Secure Agents

Piero A. Bonatti* Sarit Kraus’ V.S. Subrahmanian®

Abstract

With the rapid proliferation of software agents, there comes an increased need
for agents to ensure that they do not provide data and/or services to unauthorized
users. We first develop an abstract definition of what it means for an agent to preserve
data/action security. Most often, this requires an agent to have knowledge that is im-
possible to acquire — hence, we then develop approximate security checks that take
into account, the fact that an agent usually has incomplete/approximate beliefs about
other agents. We develop two types of security checks — static ones that can be checked
prior to deploying the agent, and dynamic ones that are executed at run time. We prove
that a number of these problems are undecidable, but under certain conditions, they
are decidable and (our definition of) security can be guaranteed. Finally, we propose
a language within which the developer of an agent can specify her security needs, and
present provably correct algorithms for static/dynamic security verification.

*Dipartimento di Informatica, Universitda di Milano, Via Bramante 65, I-26013 Crema, Italy. Email:
bonatti@Qcrema.unimi.it

"Dept. of Mathematics and Computer Science, Bar-Ilan University, Ramat Gan, 52900 Israel, and
Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742 E-Mail:
sarit@cs.biu.ac.il

*Institute for Advanced Computer Studies, Institute for Systems Research and Department of Computer
Science, University of Maryland, College Park, Maryland 20742. E-mail: vs@Qcs.umd.edu

Contents

1 Introduction

2 Motivating Example

3 Preliminaries: IMPACT Agents

4 Abstract Agents

4.1 Abstract Behavior: Histories
4.2 Logical Agent States
4.3 Agent Consequence Operation.

5 Security of Abstract Agents

5.1 Security Specificationso
5.2 Secure Historieso

5.3 Degrees of Cooperation

6 Approximating Agent Security

6.1 TheBasicIdea,
6.2 Approximating Possible Histories
6.3 Approximating Languages
6.4 Approximating States Lo
6.5 Approximate Secretso
6.6 Approximate Consequences
6.7 Approximate Data Security Check
6.8 Compact Approximations
6.9 Static Approximations

7 Undecidability Results

8 Security Specification Languages

8.1 The History Component Histq
8.2 Agent Approximation Languages
8.2.1 History Approximation
8.2.2 State Approximation Language

8.2.3 Consequence Approximation Language

8.2.4 Approximate Secrets Language
8.2.5 Agent Approximation Program

10
10
11
11

12
13
14
18

19
19
20
22
23
25
26
28
31
33

35

9 Algorithms for Security Maintenance
9.1 Dynamic Security Verification Algorithm
9.2 Static/Combined Security Verification Algorithm

10 Related Work
11 Conclusions

A Appendix: Feasible, Rational, and Reasonable Status Sets

49
51
52

57

61

67

1 Introduction

Over the last few years, there has been intense work in the area of intelligent agents [30, 63].
Applications of such agent technology have ranged from intelligent news and mail filtering
programs [40], to agents that monitor the state of the stock market and detect trends in
stock prices, to intelligent web search agents [21], to the digital battlefield where agent
technology closely monitors and merges information gathered from multiple heterogeneous
information sources [1, 35, 36, 52, 61]. More recently, we have seen an increase in the number
of agents that automatically interact with one another. Such agents can negotiate with each
other, participate in auctions, make group consensus decisions, and the like [34, 60, 46, 32].

In previous work [2, 20, 19], Eiter et. al. have developed a framework for building agents
on top of specialized data structures and/or legacy code bases. Each such agent has a
“state” and provides a set of services to other agents. Such services include data retrieval
services (answering database queries, retrievals from geographic information systems, etc.)
as well as computational services (e.g. creating a plan, recognizing features in imagery,
finding a route, etc.). However, an agent a may store a vast quantity of data only some of
which it is willing to disclose to another agent b — for example, a tank agent may disclose
its location only to certain other agents, not all. Likewise, a military route planning agent
may create routes only for authorized clients, not for others. In commercial applications,
agents may provide data and services only to customers who have paid an appropriate fee.
Thus, agent designers need to have a framework within which they can describe what data
and what services should be provided by their agent to other agents/clients.

Most existing work on agent security has focused on two aspects — protecting host
computers from mobile agents (or applets) [25], and the converse problem of protecting
agents from the hosts [47]. Our work complements these two approaches, because (i) we do
not restrict interest to mobile agents only but consider the broader class of agents, mobile
and otherwise, in multiagent Al environments [42], and (ii) we develop techniques by which
an agent can provide services and release data to other agents while maintaining security.

The main contributions and organization of this paper may be summarized as follows.

e In Section 2, we provide a small motivating multiagent example for our security frame-
work.

e In Section 3, we describe a framework called IMPACT (Interactive Maryland Platform
for Agents Collaborating Together) in which a (very general) concept of agent is
introduced [20, 19].

e In Section 4, we provide an abstract concept of an agent that is not dependent upon
IMPACT, but is applicable to other agent systems as well.

e In Section 5, we introduce two concepts used for defining aspects of agent security —
histories of what the agent did in the past, and consequence operations used by an
agent to draw inferences. Intuitively, to prevent agent b from inferring a secret, agent
a must somehow ensure that agent b’s “true” state of knowledge of the world (which
is shaped by agent b’s “true” history and agent b’s “true” consequence operation)
does not entail the secret. Similar definitions are needed to ensure that agent b does
not utilize services it is not cleared to use. We also formally define what it means for
an agent a to maintain “true” security” in terms of the above concepts. Specifically,

we show that a naive definition of security called “surface security” is not enough for
maintain true security and our notion of data security alleviates this problem. We do
likewise for “true” action security.

e It is usually impossible in practice for agent a to have correct and complete information
about agent b’s state, consequence operation and history. Hence, maintaining “true”
security is infeasible in practice. To alleviate this problem, we define, in Section 6,
what it means for agent a to approximate b’s state, consequence operation and history.
Based on these concepts, we define an approximation of true data security and true
action security and show that under certain conditions, approximate security implies
true security, i.e. the approximation is “good enough” to maintain true security.

e In Section 7, we show that the general problem of maintaining data and action
security for agents is undecidable. It does not matter whether these agents are built
in IMPACT or in Aglets [54] or in Java[44]. However, this undecidability is also true

for approximate data and action security of general agents.

e As a consequence, in Section 8, we provide a (family of) languages through which
agent designers can express the security needs of their agents. Using this language,
designers of an agent a can express how agent a approximates the history, state,
consequence operation, etc., of another arbitrary agent b. We show that this language
is decidable, and thus provides a polynomially implementable fragment of the general
agent security theory proposed in this paper.

e In Section 10, we describe related work on agent security, and assess the strengths
and weaknesses of our approach.

2 Motivating Example

Consider a small multiagent application involving two tanks tankl and tank2, a command
center com.c, and a monitoring agent.

The two tanks are both engaged in some operational mission, and are continuously aware
of their geo-location, bearing, and speed. They are tasked to perform actions by the com-
mand center. The command center is authorized to know all information about the tanks.

In contrast, the monitoring agent may ask the tanks for information on their supply
state (e.g. how many rounds of fire/fuel they have, whether any parts need repair, etc.).
The monitoring agent is not authorized to know the precise location of the tank — it is
important to note that this does not mean that the tank cannot reveal its bearing/speed
to the monitoring agent. In fact, it may even be able to reveal an old position without
compromising security. The monitoring agent may task the tanks to take appropriate
repair actions, but has no authority to change their route, etc.

We will use these agents as a running example throughout this paper.

3 Preliminaries: IMPACT Agents

In IMPACT, each agent a is built on top of a body of software code (built in any program-
ming language) that supports a well-defined application programmer interface (either part

of the code itself, or developed to augment the code).

Definition 3.1 (Software Code) We may characterize the code on top of which an agent
is built as a triple S =40 (Ts,Fs,Cs) where:

1. Tgs is the set of all data types managed by S,

2. Fs is a set of predefined functions which makes access to the data objects managed by
the agent available to external processes, and

3. Cs 1is a set of type composition operations. A type composition operator is a partial

n-ary function ¢ which takes as input types m1,... ,7, and yields as a result a type
c(T1y... ,mn). Asc is a partial function, ¢ may only be defined for certain arguments
Tlyev. yTn, b.€., ¢ 18 not necessarily applicable on arbitrary types.

In general, we will assume that the piece of software S¢ associated with an agent a € A is
represented by a triple S® =g.¢ (7§, F§,C$). When we are referring to the code associated
with a fixed agent a, we will often drop the superscript a above. Intuitively, Tg is the set
of all data types that are managed by the agent. Fgs intuitively represents the set of all
function calls supported by the package S’s application programmer interface (API). Cs the
set of ways of creating new data types from existing data types. This characterization of
a piece of software code is a well accepted and widely used specification. For example, the
Object Data Management Group’s ODMG standard [13] and the CORBA framework [49]

are existing industry standards consistent with this specification.

Each agent also has a message box having a well defined set of associated code calls that
can be invoked by external programs.

Example 3.1 Let us assume that the two tank agents each have function calls called:

o speed() which returns as output, the current speed (non-negative integer) of the tank;

e bearing() which returns as output, the current bearing (integer between 0 and 360)
describing the angular bearing of the tank;

o location(T) which returns as output, the pair (z,y) defining the location of the tank
at time T relative to some fixzed map;

e region(T) which returns as output, a quadruple (£,7,b,t) describing the region {(z',y')|¢ <
' <r&b <y <t} such that location(T) € region(T).

Likewise, the command center agent may support the following function calls:

o find_friendly({,r,b,t) which returns as output, the set of all triples containing a
friendly tank and its location in the specified region.

e find_enemy({,r,b,t) which returns as output, the set of all triples containing an en-
emy tank and its location in the specified region.

e distance(z,y,z’,y’) returns as output, the distance between two points.

The state of an agent, at any given point ¢ in time, consists of the set of all instantiated
data objects of types contained in 7"

Definition 3.2 (State of an Agent) At any given point t in time, the state of an agent
will refer to a set Og(t) of objects from the types Ts, managed by its internal software
code. An agent may change its state by taking an action—either triggered internally, or by
processing a message received from another agent. Throughout this paper we will assume
that except for appending messages to an agent a’s mailbox, another agent b cannot directly
change a’s state. However, it might do so indirectly by shipping the other agent a message
issuing a change request.

Queries and/or conditions may be evaluated against an agent state using the notion of a
code call atom and a code call condition defined below.

Definition 3.3 (Code Call/Code Call Atom) IfS is the name of a software package,
f is a function defined in this package, and (di,... ,dy) is a tuple of arguments of the right
input types of f, then S:f(ds,... ,dn) is called a code call.

If cc is a code call, and X s either a variable symbol, or an object of the output type of
cc, then in(X, cc) is called a code call atom.

Code call atoms, when evaluated, return boolean values, and thus may be thought of as
special types of logical atoms. Intuitively, a code call atom of the form in(X, cc) succeeds
just in case when X can be set to a pointer to one of the objects in the set of objects
returned by executing the code call. In database terminology, X is a cursor on the result
of executing the code call.

Definition 3.4 (Code Call Condition) A code call condition x is defined as follows:

1. FEvery code call atom s a code call condition.
2. If s,t are either variables or objects, then s =t is a code call condition.

3. If s,t are either integers/real valued objects, or are variables over the integers/reals,
then s < t,s > t,s > t,s <t are code call conditions.

4. If x1,x2 are code call conditions, then x1 & x2 is a code call condition.

A code call condition satisfying any of the first three criteria above is an atomic code call
condition.

Example 3.2 Let us return to the case of example 3.1. Here are some example code call
conditions.

1. in(X, tankl : speed()) & X > 20.
This code call condition succeeds iff the speed of tankl exceeds 20 units.

2. in(X, tankl : speed()) & in(Y, tank2: speed()) & X > Y.
This code call condition succeeds iff the speed of tankl exceeds that of tank2.

3. in(V, com_c: find_friendly(10,20,10,20)) & in(V', com_c : find_enemy(10,20,10,20)) &
in(D, com_c : distance(V.x,V.y,V .x,V'.y)) & D < 5.
This code call condition finds all pairs (V,V') of tanks where V is friendly, V' is an
enemy tank, and the two tanks are within 5 units of distance from each other. Such
a code call condition may be used by someone monitoring battlefield conditions who
wants to find all tanks V which are in danger.

It is important to note that not all code call conditions are evaluable. Subrahmanian et.
al. [53, ch. 4] identify a class of code call conditions called safe code call conditions and
show that for each code call condition which is safe, there is at least one evaluation order
that can be used to evaluate the individual conjuncts in the code call condition.

Each agent has an action-base consisting of a description of the various actions that the
agent is capable of executing. Actions change the state of the agent and perhaps the state of
other agents’ msgboxes. Such actions comprise the services that other agents might request.

An agent also has an associated notion of concurrency which takes a set of actions and the
agent state as input, and merges the actions into a single “unified” action that is executed
in lieu of the set of individual actions. [20] provide several alternative implementations of
such notions of concurrency — the agent developer selects or defines one that is appropriate
for his agent.

Each agent has an associated set of integrity constraints—only states that satisfy these
constraints are considered to be wvalid or legal states. Each agent has an associated set
of action constraints that define the circumstances under which certain actions may be
concurrently executed. As at any given point ¢ in time, many sets of actions may be
concurrently executable, each agent has an Agent Program that determines what actions
the agent can take, what actions the agent cannot take, and what actions the agent must
take. The agent program is defined as follows.

Definition 3.5 (Status Atom/Status Set) If a(f) is an action,
and Op € {P,F,W,Do,0}, then Opa(t) is called a status atom. A status set is a finite
set of status atoms.

Intuitively, Pa means « is permitted, Fa means « is forbidden, O« means « is obligatory,
Do o means « is actually done, and Wa means that the obligation to perform « is waived.

Definition 3.6 (Agent Program) An agent program P is a finite set of rules of the form
A+« x&t+tA&... &+ A,

where x 1s a code call condition and A1,... ,A, are status atoms.

As is common in logic programming, all variables are assumed to be implicitly universally
quantified at the front of the rule. As a consequence, it is important to note that the same
variable may occur both inside x and inside the status atoms Aj1,... , A, — such variables
express conditions spanning both the code call condition and the status atoms.

The semantics of agent programs are well described in [20, 19]. Appendix A provides a
brief overview of the three most popular semantics for agent programs.

In order to assist the reader, Table 1 lists the notation used in this paper, and the section
in which each is first defined.

Notation Location Description

S Def. 3.1 Software code

Os(t) Def. 3.2 Agent state

S:f(di,... ,dn) Def. 3.3 Code call

in(X,S:f(dy,... ,dn)) | Def. 3.3 Code call atom

X Def. 3.4 Code call condition

a(f) Section 3 Action

Laq Section 4.2 beginning fact language of agent a

h Def. 4.1 History

posHa Def. 4.2 Possible histories of a

Cnq Def. 4.4 consequence operation of a

Fa Section 4.3 after Def. 4.4 | provability relation

Secq Def. 5.1 Agent secrets function

ASecq Def. 5.2 Agent action security function
h1 <a—b> ho Def. 5.4 Compatible histories

Oy (hy) 4.3 b’s state at hy

Violatedg (hp) Def. 5.5 Violated secrets

posHy Def. 6.1 Possible histories approximation
~rh Def. 6.2 History correspondence relation
AppH(h) Def. 6.3 Approximate current history
AppLy, Def. 6.4 Approximate fact language

g Def. 6.5 Fact correspondence relation

~re Def. 6.7 Condition correspondence relation
AppOy Def. 6.8 Approximate state function
AppSec(b) Def. 6.10 Approximate secrets

AppCny, Def. 6.12 Approximate consequence operation
OVioly, Def. 6.17 Overestimate of violated secrets
UVioly, Def. 6.18 Underestimate of violated secrets
Go »—)‘?? Gm Def. 8.7 Pseudo-derivation

Table 1: Summary of notation

4 Abstract Agents

As described in the Introduction, each agent has a “true” history (describing its past in-
teractions with other agents), and a “true” consequence operation. In addition, a logical
notion of state built on top of the previous definition will be needed to define what an agent
knows at a given instant of time. Intuitively, to preserve security, we need to ensure that
no secret is known to the agent.

4.1 Abstract Behavior: Histories

There are two types of events that may determine an agent a’s behavior. An action event
<a(f>,b> describes an action that a has taken in response to a request by an agent b. If
b = a, then a(t_) is a “spontaneous” action, executed to achieve some of a’s own goals. A
message event is represented as a triple of the form (sender, receiver, body), where sender
and receiver are agents, sender # receiver, and body is either a service request p or an
answer, that is, a set of ground code call atoms.

Definition 4.1 (Histories) A history is a possibly infinite sequence of events, such as
(e1,€2,...). We say that a history h is a history for a if each action in h can be executed
by a, and for all messages (s,r,m) in h, either s=a orr=a.

The concatenation of two histories hy and ho will be denoted by hi - hy. With a slight
abuse of notation, we shall sometimes write h - e, where e is an event, as an abbreviation
for the concatenation h - (e) .

A history for a keeps track of a set of messages that a has exchanged with other agents,
and a set of actions that a has performed.

The notion of history for a captures histories that are syntactically correct. However,
not every history for a describes a possible behavior of a. For instance, some histories are
impossible because a’s code will never lead to that sequence of events. Some others are
impossible because they contain messages coming from agents that will never want to talk
to a. This leads to the notion of “possible histories” below.

Definition 4.2 (Possible Histories) Every agent a has an associated set of histories,
posHa, called the possible histories of agent a.

For example, a history where agent a sends mail to agent b without a prior request may
not constitute a possible history for agent b.

Example 4.1 A possible history for tankl agent may have the form (...e1, e2, €3, e4...),
where:

e1 = (com_c,tankl, set:speed(new_speed)),

ez = (set_speed(55kmh),com_c),

es = (com_c,tankl, location(Xpow)),

es = (tankl,com_c,{in((50,20,40), tankl: locatzion(X,ow))}) -

10

Notice that e1, e3, eq have three arguments and hence they are message events. ey refers to
a message sent by com_c to tankl requesting that the tankl’s speed be set to a new speed.
es has only two arguments and hence describes an action — in this case, the event says that
the speed has been set to 55 in response to com_C’s request. Fvent e3 is another message
event sent by com_c to tankl requesting location information. FEvent e4 is another message
event sent by tankl to com_c with the desired information.

4.2 Logical Agent States

The state of an agent may be represented as the set of all ground code call atoms
in(o,S:f(as,... ,ap)) which are true in the state, where S is the name of a data structure
manipulated by the agent, and f is one of the functions defined on this data structure. Each
of these ground code call atoms may be thought of as a logical atom. For any given agent
a, the set of ground code call atoms that can be used by a will be denoted by L, , and will
be called the fact language of a .

Example 4.2 Returning to example 3.2, the state of the tankl agent may consist of the
ground code call atoms:

in((5,5), tankl : location (Xnow))-

in(25, tankl : speed()).

in(120, tankl : bearing()).

Clearly, the state of a at a given point in time is determined by the history of a up to
that point. Therefore, it is natural to model a’s state changes as a function from histories
to states. This is done in the next definition.

Definition 4.3 (Agent State at h: Oq(h)) For all agents a and all histories h for a, we
denote by Oq(h), the state of a immediately after the sequence of events h. The initial state
of a (i.e. the state of a when it was initially deployed) is denoted by Oq(()) .

4.3 Agent Consequence Operation

In principle, “intelligent” agents can derive new facts from the information explicitly stored
in their state. Different agents have different reasoning capabilities. Some agents may per-
form no reasoning on the data they store, some may derive new information using numeric
calculations, while others may have sophisticated inference procedures.

Definition 4.4 (Agent Consequence Operation) We assume that each agent a has an
assoctated consequence operation Cng, that takes as input, a set of ground code call atoms,
and returns as output, a set of ground code call atoms. Cng(F') returns as output, all ground
code call atoms tmplied by the input set F', according to the notion of consequence adopted
by a. Cng s required to satisfy the well acceptable general axioms:

11

1. Inclusion Cnq(X) 2 X ;
2. Idempotence Cng(Cng(X)) = Cnq(X).

Our definition of agent consequence builds upon the classical notion of an abstract conse-
quence operation, originally proposed by [56]. Almost all standard provability relations, F,
for different proof systems ranging from classical logic to modal logics to multivalued logics,
induce a function Cn" as follows:

Cn™(X) =4y {¢|XFy}.

Conversely, each abstract consequence operation Cng induces a provability relation
Stqy if, by definition, VX : S C X C Lg, ¢ € Cng(X).

Note a subtle difference between 4 and Cnq: in S k4 ¢, S is treated as a partial description
of a state X, while the argument X of Cng is taken as a complete description of a’s state.

It is also important to note that agent consequence operations are not required to be
sound with respect to classical logic. This is because some agents may make decisions
on the basis of conditions that normally or plausibly hold; the consequence operation of
such agents is in general not a subset of classical inferences. Moreover, drawing conclusions
requires resources; some agents may want to infer all valid conclusions from their state, while
others may only draw inferences obtainable through a bounded number of inferences. This
explains why agent consequence operations are not required to be complete w.r.t. classical
inference (i.e. agent consequence operations may not include all classical inferences).

Example 4.3 Returning to example 4.2 where tankl’s state can be viewed as a set of first-
order formulas (the code call conditions which are true in the state). Then, tankl may be
able to infer from these first-order formulas (some) logical consequences, using the standard
inferences of first-order logic.

5 Security of Abstract Agents

In this section, we show how we may build a notion of security on top of the abstract
definition of agents given earlier.

e First, in Section 5.1 we will describe, for each agent a, what data and actions it
wishes to protect from another agent b. When handling a service request, agent a
must ensure that such data is not disclosed to agent b, and such actions are not
executed on behalf of agent b.

e In Section 5.2, we will define what it means for an agent to preserve security, with
respect to the security specifications introduced in Section 5.1.

e Finally, in Section 5.3, mazimally cooperative histories will be introduced. The under-
lying idea is that in many cases, we want security-preserving agent services to be as
close as possible to the unrestricted (non-security-preserving) services, i.e. a’s behavior
should be distorted as little as possible when attempting to maintain security.

12

5.1 Security Specifications

In this section, we define what kinds of data an agent would like to protect from another
agent, and also what kinds of actions an agent would like to avoid executing for other
agents.

Definition 5.1 (Agent Secrets Function Sec,) Suppose a is an agent. Secq is a func-
tion which associates with any other agent b # a, a set of ground code call atoms which a
would like to keep secret from b.

Intuitively, a would like to prevent b from inferring the ground code call atoms in Secq(b).

Example 5.1 In the scenario of the tanks we assumed that the monitor agent is not
allowed to know the tanks’ locations. Thus, tankl agent should have an associated secrets
function Seciank1 such that all the facts in(z, tankl : location(Xpow)) should be contained in
Sectank (monitor).

The concept of an agent action security function describes what actions an agent may or
may not perform for another agent.

Definition 5.2 (Agent Action Security Function ASec,) An agent action security func-
tion associated with agent a is a function ASecq that associates with any other agentb # a,

a set consisting of (i) outgoing request messages of the form (a,c,p) (c #b), and (ii) se-
quences of ground action names.

Roughly speaking, ASecq(b) contains a set of forbidden action sequences that a does not
want to execute upon b’s requests. It also includes requests that a is not willing to issue

on behalf of b.

Example 5.2 As mentioned in Section 2, the monitoring agent may task the tanks to take
appropriate repair actions, but has no authority to change their route, etc.

Thus, ASectgnki(monitor) should contain (among other sequences) all the simple se-
quences
(set_speed(z)) ... (move_to(y)) ... ete.

In some cases, the set ASecq(b) may be closed under action equivalence. For example,
suppose there exist two actions printf(s) and fprintf(stdout,s) that execute the C
functions associated with these names. These two actions are equivalent, and hence if
a1,00,... ,09 is a forbidden action sequence and ay = printf(s), then the action sequence
a1, fprintf(stdout,s), as,... , a9 should also be forbidden.

One may therefore wonder whether we should insist that if an action sequence is in
ASecq(b), then every action sequence equivalent to it should also be in ASecq(b). Using
the real world operation of computer systems as a guide, the answer seems to be “no.”
To see why, consider simple email. A user may write on another user’s mailbox file only
through certified e-mail programs. No sequence of individual open, close, read and write
operations is admitted on another user’s mailbox, although some of these sequences up-
date the mailbox exactly as the e-mail program would. Accordingly, ASecq(b) need not
necessarily be closed under action equivalence.

13

5.2 Secure Histories

What does it mean for an agent to preserve security? A full answer to this question must
deal both with the protection of agents’ data, and with restrictions on the actions that
agents may execute in response to incoming requests.

Let us consider data protection first. Standard approaches require systems (be they
agents, databases or other packages) to include no secrets in their answers. This is definitely
a reasonable security requirement, that we call surface security.

Recall that posH, denotes the set of all possible histories for an agent a (i.e. the possible
behaviors of a).

Definition 5.3 (Surface Security) A history hq € posH, is surface secure w.r.t. b if for
all messages (a,b, Ans) in hg,

Ansn Secq(b) =10.

If all histories hq € posHq are surface secure w.r.t. b then we say that agent a is surface
secure w.r.t. b.

Example 5.3 In the scenario of the tanks, we assumed that the monitor agent is not
allowed to know the tanks’ locations. Thus, a history in which tankl does not explicitly tell
the monitor agent its location will be surface secure. However, the monitor agent may
still deduce the location. For example, if it knows that tankl has been moving at a constant
speed d, along a given bearing b for the last 30 minutes, it can derive the current position
of the tank from its location at time t = now — 30. Note, that in this example, the tank’s
position 30 minutes ago—although not a secret in itself—suffices to let the monitor agent
infer a secret (the current position of the tank).

In another example, the monitor agent may be able to deduce tankl’s location from
knowing that it is low in fuel.' In this example, the tankl’s being low in fuel may lead to
violating of a secret even though it is not a secret in itself.

Although this somewhat minimal form of security may be satisfactory against simple
client agents, it doesn’t guarantee data protection from smart agents because such agents
can derive new information through their consequence operation; surface security does not
verify that no secret be derived through the consequence operation.

A naive approach to this problem consists of stating that an agent a is data secure if
its client agents can never deduce any secret. However, this definition does not take into
account the fact that security breaches might be caused by some other agent ¢ # a. The
problem is that b might come to know some secret s because it was told this by c. Clearly,
agent a has in no way caused security to be violated in this situation. Under the naive
definition, a would not be data-secure simply because ¢ disclosed s. This would happen
even in the extreme case where a never answers incoming requests and maintains perfect
silence!

This paradoxical situation can be avoided by adopting a more realistic notion of security.
The underlying intuition is that agents are responsible only for their own answers. Roughly

'In real scenarios the monitor agent will need more information, e.g., the region where tankl is located,
to conclude tank1’s location. However, we make this assumption to simplify the discussion.

14

speaking, an agent can be said to be secure if its answers never increase the set of secrets
known by other agents. With respect to the previous example, a should be regarded as
data secure as long as b cannot derive new secrets using a’s answers. To state this formally,
we need a couple of intermediate definitions.

Definition 5.4 (Compatible Histories h; LN ho) Let a and b be agents. We say that

two histories hy and ho are ab-compatible, denoted hy LN ha, if the subsequences of h; and
ho obtained by removing all events but the messages of the form (a,b,...) and (b,q,...)
are equal. Furthermore, if hy FLLN ho and the last events of h1 and hs are the same, then
we write hy PN ho, and say that hy, ho are strongly ab-compatible.

Intuitively, histories h; and hs are ab-compatible iff the two histories are identical as far
as messages between the agents a,b are concerned. Therefore, hy and hs might be a’s and
b’s view (respectively) of the same global sequence of events. Note that h; and hz may
differ on interactions involving agents other than a,b, but they are considered to be a,b
compatible if they coincide on events involving a, b.

Example 5.4 Consider the two histories hy, ho given below.

hi = (b,a,gl),(a,c,gg),<c,b,93),(a,b,ansl).
hQ = <b’a791>’<a’cag4>a<cabag3>’<aabaan51>'

It is easy to see that histories hi,hy are ab-compatible and bc-compatible, but they are
not ac-compatible. Furthermore, hy and hy are strongly ab-compatible and strongly bc-
compatible, as the last events of these two histories are identical.

In addition to the notion of compatible histories, we need a concise notation for the set
of secrets of a that can be violated (i.e. inferred) by b at some point in time, corresponding
to history hp . Recall that we use Op(hy) to denote b’s state at hyp, and that Cny, (Op(hyp))
is the set of facts that can be derived by b from that state.

Definition 5.5 (Violated Secrets) Violatedy(hy) = Cny(Op(hp)) N Secq(b) .

Example 5.5 In the scenario of the tanks we assumed that the monitor agent is not
allowed to know the tanks’ locations. A possible history hmonitor for the monitor agent

may have the form (...e1, ea,...), where:
e; = (monitor,tankl, fuel_level()),
ez = (tankl, monitor, {in(low, tankl: fuel_level(Xnow))}) -

Suppose that after hmonitor, the monitor agent’s state (with respect to tankl) only includes
the fuel level of tankl, and suppose that the monitor agent cannot deduce anything new
from this fact. Then, Violatedta™ ! (Rmonitor) s empty.

monitor

However, if from knowing that the fuel level of tankl s low, the monitor agent can
conclude that tankl is in the support center, e.g., given that the location of the support

15

center ts (50,20,40) it may conclude that in((50,20,40), tankl: location(Xnow)) and if
this is the actual location of tankl, then

Violatedtmkl (b o nitor) = {in((50, 20, 40), tankl : location(Xnow))}

We are now ready to formalize the important concept of data security, which says that for
an agent to be data secure, it must guarantee that it will never increase the set of secrets
violated by another agent.

Definition 5.6 (Data Security) A history hq € posH, ts data secure w.r.t. b if for
all prefizes h - € of hq such that e is an answer message (a,b, Ans), and for all histories

hy - e € posHy such that hy, - e é h-e,
Violatedy (hy) D Violatedg(hyp - €) .

If all histories hq € posHq are data secure w.r.t. b then we say that a is data secure w.r.t.

b.

To understand this definition, recall that the conditions hy - € € posHy, and hy, - € &% p. e,
state that hy, - e is a possible history for b when a’s answer reaches b. The inclusion in
Definition 5.6 says that the set of violated secrets (of b) does not increase after receiving a’s
answer. By quantifying over all possible histories hy, - € with the aforementioned properties,
we require data to be protected no matter what actions b may take before getting the
answer, possibly including sending requests to other agents and getting their answers.

Example 5.6 We return to the the scenario of Example 5.5 and consider the history
htank1 = (...e1, €2,...) where ey and ey are as in Ezample 5.5. Suppose further that
all the histories in posHmonitor that tncludes e1 and ey includes the additional event

eo = (com_c, monitor, {in((50, 20,40), tankl: location(X,ow))})

which occurred before e1. Fven though, as in the previous example,

Violated;‘llgl.r]fgtor(hmonitor) = {in((50,20,40), tankl: location(Xpow))}, htank1 s data se-
cure. Intuitively, this happens because the location of tankl has been originally revealed to
the monitor agent by the com_c agent and so tankl’s answer does not lead to the revelation

of any new secrets.

Interestingly enough, the definition of data security encompasses the case (corresponding
to the strict inclusion Violatedq(hy) D Violatedf (hy - €)) in which a convinces b that some
previously violated secret does not hold—although in practice this may be just as hard to
do as it is desirable.

In general, the notions of surface security and data security are incomparable, in the sense
that neither of them implies the other. For example, as we have already pointed out, surface
security does not prevent client agents from inferring secrets, so surface security does not
imply data security. Conversely, data security does not always entail surface security. For
example, if a sends b secrets only when b already knows them (a game well-known by
double-crossers), then data security is enforced, while surface security is violated. However,
as stated in the following theorem, in some cases, surface security entails data security.
Roughly speaking, when agents make no deductions (i.e., their consequence operation is
the identity function), surface security suffices to guarantee data security.

16

Theorem 5.1 Suppose the consequence operation of b, Cny, is the identity function, and
suppose that for all histories hy - e such that e = (a,b, Ans), the new state of b s

Ob(hb . e) =def Ob(hb) U Ans.

Then, each surface secure history hq for a is data secure w.r.t. b.

Proof: Suppose not. Then for some prefix /' -e of some surface secure history hq s.t. (such

that) e = (a, b, Ans), for some history hy, - e &% B/ ¢ and for some secret f € Secq(b), we
have

f € Violatedy (hy - €) \ Violatedy (hy) .
Moreover, by definition of Violatedy and by the hypothesis on Cny,

Violatedy (hy, - €) \ Violatedg (hp) = (Op(hy - €) N Secq (b)) \ (OF (hy) N Secq (b)) .
From the other hypothesis, it follows that

(Op(hy - €) N Seca (b)) \ (OF(hy) N Seca(b)) C Ans N Secq(b).

We conclude that f € Ans N Secq(b). This implies that hq is not surface secure; a contra-
diction. |

Moreover, if we further assume that the client agent b does not store any answer coming
from agents other than a, then surface security and data security coincide. We use a
particular instance of such agents to prove the following statement, that will be needed in
several proofs in the rest of the paper.

Proposition 5.2 (Data Security vs. Surface Security) There exist multi-agent systems
where surface security coincides with data security.

Proof: Consider a simple multi-agent system consisting of two agents a and b. Let a’s
and b’s possible histories have the form

h’"« = (qlaala”‘ aq’fwan)’

where each ¢; is a request message from b to a, and each a; is a’s answer to g; , i.e. a message

of the form (a,b, Ans;). Let Op(()) =47 0, and

Ob(hn) =aer |) Ansi .
=1

Finally, let Cny, be the identity function over b’s states. Then Violatedf(()) = 0, and

h, is data secure

iff Violatedg(()) D Violatedy(h1) D Violatedy (h2) D ... D Violatedg (hy,)
Moreover, Violatedg (hy,) = |Ji—; Ans; N Secq(b), by definition of O, and Cny; therefore
a is data secure iff Vi:1<1i<mn, Ans; N Secq(b)=10.
But this is equivalent to saying that a is data secure iff a is surface secure. |

The notion of data security above may be extended to the case of action security as shown
below.

17

Definition 5.7 (Action Security) Let hq € posHq and let act(h,,b) be the subsequence
of hq consisting of all the actions (o, b) done for b. We say that hq is action secure w.r.t.
b if act(hs,b) contains no sequence from ASecqy(D).

If all histories hq € posH, are action secure w.r.t. b, then we say that a is action secure
w.r.t. b.

Example 5.7 Suppose the monitor agent has no authority to change tankl’s speed. In
this case, the following possible history hignk1 for tankl isnot action secure w.r.t. monitor:
htanki1(...e1, e, ...), where:

e; = (monitor,tankl, set:speed(new_speed)),
ea = (set_speed(55kmh), monitor).

5.3 Degrees of Cooperation

There are many different ways in which an agent can make its services secure. One of these
ways is to provide no information or to take no action at all, which is a very uncooperative
mode of behavior. For example, when the tankl agent is asked its current speed by the
monitor agent, it may choose to protect security by providing no answer at all, even though
it is authorized to disclose this information to the monitor agent. Likewise, when the com c
agent is requested by the tankl agent to provide a safe route to a new location, the com_c
agent may respond by merely sending one waypoint to the intended destination instead of
a full route, even though it is authorized to disclose a full route. The right balance between
security and cooperation depends on a number of application dependent factors.

Independently of exactly what these factors are, there is some notion of nearness or degree
of distortion of an answer or a service. This will be modeled by a partial order on histories

as defined below.

Definition 5.8 (More Cooperative History) For any agent a, we use <q " to denote

a partial order on the set of all histories for a. Intuitively, h < h' means that k' is more

cooperative than h.

Example 5.8 Consider the following two histories for our tankl agent.

htank1 = (... e1, €2, ...), where:
e1 = (com_c,tankl, status()),
ea = (tankl,com c,{in(low, tankl: fuel_level(Xnow)),

in(low, tankl: fuel_level(Xpow)),
in((50,20,40), tankl: location(Xnow))})

and
fcanld = < . -ella 6127 cee >, where:
€] = (com_c,tankl,status())
e, = {(tankl,com_c,{in((50,20,40), tankl: location(X,on))}) -

18

It seems that in the first history tankl is more cooperative by providing more information

about its location. Thus, it may be desired to assert that: hfmnm S:Z?H htankl -

6 Approximating Agent Security

In the preceding section, we have assumed that any agent b has an associated “true” history,
“true” consequence operation, “true” state, etc. However, when an agent a wants to protect
some of its data and/or services from agent b, it needs to know what agent b’s “true” history,
consequence operation and state are. In general, this is very difficult to accomplish. Hence,
in this section, we introduce the notion of approximations that agent a may use about
another agent b, and we define what it means for such an approximation to be correct
w.r.t. the corresponding “true” notion. We show that under appropriate conditions, these
approximations guarantee that true data/action security will be preserved. Agent a does
not need to model agent b’s history, consequence operation and state in order to maintain
action security. Therefore, in this section we will discuss these approximations in the context
of data security.

The organization of this section is as follows.

e First, we define what it means for agent a to approximate agent b’s history.

e Then, we describe how agent a approximates agent b’s language (after all, if agent
a knows nothing about agent b’s language, then it cannot say much about agent b’s

beliefs).

e Then, we show how these two notions allow us to define how agent a approximates
agent b’s state, given its approximation of agent b’s history and language.

e We then introduce a notion of how agent a can approximate agent b’s inference

mechanism /consequence operation so that it can infer an approximation of agent b’s
beliefs.

e Based on these approximations, we show that to preserve security, agent a must
overestimate what (it thinks) agent b will know after it responds to a given request,
and it must underestimate what (it thinks) agent b knew before giving the answer.

e Though some of these approximations are space-consuming, we show that all approx-
imations can be compacted, but such compactions diminish the level of cooperation
agent a gives to agent b.

6.1 The Basic Idea

The intuition underlying approximate security checks is relatively simple: take the worst
possible case and decide what to do on the basis of that worst-case scenario. In our definition
of security, we wish to ensure that the set of violated secrets after agent a provides an answer
is a subset of the set of violated secrets before a gives the answer. Thus, to be safe, we must
underestimate the set of secrets violated by b prior to giving an answer, and overestimate
the set of secrets violated by b after giving the answer. By underestimating the secrets
violated by b prior to giving an answer, and overestimating the set of secrets violated by b

19

after giving the answer, we are assuming (as we should in a worst case situation) that the
answer causes a maximal set of secrets to be disclosed to the user. The following example
illustrates this situation.

Example 6.1 Consider the scenario described in Fxample 5.5 in which the com_c agent
may tell the monitor agent tankl’s location (event ep), and then tankl may tell the
monitor agent that it is low in fuel (event ez), from which monitor can also infer tankl’s
location.

Before event ea, underestimating the monitor agent’s set of violated secrets will lead, for
example, to not including tankl’s location in it. On the other hand, if monitor agent’s set
of violated secrets after ea is overestimated, it may include tankl’s location (inferred from
the answer that tankl is low in fuel). These underestimation and overestimation will lead
tankl to the conclusion that it cannot tell the monitor agent that it is low in fuel. This
guarantees data security (but not mazimal cooperativeness).

Summarizing, suppose a wishes to protect its data from b. Then, in order to perform
approximate security checks, a needs the following items:

e an estimate of b’s possible states;
e an upper bound on the set of secrets that can be derived by b using a’s answer;

e a lower bound on the set of secrets that can be derived by b (from the old state).

In turn, to approximate b’s states, a needs some approximation of b’s fact language (i.e.
of its data structures) and of its history (which influences the actual contents of b’s state).
All of these approximate notions are formalized in the succeeding sections.

6.2 Approximating Possible Histories

In this section, we specify what an approximate history is. In order to represent (approx-
imately) b’s history, a (and its developers) need some language, modeled by the following
set.

Definition 6.1 (Possible Histories Approximation) The set of approximate history
representations for b used by a is a decidable set posHy, .

In this definition, the set pos# is deliberately generic; there can be many ways to represent
b’s histories, and the most appropriate approach will, in general, be application dependent.
In particular, the members of pos?f may be histories of some sort (as in the following
example), or even constraints (as in Section 8) that constitute a partial description of b’s
histories. For instance, such constraints may state that b’s history contains a message
from c at some point, and leave the rest of the history unspecified. The need for partial
descriptions arises because a will typically be unable to see all the messages exchanged
between b and other agents. Similarly, a will be unable to observe all the actions executed
by b. An example of an approximate history is given below.

20

Example 6.2 Agent tankl may use its own history hiank1 as a partial description of the
monitor agent’s history hmonitor - In fact, the messages between tankl and the monitor
agent should be the same in hignk1 and hmonitor- Therefore, if hignk1 = (e1, ez, €3, €4),
where

e1 = (com_c,tankl, set:speed(new_speed)),

es = (monitor,tankl, fuel_level()),

(

ea = (set_speed(55kmh),com_c),
(
(

es = (tankl, monitor, {in(low, tankl: fuel_level(X,ow))}) -

then hmonitor can be any possible history of the form
hi - (e3) - ha - (ea) - ha, (1)

where hy, ha and h3 contain no message from/to tankl —that is, hmonitor can be any
possible history which is tankl-monitor-compatible with hiqnx1 (see Definition 5.4).

The correspondence between approximate and actual histories is application-dependent
and, in general, non-trivial. This correspondence is formalized as follows.

Definition 6.2 (History Correspondence Relation ~»,) For all agents a and b, there
s an associated correspondence relation ~»,C posH{y X posHy .

The subscript h will often be omitted to improve readability. Intuitively, if some history
hy € posHyp matches (under the chosen partial representation of histories) an approximate
description h € posHy, then we write h ~ hp. In the above example, posHy coincides
with posH, (the set of all possible histories for a), and ~» coincides with the compatibility

. ab
relation <—. Moreover, agent a maintains an approximation of b’s current history . This
notion is formalized below.

Definition 6.3 (Approximate Current History AppH(.), correctness) Leth € postHq
be the current history of a. The approzimation of b’s current history at h, is an approrimate
history representation AppHy(h) € postHy .

We say that AppH 1is correct if for all h € posHq, and for all hy, € posHy such that
h <2, hy it is the case that AppH+ (h) ~ hy, .

Intuitively, an approximate current history is correct if it matches (at least) all possible
histories for b that are compatible with a’s history. An example of a correct approximate
history is given below.

Example 6.3 Suppose, as in Ezxample 6.2, that tank]1 uses its own histories as a partial

tankl
monitor

the histories in posHiqnk1 on the interactions with agent monitor. In addition, ~ coincides

: g . tankl it .
with the compatibility relation " "', and for h € posHiank1, AppH monitor (R) is the
projection of h to the interactions with monitor. Then, AppH

description of monitor’s possible histories. That is, posH includes the projection of

monitor S correct.

21

6.3 Approximating Languages

The first difficulty in approximating b’s state is that a may have imprecise knowledge of
b’s fact language (i.e. of the data structures and function calls used by b). a is forced to

use some ground code calls, and hope that these code calls mimic the operations that b

actually has in its repertoire.?

Definition 6.4 (Approximate Fact Language AppLy) The approzimate fact language
of b used by a s a denumerable set AppLy, .

The relationship between the approximate fact language used by a and the actual fact
language used by b is formalized by the following fact correspondence relation, that relates
approximate facts to the actual data structures of b that match the approximate description.

Definition 6.5 (Fact Correspondence Relation ~») For all agents a and b, there is
an associated fact correspondence relation ~+C AppLy X Ly, .

We drop the subscript f whenever the context allows us to distinguish ~»+, from ~»¢

Intuitively, we write f ~ fy, if f, is one of the possible instantiated data structures for b
that match the approximate description f used by a.

Some approximate facts f may have no counterpart in Ly (e.g. a may think that b can
use a code call p:g() when in fact this is not the case). In such cases, we write:

f o4 if, by definition, Af'. f~ f.

Analogously, some facts of L may have no approximate counterpart (e.g. when a does not
know that b may use some code call p:A()). In this case we write:

o f if, by definition, Af’. f' '~ f.

Ground code call conditions are approximated by sets of approximate facts. Approximate
conditions are matched against sets of facts from Ly by means of a correspondence relation
derived from the correspondence relation for individual facts, ~s.

Definition 6.6 (Approximate Conditions) An approzimate condition is a set C C AppLy .

Definition 6.7 (Condition Correspondence Relation) We say that an approzimate
condition C C AppLy corresponds to a set of facts Cy C Ly, denoted C ~»c Cy, if both the
following conditions hold:

1. if f € C then either f o or Afy € Cp. f~ fp.
2. if f, € Cp then either % fp, orAf € C. f~ fp.

?In the following definitions, when the approximating agent, a, is clear from the context, we will omit it
from the notation. For example, we will write AppLy, instead of AppLy.

22

The first requirement above says that all elements, f, of the approximate condition must
correspond to some fact fp in the actual state unless f has no counterpart in the language
Ly (in which case, f is ignored). Similarly, the second requirement says that each member
of C, must have a counterpart in C, with the exception of those facts f, that are not
expressible in the approximate language AppLy . The following example describes how
states are approximated in the Tank example.

Example 6.4 Suppose the code calls in Lmonitor tnclude:

in(P, tankl: location()), in(F, tankl : fuel_level()),
R

0
0)

in(Y, monitor: repair_needed(4)).

in(S, tankl: soldiers in(D, monitor: distance(A1,A2)),

Agent tankl may think that the functions location and fuel_level used by monitor
have one argument, e.g., time T. It may not know that in(D, monitor: distance(Al,A2)) is
used by the monitor agent and may think that it uses status(A) instead of repair_needed (A) .
In addition, tankl may think that the monitor also uses in(R, monitor: region(T)). Thus,
AppLarkl may include:

monitor
in(P, tankl: location(T)), in(L,tankl: fuel_level(T)),
R

)
in(S, tankl : soldiers())
in(Y, monitor: status(A)).

in(Z, tankl: region(T)),

where, for example,

in(Y, monitor: status(A)) ~¢ in(Y, monitor: repair_needed(4)),

in(Z, region:T())
2¢ in(D, monitor: distance(Al,A2)).

For example, if the condition
{in(true, monitor: repair_needed(tankl)), in(north_east, tankl: region(Xpow))} is in
monitor’s approzimation, it may correspond to
{in(need_repair, monitor: status(tankl)), in(5, monitor: distance(tankl, monitor))}.

6.4 Approximating States
The approximation of a state Op should tell us the following things:

e which facts are surely true in Oy ; this is needed by a to underestimate the inferences
of b (inferences can be part of a correct underestimation only if they follow from
conditions that are guaranteed to be true in O);

e which facts may possibly be true in Oy ; this is needed by a to overestimate the infer-
ences of b (inferences that depend on facts that might be in Oy, should be considered
by the overestimation);

23

e which facts are new; this is needed to identify the inferences that really depend on
the last answer; intuitively, a new secret is violated only when it is derived from some
new fact.

Accordingly, approximate states are described using three sets of approximate conditions.

Definition 6.8 (Approximate States AppOy = (Nec, Poss, New)) An approzimate state
of b used by a is a triple AppOy, = (Nec, Poss, New), whose elements are sets of approzimate

conditions (i.e. AppOy € p(AppLy) X p(AppLy) X p(AppLy)). The three elements of an

approzimate state AppOy will be denoted by AppOyp.Nec, AppOy.Poss, and AppOy.New,

respectively. AppOy is required to satisfy the following inclusions:

1. AppOyp.Nec C AppOy.Poss ;

2. AppOyp.New C AppOy.Poss .

The first inclusion says that a condition C cannot be necessarily true if it is not possibly
true. The second inclusion says that all new facts must be possible.

Agent a maintains an approximation of b’s current state. This is formalized via the
following definition.

Definition 6.9 (Approximate State Function AppOy,, correctness) The approzimate
state function AppOy ts a mapping which maps approrimate histories from posHy onto ap-
prozimate states of b used by a. We say that AppOy is correct if for all approzimate
histories h € posHy, the following conditions hold:

1. if C € AppOy(h).Nec, then for all hy such that h ~ hy there exists Cp C Op(hp)
such that C' ~ Cy, ;

2. for all Cp C Oyp(hy) such that h ~ hy, if C ~ Cy then C € AppOy(h).Poss ;

8. for all possible non-empty histories hy, - e € posHyp such that h ~ hy - e, and for all
Cp C Op(hyp - €) such that Cy, € Op(hy), if C ~ Cp then C € AppOy(h).New .

Intuitively, the above correctness conditions state that: (i) each condition C' in Nec should
correspond to some condition Cy, which is actually true in the current state of b, whatever
it may be (note the universal quantification over hy); thus, in case of doubt, in order to
achieve correctness it is better to underestimate Nec; (ii) the approximations C' of each set
of facts Cp that might be part of b’s current state should be included in Poss (in case of
doubt, it is better to overestimate Poss to achieve correctness); (iii) if a set of facts is new
in b’s current state (because Cy, C Oy(hy - €) and Cy, € Oyp(hy)), then its counterparts C
should be included in New (that should be overestimated in case of doubt). An example of
an approximate state function that is correct is shown below.

Example 6.5 Consider the scenario depicted in FExample 6.4. Suppose the approrimate
language AppLmonitor contains only the code calls

in(L, tankl: fuel_level(T)), in(P, tankl: location(T)) and in(S, tankl : soldiers()) where
P istankl’s current position at time T and S 1is the list of tankl1’s soldiers. Suppose hianiki

24

s a history of tankl in which it did not send any answers to the monitor agent. Consider
the scenario in which the monitor agent didn’t receive any answers from other agents (in-
cluding tankl) and tankl also believes it. That is, in AppH . onitor (Ptank1) = h there is
no answers sent to the monitor agent from tankl, In this case one should set:

AppOmonitor(h).Nec = 0,

AppOmonitor (h).Poss = {{in(L, tankl: fuel_level(T))},
{in(S, tankl : soldiers())},

{in(P, tankl: location(T))},

{in(L, tankl: fuel_level(T)), in(S, tankl:soldiers())},
{in(P, tankl: location(T)),in(L, tankl : fuel_level(T))},
{in(P, tankl : location(T)),in(S, tankl : soldiers())},
{in(L, tank!: fuel_level(T)), in(S, tankl: soldiers()),

}

in(P, tankl: location(T))
}-

In other words, nothing is necessary, everything is possible. If tankl sent the monitor
agent an answer message e = (tankl, monitor, {in(low, tankl: fuel_level(X,ow))}), then

one might set:

AppOnonitor(h - €).Nec = {{in(low, tankl : fuel_level(Xpow))}},
AppOrnonitor (h - €).Poss = AppOmonitor (h).Poss
AppOinonitor (h - €).New = {{in(low, tankl: fuel_level(Xpow))},

{in(low, tankl: fuel_level(Xsow)), In(S, tankl : soldiers())},

{in(low, tankl: fuel_level(Xpow)), in(P, tankl: location(T))},
{in(low, tankl: fuel_level(Xnow)), in(S, tankl : soldiers())},
in(P, tankl : location(T))}} .

now bl

Note that in this ezample in(low, tankl: fuel_level(Xpow)) becomes necessarily true (in
some other cases, monitor might disbelieve tankl, and AppOmonitor(h - €).Nec would re-
main empty). The set of possible new conditions that become true due to e is set to all the
sets of facts that contain the answer in(low, tankl: fuel_level(Xnow)). Only secrets that
are revealed from new facts are due to security violation of tankl.

Consider a third variation of this scenario where the com_c agent has told the monitor
agent the list of soldiers of tankl and suppose that tankl believes that this happened (as
approzimated by h') and that the monitor agent does not forget such lists. Assume further,
that ¢’ = (tankl, monitor,in(S, tankl : soldiers())). In this case

AppOrnonitor (R').Nec = {{ in(S, tankl : soldiers())},
AppOmonitor (' - €').New = {{ in(S, tankl : soldiers())},
{in(low, tankl: fuel_level(X,ow)), In(S, tankl: soldiers())},
{in(S, tankl : soldiers()),in(P, tankl : location(T))},
{in(S, tankl : soldiers()),in(low, tankl: fuel_level(X,ow)),
in(P, tankl : location(T))}

6.5 Approximate Secrets

In the framework of exact security checks, when agent a describes the set of secrets Secq(b)
it wishes to prevent b from inferring, the members of Secq(b) are drawn from Ly,. As this

25

language itself may only be partially known to agent a, a must use some approximation of
its secrets function.

Definition 6.10 (Approximate Secrets AppSec(b)) The set of approximate secrets of
agent @ w.r.t. agent b, denoted by AppSec(b), is some subset of AppLy.

Clearly, the fact correspondence relation ~+f applies to approximate secrets. If f €
AppSec(b) approximates f' € Secq(b), then we write f ~ f'. What it means for a set of
approximate secrets to be correct is defined below.

Definition 6.11 (Approximate Secrets, Correctness) The set AppSec(b) is correct
w.r.t. Secq(b) if it satisfies the following conditions:

1. for all fy, € Secq(b) there exists f € AppSec(b) such that f ~ fy ;
2. if f ~ fo and f, € Secq(b), then f € AppSec(D).

Condition 1 says that each secret should be expressible in the approximate language App Ly
(otherwise, some violation might go unnoticed). Condition (2) above states the conservative
principle that if a fact f may correspond to a secret, then it should be treated like a secret.

6.6 Approximate Consequences

In this section, we define what it means for an agent a to correctly approximate agent b’s
consequence operation. We start by defining the type of the approximation.

Definition 6.12 (Approximate Consequence Operation) An approzimate consequence
operation of b used by a is a mapping of type p(AppLy) — p(AppLy) .

Recall that when providing an answer to agent b, agent a should underestimate what is
known to b prior to providing the answer, and should overestimate what is known to b after
providing the answer. This may be done by using approximate consequence functions that
underestimate and overestimate b’s actual consequence function.

Definition 6.13 (Correct Underestimate) An approzimate consequence operation UCny
18 a correct underestimate of Cny if, for all abstract conditions C' and abstract facts f, if

f € UCnp(C) then for all Cy and fy such that C ~ Cy and f ~ fy, it holds that Cy Fyp fp -

In other words, UCny is a correct underestimate of Cnyp if what can be inferred using UCny,
is also derivable using Fp (and hence Cny,). Here we use b, instead of Cny, because CY, is
only a partial description of the contents of b’s state (cf. the discussion in Section 4.3).

The following example provides a correct underestimate in the case of the Tank example.

Example 6.6 Consider the tank example. The identity function is a correct underestimate

of the monitor agent’s consequence operation. That vs, VC C AppLmonitor, UC’nmgﬂfi]tor(C) =
C

26

Before proceeding to the definition of correct overestimates, we need a definition that
intuitively captures the causal dependencies between a set C, of facts and the facts fy that
can be derived from C} . This is needed to focus on the secrets that are violated because of
a’s answer as demonstrated in the following example.

Example 6.7 Consider the scenario of Example 6.5 and suppose that tankl would like to
protect its soldiers list from the monitor agent. It is clear that giving the answer on its
fuel level, as in event e, has nothing to do with the soldiers list. However, the set

{in(low, tankl: fuel_level(X,ow)), In(S, tankl : soldiers())}

that is in AppOmonitor (h - €).New does entail in(S, tankl : soldiers()), t.e., the secret. In-
cluding the answer in(low, tankl: fuel_level(X,ow)) in every set of New does not help.
For this, we will need the notion of “causality.”

The mapping Cny, is not completely adequate for defining and overestimating the conse-
quence operation because in general, when f, € Cn,(Cy), Cp may contain facts that are
not relevant to the proof of f, . Rather, we should say that fp is caused by the presence of
Cy when f, € Cnp(Cy) and Cyp is minimal, i.e. if we dropped even one fact from Cl, then
fp would not be derivable anymore.

Definition 6.14 (Causal Dependencies) We say that Cy causes fp, denoted Causes(Ch, fb),
if Cp Fp fo and for allC C Cp, CHyp fo .

We are now ready to give a formal definition of correct overestimates. From the standpoint
of security, it is not necessary that a correct overestimate of b’s consequence operation
contain all inferences that b can draw. Rather, we only require that the overestimate
include all possible secrets that b may infer. This is captured by the following definition.

Definition 6.15 (Correct Overestimate) An approzimate consequence operation OCny
is a correct overestimate of Cny if for all Cy, and f, such that Cy, causes fy and f, € Secq(b),
there exist C, f such that C ~ Cy, f ~ fp, and f € OCnp(C).

The following example shows a simple correct overestimate in the context of the Tank
Example.

Example 6.8 We return to Ezample 6.5 and assume that the monitor agent can some-
times infer tankl’s location from its being low in fuel, and otherwise has the identity con-
sequence operation.

If the only consequences that tankl includes in its overestimation of monitor’s conse-
quence operation are the following, then it is a correct overestimation.

OCnemkl (Lin(s, tankl: soldiers())}) = {in(S, tankl: soldiers())},

monitor
OCntarkl - ({in(s, tankl: location(T))}) = {in(S, tankl :location(T))},
0Cntarkl ({in(L, tankl: fuel_level(T))}) = {in(P,tankl: location(T))

in(L, tankl: fuel_level(T))}.

27

The overestimation in general can be a strict subset of all the facts that can be handled
by monitor, for ezample,

in(s, tankl : soldiers()) ¢ OCntKL (in(L, tankl : fuel_level(T))}).

monitor

6.7 Approximate Data Security Check

In this section, we have defined what it means for an approximate history to be correct, an
approximate consequence operation to be a correct under/over estimate of another agent’s
consequence operation, etc. In short, agent a approximates b’s behavior via the functions
AppHy, AppOy, OCny, and UCnyp . The secrets in Secq(b) are approximated by AppSec(b) .
Together, these functions constitute a’s approximate view of b.

Definition 6.16 (Agent Approximation, correctness) The approzimation of b used
by a (based on the approrimate languages posHg and AppLy, and on the correspondence
functions ~y, and ~¢) is a quintuple

App(b) = (AppH,, AppOy, AppSec(b), OCny,, UCny),

whose members are, respectively, a current history approximation , a current state approz-
tmation, a set of approximate secrets and two approximate consequence operations.

We say that App(b) is correct if AppHy, AppOy and AppSec(b) are correct, OCny is
a correct overestimate of Cnyp, and UCnyp is a correct underestimate of Cny .

This definition builds upon definitions of what it means for the individual components of
App(b) to be correct—something we have defined in preceding sections of this paper.

Using these concepts, we wish to specify what it means for a history to be approximately
data secure. If we can compute an overestimate of the set of secrets violated by agent b
after agent a provides an answer to its request, and we compute an underestimate of the
set of secrets violated by agent b before agent a provides an answer, and if we can show
that the latter is a superset of the former, then we would be able to safely guarantee data
security. We first define these over/under estimates below, and then use those definitions
to define what it means for a history to be approximately data secure.

Definition 6.17 (Overestimate of Violated Secrets) For all approzimate histories h €
posHy let

OVioly (h) =45 U{OCnb(C) | C € AppOy(h).New} N AppSec(b).

Informally, OVioly (h) is the overestimated set of secrets that can be derived because of some
new facts (the reason why only the consequences of new facts are considered is illustrated
earlier via Example 6.7.)

Definition 6.18 (Underestimate of Violated Secrets) For all approzimate histories
h € posHg, let

UVioly (h) =aer | { UCns(C) | C € AppOy(h).Nec} N AppSec(b).

28

In other words, UVioly(h) is the underestimated set of secrets that can be derived from
facts which are estimated to be necessarily true. The following example illustrates the
notions of over/underestimates of violated secrets.

Example 6.9 We return to Example 6.5 and assume that UC’n:r‘Ll;L.:thOT 18 the identity func-
tion and OCR™! is as defined in Example 6.8 and that tankl would like to protect its

monitor
current location and its soldiers list.

Consider the second scenario of Example 6.5 where there is no interaction between the
monitor agent and the other agents in h. As AppOmonitor (h).Nec is empty, UViolmonitor (R)
is also empty. However, OViolmonitor (h-€) = {in((50,20,40), tankl : location(Xnow))} be-
cause one of the sets in New causes it and it is a secret.

In the third scenario of Example 6.5, UViolmonitor (R') = {in(S, tankl : soldiers())} and
in addition, OViolmonitor (' - €') = {in(S, tankl : soldiers())}.

We may now define the approximate counterpart of data security.

Definition 6.19 (Approximate Data Security) A history hq € posHq is approximately
data secure w.r.t. App(b) if for all initial segments h' - e of hg such that e is an answer
message (a,b, Ans),

UVioly (AppH (k') D OVioly(AppHy (' - €)) .

If all histories hq € posH, are approzimately data secure w.r.t. App(b), then we say that
a is approzimately data secure w.r.t. App(b).

We reiterate that we are comparing an overestimate of the secrets violated by b due to
a’s answer e (right-hand side of the above inclusion), with an underestimate of the secrets
violated by b before the answer (left-hand side of the inclusion). The following example
shows an approximately data secure history.

Example 6.10 In the second scenario specified in Examples 6.5 and 6.9, it is clear that
htank1 - € 18 not approximately data secure w.r.t the approximations we described in the
previous examples as AppH . onitor (Ptank1) = h, UViolonitor (h) s empty and when e is
the event in which tankl tells the monitor agent that it is low in fuel,

OViolmonitor (h - €) = {in((50,20,40), tank1: location(Xnow))} -

Thus, UViOImonitor(h)) OViOImonitor(h : e)-

However, when AppH . onitor (Ptank1) = k' in which the monitor agent received the sol-
diers list from com_c, and €' is the event in which tankl gives the monitor agent its
soldiers list, then hignyk1 - € is approzimately data secure, while hiqni1 - € ts not.

The approximate data security check works well if the approximation App(b) is correct.
The theorem below shows that, under this assumption, the approximate security check
correctly enforces the “true” notion of data security. As a consequence, if the designer of
agent a can ensure that the approximation of agent b is correct, then “true” data security
is guaranteed by the approximation, even though the agent a doesn’t precisely know the
history, state, consequence operation, etc. used by agent b.

29

Theorem 6.1 (Correct Approximate Data Security Implies Data Security) Ifhq
is approzimately data secure w.r.t. App(b) and App(b) is correct, then hq is data secure
w.r.t. b.

Proof: We prove the contrapositive, which is equivalent. Suppose hq is not data secure
w.r.t. b. Then, for some prefix h’ - e of hq, where e = (a,b, Ans), and for some history

hy - € € posHop, it holds that hp - e <2 ' - e and
Violatedy (hy) 2 Violatedg(hp - €) .
Consequently, there exists fo € Secq(b) such that
(a) fo € Violatedy(hy, - €) and
(b) fo & Violatedg(hy) .

Claim 1: there exists f1 such that f; ~ fo and f1 € OViol,(AppH (k' -e)).

This claim can be proved via the following steps:

(c) fo € Cnp(Op(hy - €)) (by (a) and the def. of OVioly);
(d) 3Cy such that Cy C Op(hy - €) and Causes(Cy, fo) ;

(e) 3f1,C1 such that fi ~ fo, C1 ~ Cp and f1 € OCnp(C1) (by (d) and correctness of
OCny);

(f) Co Z Op(hp) (otherwise fy € Violatedg(hy), contradicting (b));

(g) C1 € AppOy(AppHy(h' -€)).New (by (d), (e), (f) and the correctness of AppOyp and
AppHy);

(h) f1 € AppSec(b) (f1 ~ fo+ correctness of AppSec(b));
(i) f1 € OVioly(AppH,(h' -¢)).
Claim 1 immediately follows.
Claim 2: f; ¢ UVioly(AppH(1')).
Suppose f1 € UVioly(AppHy(K')). We derive the following steps:

(j) 3C2 € AppOy(AppH(h')).Nec such that fi € UCny,(C2) (by def. of UVioly);

(k) Yfp such that fi ~ fo, fo € Cnp(Op(hy)) (by (j) and correctness of UCnp and
AppOy);

(1) fo € Cnp(Op(hy)) (from (k), since f1 ~ fo);

(m) fo € Violatedg(hp) (from (1), since foy is a secret).

But (m) contradicts (b), so Claim 2 holds. From the above claims it follows immediately
that hq is not approximately data secure. This completes the proof. |

30

6.8 Compact Approximations

In many applications (especially those where security checks are performed at runtime), the
overhead caused by maintaining two approximate states for each client agent and computing
two approximations of its consequence operation is unacceptable. Hence, we introduce a
compact version of the approximate security check, where only the state after the answer
and the overestimate of b’s consequences need to be computed.

This has two advantages: first, the space needed to store the underestimate of b’s con-
sequences is saved, and second, the time needed to compute the underestimate of b’s con-
sequences as well as the time required to check if the secrets in the overestimate of b’s
consequences after the answer is a subset of the underestimate before the answer is saved.
However, there is a price to pay, namely a decrease in the cooperativeness of the answer
provided by agent a.

Definition 6.20 (Compact Approximation) An approzimation App(b) = (AppH, AppOy,

AppSec(b), OCnyp, UCny) based on the languages posHy and AppLy is compact if the
following two conditions hold:

1. for all approzimate histories h € posHy, AppOyp(h).Nec =0 ;
2. for allC C AppLy, UCny(C)=0.

The following example shows a compact approximation of an agent b.

Example 6.11 We return to Example 6.5. Suppose tankl believes that it is possible that

tankl
monitor

deployed and that the monitor agent does not believe anything it is told. Furthermore, it

: : , tank]
cannot infer anything from facts in App LI .

and the consequence operations of the monitor agent, it uses the following: (1) for all h €
posHAK! - AppOrmonitor (h).Nec = 0 ; (2) for allC C AppLionkl UCntankl () =90.

monitor?’ monitor?’ monitor

the monitor agent didn’t know anything that can be expressed by AppL when it was

In such a case, to underestimate the states

Note that tankl ’s belief may be wrong and tankl may know that there is a possibility that
monitor knows more. As this possibility exists, for tankl’s approzimation to be correct, it
must be as described above.

Note that in compact approximations, the underestimate of violated secrets prior to
providing an answer is taken to be the empty set, and hence, the inclusion of Def. 6.19 is
equivalent to:

OVioly (AppHy (K <€) =0.
As expected, this security condition depends only on one approximation of b’s inferences,

and only on the approximation of b’s state after a’s answer e.

The above equation immediately implies that compact approximations strengthen the
notion of data security by requiring that no secret be derivable using a’s answer. At first
glance, this approach may appear similar to the naive security definition that requires b to
derive no secret, no matter where it comes from (see Section 5.2). However, the paradoxical

31

situation in which a’s behavior is labeled non-secure because some other agent ¢ has dis-
closed a secret is avoided by compact approximations. In fact, as OViol, only approximates
only the inferences that are caused by a’s answer, the secrets revealed by another agent,
e.g. ¢, would not be included in OViol,. The definition of correct overestimate (based on
Causes) and the use of the field New in the definition of OVioly, play a fundamental role in
preserving this important property.

A nice property of compact approximations is that every correct approximation can be
turned into a compact approximation which is correct! This is done via the following
“compaction” operation.

Definition 6.21 (Compact Version) The compact version of App(b) = (AppH, AppOy, AppSec(b),
OCnyp, UCny) is the compact approzimation

Compact(App(b)) = (AppHy, AppOs, AppSec(b), OCny, (AX.0))

where AX.D is the constant function that always returns 0, and for all h € posHy,
AppOs(h) =aef (B, AppOy(h).Poss, AppOy(h).New) .

The following result verifies that the compaction operator Compact preserves correctness.

Theorem 6.2 (Correctness Preservation) If App(b) is correct, then Compact(App(b))
15 correct.

Proof: By definition, Compact(App, (b)) is correct if each of its components are correct.
The correctness of AppH,, AppSec(b) and OCny follows directly from the assumption
that App,(b) is correct, since these components are shared by Compact(App,(b)) and
App,(b). The function AX.0 satisfies trivially the correctness condition for underestimated
consequence operations. Finally, the correctness of @b\ depends on conditions 1-3 of
Definition 6.9. Clearly, condition 1 is satisfied because AppOy(h).Nec = (by definition of
Compact). Conditions 2 and 3 are satisfied because App,(b) is correct. This completes
the proof. |

Replacing App(b) by Compact(App(b)) may significantly improve performance. The
price to be paid for this is a potential loss of cooperation. The following theorem says
that whenever an agent a is approximately data secure w.r.t. a compact approximation
of an agent b, then it is also approximately data secure w.r.t. the (perhaps uncompact)
approximation of b.

Theorem 6.3 (Compact Approx. Security Implies Approx. Security) Ifhq is ap-
prozimately data secure w.r.t. Compact(App(b)), then hqy is approzimately data secure
w.r.t. App(b).

Proof: Suppose hq is approximately data secure w.r.t. Compact(App,(b)) and let A’ -e
be an arbitrary prefix of hq such that e = (a,b, Ans). Then, from the definition of data
secure histories and compact histories it follows that:

OVioly (AppH (K -€)) =0,

32

where OVioly, is defined w.r.t. Compact(App,(b)). Note also that App,(b) yields the
same overestimation OViol, as Compact(App,(b)), because the components on which
OVioly, is based are the same in the two approximations. It follows that also under App,(b)

UVioly(AppH o (k') D OVioly(AppH (' - €)) = 0.

The above inclusion holds for arbitrary prefixes of hq; this implies that hq is approximately
data secure w.r.t. App,(b). |

As a consequence of this theorem, we know that to check whether a history hq is approx-
imately data secure w.r.t. App(b), it is sufficient to check whether hq is approximately
data secure w.r.t. Compact(App(b)).

Corollary 6.4 For each history hq which is approrimately data secure w.r.t. Compact(App(b)),
there exists a history h!, which is approzimately data secure w.r.t. App(b) and hq <3’ hY.

The converse of Theorem 6.3 (and Corollary 6.4) does not hold, in general, and therefore
choosing to use Compact(App(b)) in place of App(b) may lead to a decrease in cooper-
ation. This is demonstrated via the following example.

Example 6.12 Consider the scenarios and approzimations specified in examples 6.10, 6.9,
6.7 and 6.5. As discussed in Example 6.10 in the scenario in which the monitor agent
received the soldier list from com_c, and e’ is the event in which tankl gives the monitor
agent its soldier list, higni1 - €' is approximately data secure as

UViolimonitor (R') = OViolmonitor (A - €') = {in(S, tankl : soldiers())} .

However, suppose we consider the compact version of the approrimation described in
Ezample 6.10. That is, the approzimation described in Example 6.11 where: (1) for all h €
posHIAKL - AppOmonitor (). Nec = 0 ; (2) for all C C AppLtenk] Ucntankl () =90.

monitor’ monitor’ monitor

Using this compact approzimation,
UViOImonitor(hl) =0

and

OViolmonitor (B - €') = {in(S, tank1 : soldiers())} .

Thus, h' - €' is not approrimately data secure using the compact approrimation. To make
K -e' approrimately secure in this case, tankl should be less cooperative and not give the
monitor agent its soldier list.

6.9 Static Approximations

A static security check is one that checks upfront that an agent a is secure irrespective of
what sequences of events may ensue (as long as those events are in accordance with the
behavior of agent a’s specification via its agent program, etc.). Unfortunately, the set of
possible histories for a— in general — is undecidable, as a can be as powerful as an arbitrary
Turing machine (this is proved in the next section). Thus, static security checks can only
be based on approzimate estimates of a’s possible future behaviors.

33

For this reason, the designer of agent a must overestimate the set of possible histories
that agent a may indulge in so as to cover at least all the possible interactions between a
and an arbitrary agent b. If each such history in the overestimated set of possible histories
is guaranteed to be secure at the time the agent is deployed, then security of a is guaranteed
upfront. The following definition says that a static agent approximation is one that takes
into account such an overestimate of agent a’s possible space of histories.

Definition 6.22 (Static Agent Approximation, restriction, correctness) A static ap-
prorimation
StaticApp(b) is an approrimation of b used by a such that the domain of AppH, 1is
extended to a set, posHt, of histories for a such that posHt D posHq . The set posHT will
be referred to as the approximation of a’s possible histories.

The dynamic restriction of StaticApp(b) is the agent approzimation App(b) obtained

from StaticApp(b) by restricting the domain of AppH, to posH,.

We say that StaticApp(b) is correct if all its components are correct. The correctness
of AppH,, is obtained by extending the correctness condition of Def. 6.3 to all h € posH{ .
The definition of correctness for the other components is unchanged.

In the above definition, posH7 is the “expanded” set of histories being considered in order
to ensure (upfront) that agent a is secure. The formal definition of static data security is
given below.

Definition 6.23 (Static Data Security) We say that the approzimation posHZT of a’s
possible behaviors is statically data secure w.r.t. StaticApp(b) if for all h € posHt, h is
approzimately data secure w.r.t. StaticApp(b).

Informally speaking, the following theorem guarantees that any agent known to be statically
data secure is also data secure.

Theorem 6.5 (Static Security Preservation) LetStaticApp(b) be a correct static ap-
prozimation of b used by a. If posH} is statically data secure w.r.t. StaticApp(b), then
a s data secure w.r.t. b.

Proof: First note that since StaticApp(b) is correct, then its dynamic restriction
App,(b) is also correct (straightforward from the definition). Now we prove the contra-
positive of the theorem, which is equivalent. Suppose a is not data secure w.r.t. b. Then,
by Theorem 6.1, it is not approximately data secure w.r.t. App,(b). Consequently, some
history hq € posHq is not data secure w.r.t. App,(b), and hence, for some of its prefixes
B -e such that e = (a, b, Ans),

UVioly (AppH (') 2 OVioly(AppHy (' - €)) . (%)

By definition of static approximation, posHt D posHg, so hq € posH{ . It follows (by (*))
that posHT is not statically data secure w.r.t. StaticApp(b). |

The following theorem says that static security implies data security w.r.t. a’s dynamic
restriction. It also proves that static checks are stricter, i.e., some agents are approximately
data secure but not statically data secure.

34

Theorem 6.6 (Static vs. Dynamic Verification)

1. Under the hypotheses of Theorem 6.5, if posHt is statically data secure, then a is
approzimately data secure w.r.t. StaticApp(b)’s dynamic restriction.

2. There exists an agent a and a correct static approzimation StaticApp(b) based on
a’s history approximation posH}, such that a is approzimately data secure w.r.t.
StaticApp(b)’s dynamic restriction, but posHY is not statically data secure w.r.t.
StaticApp(b).

Proof: The proof of part 1 is contained in the proof of Theorem 6.5 (there we proved that
if some hq is not approximately data secure w.r.t. the dynamic approximation App,(b),
then posH7 is not statically data secure w.r.t. StaticApp(b)).

To prove part 2, suppose b is the agent defined in the proof of Proposition 5.2, and let
App,(b) be any correct approximation of b with AppSec(b) # @ (we can choose AppSec(b)
arbitrarily). Let posH, be the set of all histories h,, illustrated in the proof of Proposi-
tion 5.2, with the further requirement that Ans; = @ for all 7 > 0, so that a is trivially
data secure. Now let f be any secret in Secq(b). Define posHT = posHq U {{{(a,b,{f}))}-
Note that App,(b) is the dynamic restriction of StaticApp(b). Clearly, posH7 is not
statically data secure w.r.t. StaticApp(b) (b believes the secret f and stores it in its state).
This completes the proof. |

7 Undecidability Results

As stated above, the developer of an agent may be interested in two types of security
verification methods.

Static security verification: In this mode of security verification, the agent developer
would like to be sure, when deploying an agent, that the agent will always be secure.
Such security verification can be performed once and for all at the time the agent is
deployed, and leads to no run-time security verification. Thus, once an agent is known
to be statically secure, no run-time security checks are needed.

Dynamic security verification: In this mode of security verification, no security checks
are made at the time the agent is deployed. Rather, every time the agent receives a
request, a run-time security check is made.

As mentioned in the preceding section, we will show that it is impossible to decide statically
whether an agent is approximately data secure. The first result below states that even the
relatively simple notion of surface security is undecidable.

Theorem 7.1 (Undecidability of Surface Security) The problem of deciding statically
whether an arbitrary IMPACT agent is surface secure is undecidable.

Proof: We prove this theorem by uniformly reducing the halting problem for arbitrary
deterministic Turing machines M to a surface security verification problem. For this pur-
pose, we simulate M with a suitable agent a that outputs a secret f when a final state of

M 1is reached.

35

Recall that M’s configuration consists of the tape contents plus the current state of M’s
finite control, which in turn is a set of 5-tuples of the form

<S7v3 v’7 S” m>

where s is the current state, v is the symbol under M’s head, v’ is the symbol to be
overwritten on v, s’ is the next state and m € {left, right} specifies the head’s movement.
We assume M’s configuration is encoded by means of a suitable package TMC (which stands
for Turing Machine Configuration), which provides code calls for updating M ’s configuration
and two code calls TMC : current_symbol() and TMC : current_state() to read the symbol
pointed to by the machine’s head and the machine’s current state, respectively.?

We also assume the agent has an action move(v',s’,m) (implemented with TMC’s code
calls for updating M’s configuration), that simulates one move, i.e. it sets the current tape
symbol to v/, it sets the current state to s’ and moves the head as specified by m. The finite
control of M will be modeled through a suitable agent program that specifies under what
conditions the move action has to be executed.

For each 5-tuple (s,v,v’,s’,m) in the finite control there is a corresponding agent program
rule R like the following:

O move(v',s',m) +
in(s, TMC: current_state()) &
in(v, TMC : current_symbol()) .

Intuitively, this rule causes replacement of the current configuration of M with the new one
specified by v/, s’ and m.

Finally, for each final state s of M, a’s agent program contains a rule
O send(b, f) « in(s, TMC : current_state()) .

where f is a secret and send(b, f) is an action that sends the answer {f} to b.

Clearly, by construction, a outputs a secret f (thereby violating surface security) if and
only if M terminates. This completes the proof. |

Remark 7.1 All that is needed to simulate a Turing machine is a package with a dynamic
data structure (i.e. a data structure whose size is not known at compile time). In [53],
we encode the Turing machine configuration with a standard IMPACT package originally
designed to encode meta-knowledge about other agents. Turing machine configurations could
also be encoded using a DBMS package.

An immediate consequence of the above result is that checking data security is undecid-

able.

3Note that such a package can be easily implemented in any modern programming language, by maintain-
ing two variables that encode the current tape symbol and the current state, and two linked lists of symbols
that encode the used portions of the tape on the left and on the right of M’s head, respectively. Clearly,
IMPACT agents are expected to use packages of this sort, as well as much more complicated packages.

36

Corollary 7.2 The problems of deciding statically whether an arbitrary IMPACT agent is
data secure or approximately data secure, are undecidable.

Proof: Immediate from theorems 5.2 and 7.1. |

The previous undecidability results also may be easily extended to show that action
security is undecidable.

Theorem 7.3 (Undecidability of Action Security) The problem of deciding statically
whether an arbitrary IMPACT agent s action secure is not decidable.

Proof: Similar to the proof of Theorem 7.1. An arbitrary Turing machine M can be
encoded into an IMPACT agent as shown in the proof of Theorem 7.1. However, the rules
that output a secret when a final state of M is reached are replaced by rules that do a
forbidden action. Then the halting problem is reduced to action security verification. |

The above results show that given an arbitrary agent and its security needs as input,
statically ensuring that the agent is secure is undecidable. As we will show later in Section
8, all is not lost. Two important facts are not ruled out by the above (seemingly depressing)
undecidability results.

1. First, it will be possible to find sufficient conditions that can be checked statically
on an agent and its security needs. If these conditions are satisfied, then the agent is
approximately data secure. Note that the converse is not true — there may be agents
that are approximately data secure and do not satisfy these (sufficient) conditions.

2. Second, it will turn out that dynamic security verification is in fact decidable, though
the run-time cost of checking dynamic security can adversely affect system perfor-
mance. Actually, the main reason for the undecidability results is that it is impossible
to predict a’s behavior; run-time checks, on the contrary, need no prediction — they
only have to inspect the outgoing messages, as they are generated by a.

In the rest of this paper, we will describe mechanisms through which the designer of an
agent may articulate how his agent approximates other agents, and then we will show how
these articulations may be checked for static/dynamic security.

8 Security Specification Languages

In this section, we will provide a “tight” language within which the developer of an agent a
can express the approximations that a must use. This language consists of two components:

History component Hist,. This component is used to record and maintain a’s history,

hq .

Agent approximation program AAPfY. This is a set of rules that encode a’s approxi-
mation of b, denoted by App(b) in the abstract approximation framework (cf. Defi-
nition 6.16).

37

Once these languages are defined, in Section 9, we will define a package called SecP, that
may be used to maintain, compile and execute the programs that perform static, dynamic
and combined security checks. We now discuss each of these components below.

8.1 The History Component Hist,

The developer of an agent a needs to answer the following questions pertaining to the
history maintained by her agent:

e Which events should be stored in the historical archive? In general, an agent a may
choose to store only certain types of events. This may increase the efficiency of history
manipulation, but may decrease the quality of the approzimations of other agents’
histories, which are based on a’s own history (see the examples in Section 6.2).

e Which attributes of these events should be stored? Possible attributes of an answer
message which an agent developer might wish to store are the requested service, the
receiver, the answer, the time at which the answer was sent.

The history component may be viewed as a software package (cf. Section 3) which stores
a totally ordered list of time-stamped events, that can be queried and updated by means
of the following functions.

e retrieve _reqs(Sender,Receiver,Request,When): Retrieve all stored request mes-
sages sent by Sender to Receiver at time When, and which match Request. Parameter
When has the form Op <time>, where Op is one of <, <,=,%#,>,>. The above param-
eters may be left unspecified, in part or entirely, using the wildcard ‘_’. For example,
the invocation retrieve_reqs(b,_,_,> 20:jan:95:7pm) retrieves all stored request
messages sent by b after the specified time.

e retrieve answ(Sender,Receiver,Fact,When): Retrieve all stored answer messages
sent by Sender to Receiver at time When, and such that the answer contains a fact
f which matches Fact. The variables of Fact are instantiated with f. When can be
specified as explained above; wildcards may be used.

e retrieve_actn(Act,When): Retrieve all stored actions that match Act, and executed
at the time specified by When. The action name and/or its arguments may be left
unspecified using the wildcard ‘.

The history package is completed by the history update actions described below.

e insert reqs(Sender,Receiver,Req,When), insert _answ(Sender,Receiver,Ans,When),
insert_actn(Act,When): These actions append a new event to a’s history.

e delete(Event): Deletes Event from the history .
Note that the history component of an IMPACT agent may be viewed as just another data

structure together with the above set of associated functions. Hence, the concepts of code
call and code call conditions apply directly to the history component .

38

Definition 8.1 (History Conditions) Suppose RF is one of the above three retrieval
functions, and args is a list of arguments for RF of the appropriate type. We may in-
ductively define history conditions as follows.

e in(X, Hist, : RF(args)) is a history condition.

e If Opis any of <,<,=,#,>,>, and 11, T5 are variables or objects, then Th Op 15 is
a history condition.

e If x1,Xx2 are history conditions then (x1 & x2) ts a history condition.
The syntactic restrictions obeyed by history conditions will be needed in Section 8.2. In

general, Histy’s functions may occur side by side with arbitrary conditions. The following
example presents some history conditions that an agent in the Tank Example might use.

Example 8.1 The following are history conditions which can be used by tankl.

in(Event1, Hist, : retrieve_regs (monitor,tankl,_,> 20:june:1995)()) &
in(Event2, Hist, : retrieve_regs (com_c,tankl,_,> 20:june:1995) ())&
FEventl.req = Event2.req

The above history condition retrieves all the requests that were sent both by the monitor
agents and the com_c agent after June, 20th 1995.

8.2 Agent Approximation Languages

We are now ready to explain how the designer of agent a approximates other agents. To
do so, the designer of a writes one set of rules for each component of a’s approximation of
b. Specifically,

1. The designer first writes a set of rules called history approzimation rules through
which the designer specifies how designed agent approximates the history of another
agent;

2. Then, the designer writes a set of state approzimation rules which specifies how the
designed agent approximates the state of another agent;

3. Then, the designer writes a set of consequence approzximation rules that specify how
the agent captures the approximate consequence operation of another agent;

4. Finally, the designer writes a set of secrets approzimation rules specifying the set of
approximate secrets.

8.2.1 History Approximation

We now discuss how history approximations may be expressed by an agent developer in
IMPACT. This is done through a construct called a history constraint that is defined via
two simpler constructs defined below.

39

Definition 8.2 (Pure History Constraint) requested(Sender,Receiver,Request,Time),
told(Sender,Receiver, Answer, Time), and done(Agent, ActionName, Time) are called pure
history constraints.

Pure history constraints correspond to the three possible event types — request messages,
answer messages and action events. The argument Time is a number which denotes the
time at which the event happened. The other kind of history constraint is a comparison
constraint.

Definition 8.3 (Comparison Constraint) If 71,75 are either objects or variables, and
Op is one of the comparison operators <,<,=,7#,>,>, then T1 Op T» is called a comparison
constraint.

We are now ready to define history constraints.

Definition 8.4 (History Constraint) A history constraint is either a comparison con-
straint or a pure history constraint.

The reader is cautioned that history constraints and history conditions (defined earlier)
are two different concepts ! We are now ready to provide examples of history constraints
associated with the Tank Example.

Example 8.2 The following expressions are pure history constraints:

requested(com_c,tankl, set:speed(new_speed), 20 : june : 1999),
requested(monitor, tankl, fuel_level(),Xmow — 60
told(tankl, monitor,in(low, tankl: fuel_level(Xnow)), Xnow
done(tankl, set_speed(55kmh),15 : 00 : 20 : june : 1999).

bl

)
);
)
)

The following expressions are comparison constraints: T1 < Xpow — 5, 11 = To, and

T3 #15:00:20: june : 1999.

Definition 8.5 (History Approximation Program) A history approximation program
(used by agent a for agent b) is a set Ryis, of rules of the form

PHC «+ Xhist

where PHC is a pure history constraint and Xnist @S a history condition (not a history
constraint!).

When the developer of agent a wishes to approximate the history of agent b, he or she
explicitly specifies a history approximation program, Rpis, which implicitly specifies a set of
histories that “satisfy” the rules in Rpjs, and this set of histories reflects agent a’s approxi-
mation of the histories of agent b.

Definition 8.6 (History Satisfaction) Let hy, = (e1,e2,... ,€;,...) be a history for b.

hp satisfies a conjunction of history constraints, HC, if there is a ground instance HCO of

HC such that:

40

e cach comparison constraint in HCO is true;

e cach pure history constraint ¢ € HCH matches some event e in hy of the corresponding
type, in the sense that the fields Sender, Receiver, Request and Answer of ¢ equal
the corresponding elements of e;

e the parameters Time correctly reflect the ordering of the events; formally, for all pure
history constraints ¢’ and ¢’ in HCO, whose last parameters are Time' and Time”,
respectively, and such that ¢’ and ¢" match events e; and ey, of hy, (respectively), it
holds that Time' < Time” & j < k.

The following example shows some histories in the Tank example and some history con-
straints that are satisfied.

Example 8.3 A history hmonitor for monitor of the form
(... (monitor, tankl, location(Xnow)) - - . (tankl, monitor,in((50,20,40), tankl: location(Xnow))})---)

(containing a service request and the corresponding answer) satisfies the history constraints:

requested(monitor, tankl, location(Xnow), T1),
told(tankl, monitor,in((50,20,40), tankl : location(T2))), T1 < T2.

Given a history approximation program, Ry;s, used by agent a to approximate the history
of agent b, the abstract approximation of agent b’s history may now be stated intuitively
as follows:

1. Find all pairs (HC, xpist) where HC is a conjunction of history constraints such that
repeatedly unfolding (i.e. replacing the pure history constraints in HC by the bodies
of rules whose heads unify with the pure history constraint) HC against the rules in
Ryis yields the history condition ypist-

2. For each such pair (HC, xpist), let @ be the composition of all the unifying substitutions
involved in the previous step.

3. For each substitution o such that xpisto is true in the current state of the history
component, HCOc is possibly satisfied by a history of agent b.

4. Any history that satisfies H(C6oc is considered to be a possible history of b by a.
The following formal definitions formalize this point.

Definition 8.7 (Resolvent, Derivation) Let G be a conjunction of atoms A1 & ... &A,,
and let r = (H < B) be a rule whose head can be unified with some A; (1 < ¢ < n),
with a substitution 6. The resolvent of G and r w.r.t. 6 (with selected literal A;) is
(A1 & ... &A1 &B&A;i11 & ... &A,)0.

A standardized apart member of a set of rules R is a variant of a rule r € R, obtained
by uniformly renaming R’s variables with fresh variables, never used before.

41

A derivation from a set of rules R with substitutions 01 ...60,, is a sequence Gq,... ,Gp,
such that for alli =1...n, G; is a resolvent of G;—1 and some standardized apart member
r; of R, w.r.t. 0;. If Go,... G,y s a deriwation from R with substitutions 01 ...6,,, and 0
is the composition of 01 ...80,,, then we write

Go I—)% Gm .
[4
If the 6;s are all most general unifiers, then we write G |E)R Gm -

The reader is warned that —— does not denote logical implication, but rather goal-
rewriting. In fact, G i—)% G, means that by repeatedly applying the rules of R to the
initial goal Gy in a top-down (or backward-chaining) fashion, G,, can be obtained at some
point. The relation between —— and logical implication is the following: if G »—)% Gm
holds, then G,, and R imply G¢f (in symbols: Gy8 < G, A (\ R)).

Thus, in particular, G »—)% G, might hold, but Gy & G|, |—>% Gy, might not because
the rules in R might not be sufficient to rewrite G{, to G,, or a subset thereof. Using this
concept, we may now precisely specify the approximate histories of b used by agent a as
follows.

AppH y(ha) =aef {HCO0 | HC —% Xnist and o € Sol (xist) }- (2)

The following example uses the Tank Example to illustrate how an agent a might approxi-
mate the history of agent b.

Example 8.4 Let us consider the approrimation of the history of the monitor agent by
tankl in the Tank Ezample. tankl does not have a lot of information on the interactions
of the monitor agent with other agents and its actions. Even the set of agents contacted
by the monitor agent is not known. Some of them might know tankl’s region or its fuel
level at different times and disclose it to the monitor agent. This may be expressed via
the following history approzimation rules. They say that for all X # tankl and T < T1,
monitor’s history may contain messages from X to monitor, specifying tankl’s region or
fuel level, or both.

(rl) told(X,monitor,in(R, tankl:region(T)),T1) <+ X #tankl & T <T1.
(r2) told(X,monitor,in(L, tankl: fuel_level(T)),T2) «+ X # tankl & T < T2.

The only assumption we make here is that the agents involved in this scenario do not talk
about the future. Only old or current region information and fuel levels are communicated.
This is expressed by T < T1 and T < T2.

We assume that in some cases, tankl itself may disclose its old fuel levels to the monitor
agent. We also assume that tankl keeps all its answers in Histygny1 for only one hour, then
deletes them. Then, a recent answer can be in monitor’s history only if a corresponding
message is stored in Histiqny1, while older messages may be in the monitor agent’s history

42

regardless of Histiank1’s contents. This can be expressed via the following rules.

(r3) told(tankl, monitor,in(L, tankl: fuel_ level(T)),T3) +
in(Ev, Histiqni1 : retrieve_answ(tankl, monitor, in(L, tankl : fuel_level(T)),.)) &
T3 > Ev.time.
(r4) told(tankl, monitor,in(L, tankl: fuel_level(T)),T4) +
T<T4 &
T4 < now — 60.

Rule (r3) states that an answer message from tankl may be in monitor’s history if there
is a corresponding message Ev in tankl’s history (second line). Message delivery might
not be instantaneous; there may be a delay before the answer is received by monitor (third

line).

Rule (r4) is needed because events older than 60 minutes are deleted from Histiqnii A
Therefore, if T4 < now — 60, then an answer message from tankl may be in monitor’s
history while the corresponding event has been deleted from Histiqny1. Condition T < T4 says
that L refers to a time point earlier than the answer delivery time. This condition is useless
n (r3), because tankl cannot return a future fuel level, and hence, T < Ev.time < T3.

If Ryis consists of the rules (r1)-(r4) above, and

HC = +told(X,monitor,in(L, tankl: fuel_level(T)),T') &
told(Y, monitor,in(R, tankl : region(T)), T")

then there exist three derivations HC l—)%his Xb (1=1,2,3).
The first one applies (r1) and (r2), and yields:

Xt = X#tankl & T<T & Y#tankl & T< T,
HCo, = HC.

This means that (it is estimated that) the monitor agent’s history may contain two events
matching HC, provided that X%ist holds.

The other derivations use (rl) and one of (r3) and (r4), yielding:

Xt = in(Evy, Histyqny : retrieve_answ(tankl, monitor,in(L, tankl: fuel_level(T)),.)) &
T' > Evy.time &
Y # tankl & T < T,
HCO; = told(tankl, monitor,in(L,tankl: fuel_level(T)),T') &
told(Y, monitor,in(R, tankl: region(T)),T");

Xhst = T<T & T <now—60 & Y#tankl & T< 1",
HCO3 = HCO,.

*Note the agent’s state is changing over time (Definition 3.2). That is, the values of its data objects may
change over time. In particular, the value of now is changing over time.

43

Again, this means that the monitor agent’s history may contain two events that match
HCO; if the corresponding condition Xf'list is satisfied. For 1 = 2, checking such condition
involves inspecting tankl’s history Histiqnk1. This can be done either dynamically (at Tun
time) or statically, by estimating how the history condition will be evaluated in the future
as discussed below.

8.2.2 State Approximation Language

We are now ready to define how an agent a approximates the state of another agent b.
Such an approximation has three fields, Nec, Poss and New, that capture (respectively) the
conditions which are deemed to be necessarily true, possibly true, possibly true and caused
by the last event in b’s history. We will only consider compact approximations where Nec
is empty. In order to express the set Poss, the agent developer writes a set of rules called
the state approximation program.

Definition 8.8 (State approximation program) The state approzimation program used
by a to approximate the state of agent b s a finite set of rules of the form

Ba(b, f) « HC,

where f is a fact from the approrimate fact language AppLy and HC is a set of history
constraints.

Intuitively, the above rule says that if b’s history satisfies HC, then f might be in b’s state.

By analogy with the implementation of history approximations, the relation between the
abstract notion of state approximation and the corresponding program rules is given by the
following two equations.

AppOy(H).Poss =4.; {Bbo | B |_)%’-sta HC and HCo € H}. (3)

This is perfectly analogous to equation (2). The definition of the “.New” field is slightly
more complex:

AppOp(AppHyp(ha)).New = 4o
{Bbo | B l—)%staURhis Xhists 0 € Sol(Xhist), some
in(E, Histq : retrieve_answ(a,b,...)) belongs to Xhisto (4)
and E is the last event of Histq} .

(Recall that the “Nec” field is not needed for compact approximations.)

The difference between the above two definitions can be explained as follows: possibly
“New” facts are identified by extending the derivations down to code call conditions xpist,
using Rpis; if such code call conditions refer to the last event F stored in Histy, then the
given fact B might have been caused by such F, and for this reason, B might be a new fact.
Conversely, if B does never need event F to be derived, then clearly B cannot be caused
by E (according to our approximate knowledge) and hence it cannot be new.

Given a state approximation program R, the approximate state of agent b specified by
agent a is given by the following proposition.

44

Proposition 8.1 AppOyp(AppHy(hy)).Poss ={Bfoc | B »—)%staURhis Xhist and o € Sol(xhist) },
where Xnist Tanges over history code call conditions.

Proof: First we prove the left-to-right inclusion. Assume that By € AppOy(AppH+(hq)).Poss.
By (3), this means that Bj has the form Bfo and for some history constraints HC, there
is a derivation B b—)%sta HC where HCo € AppHy (hq) .

This membership, by (2), implies that HCo has the form HC'#'c’ and there is a derivation
HC' l—)%his Xhist for some set of history constraints ypistwith o’ € Sol(xhist) -

By combining the ground instances of the two derivations we obtain a derivation By l—)%m

HCo b—>%his Xhisto', and hence, by setting 8" = 61 o 62, X}, = Xnisto’ and ¢’ = €, where €
denotes the empty substitution, we obtain:

9/!
BO HRstaURhis Xll':ist’
where o” € Sol(x}.,) - As a consequence,
Bye€{Bbc | B »—)%mURhis Xhist and o € Sol(xnist) } -
Since By is an arbitrary member of AppOy(AppH+(hq)). poss, this proves that
AppOy(AppH (hq)).Poss C {Bbo | B }—>0RstaURhis Xhist and o € Sol(xhist) } -

We need to show the reverse inclusion. For this purpose, suppose By belongs to the right-
hand-side of the above inclusion, that is, By has the form Bfo, B b—)%muRhis Xhist and
o € Sol(Xhist) -

This derivation can be reordered by postponing the application of Rps’s rules, and can
be split into two segments, for some HC, 6; and 85, as follows:

61

B Rsta

[4
HC % xiist
where 8 = 81 o 65 . This reordering is possible for two reasons:

1. By a well-known result in logic programming theory, called independence from the
selection rule [37], we can invert the application of two rules in a derivation, provided
that none of the two rules rewrites an atom introduced by the other rule.

2. The atoms in the body of Ry;s’s rules, by definition, never match the head of any rule
in Rga. So Rpis’s rules can be delayed until all the necessary rules of Rg, have been
applied.

Now the reader can easily verify (with (2) and (3)) that HC6s0 belongs to AppH(hg),
and hence Bfo (that equals By) belongs to AppOy(AppH4(hq)).Poss. This completes the
proof. |

The following example uses the Tank Example to illustrate how states may be approxi-
mated.

Example 8.5 As very little is known about monitor, the following possibilities must be
taken into account:

45

e The monitor agent may store in its state any data obtained from other agents (this
doesn’t mean that monitor actually stores all such data);

e The monitor agent may keep data in its state for unbounded amounts of time (i.e., it
cannot be said a priori whether a particular piece of data will be removed or replaced
at some point).

This means that the monitor agent’s state may possibly contain any fact received from
other agents. This can be expressed via the following rule:

(r5) Bianki(b,F) « told(X, monitor,F,T).

Clearly, if more information about monitor is available, the body of the above rule might be
enriched with further constraints. For example, by adding T > now — 30 one could say that
monitor does not keep facts for more than 30 minutes. By adding X # ¢ one could say that
c’s messages are not stored by monitor.

If Rpis consists of rules (r1)-(r4), and Rsa contains only (r5), then the condition
B = Bignki (monitor,in(L, tankl: fuel_level(T))) & Bignki(monitor,in(R, tankl: region(T)))

has three derivations B '_)%staURhis Xf]ist (1 = 1,2,3), where Xflist and 0; are as in Exam-
ple 8.4 (the first two steps of these derivations apply (r5) twice, and transform B into the
constraints HC' of Example 8.4; the rest of the derivations coincide with those of Exam-

ple 8.4).

The intuitive meaning of these derivations is: two facts approzimated by in(L, tankl : fuel_level(T))
and in(R, tankl : regzon(T)) may be simultaneously stored in the monitor agent’s current
state when any of the conditions Xfﬁst is satisfied. For instance, X%ist 1s satisfied whenever
there exist X, Y, T/, T", such that

X#tankl & T<T & Y#tankl & T<T”.

This is always possible, whenever there exists an agent different from tankl and monitor;
under this assumption, our rules say that the facts (corresponding to) in(L, tankl: fuel_level(T))
and in(R, tankl : region(T)) may be part of the monitor agent’s current state.

8.2.3 Consequence Approximation Language

In this section, we show how the agent developer may specify how agent a overestimates
agent b’s consequence operation. He does so by writing a consequence approrimation pro-
gram defined below.

Definition 8.9 (Consequence Approximation Program) A consequence approzima-
tion program used by agent a to overestimate agent b’s consequence operation is a finite set
of rules of the form

Ba(b,f) < B1&...&Bn,

where each B; is either a “belief atom” of the form Bq(b,...) or a comparison constraint

T Op1>.

46

When the developer of agent a writes a consequence approximation program Reon, then he
or she implicitly specifies a consequence operation as shown below:

OCnp(C) =qef {facts(BOo) | B—% ', o € Sol(come(C")) and facts(C')o C C} .
(5)

where comc(C") is the set of comparison constraints in C’ and facts(C”) is the set of facts
occurring within the belief atoms of C'.

The following example uses the Tank example to illustrate the concept of a consequence
approximation program.

Example 8.6 Let us make an additional assumption about the monitor agent. Suppose
we cannot excluded the possibility that the monitor agent may derive the current location,
Poow, of tankl, from recent information about tankl’s low fuel levels and from the region
in which tankl s located. This is based on the assumption that if tankl is low in fuel, it
must be at the support system located in its region and will stay there for a very short time
period (e.g., less than 10 minutes). Hence if t < now — 10, then we can safely assume that
monitor cannot derive Pyoy from the region and from tankl’s being low in fuel. Then Reon
consists of the following rule:

(r6) Bignki(monitor, in(Pyey, tankl: location(now))) + C’
where C' is

Bignk1 (monitor,in(L, tankl : fuel_level(T))) &
Bianki (monitor,in(R, tankl : region(T))) &
T>now—10 & L =1ow.

Intuitively, C' means that tankl believes that the region it is in and its being low in fuel at
time T > now — 10 may be stored tn monitor’s state at some point. Under this assumption,
it is estimated that the monitor agent may derive in(Ppoy, tankl: location(now)), (t.e.
tankl’s current location), due to the following points:

® Bianki(monitor,in(Pyey, tankl: location(now))) —% C', where € is the empty
substitution (the derivation consists of one application of (r6));

e comc(C') = {T > now — 10,L = low};

o let ty be any number such that to > now —10; let 0 =45 [to/T,low/L]; note that
o € Sol(comc(C")) ;

o facts(Bignki(monitor, in(Pnow, tankl: location(now)))) = in(Ppow, tankl: location(now)),
and

e facts(C') = {in(L, tankl: fuel_level(T)),in(R, tankl: region(T))}
and hence:

in(Ppow, tankl: location(now)) €
OCntarkl ({in(1low, tankl: fuel_level(to)),in(R, tankl: region(to))}).

47

8.2.4 Approximate Secrets Language

As in the previous cases, for the developer of agent a to approximate the secrets to be kept
from agent b, he writes a set of rules as described in the following definition.

Definition 8.10 (Approximate Secrets Program) An approximate secrets program used
by agent a to specify secrets to be kept from b is a finite set of rules of the form

secretq(b, f) < Xcmp,

where f is an approrimate fact from AppLy, and Xemp 15 a set of comparison constraints
T OpT1>.

Intuitively, the above rule means that f should be kept secret from b if xcmp is true.
Every approximate secrets program, Rgeec, implicitly specifies an abstract secrets function

AppSec(b) as follows:

AppSec(b) =45 {fo | (secretq(b, f) < Xcmp) € Rsec and o € Sol(xcmp)} - (6)

The Tank example may be used to illustrate the concept of an approximate secrets pro-
gram.

Example 8.7 In the Tank example, there s one secret, declared by the following rule:
(r7) secretignki(monitor,in(P, tankl: location(T))) < T = now.

This means that tankl does not want monitor to know tankl’s current position.

8.2.5 Agent Approximation Program

Thus, the approximation of b used by agent a consists of a set of approximation programs
as defined above that we collectively call the agent approximation program of b used by a.
The following definition collects in one concept the components introduced in the preceding
sections.

Definition 8.11 (Agent Approximation Program, AAPY) The agent approzimation
program AAPy is a set of rules with the following possible forms:

history approximation rules PHC < xpist ;
state approximation rules By(b, f) «+ HC;
consequence approximation rules Bg(b, f) «+ B1&...&B,,;

secrets approximation rules secretq(b, f) < Xcmp;
where f € AppLy,, PHC 1s a pure history constraint , Xnist ¢S a history code call condition,

HC is a set of history constraints , each B; is either a belief atom of the form Bq(b,...)
or a comparison constraint Ty Op T>, and Xcmp @5 a set of comparison constraints.

48

9 Algorithms for Security Maintenance

In this section, we will define algorithms to compile agent approximation programs, and
we will also provide algorithms to perform static security checks, as well as dynamic se-
curity checks. We will focus on algorithms for maintaining data security. Techniques for
maintaining action security in IMPACT can be found in [9] and [53, Section 10.5.4].

Before proceeding any further, however, we present a result below that shows that if the
current history of agent a (which a surely knows!) is hq, then the set of secrets violated by
agent b given that history hq has occurred can be precisely characterized in terms of the
derivations from AAP¢}.

Theorem 9.1 (Violated Secrets As Computations From AAP}Y) Let xhist range over
history conditions. Then

OVioly(hq) = {fbo | (secretq(b, f) < xcmp) € AAPY,
Ba(b’f) &Xcmp *_>9AAPg Xhist; O € So'(Xhist),
some in(E, Hist : retrieve_answ(q,b,...)) belongs to xpisto and
E is the last event of Histy} .

Proof: Let fy € AppLy be an arbitrary approximate fact. By definition, fy € OVioly(hy)
iff fo € J{OCny(C) | C € AppOy(AppHy (hy)).New} and fy € AppSec(b).

By analogy with the proof of Proposition 8.1, the reader may easily verify (using equations
(5) and (4)) that fo belongs to some of the above sets OCnyp(C) iff f has the form ffo and

1. Ba(b, f) '_)%conURstaURhis Xhist With o € Sol(Xhist);

2. there exists a code call condition in(F, Hist, : retrieve_answ(a,b,...)) in Xpisto such
that E is the last event of Hist,.

Moreover, by (6), fo belongs to AppSec(b) iff fo has the form f'o’ and Reec contains a rule
secretq(b, f) < Xcmp

such that o’ € Sol(xcmp). As a consequence of 1) and 2), we obtain the two points below:

a) Assume fy € OViol,. Then, since AAPY DO Reon U Rsta U Rpis, the derivation
in 1) is also a derivation Bq(b, f) '_>0AAPg Xhisto- Consider a ground instance

Ba(b, fo) % apa Xhisto of the above derivation. It can be immediately extended
b

to Ba(b, fo) & Xcmpo' *_)GAAP‘; Xhist0 & Xempo', by appending & xcmpo’ to each

goal. Now, note that the empty substitution € is in Sol(xhist0 & Xcmpo'), and that

Xhist0 & Xempo' contains a code call condition in(F, Histq : retrieve_answ(a,b,...))
such that FE is the last event of Hist.

By a standard logic programming result ([37, Lifting Lemmal), this derivation can be
“lifted” to a derivation Bq(b, f) & Xcmp '_)iAPg Xhist- Clearly, xj. has a solution

o such that x| 0" contains a code call condition in(F, Histq : retrieve_answ(a,b,...))
where F is the last event of Histq. This proves that fy belongs to the right-hand-side
of the equation in this theorem’s statement.

49

b) Conversely, suppose that fy belongs to the right-hand-side of the equation in the
theorem’s statement. Then we have Bq(b, f) &xcmp '_)eAApg Xhist; & € Sol(Xhist)s
and for some call in(E, Histq : retrieve_answ(a,b,...)) in xpisto, E is the last event of
Hist,. From this derivation, by dropping the part corresponding to Xemp from each
goal, we obtain a derivation Bq(b, f) l—)f\APcbl Xhist» Where xj,,0 still contains the
above code call condition (the part removed from xpist consists only of pure comparison
constraints). The above derivation cannot use rules from Rge. (which match neither
the initial goal nor the bodies of AAPy — Reec); therefore, it is also a derivation
Ba(ba f) '—)%conURstaURhis thist'

It follows by 1) and 2) that fy € (J{OCny(C) | C € AppOp(AppHy(ha)).New}.
Moreover, note that xpist contains xempf and o is a solution of xhist, so o is a solution
to Xemp- It follows, by (6), that féo — that is, fo —is in AppSec(D).

We may conclude that fi € OVioly(hy).

From a) and b) we immediately derive that fj belongs to the left-hand-side of the equation
in the theorem’s statement iff it belongs to the right-hand-side. This completes the proof.

The following example shows how this theorem may be used to determine which secrets
are violated by a given agent b w.r.t. a given history.
tankl ' consists of rules (r1)-(r7). The unique secret
is specified by (r7), thus the security check is only concerned with derivations starting from
the corresponding condition Gy = Bignk1(monitor,in(P, tankl: location(T))) & T = now.
Only one such derivation reaches a history condition xhist that mentions Histiqnx1. This
derivation uses rules (r6),(r5),(r5),(r3),(rl), and yields a condition of the form

Example 9.1 In our example, AAP

Xhist = in(Eva, Histignk : retrieve_answ(tankl, monitor,in(L1, tankl: fuel_level(T1)),.)) &
Ll =low &
T3, > Evg.time &
Y5 # monitor & T; < T2 &
Ty > now— 10 &

T =now.

After evaluating the above code call to Histignki, one can always set T3, := Evy.time,
L1 =1ow, Yg:=c, T25 :=T;+ 1, and T :=now. Subsequently, the only constraint that
might not be satisfied ts Ty > now — 10. Therefore, Xxnist has a solution if and only if the
code call retrieve_ans finds an answer message from tankl to monitor containing a fact
in(low, tankl: fuel_level(T)) where Ty > now — 10.

Data security, however, is violated only if the answer message found by retrieve_answ s
the last message of Histiqni -

Intuitively, all this means is that if tankl tries to send the monitor agent information
about its being low on fuel during the last 10 minutes, then a security violation is detected. A
closer examination of the rules used in the derivation reveals that AAP%;E,COT “discovers”
that monitor might combine the fact that tankl is low in fuel with its region coming from

another agent Yg # tankl, and derive tankl’s current position.

50

The following function compiles AAP} into a set of tuples of the form
<ba fa Xhist>

where b is an agent name, f is an approximate fact from AppLy, and xpist is a history
condition. The intended meaning of the above tuple is that for all o € Sol(xhist), fo
belongs to OVioly(hq). We use the notation OVT to denote this set of tuples and call
the table, the overestimated violation table. The following definition provides a method to
compile the above table.

Definition 9.1 (Compilation) Function SecPy: Compile AAP(AAPY) sets OVT to the
set of all tuples (b, f, xnist) such that:

1. (secretq(b, f) < Xcmp) € AAPY;

4
mg . . L,
2. (Ba(b, f) &Xcmp) F=AAPE Xhist and Xnist ©S a history condition;

3. the set of comparison constraints in Xhist 1S satisfiable.
The following example uses the Tank example to illustrate the compilation procedure.

Example 9.2 In the Tanks example OVT oy would contain the tuple
(monitor,in(P, tankl : locatzon(now)), Xhist),

where xpist 1S the history condition described in Ezample 9.1. The set of comparison con-
straints in Xnist can be satisfied by setting: T34 := Evg.time, L1 = low, Yg:=1cC, T25 := Ty + 1,
T := now, and Ty := now — 9.

Before continuing to the next section, we note that Step (2) of Compile AAP may be per-
formed in polynomial time data complexity by using standard table-based resolution meth-
ods such as those implemented in the well-known XSB system (http://xsb.sourceforge.net)
developed at Stonybrook.

9.1 Dynamic Security Verification Algorithm

Once the table OV'T is constructed, security may be verified dynamically via a function
SecPq: DynOViol(b, Ans), that computes OVioly(hq - €) where e is an event corresponding
to a’s current answer Ans to b. The dynamic security check algorithm is given below

(Algorithm 9.1).

It is important to note that the dynamic security check algorithm does not modify Histq
— it merely checks whether some secret would be violated if Ans were returned to b. The
following theorem states that Algorithm 9.1 is correct.

Theorem 9.2 (Correctness of Dynamic Security Check) Let OVT be the table con-
structed by
SecPq: CompileAAP(AAPL), and let e be an answer message from a to b with answer
Ans. Then

OVioly (hq - €) = SecPq : DynOViol(b, Ans) .

51

Algorithm 9.1 (Dynamic Security Check)
SecPq: DynOViol(b : AgentName, Ans : Answer)

(x output: an overestimation OVT o, of the set of secrets *)
(x that would be violated if Ans were returned to b *)

OVThow :=0;
(x Histy is temporarily extended with answer message e *)
e := new(Answer Message) ;
e.sender := Q;
e.receiver :=Db;
e.answer := Ans ;
e.SendTime := now;
execute insert_answ(e);
(x OV ’s tuples are evaluated against the extended history *)
for all tuples (b, f, xnist) 2n OVT do
for all o in Sol(xpist) do
for all in(V, Histg : retrieve_answ(...)) in xphisto do
if V. =e then OVT,q, := OVT, o, U{fo};
(x Histq is restored *)
execute delete(e);
return(OV Thow);
end.

Proof: By Theorem 9.1 and Definition 9.1, an approximate fact fy is in OVioly(h,) iff
there exist a triple (b, f, xhist) in OVT and a substitution o € Sol(xhist) such that

1. fo= fo;

2. Xnhisto contains some code call condition in(E, Histq : retrieve_answ(a,b,...)) where
F is the last event of Hist,.

Now, Algorithm 9.1 clearly returns all and only the fo satisfying the above properties. The
theorem follows immediately. |

We say that OVT is bounded iff there is an integer k such that for every triple (b, f, Xnist)
in OVT, xpist contains at most k variables in it. When OV'T is bounded, it is now easy to
see that the dynamic security check algorithm above is polynomial in the size of the history
and the size of OVT. Boundedness is a condition satisfied in most practical applications —
after all we rarely need to execute code call conditions with more than (say) 100 variables
in it.

9.2 Static/Combined Security Verification Algorithm

The dynamic security verification algorithm defined in the preceding section performs a
polynomial run time test that agent a must execute whenever another agent b makes a
request. In contrast, static security verification tries to ensure prior to deploying an agent,
that the agent’s way of answering queries is secure independently of the histories that

52

actually arise over time. In order to implement static security, the developer of an agent a
must specify an overestimate posH{ of histories that a may participate in the future. This
can be done via a set of rules that the agent developer must write.

Definition 9.2 (Self approximation Program) Agent a’s self approximation program
1s a finite set Rgs of rules having the form

in(e, Histy : fun(args)) < Xcmp,

where fun is one of the functions of package Histy, args is a suitable list of arguments, and
Xcmp @8 @ comparison constraint.

Intuitively, the rules of Rgs are used jointly with the rules in the agent approximation
program AAPY to derive a set of comparison constraints Xemp by iteratively performing
derivations. If any such xcmp is satisfiable, then a security violation may occur. Before pro-
ceeding to define the static security verification algorithm, we first present an intermediate
definition.

Definition 9.3 (extnou(Xhist, X0)) Suppose Xxnist s a set of history conditions, and
xo = in(e€’, Histg : retrieve_answ(args)) .

Then we use extnou(Xhist; X0) to denote the set of history conditions obtained from xnhist by
adding the constraints:

e e.time < now for each code call of the form in(e, Histy : fun(... ,w)) in Xpist,

e ifw has the form Opt, then e.time Op t is added to xhist where in(e, Histg : fun(... ,w))
18 1N Xhist, €-time = now to Xhist,

e e.time = now is added to xnist for a selected code call condition of the form

in(€', Histy : retrieve_answ(args)) in Xhist-

Note that the last condition above will be true iff €' is the last event in Histy. It is
important to note that depending upon which xo = in(e€’, Histq : retrieve_answ(args)) is
selected from Xhist, the definition of extpow(Xhist, X0) changes — hence, we use the no-
tation EXTpou(Xhist) to denote the set of all extpow(Xhist, x0) for xo in xnist having the
form in(e’, Histq : retrieve_answ(args)). The following example shows the construction of

EXTnow (Xhist) .

Example 9.3 Consider the xnist of the only tuple in the OVT o computed in Example 9.2.
It contains one call to Histiqnyk1, namely,

X0 =def iN(Eva, Histyqnir : retrieve_answ(tankl, monitor,in(L1, tankl: fuel_level(T1)),.))

Thus, the extended condition in this example is:
extnow (Xhists X0) = Xhist & Evg.time < now & Evs.time = now.

If the last parameter of retrieve_answ were—say— “> Tg”, then extnoy(Xhist, X0) would con-
tain also a constraint Evg.time > Tg.

53

Algorithm 9.2 (Static Security Check) SecP : StaticOViol(b : AgentName)

(x output: a modified table OV Tqpe x)

OVTopt = @,’
(x OVT s tuples are evaluated using Rgs *)
for all tuples (b, f, xnist) tn OVT do

for all xi.., € EXThou(xhist) do

for all deriv. i, 'E)Rsu Xemp Such that Xemp s a comparison constraint
do if SOI(Xcmp) # 0 then OVTopt = OVTopt U {<b’faXhist>} ;
return(OVTop);
end.

We are now ready to specify the algorithm for static security checks. As mentioned earlier,
this function extends the derivations from A APy with derivations from Rgy, until a set of
comparison constraints Xcmp is obtained. If xcmp is satisfiable, then a security violation
may occur. In practice, the algorithm uses the precomputed derivations stored in OV'T,
and computes only the derivations from Rgs. It returns a modified violation table OVT 5t
corresponding to possible security violations.

The intuition is that if a tuple of the form (b, f, xnist) is in OVTept, then xpist might
become true at some future point in time (according to Rgf), and in that case, b might
violate f. In other words, the static security check coincides with ensuring that

SecPq : StaticOViol(b) = 0.

The following example revisits the Tank Example and illustrates the use of the static security
algorithm.

Example 9.4 Consider two possible cases. In the first case, the tankl agent does not
provide information on its fuel level in the last 10 minutes to the monitor agent. In this
case we will show that tankl is statically secure. In the second scenario tankl may tell the
monitor agent its fuel level in the last 7 minutes. We will show that in this case tankl
may tndirectly disclose a secret.

Case 1 In this implementation, all answers of the form in(L, tankl : fuel_level(T)) sat-
1sfy T < now — 11. This can be expressed by the following self-approrimation rule:

(r8) in(E, Histiqnk1 : retrieve_answ(tankl, monitor,in(L, tankl: fuel_level(T)),W)) < T < now — 11.

Returning to the xnist of the only tuple in OVT 0w of tankl. The extended condition
extnou(Xhists X0) (see Ezample 9.3) can be evaluated using (r8), which yields the set of con-

54

straints

Xemp = Ti<now—11&
T34 > Evy.time &
Ys # tankl & Ty < T25 &
Ty >now—10 &
L1 =1low &
T=now &
Evs.time < now &

Evs.time = now.

The first row comes from (r8), while the others were already in extnou(Xhist, X0). This set
of constraints is not satisfiable because it contains the mutually incompatible constraints
Ty <now — 11 and Ty > now — 10. Thus, our static security check proves that providing the
fuel level service is secure as far as monitor is concerned. We recall the main assumptions
(encoded in the approzimation rules) that support this result:

e agent monitor may get all sorts of information from agents different from tankl;

e The monitor’s state may contain any subset (possibly all) of the data obtained from

other agents;

e The monitor may derive tankl’s current position from its region and its being low
i fuel in the last 10 minutes.

The security check certifies that under the above conditions, the monitor agent will never
violate tankl’s current position due to tankl’s answers. That is, the derivation involving
Histigni1 leads (with (r8)) to an unsatisfiable conjunction of comparison constraints Xcmp-
In this case, Sol(Xxcmp) = 0 and hence no tuple is added to OVTop (see the above algo-
rithm). The other derivations never mention Histiqnk1; this implies that EXTyoy(Xhist) = 0;
therefore, no tuples of OVTop: are obtained from such deriwations. It follows that

SecPignk1 : StaticOViol(monitor) = 0,

and hence, tankl is statically secure.

Case 2 Suppose Rgs 1s extended with a corresponding rule

(r8') in(E, Histyqni : retrieve_answ(tankl, monitor,in(L, tankl : fuel_level(T)),W)) + T < now — 7.

55

Now there would be another derivation Xhist r—)%slf chmp (where xhist is defined as in the
previous case), such that

Xi:mp = T;<now—7%&
T34 > Evg.time &
L=1ow &

Ys # tankl & Ty < T25 &
Ty > now—10 &

T=now &

Evs.time < now &

Evg.time = now.

These comparison constraints are satisfiable with any Ty such that now — 10 < Ty < now — 7,
and hence

SecPignki : StaticOViol(monitor) = {(monitor,in(P, tankl: location(now)), Xnist) } -

This means that tankl may indirectly disclose the secret if condition xnise becomes true at
some point.

In fact, we can combine static and dynamic security verification by: (i) removing all
entries from OVT whose history conditions will never be satisfied (according to the self-
approximation rules Rgf). Now, if Rgyf is correct, then we may replace the table OVT by
OVT, in the Dynamic Security check algorithm given earlier in the paper. Doing so has
the following obvious advantages:

e dynamic security verification becomes more efficient, because less entries have to be
considered;

e the resulting histories are in general more cooperative than statically secure histories,
because those services which are not guaranteed to be secure at compile time (given
the necessarily imprecise predictions about a’s future histories) are given another
choice at run-time, instead of being restricted a priori.

The following example revisits the Tank Example and illustrates the working of combined
security verification.

Example 9.5 In the scenario of the first case of Example 9.4, the combined check would
return an empty table OVTop; this would automatically turn off run-time verification.
The second case of Example 9.4 is less fortunate: there, OVTop coincides with OV'T,
and no advantage is obtained at run-time. It is possible to find intermediate cases where
) C OVT,, C OVT.

In this section, we have developed algorithms to perform both static security checks, as
well as dynamic security checks for handling data security. The Compile A AP procedure

56

is easily implementable on top of a commercial Prolog system (e.g. XSB) and runs in
polynomial time. We define a table OVT which overestimates the set of violated secrets.
Using this table, the dynamic security algorithm automatically checks security run time.
Furthermore, this check is polynomial as long as OVT’s size is bounded by some constant.

10 Related Work

Most research on agent security deals with issues related to the usage of agents on the
Web. Attempts have been made to answer questions such as, “Is it safe to click on a given
hyperlink”? or “If I send this program out into the Web to find some bargain CD’s, will it
get cheated?” (e.g., [15, 16]). Others try to develop methods for finding intruders who are
executing programs not normally executed by “honest” users or agents [17]. In contrast, in
this paper, we focus on data security and action security in multi-agent environments.

A significant body of work has also gone into ensuring that agents neither crash their
host nor abuse its resources. Most mobile-agent systems protect the hosts by [25]: (1)
cryptographically verifying the identity of the agent’s owner, (2) assigning access restrictions
to the agent based on the owner’s identity, and (3) allowing the agent to execute in a secure
execution environment that can enforce these restrictions [59]. Java agent security relies
mainly on the idea of that an applet’s actions are restricted to its “sandbox,” an area of the
web browser dedicated to that applet [24]. Java developers claim that their Java 2 platform
provides both system security and information security [29].

An interesting approach for safe execution of untrusted code is the Proof-Carrying Code
(PCC) technique [43]. In a typical instance of PCC, a code receiver establishes a set
of safety rules that guarantee safe behavior of programs, and the code producer creates a
formal safety proof that proves, for the untrusted code, adherence to the safety rules. Then,
the receiver is able to use a simple and fast proof validator to check, with certainty, that
the proof is valid and hence the untrusted code is safe to execute. An important advantage
of this technique is that although there might be a large amount of effort in establishing
and formally proving the safety of the untrusted code, almost the entire burden of doing
this is on the code producer. The code consumer, on the other hand, has only to perform
a fast, simple, and easy-to-trust proof-checking process.

Campbell and Qian [11] address security issues in a mobile computing environment using
a mobile agent based security architecture. This security architecture is capable of support-
ing dynamic application specific security customization and adaptation. In essence the idea
is to embed security functions in mobile agents to enable runtime composition of mobile
security systems. The implementation is based on OMG’s CORBA distributed object ori-
entation technology and Java-based distributed programming environment. Campbell and
Qian [11] address security issues in a mobile computing environment using a mobile agent
based security architecture. This security architecture is capable of supporting dynamic
application specific security customization and adaptation. In essence the idea is to em-
bed security functions in mobile agents to enable runtime composition of mobile security
systems. The implementation is based on OMG’s CORBA distributed object orientation
technology and Java-based distributed programming environment. Gray et al. [25] consider
a problem of protecting a group of machines which do not belong to the same administrative
control. They propose a market-based approach in which agents pay for their resources.

57

Less attention has been devoted to the opposite problem, that is, protecting mobile agents
from their hosts [47]. An example of how to protect Java mobile agents is given in [44].
Hohl [28] proposed to protecting mobile agents from attackers by not giving the attacker
enough time to manipulate the data and code of the agent. He proposed that this can be
achieved by a combination of a code mess up and limited lifetime of code and data which
he describes. Farmer et al. [22] use a state appraisal mechanism which checks if some
invariants of the agent’s state hold (e.g., relationships among variables) when an agent
reaches a new execution environment. Vigna [58] presents a mechanism to detect possible
illegal modification of a mobile agent which is based on post-mortem analysis of data—called
traces—that are collected during agent execution. The traces are used for checking the agent
program against a supposed history of execution.

At the same level of abstraction, it is necessary to deal with issues of identity verification
and message exchange protection [57]. For example, Thirunavukkarasu et al. proposed
an architecture for KQML which is based on cryptographic techniques. It allows agents to
verify the identity of other agents, detect message integrity violations, protect the privacy of
messages and ensure non-repudiation of message origin. The techniques and methodologies
which we presented in this paper rely on the assumption that the above problems and other
network security problems [48] are dealt with correctly by the underlying implementation.

Zapf et al. [65] consider security threats to both hosts and agents in electronic mar-
kets. They describe the preliminary security facilities implemented in their agent system
AMETAS. They do not provide a formal model or an experimental results to evaluate their
system.

Agent data security has many analogies with security in databases. This field has been
studied intensively, e.g. [5, 6, 10, 12, 31, 41, 62]. While this work is significant, none of
it has focused on agents. We attempt to build on top of existing approaches. However,
data security in autonomous agents environments raises new problems. In particular, no
central authority can maintain security, but rather participants in the environment should
be responsible for maintaining it.

In [7], a modal logic of security is defined, based on a modal knowledge operator, Ka,
and a modal operator R, that captures what the user is allowed to know. The semantics
of R and K4 are similar; both of them satisfy all the axioms of modal logic S5 (i.e. axioms
K, T, 4, 5, see [14].) Cuppens [18] adapts the logical framework introduced in [7] to study
aggregation problems. He provides an elegant logical treatment of data security in which a
“diamond”-like (w.r.t. standard modal logic [14]) semantics is provided for R. The user
is only allowed to have correct beliefs.

There are significant differences between our work and the excellent work of [7, 18]. First,
our agents automatically couple actions to state changes. In their case, they do not consider
agents, and hence, the possibility of action security does not arise. Additionally, the fact
that data security can be violated because of action security is not an issue. Second, we
provide various important “approximation” notions that they do not provide. Third, our
security specification languages are new and interesting as are our static algorithm for
security maintenance runs in polynomial time, and our dynamic algorithm also runs in
polynomial time as long as the boundedness condition is satisfied.

Problems of authentication and authorization arise when databases operate in an open
environment [8]. Bina et al. propose a framework for solving these problems using WWW

58

information servers and a modified version of the NCSA Mosaic. Berkovits et al. [4] consider
this problem in mobile agent systems by modeling the trust relation between the principals
of the mobile agents. We do not consider the authentication problem in our work, but
rather assume that methods such as developed in [8] are available. Usually these methods
used cryptography and electronic signatures techniques. A tutorial text on such techniques
can be found in [51].

Formal models for verifying security of protocols for authentication, key distribution, or
information sharing may have some similarities with our formal model. Heintze and Tygar
[27] present a simple model which includes the notions of traces (similar to our histories),
agent states and beliefs. Our notions are more general than theirs. For example, the internal
state of each agent in their model consists of three components: (1) the set of messages
and keys known to the agent; (2) the set of messages and keys believed by the agent to be
secret (and with whom the secrets are shared); and (3) the set of nonces recently generated
by the agent. We do not make any restrictions on the agents’ states and we assume that
an agent can infer new information from its beliefs.

We also define the notion of approximating agent security and provide a language within
which the developer of an agent can express the approximations that its agent must use.
Their system is used to verify the security of cryptographic protocols. They present an
interesting result concerning a composition of two secure protocols. They state sufficient
conditions on two secure protocols A and B such that they may be combined to form a new
secure protocol C.

In some systems agents are used to maintain security. For example, in the architecture
presented in [3] of Java-based agents for information retrieval, there are two security agents:
Message Security Agent (MSA) and Controller Security Agents (CSA). The MSA deals with
services relating to the exchange of messages. The CSA provides services to check adequate
use of resources by detecting anomalies. We do not consider the basic security problems
provided by the security agents of [3]. We propose that the higher-level security issues
considered in this paper will be dealt with by the IMPACT agents themselves, and not
delegated to separate servers.

Security agents are also used in Distributed Object Kernel (DOK) project [55] for enforc-
ing security policies in distributed and heterogeneous environments. There are three levels
of agents. Top level agents are aware of all the activities that are happening in the system
(or have already happened). Based on this information the agents of the top layer delegate
functions to the appropriate agents. In the environments which we consider, agents cannot
have information on all the activities that are happening and each agent should maintain
its data and action security.

He et al. [26] proposed to implement the authorities of authentication verification service
systems as autonomous software agents, called security agents, instead of building a static
monolithic hierarchy as in the traditional Public Key Infrastructure (PKI) implementations.
One of the open questions they present is: “How to define a suitable language for users to
describe their security policy and security protocols so that the agent delegates of a user
can safely transact electronic business on his behalf?” We believe that the language and
framework presented in this paper can be used for such purpose, in addition to the original
purpose of programming individual agents to maintain their data and action security.

Foner [23] discusses security problems in a multi-agent matchmaker system named Yenta.

59

IMPACT agents do not have access to other agents’ data as Yenta’s agents have. Each
agent is responsible for its own data security. We believe that this approach will lead to
more secure multi-agents systems.

Soueina et al. [50] present a language for programming agents acting in multi-agent
environments. It is possible to give an agent commands such as “lie(action())” indicating
that lying may be needed when the action is performed, “zone(action*)” that can be used
to classify some agents as being hostile etc. Their work is based on first order logic and on
concepts from game theory, but no formal semantics is given.

Other distributed object-oriented systems provide some security services. CORBA [45],
an object request broker framework, provides security services, such as identification and
authentication of human users and objects, and security of communication between ob-
jects. These services are not currently provided by IMPACT, and their implementation
is left for future work. CORBA provides some simple authorization and access control.
Our model allows the application of more sophisticated security policies using the ideas of
approximations of agents’ beliefs, state and consequence operations.

Zeng and Wang [66] proposed an Internet conceptual security model using Telos. They
try to detect attacks based on monitoring and analyzing of audit information. In their
framework a designer can construct an ontology of Internet security and then develops a set
of rules for security maintenance. Their examples consider identifying security problems by
analyzing network transactions. It is not clear from the papers how their rules will be used
to preserve security and they do not consider data security problems.

Concordia is a framework for development and management of network-efficient mobile
agent applications for accessing information anytime, anywhere and on any device support-
ing Java. Agent protection in Concordia [33] refers to the process of protecting agent’s
contents during transmission over the net. Prior to transmission an agent’s byte-codes,
member data and state information are encrypted through a combination of symmetric and
public cryptography. In order to provide reliability, Concordia employs a persistent store
to periodically checkpoint an agent. But, this on-disk representation may impose security
risks, hence Concordia also encrypts this on-disk representation of an agent.

Sloman, Lupu and their colleagues [38, 39, 64] developed a role-based security model for
distributed object systems in a large-scale, multi-organizational enterprise. In their model
a role can be defined in terms of the authorization and obligation policies. Such policies
specify what actions an agent or a person having this role is permitted or is obliged to
do on a set of target objects. This permits individuals to be assigned or removed from
positions without respecifying policies for the role. In particular, the authorization policies
are used for access control and the obligation policies define actions to be performed by
administrators or security components when events such as security violations are detected,
e.g., the security administrator must investigate all sequences of 5 login failures from the
same source.

We also presented a language which enables a designer to specify the actions the agent is
obliged, forbidden, or allowed to take. In addition, we presented a theory and mechanisms
in which an agent’s state, history and beliefs dynamically effect the data it can access and
the services available to it. On the other hand, we do not support role assignments and
therefore “policies” should be specified for each individual agent.

60

11 Conclusions

As more and more “agent” applications are being built and deployed on the Internet, and
as many multiagent applications involve “teams” of cooperating agents that dynamically
form coalitions, there is a growing realization that security could be a problem.

In this paper, we have taken a set of first steps towards addressing how an agent developer
can encode security mechanisms into an agent. Specifically, we have made the following
contributions:

1. We have presented a (very) abstract definition of an agent and shown that for such
agents to maintain security, several types of mathematical structures (history, conse-
quence operation, etc.) need to be maintained.

2. Asthese structures often require an agent a to have information about arbitrary agents
b, and as this information may be hard to obtain in most practical applications, we
have developed the concept of an “approximation” of this information, which leads
to a notion of “approximate” security. We show that approximate security leads to
security (under appropriate conditions).

3. We then provide a number of undecidability results showing that the general problem
of maintaining data/action security is undecidable.

4. Then we propose a rule based logical language within which an agent developer may
express approximations that his agent will use to approximate other agents.

5. We present algorithms for static and dynamic security checking which may be used
once the agent developer has specified the approximation he or she wishes to use.
We show that these algorithms are sound and complete and that (under appropriate
assumptions) they have polynomial data complexity.

We conclude with a description of some future work.

e Agents must maintain data security in the presence of incomplete information about
what other agents know. This explains the need for all the “approximation” lan-
guages in our framework. The agent developer is responsible for writing specifications
approximating other agents. Methodologies to do this need to be developed.

e The current framework already provides some mechanisms by which an agent may
protect itself from new agents. For example, an agent a may maintain rules saying
that for all unknown’ agents b, certain rules apply. However, methods are needed to
formally incorporate “new” agents into a multiagent system and to assess the impact
of such new agents on security.

e A third problem is that of trading off security vs. use of system resources such as
bandwidth and load. The more security requirements an agent a is to enforce, the
less resources (time, load) it can devote to the actual services it provides.

We hope the work presented in this paper lays a theoretical underpinning for investigating
these questions in the future.

61

Acknowledgments

This work was supported by the Army Research Laboratory under contract number DAALO1-
97-K0135, by the Army Research Office under contract DAAD190010484, by DARPA/RL
contract number F306029910552, by an NSF Young Investigator award IRI-93-57756, and
by NSF grants I1S-9820657 and IIS-9907482.

References

[1] Y. Arens, C. Y. Chee, C.-N. Hsu, and C. Knoblock. Retrieving and Integrating Data
From Multiple Information Sources. International Journal of Intelligent Cooperative

Information Systems, 2(2):127-158, 1993.

[2] K. Arisha, F. Ozcan, R. Ross, V. S. Subrahmanian, T. Eiter, and S. Kraus. IMPACT: A
Platform for Collaborating Agents. IEEE Intelligent Systems, 14:64-72, March/April
1999.

[3] F. Bergadano, A. Puliafito, S. Riccobene, and G. Ruffo. Java-based and secure learning
agents for information retrieval in distributed systems. INFORMATION SCIENCES,
113(1-2):55-84, January 1999.

[4] S. Berkovits, J. Guttman, and V. Swarup. Authentication for Mobile Agents. In
G. Vigna, editor, Mobile agents and security, volume 1419 of Lecture Notes in Computer
Science, pages 114-136. Springer-Verlag, New York, NY, 1998.

[5] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. A Temporal Access Control Mech-
anism for Database Systems. IEFE Transactions on Knowledge and Data Engineering,

8(1):67-80, 1996.

[6] E. Bertino, P. Samarati, and S. Jajodia. Authorizations in relational database man-
agement systems. In Proceedings of the 1st ACM Conference on Computer and Com-
munication Security, Fairfax, VA, November 1993.

[7] P. Bieber and F. Cuppens. A definition of secure dependencies using the logic of
security. In Proc. of the Computer Security Foundations Workshop IV. IEEE Computer
Society Press, 1991.

[8] E. J. Bina, R. M. McCool, V. E. Jones, and M. Winslett. Secure Access to Data
over the Internet. In Proceedings of the Third International Conference on Parallel
and Distributed Information Systems (PDIS 9/), pages 99-102, Austin, Texas, 1994.
IEEE-CS Press.

[9] P. Bonatti, S. Kraus, J. Salinas, and V. S. Subrahmanian. Data Security in Heteroge-
nous Agent Systems. In M. Klusch, editor, Cooperative Information Agents, pages
290-305. Springer-Verlag, 1998.

[10] P. Bonatti, S. Kraus, and V. S. Subrahmanian. Foundations of Secure Deductive
Databases. IEEE Transactions on Knowledge and Data Engineering, 7(3):406—-422,
June 1995.

62

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

R. Campbell and T. Qian. Dynamic Agent-based Security Architecture for Mobile
Computers. In The Second International Conference on Parallel and Distributed Com-

puting and Networks (PDCN’98), Australia, December 1998.

S. Castano, M. G. Fugini, G. Martella, and P. Samarati. Database Security. Addison
Wesley, 1995.

Cattell, R. G. G., editor. The Object Database Standard: ODMG-93. Morgan Kauf-
mann, 1994.

B.F. Chellas. Modal Logic. Cambridge University Press, 1980.

D. M. Chess. Security in Agents Systems, 1996. http://www.av.ibm.com/
InsideThelLab/Bookshelf/ScientificPapers/.

D. M. Chess. Security Issues in Mobile Code Systems. In G. Vigna, editor, Mobile
agents and security, volume 1419 of Lecture Notes in Computer Science, pages 1-14.

Springer-Verlag, New York, NY, 1998.

M. Crosbie and E. Spafford. Applying genetic programming to intrusion detection. In
Proceedings of the AAAI 1995 Fall Symposium series, November 1995.

F. Cuppens. A modal logic framework to solve aggregation problems. In S. Jajodia
and C. Landwehr, editors, Database Security, 5: Status and Prospects. North Holland,
1992.

T. Eiter and V. S. Subrahmanian. Heterogeneous Active Agents, II: Algorithms and
Complexity. Artificial Intelligence, 108(1-2):257-307, 1999.

Thomas Eiter, V. S. Subrahmanian, and Georg Pick. Heterogeneous Active Agents, I:
Semantics. Artificial Intelligence, 108(1-2):179-255, 1999.

O. Etzioni and D. Weld. A Softbot-Based Interface to the Internet. Communications
of the ACM, 37(7):72-76, 1994.

W. M. Farmer, J. D. Guttag, and V. Swarup. Security for Mobile Agents: Authentifi-
cation and State Appraisal. In E. Bertino, H. Kurth, G. Martella, and E. Montolivo,
editors, Proceedings of the Fourth ESORICS, volume 1146 of Lecture Notes in Com-
puter Science, pages 118-130. Springer-Verlag, Rome, Italy, September 1996.

L. N. Foner. A Security Architecture for Multi-Agent Matchmaking. In Second Inter-
national Conference on Multi-Agent Systems (ICMAS96), Japan, 1996.

S. Fritzinger and M. Mueller. Java Security, 1996. http://java.sun.com/docs/
white/index.html.

R. Gray, D. Kotz, G. Cybenko, and D. Rus. D’Agents: Security in Multiple-language,
Mobile-Agent System. In G. Vigna, editor, Mobile agents and security, volume 1419 of

Lecture Notes in Computer Science, pages 154—187. Springer-Verlag, New York, NY,
1998.

63

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Q. He, K. P. Sycara, and T. W. Finin. Personal Security Agent: KQML-Based PKI.
In K. P. Sycara and M. Wooldridge, editors, Proceedings of the 2nd International
Conference on Autonomous Agents (AGENTS-98), pages 377-384, New York, May
1998. ACM Press.

N. Heintze and JD. Tygar. A model for secure protocols and their compositions. IEFE
Transactions on Software Engineering, 22(1):16-30, January 1996.

F. Hohl. An Approach to Solve the Problem of Malicious Hosts in Mobile Agent
Systems. http://inf.informatik.uni-stuttgart.de:80/ipvr/vs/mitarbeiter/
hohlfz.en¥gl.html, 1997.

M. Hughes. Application and enterprise security with the JAVATM 2 platform, 1998.
http://java.sun.com/events/jbe/98/features/security.html.

M. Huhns and M. Singh, editors. Readings in Agents. Morgan Kaufmann, 1997.

S. Jajodia and R. Sandhu. Toward a Multilevel Relational Data Model. In Proceedings
of ACM SIGMOD Conference on Management of Data, Denver, Colorado, May 1991.

N. R. Jennings. Controlling Cooperative Problem Solving in Industrial Multi-Agent
Systems Using Joint Intentions. Artificial Intelligence, 75(2):1-46, 1995.

R. Koblick. Concordia. Communications of the ACM, 42(3):96-97, March 1999.

S. Kraus. Negotiation and Cooperation in Multi-Agent Environments. Artificial Intel-
ligence, Special Issue on Economic Principles of Multi-Agent Systems, 94(1-2):79-98,
1997.

Y. Labrou and T. Finin. A Semantics Approach for KQML — A General Purpose
Communications Language for Software Agents. In Proceedings of the International
Conference on Information and Knowledge Management, pages 447-455, 1994.

Y. Labrou and T. Finin. Semantics for an Agent Communication Language. In Inter-
national Workshop on Agent Theories, Architectures, and Languages, pages 199-203,
Providence, RI, 1997.

J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, Germany,
1984, 1987.

E. Lupu and M. Sloman. Towards a Role-based Framework for Distributed Systems
Management. Journal of Network and Systems Management, 5(1):5-30, 1997.

E. C. Lupu and M. S. Sloman. Reconciling Role Based Management and Role Based
Access Control. In Second Role Based Access Control Workshop (RBAC’97), pages
135-141, George Mason University, Virginia, 1997.

P. Maes. Agents that Reduce Work and Information Overload. Communications of

the ACM, 37(7):31-40, 1994.

J. Millen and T. Lunt. Security for Object-Oriented Database Systems. In Proceedings
of the IEEFE Symposium on Research in Security and Privacy, Oakland, CA, May 1992.

64

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]

B. Moulin and B. Chaib-Draa. An Overview of Distributed Artificial Intelligence. In
G. M. P. O’Hare and N. R. Jennings, editors, Foundations of Distributed Artificial
Intelligence, pages 3-55. John Wiley & Sons, 1996.

G. C. Necula and P. Lee. Research on Proof-Carrying Code on Mobile-Code Security.
In Proceedings of the Workshop on Foundations of Mobile Code Security, 1997. http:
//www.cs.cmu.edu/"necula/pcc.html.

T. Nishigaya. Design of Multi-Agent Programming Libraries for Java. http://www.
fujitsu.co.jp/hypertext/free/kafka/paper, 1997.

OMG. CORBAServices: Common Services Specification. Technical Report 98-12-09,
OMG, December 1998. http://www.omg.org/.

J. S. Rosenschein and G. Zlotkin. Rules of Encounter: Designing Conventions for
Automated Negotiation Among Computers. MIT Press, Boston, 1994.

T. Sander and C. Tschudin. Protecting Mobile Agents Against Malicious Hosts. In
G. Vigna, editor, Mobile agents and security, volume 1419 of Lecture Notes in Computer
Science, pages 44—60. Springer-Verlag, New York, NY, 1998.

H. J. Schumacher and S. Ghosh. A fundamental framework for network security.
Journal of Network and Computer Applications, 20(3):305-322, July 1997.

J. Siegal. CORBA Fundementals and Programming. John Wiley & Sons, New York,
1996.

S. O. Soueina, B. H. Far, T. Katsube, and Z. Koono. MALL: A multi-agent learning
language for competitive and uncertain environments. IEICE TRANSACTIONS ON
INFORMATION AND SYSTEMS, 12:1339-1349, 1998.

W. Stallings. Title Network and Internetwork Security: Principles and Practice.
Prentice-Hall, Englewood Cliffs, 1995.

V. S. Subrahmanian. Amalgamating Knowledge Bases. ACM Transactions on Database
Systems, 19(2):291-331, 1994.

V.S. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Ozcan, and R. Ross.
Heterogeneous Agent Systems: Theory and Implementation. MIT Press, 2000. (To

appear).

H. Tai and K. Kosaka. The Aglets Project. Communications of the ACM, 42(3):100—
101, March 1999.

Z. Tari. Using agents for secure access to data in the Internet. IEEE Communications

Magazine, 35(6):136—140, June 1997.
A. Tarski. Logic, Semantics, Metamathematics. Hackett Pub Co, January 1981.

C. Thirunavukkarasu, T. Finin, and J. Mayfield. Secret Agents — A Security Architec-
ture for the KQML Agent Communication Language. In Intelligent Information Agents

Workshop, held in conjunction with Fourth International Conference on Information
and Knowledge Management CIKM’95, Baltimore, MD, November 1995.

65

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

G. Vigna. Cryptographic Traces for Mobile Agents. In G. Vigna, editor, Mobile
agents and security, volume 1419 of Lecture Notes in Computer Science, pages 137-153.
Springer-Verlag, New York, NY, 1998.

G. Vigna, editor. Mobile agents and security. Springer-Verlag, New York, NY, 1998.
Lecture Notes in Computer Science, Volume 1419.

M. Wellman. A Market-Oriented Programming Environment and its Application to
Distributed Multicommodity Flow Problems. Journal of Artificial Intelligence Re-
search, 1:1-23, 1993.

G. Wiederhold. Intelligent Integration of Information. In Proceedings of ACM SIGMOD
Conference on Management of Data, pages 434-437, Washington, DC, 1993.

M. Winslett, K. Smith, and X. Qian. Formal Query Languages for Secure Relational
Databases. ACM Transactions on Database Systems, 19(4):626—662, December 1994.

M. Wooldridge and N. R. Jennings. Intelligent Agents: Theory and Practice. Knowledge
Engineering Reviews, 10(2), 1995.

N. Yialelis, E. Lupu, and M. Sloman. Role-Based Security for Distributed Object
Systems. In IEFE WET-ICFE, Stanford, 1996.

M. Zapf, H. Mueller, and K. Geihs. Security requirements for mobile agents in electronic

markets. Lecture Notes in Computer Science, 1402:205-217, 1998.

L. Zeng and H. Wang. Towards a Multi-Agent Security System: A Conceptual Model
for Internet Security. In Proceedings of Fourth AIS (Association for Information Sys-
tems) Conference, Baltimore, Maryland, August 1998.

66

A Appendix: Feasible, Rational, and Reasonable Status Sets

This appendix provides in succinct form the definition of various concepts of status sets
from [20], to which the reader is referred for more information.

Definition A.1 (Status Set) A status set is any set S of ground action status atoms over

the values from the type domains of a software package S. For any operator Op € {P, Do,
F, O, W}, we denote by Op(S) the set Op(S) = {a | Op(a) € S}.

Definition A.2 (Operator Appp o, (S)) Let P be an agent program and O be an agent
state. Then, Appp os(S) = {Head(r) | r € P, R(r,0,S) is true on O}, where the
predicate R(r,0,S) is true iff (1) 70 : A+ x& L1 & --- & Ly, is a ground rule, (2) O = x,
(3) if Ly = Op(c) then Op(a) € S, and (4) if L; = —Op(a) then Op(a) ¢ S, for all
ie{l,...,n}.

Definition A.3 (A-CI1(S)) A status set S is deontic and action closed, if for every ground
action o, it is the case that (DC1) Oa € S implies Pa € S, (AC1) Oa € S implies
Doa € S, and (AC2) Doa € S implies P € S.

For any status set S, we denote by A-CI1(S) the smallest set S’ D S such that S’ is closed
under (AC1) and (AC2), i.e., action closed.

Definition A.4 (Feasible Status Set) Let P be an agent program and let O be an agent
state. Then, a status set S is a feasible status set for P on O, if (51)-(S4) hold:

(S1) Appp,os(S) CS;

(S2) For any ground action o, the following holds: O« € S implies Wa ¢ S, and Pa € S
implies Fa ¢ S.

(S3) S =A-CI(9), i.e., S is action closed;

(S4) The state O' = conc(Do (S), O) which results from O after executing (according to
some execution strategy conc) the actions in Do (S) satisfies the integrity constraints,

ie., Ok 1IC.

Definition A.5 (Groundedness; Rational Status Set) A status set S is grounded, if
no status set S’ # S exists such that S’ C S and S’ satisfies conditions (51)—(S3) of a
feasible status set. A status set S is a rational status set, if S is a feasible status set and .S
is grounded.

Definition A.6 (Reasonable Status Set) Let P be an agent program, let O be an agent
state, and let S be a status set.

1. If P is positive, i.e., no negated action status atoms occur in it, then S is a reasonable
status set for P on O, iff S is a rational status set for P on O.

2. The reduct of P w.r.t. S and O, denoted by reds('P,O), is the program which is

obtained from the ground instances of the rules in P over O as follows.

67

(a) Remove every rule r such that Op(a) € S for some =Op(a) in the body of r;

(b) remove all negative literals =Op(ca) from the remaining rules.

Then S is a reasonable status set for P w.r.t. O, if it is a reasonable status set of the
program red® (P, O) with respect to .

68

