action has low variance, it is easy to discard the worse ac-
tion by choosing it and rapidly improving its value estimation
and then switching to the favorable action. On the other hand,
for the case of o7 < 079, it is much harder for the policy to im-
prove the estimation of the favorable action after committing
to the worse action. We see that RBI defers early commitment,
and while it slightly reduces the rate of convergence in the

easier scenario, it significantly increases the data efficiency
in the harder one. We postulate that the harder scenario is
also more prevalent in real-world problems where, usually,
one must take a risk to get a big reward (where avoiding risks
significantly reduces not only the reward variance but also the
expected reward).

An interesting distinction is between the ideal learning rate
(LR) of a = % and a constant rate of & = 0.01. In the ideal
LR case, the advantage of RBI and KL is reduced over time.
This is obvious since an LR of o = % takes into account the
entire history. As such, for a large history and after a large
number of iterations, there is no need for a policy that learns
well from a finite dataset. On the other hand, there is a stable
advantage of RBI and KL for a fixed LR as a fixed LR does
not correctly weight all the transition samples. Notice that
in a larger than 1-step MDP, it is unusual to use an LR of %
since the policy changes as the learning progresses, therefore,
usually, the LR is fixed or decays over time (but not over state-
visitations). Hence, we expect a positive advantage for RBI
over greedy steps during the entire training process.

6 Learning to Play Atari by Observing
Human Players

In section 4, the reroute constraint was derived for learning
from a batch of transition samples of a single behavior policy
[ and a tabular value and policy parametrization. In this
section, we empirically extend our results to a NN parametric
form (both for value and policy) and a dataset generated by
multiple policies {8;}. To that end, we use a crowdsourced
dataset of 4 Atari games (Spacelnvaders, MsPacman, Qbert,
and Montezuma’s Revenge) [Kurin ef al., 2017], where each
game has roughly 1000 recorded episodes. Such a dataset of
observations is of particular interest since it is often easier to
collect observations than expert demonstrations. Therefore,
it may be practically easier to initialize an RL agent with
learning from observations than to generate trajectories of a
single expert demonstrator.

For this purpose, we aggregated all trajectories into a single
dataset and estimated the average policy [3 as the average be-
havior of the dataset. Practically, when using a policy network,
this sums to minimizing the Cross-Entropy loss between the
Bo(-|s) and the empirical evidence (s, a) as done in classifica-
tion problems. To estimate the ()-value of 5 we employed a
Q-network in the form of the Dueling DQN architecture [Mnih
et al., 2015; Wang et al., 2015] and minimized the MSE loss
between Monte-Carlo reward trajectories ), - ~*r), and the

Q" (s, a) estimation. Note that this does not necessarily con-
verge to the true ()-value of 3 (since the trajectories were
generated by the behavior policies {/3;}), but it empirically
provides a close estimation with a small error.

Given our estimations of 3 and Q°, we applied several
improvement steps and evaluated their performance. For the
RBI, TV, and greedy steps, we calculated the improved policy
7 in the non-parametric space (i.e., during evaluation) with
Max-Reroute and Max-TV. For the PPO step we applied an
additional gradient ascent optimization step and calculated the
PPO policy. As an additional baseline, we implemented the
DQfD algorithm [Hester et al., 2018].
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Figure 3: Learning to play Atari from a dataset of human players:
Learning curves.

Method Pacman Qbert Revenge SI
Humans 3024 3401 1436 634
Behavioral 1519 8562 1761 678
RBI(0.5,1.5) 1550 12123 2379 709
RBI(0.25,1.75) 1638 13254 2431 682
RBI(0, 2) 1565 14494 473 675
TV(0.25) 1352 5089 390 573
PPO(0.5) 1528 14089 388 547
DQfD 83 1404 1315 402

Table 1: Final scores of different policies

First, we found out that behavioral cloning, i.e., merely
playing with the calculated average behavior (3, generally
yielded good results with the exception of MsPacman, which
is known to be a harder game (see a comparison of human and
DQN scores in [Mnih et al., 2015]). For Qbert, the behavioral
score was much better than the average score, and we assume
that this is because good episodes tend to be longer in Qbert.
Thus, their weight in the average behavior calculation is higher.

We evaluated Max-TV with § = 0.25 since it en-
capsulates the reroute(0.5,1.5) region. However, unlike
reroute(0.5,1.5), a TV constrained update obtained lower
performance than the behavioral cloning in all games. At first
glance, this may be surprising evidence, but it is expected after
analyzing Eq. (2). Only a single state with a bad estimation
along the trajectory is required to reduce the overall score
significantly. On the other hand, reroute(0.5,1.5) always
increased the behavioral score and provided the overall best
performance.

While PPO with ¢ = 0.5 generally scored better than TV,
we noticed that in two games, it reduced the behavioral score.
The final results (see Table 1) showed similarity between
PPO(0.5) and reroute(0, 2). This indicates that PPO tends
to settle negative advantage action to zero probability in order
to avoid the negative PPO penalty. Empirically, this also indi-
cates that it is important to set ¢,y > 0 to avoid catastrophic
forgetting which occurs when the probability of a good action

is reduced to zero due to value estimation errors. Finally, we
observed a significantly lower score of the DQfD algorithm.
DQID uses the demonstrations data to learn a policy with
an almost completely off-policy algorithm (it adds a regular-
ization term that should tie the learned policy to the expert
behavior, but its effectiveness depends on the ()-value magni-
tude). This strengthens our assertion that when learning from
a fixed size of transition samples, the calculated policy must
be constrained to the behavior policy presented in the data.

7 TIterative RL with RBI

We now turn to the implementation of RBI learning in an iter-
ative RL setting in the Atari environment without utilizing any
prior human demonstrations. We adopted a distributed learn-
ing setting with multiple actors and a single learner process,
similar to the setting of Ape-X [Horgan er al., 2018]. However,
contrary to the Ape-X algorithm, which learns only a single
R-value network (and infers the policy with a greedy action
selection), we learned side-by-side two different networks: (1)
a Q-value network, termed QQ-net and denoted Q7 ; and (2) a
policy network termed 7-net and denoted my.

In this experiment we attempt to verify: (1) whether RBI
is a good method in DRL also for a better final performance
(a tabular example of RL with RBI was discussed in section
5); and (2) whether our approach of solving for the optimal
policy in the non-parametrized space as part of the actor’s
routine can be generalized to iterative RL. Recently, [Vuong
et al., 2019] developed a framework of constrained RL where
they generate samples with a policy mg, (where 6y, is the set
of network parameters in the k-th learning step), and in the
learner process, they calculate an improved non-parameterized
policy 7 under a given constraint and learn the next policy
g, by minimizing the KL distance Dy, (7, ,T).

We adopted a slightly different approach. Instead of cal-
culating the non-parameterized policy in the learner process,
each actor loads a stored policy mp, and calculates the non-
parameterized optimal policy 7 as part of the actor routine
while interacting with the environment and generating its tra-
jectories. The optimized policy for each new state is then
stored to a replay buffer and executed by the actor (after mix-
ing with a small random exploration). The learner process
learns to imitate the optimized policy by minimizing the loss
D (m, g, ,). This approach has several additional bene-
fits:

1. The learner is not required to calculate the optimized
policy; therefore, the rate of processing mini-batches of
transitions increases. This rate is generally the bottleneck
of the wall clock time of the process.

2. The Q-net estimates the value of the 7-net policy (i.e., the
past policy), contrary to [Vuong er al., 2019] where the
(2-net estimates the value of the past policy, but the 7-net
is the future policy. This improves the value estimation
since 7-net is used to calculate the target value.

3. The executed policy 7 is the optimal solution of the con-
strained optimization in Eq. (4), unlike policy gradient
iteration, which gradually approaches the optimal solu-
tion.
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Figure 4: Performance curves of 12 Atari games over 3.125M training steps. The second and third quartiles are shadowed.

Algorithm 2 RBI learner
Require: D = {(s;,a;,7;,7i),...}
repeat

B <— PriorityBatchSample(D, N)

mo, = m-net(s;0)

QF, = Q-net(s, a; )

Calculate a target value with a target network:

Ri =321 Vit +9" g, 75(;18i4n) QY (Sitn, a;)

L™ (mg,) = 3 > Drer(mi, oy )
'Cq( ;Zk) = % Zz(RZ - ng,i)Q
0k+1 = 9k - aV(;L:”(ng)
Grt1 = b — aVLYQF)
until termination
return 6, ¢

Algorithm 3 RBI actor
reset the MDP and generate sg
repeat
mg = m-net(s;; 0)
5 = Qnet(si, ;)
m = MaxReroute(7y, $;, Qg)
Add exploration: 8 = 7(1 —¢) + ;=
a; = Sample(f)
executed a; and obtain a new state s;4; and reward r;
Add to dataset D+ = {(s;, a;, i, 7i), ... })
until termination

As stated in the previous experiment, setting cpj, > 0
is important in avoiding catastrophic forgetting, and choos-
ing too high a ¢« can lead to greedy-like improvement
steps (see also Fig. 1). Following these observations, we
set (Cmins Cmax) = (0.1,2), which we found to balance be-
tween safety and efficiency. We also found that it is better to
mix the RBI solution with a small amount of a greedy pol-
icy for a faster recovery of actions with near-zero probability.

Therefore, the actor policy was
—(1 rbi greedy
™= ( - Cgreedy)ﬂ_ + CgreedyT™ )

with ¢greeqy = 0.1. The final algorithms for the learner and
actors are presented in Algorithms 2 and 3.

We evaluated RBI and the Ape-X baseline over a set of 12
Atari games with a varying range of difficulty. As an external
baseline, we compared our results to the Rainbow score [Hes-
sel et al., 2017]. For a fair comparison, we used a batch size
of 128 and capped the learning process to 3.125M backward
passes. This is identical to the number of different states that
were processed by the network in Rainbow (12.5M backward
passes with a batch of 32). Altogether, RBI provided better
policies in 7 out of 11 environments with respect to our Ape-X
implementation and in 9 out of 11 environments with respect
to the Rainbow score (all tied in Freeway). See Table 2 and
the extended results section in the appendix. In some games
(e.g., Qbert), RBI improved its policy while Ape-X converged
to a steady policy. We postulate that with NN parametriza-
tion, taking greedy steps may lead to faster convergence of the
nets since the diversity of actions is much lower. Generally,
high diversity, i.e., a higher entropy policy, is known to be
beneficial for exploration [Haarnoja et al., 2018], and indeed,
we noticed that RBI learns hard exploration tasks faster, like
oxygen replenish in Seaquest. Another interesting game is
Berzerk; in this game, while RBI was more efficient during
the majority of the learning process and had lower regret (i.e.,
minus the area under the curve), the Q-learning achieved a
higher final score. We found out that due to the deterministic
nature of the ALE, the deterministic greedy policy found a
better strategy near the end of the learning process.

8 Conclusions

We introduced a constrained policy improvement method,
termed RBI, designed to generate safe policy updates in the
presence of common estimation errors of the (Q-function. In
Learning from Observation settings, where one has no ac-
cess to new samples and off-policy RL fails, the RBI update



can safely improve upon naive behavioral cloning. In addi-
tion to safety, we found out that the RBI updates are more
data-efficient than greedy and other constrained policies in
training RL agents. We validated our findings both in a sim-
ple two-armed bandit problem and in the Atari domain. To
train parametrized policies, we designed an off-policy method,
with maximization guarantees, to train parametrized policies
with the RBI updates: an actor solves a non-parametrized
constrained optimization problem (Eq. (4)) while a learner
imitates the actor’s policy with a parametrized network.

Game RBI Ape-X  Rainbow
Asterix 838,018.3 926,429.2 428,200.3
Berzerk 12,159.3 43,867.7 2545.6
Breakout 780.4 515.2 417.5
Enduro 2260.9 2276.1 2,125.9
Freeway 34.0 34.0 34.0
Frostbite 9,655.0 8,917.3 9,590.5
IceHockey 40.4 39.9 1.1
Kangaroo 14,426.7 14,897.5 14,637.5
MsPacman 8,193.9 6,401.8 5,380.4
Qbert 32,894.2 26,127.5 33,817.5
Seaquest 26,963.7 12,920.7 15,898.9
Spacelnvaders 45,155.8 40,923.4 18,729.0

Table 2: Final scores table

A Appendix

The full appendix and the source code for the ATARI experi-
ments are found at github.com/eladsar/rbi/rbi.
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