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Abstract

We present a system called the Distributed Dispatcher Manager (DDM) for ef-
fectively managing very large-scale networks of thousands of sensor agents and
thousands of objects. DDM makes use of a hierarchical team organization in
which the solution process is distributed into smaller fragments of problems
that can be solved partialy by simple agents. We present extensive experimen-
tal results which indicate that problems involving hundreds and thousands of
Dopplers and targets cannot be solved in atraditional flt architecture. We also
present a new sensor tracking agorithm through which a single agent can track
an object by taking multiple sequential measurements and combining them. We
then suggest ways to combine partial solutions to form a global solution. We
show that the number of levels in the hierarchy inflences the accuracy of re-
sults. As the number of levels increases the number of tracked targets drops,
even though this drop is moderate. However, as the number of levels increases
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the time every agent needs to compl ete its mission drops exponentialy. By com-
bining these two results DDM can achieve a balance between these two proper-
ties.

In this chapter we consider the complexities that arise when one scales up
distributed agent networks to thousands of sensor agents and thousands of ob-
jects. We describe a system for effectively managing such networks, called the
Distributed Dispatcher Manager (DDM). DDM differs in a number of impor-
tant ways from the systems which have been discussed so far.

Mobility: We focus on mobile sensor agents; agents remain relatively simple
and lightweight.

Organization: The complexity of the distributed control problem for such
massive agent systems is managed through a hierarchical organization
in which teams of agents are associated with sectors; teams themselves
can represent elements of other teams.

Tracking: We have extended the tracking algorithms discussed so far in this
book so that a single agent can track an object by taking multiple se-
guential measurements and combining them. We assume that multiple
objects can be discriminated within the fi eld of a sensor. Finally, we do
not focus on the tracking of a particular object, but rather on adequate
coverage of given areas.

Task synchronization: One consequence of the above extensions to the track-
ing algorithm is that the communication requirements between agents
are lessened and, in particular, synchronization between agents is not
necessary.

Sensors. DDM, in its current state, does not manage the usage of certain re-
sources, such as sensor power utilization. In addition, our treatment of
sensor noise is a bit different from the systems described so far in that,
in DDM, some measurements are lost, but the ones that are not lost are
accurate.

Simulation: In order to experiment with DDM in domains of the above sort,
we have developed a simulation which reflects the above assumptions. In
some cases, the set of environments constructed for testing the system
have been complicated to reflect such complexities; in other cases, a
number of simplifying assumptions have been made so as to be able to
focus on the scale-up issues (for example, we focus on objects which
move in a straight lines).

DDM organizes the Dopplers in teams, each with a distinguished team
leader. A team is assigned a specifi ¢ geographic sector of interest. Each
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Doppler can act autonomously within its assigned area while processing lo-
cal data. Teams are themselves grouped into larger teams. Communication is
restricted to flow only between an agent (or team) and its team leader. Each
team leader is provided with an algorithm to integrate information obtained
from its team members.

We present results from experiments that involved hundreds of agents and
more than a thousand objects. These results support our hypothesis that DDM
is successful in large-scale environments. The experiments also allow us to
examine the question of how to determine the number of levels of the DDM
hierarchy in a large-scale system. Our results show that as the number of levels
of the hierarchy increases the quality of the results slightly decreases. How-
ever, the time complexity of the system decreases exponentially. Consequently,
we found that using too few levels may not suffi ce to solve the global problem.

In the next section we describe the large scale ANTS problem and present
the main elements of DDM. Subsequently, we detail the comprehensive study
we conducted to evaluate the hierarchical solution. We conclude by discussing
the major contribution of our solution to the large-scale agent system chal-
lenges in terms of capability, accuracy, effi ciency, cost-effectiveness, robust-
ness and fault tolerance.

1 Thelarge scale ANTS challenge problem and the DDM

We consider a large-scale environment where there are many mobile targets
and many mobile Dopplers moving in a specifi ed geographic area. The goal of
the DDM system is to track the targets. Each target moves in a steady velocity
along a straight line. Targets differ from each other by their motion properties.
Motion properties defi ne the target state, location and velocity, at any given
time. Both location and velocity are vectors. The location vector is referred
to in the physics literature as the radius vector, the vector from the axis origin
(0,0) to a target. The velocity vector describes the change in a target’s location
every second. A steady motion equation may look like the following [Feynman
1963]:

f(t) = (Fo+7-t,7)

where 7 is the location of the target at time ¢ = 0 and v is the velocity vector.
The goal of the DDM system is to identify the motion equation of each target
in the area.

DDM uses agents to fi nd the set of motion equations that represent the tar-
gets. We will refer to this set as the global information map, denoted by In-
foMap. The base level of the DDM consists of mobile sampling agents. Mobile
sampling agents are agents that use simple Doppler sensors to sense targets.
Each of these sampling agents moves autonomously according to a predefi ned
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movement algorithm. Each agent periodically stops briefly to take measure-
ments. When an agent takes measurements we refer to its state as the viewpoint
from which a particular object state was measured. The measurements alone
are not suffi cient to identify the exact state of the observed target. The sampler
agent can only determine two possible states of the observed target based on
four consecutive measurements. Only one of them is the correct state of the
target at the observation time. Using such estimates, a sampler agent then pro-
duces what we call a capsule. A capsule consists of (a) two possible states of
a target, (b) the time associated with the measurements that were used to infer
the possible target states, and (c) the state of the agent, i.e., its location and
orientation during the measurements. Later on we will show how sampling
agents transform measurements into capsules.

The DDM’s goal is to estimate the motion equations of the targets using
capsules. The equations can be deduced from a sequence of target states. The
main problem faced by the DDM with respect to a capsule is how to choose
the correct state. To resolve this problem, the DDM makes use of the fact that
two states may be the correct states of the same target if they are instances of
the same motion equation. We introduce a relation called ResBy that holds if
the state of one target comes about from another. DDM tries to match states of
capsules using this relation and makes linked lists of target states. Each linked
list represents a potential target movement. We refer to this linked list of target
states as a path. DDM also attempts to determine the accuracy of potential
paths. It assumes that if two or more target states in a path were recorded by
different agents, then the path represents target motion accurately.

In a large-scale environment, DDM would have to link many capsules from
the entire area of interest. Applying the relation ResBy many times is time
consuming. However, there is a low probability that capsules created based
on measurements taken far away from one another will fit. Therefore, the
solution is distributed. The DDM uses hierarchical structures to construct a
global infoMap distributively. The lower level of the hierarchy consists of the
sampling agents. These agents are grouped according to their location. Each
group has a leader. The sampling agents create capsules and send them to their
group leaders. The second level of the hierarchy consists of the sampler group
leaders. Each sampler group leader obtains capsules only from the sampling
agents in its group. This limits the time that it needs to process the capsules,
but may reduce its ability to link between states since it obtains only a portion
of the capsules.

The sampler leaders are also grouped according to their areas of responsibil-
ity. Each such group of sampler leaders is associated with a zone group leader.
A sampler leader sends its zone leader its estimates of target motion equations
in its area and capsules that it was not able to use in the estimation process. The
third and higher levels of the hierarchy consist of zone group leaders, which in
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turn, are also grouped according to their areas of interest. Zone leader agents
are responsible for retrieving and combining information from their group of
agents. That is, they try to estimate the motion equations based on the esti-
mates they received from agents in their zone. All communication is restricted
to exchanges between a group member and its leader. The information unit
sent by leaders to their higher-level leaders is called alocal information map.
A local information map, which we refer to as locallnfo, is atriple consisting
of: (i) an accurate solution component consisting of a set of motion equations
that with ahigh probability represent targets; (ii) asemi-accurate solution com-
ponent consisting of a set of paths; and (iii) aset of capsules that were not used
for the formation of any motion equation of (i) or any path of (ii). Thatis, each
zone leader obtains local information maps of all its agents and combines them
into an information map of its area. Thus, the top-level leader agent forms a
local information map of the entire area.

To conclude, the formation of a global information map integrates the fol-
lowing processes.

»  Each sampling agent gathers raw sensed data and generates capsules.

m  Every dT seconds each sampler group leader obtains from all its sam-
pling agents their capsules and integrates them into its local I nfo.

m Every dT seconds each zone group leader obtains from al its subordinate
group leaders their localInfo and integrates them into its own local Info.

= Asaresult, the top-level group leader locallnfo contains a globa infor-
mation map.

We have developed several algorithms to implement each process. In the
next section we present those a gorithms.

2. Descriptions of algorithms

The fi rst agorithm describes the method for constructing a capsule from
raw sensed data. This algorithm is activated by each sampler agent and uses
consecutive raw sensed data. The second and the third algorithms describe the
way in which every group leader processes incoming local information maps
of the sub-areas of its zone to generate amore comprehensive local information
map of its entire area.

First, we will describe the main data structures that the agents use. In these
data structures specifi cations and in the algorithm descriptions, we will use a
dot notation to describe a fi eld in a structure, e.g., c.sa is the sampling agent
fi eld of the capsule c.

Target state: s = (D, V) where D is the location of the target and V is its
velocity at a given time. For example: ((100, 100), (2, —1)) is a target
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Figure9.1. DDM hierarchy information flow diagram.

state where the target was at location X = 100 and Y = 100 and its
velocity wasV, = 2and V, = —1.
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Sensing agent state: sa = (D, O) where D is the location of the sensor and

O is the orientation of the sensor. For example: ((150,150),7/2) is
an agent’s state where the sensing agent was at location X = 150 and
Y = 150 and had an orientation of 7 /2.

Capsule: ¢ = (t,sa,{s1,s2}) where t is the time of the sampling, sa is the

sensing agent’s state during the time the measurements that were used
for the formation of the capsule’s target states were taken, and s1, so are
two possible target states computed by the sampler agent. An exampleis,
<307 <<1507 150>7 71'/2>, {<<1007 100>a <27 _1>>7 <<2007 200)7 <_27 _3>>}>
where the time of the sampling was 30 and the sensing agent state was
((150, 150), /2) where the two possible target states were

((100,100), (2, —1)), and ({200, 200), (—2, —3)).

Path point: m; = (t;, sa;, s;) where t; is the time of the point, sa; is the

Path:

sensing agent’s state during the time the measurements that were used
to compute the point’s state were taken, and s; is the target state of
the point. For example: (30, ({150, 150), 7/2), ((100,100), (2, —1)))
where while the time of the path point was 30, the sensing agent state
was ((150, 150), 7/2) and the target state was ({100, 100), (2, —1))

That is, while in a capsule there are two possible states associated with
measurements, in a path point there is only one. The goal of the agents
isto choose the correct one.

p = (m ... m,) where m; and , are the fi rst and the last path points.
Every pair of path pointsin a path satisfi es the ResBy relation.

Target state function: fr, x (t) = (ms.85.D+ms.85.V - (t— 5.1, 1), 75.85.V)

valid in the range 7s.t..me.t. For example: if
7y = (30, ((150,150), /pi/2), ({100, 100), (2, —1))) and

me = (40, ((450,25), /pi/4),((120,90), (2, ~1))) then fr, . () =
((100,100) + (2,—1) - (t — 30), (2, —1)) and at t=30 we have that
frem (30) = ((100,100), (2, —1)) and at t=40 we will have that,

frome (40) = ((120,90), (2, —1)). For simplicity, we will refer to this
function as f(¢t) = (D(t), V) and to its properties: f.D(t), f.V (t), f-ts
and f.t..

Local information map: ((f*,..., "), (pi,...,;1), (Cis. .., cm)). Toform

alocal information map out of raw sensed data agents should follow a
set of steps corresponding to the following stages of data evolution: (i)
measurements, (ii) capsules, (iii) path, (iv) target state function and (v)
local information map.
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2.1 Theraw data transfor mation and capsule gener ation
algorithm

The process proceeds as follows. A sampling agent deduces a set of possible
target states at a given time to form a capsule. A sampling agent accomplishes
this by first taking four consecutive measurements and then creating a new
capsule, c, such that the time associated with that capsule corresponds to the
time of the last measurement. The state of the sampling agent while taking the
measurements is given by c.sa. The target states resulting from the application
of the function rawDataTransformation to the four consecutive measurements
is assigned to c.states. The agent stores the capsules until it is time to send
them to its group leader. After delivering the capsules to the group leader the
sampler agent deletes them. We will now show now how an agent transforms
four consecutive measurements into a capsule.

A measurement is a pair of amplitude, n, and radial velocity, v,, values
for each sensed target. A radial velocity is the velocity of a target towards
the measuring Doppler. Given a measurement from a Doppler radar the target
location can be computed using the following equation:

—(9;—8)2

2 _ k-e
Ri o i

9.2)
where, for each sensed target, i, R; is the distance between the sensor and i;
0; is the angle between the sensor and i; 6; is the measured amplitude of ¢;
B is the sensor beam angle; and & and o are characteristics of the sensors and
influence the shape of the sensor detecting area . It is possible to infer the exact
location of a target by intersecting three different measurements taken at the
same time by three different Dopplers. Using the intersection method is very
problematic in large scale systems as it requires full synchronization and coop-
eration between groups of three Dopplers. Thus, the DDM uses measurements
from only one Doppler to deduce a possible target state.

It is known that if the location of an object at time 0 is D, and its velocity
is V then the next location, D1, at time 1 of the object is given by:

Dy = Do + [, Vat (9.2)

where D is the displacement of the object in time t. If we consider the distance
from the center of the Doppler we have that

Ry = Ro + [} Vst (9.3)

where R; is the displacement from the center of the sensor at time ¢ and V,
is the relative velocity between the Doppler and the target in the direction of
the Doppler’s center. We assume that the acceleration of a target over a short
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Figure9.2. Target sampling by one Doppler.

period of timeis zero. The next target location is therefore:
Ri=Ry+V,- (tl — to) (9.9

We denote (t1 — o) by t1,0. From the relation between R, § and 7, given by
equation 9.1, we can fi nd the next angle as a function of the former.

In Figure 9.2 the dark arrow represents atarget movement vector, the small
circles along the target movement represent target locations, (R, 6y),(R1,61)
and (R, 62), a timet, t1, and ¢, respectively, as sensed by the Doppler. Fol-
lowing the projection of R, and Ry over Ry, and Ry g, and Ry g, respectively,
as shown by the dotted line, we have the following:

Rir, — Ro Ry r, — Ro

Rl . sz’n(01 - 90) - R2 . Sin(ez - 90) (95)

Trigonometrically, we may write Ry g, and R g, as

Rl,Ro = Rl . 608(91 — (9())

and
RQ’RO = R2 . 008(02 — 00)

by equation 9.1, #; can be written as

0; =+ \/—a -In(" . R2) (9.6)
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By substituting R, as given by equation 9.4 into equation 9.6 we can deduce
that the location, (Ry,0;), at t; of asensed target may be written as afunction
of 0 as specifi ed in the next proposition.

THEOREM 9.1 Assuming that the acceleration of a target in a short time pe-
riod, ¢1,0, is zero, the next location of the target is then given by

01(600) = B £ /=0 - In(% - (Ro + Vo - 110)?) (97)
while
—(99—8)?
Ry = k-e o
0
and
—(91-8)2
Ry=1\/ke—<2 (9.8)

m

Where Ry, 8y, 19, Vo represent values of the target at time¢ = 0 and 61, m;
represent values of the target at timet = 1. The same holds for the next angle,
05.

An agent can use the relationship given by equation 9.7 for 8y, 60, and 65
together with eguation 9.5 to fi nd 4 and 6> from 6,. However, the value of
0y is not known and thus can't be used in equations 9.7 and 9.5. Therefore
the algorithm examines the range of 0, ..., 27 to determine which value of 6
solves these two equations.

Note that, given a specifi ¢ value of &, the result of equation 9.7 may lead
to two valid solutions. Thisisthe reason for the use of capsules: the sampling
agent will leave the decision of determining the correct target states to the
higher levels.

Equation 9.5 cannot be solved symbolically and therefore the sampler agent
uses computational methods. The sampler agent explores the range of 6, and
looks for suitable locations corresponding to 8. Only certain angles will fi t the
above equation. To be more precise, the sampler agent uses one more sample
and applies the same mechanism to 44, 8, and 83. Comparing the results from
both cases improves the accuracy of the results. The calculated angles are
used to form a set of possible pairs of location and velocity of atarget (i.e., a
capsule). In the algorithms of fi gures 9.3, 9.4 and 9.5 we will use the notation
sample; to represent a measurement (n, V) at t = i.

THEOREM 9.2 The time complexity of the capsule generation agorithm is
0O(1).
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Find 8y function

Input: sa,sampley, sampley, samples
Output: 69

minimum_diff=e

min_g,=-1

For 8y = 0to 2w in ¢ steps
calculate §; using 8y by equation 9.7
calculate 65 using 6y by equation 9.7
diff = the difference between the left side the right side of
eguation 9.5 using #; and 8-
if (diff <minimum_diff)
minimium_diff=diff
min_6y=0,

Return min_6,

Figure9.3. Finding avalue of 6.

rawDataTransformation function

Input: sa,sampley, sampley, samples, samples
Output: target states

6y = Find 0y (sa, samplegy, sampley, samples)
01 = Find 0y(sa, sampley, samples, samples)

if (g #—18&& 6y #—1)
03 = cdculate 83 using 6y by equation 9.7
03 = calculate 63 using 61 by equation 9.7
if (the difference between 65 and 65 < epsilon)
Return (D(63), V (03)), (D(—0s), V(-03))
else
Return null

Figure 9.4. TherawDataTransformation function

195
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Capsule generation algorithm
Input: sa,sampleg, sample1, samples, samples
Output: capsule

targetSateSet=rawDataTransformation(sa,sampleg, sampler, samples, samples)

If (targetSateSet £ null)
capsule=new Capsule()
capsule.sa=sa
capsule.states = targetStateSet

else
capsule= null

Return capsule

Figure9.5. Capsule generation algorithm.

Proof: While generating a capsule, the rawDataTransformation function uses
the Find function twice. The time complexity of considering the range of al
angles from 0 to 27 in Find is O(1) asit does the same simple assignments 27
/6 times. Therefore, the time complexity of the whole algorithm is O(1).

However, despite the low order, this agorithm can be CPU intensive. A
sampler agent applies this agorithm every four consecutive measurements.
Thus, it may have to apply it many timesif it acquired many measurements or
if many targets passed through its sector. A sampler agent may sometimes not
have suffi cient resources to execute this algorithm many timesin real time. In
such cases, one can consider using simpler sampling agents, i.e., with smaller
detection sectors, which will reduce the computation load on a single agent.
One may also consider taking fewer samples.

Example: We will now present an example of how a sampler agent forms
a capsule from four consecutive measurements. Consider a case of a sampler
agent located at the coordinates D, = (200, 200) with orientation of O de-
grees. The sampler uses a Doppler with the characteristic k = 1and o = 1
and maximum detection range of 100 meters (see Figure 9.1). Consider the
following measurements taken by the Doppler.

Time n Vr

0 1.08E-04 | 0.014141
1 1.11E-04 | 0.042405
2 1.15E-04 | 0.070619
3 1.18E-04 | 0.098748
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Scanning the range of 0, ..., 2w for the value of 8y in Find 6, function, the
agorithm computes 0, (6y) and 65(6y) using equation 9.7. At the end of the
scanning loop the algorithm fi nds out that while &, had the value of —0.7854
the difference between the left side and the right side of equation 9.5 was min-
imal. Doing the same in the case of 6, the algorithm fi nds that when 6 was
—0.7654 the difference between the left side and the right side of equation 9.5
was minimal.

The algorithm then uses equation 9.5 to fi nd that &(6,) is —0.72547 and
that 63 (61 ) isalso —0.72547. Redlizing that the values of the calculated 63 (6))
and 03(01) are equa, the algorithm constructs two targets states. The fi rst is
(D(6s
andV

), V(#3)) and the second is (D(—03), V(—63)). The vaues of D(—65)
(—03) are given by the following equations:

m D(63) = (R(0) - sin(8) + D,.x, R(8) -cos(8) + D,.y)

s V(0) = (V,-sin(d),V, - cos(d))

where R(6) is given by equation 9.8 and, in our case, R(f3) = 70.8378. Ac-
cording to our example the two target states will be ((153,253)(1,1)) and
((247,253)(—1,1)).

2.2 L eader locall nfo generation algorithm

Every dT seconds each group leader performs the locallnfo generation algo-
rithm. Each group leader holds its own locallnfo. The leader starts by purging
data older than a predefi ned ~ seconds before processing new datato avoid data
overloading. Updating locallnfo involves three steps: (i) obtaining new infor-
mation from the leader’s subordinates; (ii) fi nding new paths; and (iii) merging
the new paths into locallnfo.

Figure 9.6 describes the algorithm for (i) in which every leader obtains in-
formation from its subordinates. The sampler group leader obtainsinformation
from all of its sampling agents for their unusedCapsules and adds them to its
unusedCapsulesset. The zone group leader obtains from its subordinates their
locallnfo. It adds the unusedCapsules to its unusedCapsules and merges the
infoMap of that locallnfo to its own local I nfo.

Merging of functions is performed both in steps (i) and (iii): thisis needed
since, as we noted earlier, target state functions that a leader has inserted into
the information map are accepted by the system as correct and will not be
removed. However, different agents may sense the same target and therefore
it may be that different functions coming from different agents will refer to
the same target. The agents should recognize such cases and keep only one
of these functions in the infoMap. We use the next lemma to fi nd and merge
identical functions.
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Step 1 - Obtaining new information algorithm
In: Locallnfo
Out: updated locallnfo

if activated as Samplergroup leader
for each subordinate sampler, sampler
additional Capsules =abtain set of capsules from each sampler
local Info.unusedCapsules= local Info.unusedCapsules U
additional Capsules
else % activated in Zone group leader
for each subordinate |eader, |eader
%in this part we identify identical functions and leave only one of them
additionalLocalInfo = ask each leader for itslocal info
additional Capsul es=additional L ocall nfo.unusedCapsules
additionallnfoM ap=additional L ocal Info.infoM ap
local Info.unusedCapsul es=local I nfo.unusedCapsules U
additional Capsules
mergedFunctions(local I nfo.infoM ap,additional InfoM ap);

return infoMap, unusedCapsules

Figure 9.6. Obtaining new information algorithm.

mergeFunctions algorithm
In: target function sets: F, F
Out: updated target function: F

for eachstatefunction, f%,in F
merged = false
for each state function, f7, f* # f7,in F && not merged
if (f£.D(0) — f1.D(0) < €D && fi.V — f1.V < €V)
flits = min(f'.ts, f1.45)
fite = max(fite, fI.t)
merged=true
if (not merged)
F=F U {f}

Return F'

Figure 9.7. mergeFunctions algorithm.
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LEMMA 9.3 Letp' = (my,...,7m;),p* = (n2,...,72) betwo paths, where
7r§- = (t sajy, s3) and
71'1,7'r1() <7T -Ss- _ﬂ-;' ; ‘]9-
fzs,wz() (12.85.D — 2.5,V - (t — w2.t), 7w2.55.V)
IfResBy(< > (t2, 52)) then for any f711'§,7fé( ), fgz 772( )
()= F2 ()

The mergeFunctions agorithm shown in Figure 9.6 is based on lemma 9.3.
In that algorithm, the leader uses the ResBy relation to check whether the fi rst
state of the target state function results from the fi rst state of a different target
state function. If one of the states results from the other, the leader changes the
minimum and the maximum triplets of the target state function. The minimum
triplet isthe starting triplet that has the lowest time. The maximum triplet isthe
ending triplet that has the higher time. Intuitively, the two state functions are
merged and the new function corresponds to the largest range given the found
points. In case that a leader cannot fi nd any target state function to meet the
subordinate’s function, the leader will add it as a new function to its infoMap.

ProrosITION 9.1 Thetime complexity of the obtaining new information al-
gorithmis O(7'?) where T is the number of targetsin the 7 seconds window of
time in which target information is kept by an agent.

Proof: While obtaining new information, agents implementing the algorithm
query each subordinate agent for information. The number of subordinate
agents is predefi ned and therefore constant. In the case of the sampler leader
the algorithm combines all capsules. The number of capsules depends on the
number of targets up to a constant factor. The constant factor depends on pre-
defi ned constant values, such as, the number of agents and time period for
sampling. Therefore the time complexity for the sasmpler leader component is
O(T). However, for each subordinate leader, the zone group leader also per-
forms the mergeFunctions algorithm. The time complexity of the mergeFunc-
tions algorithm is O(T'?) as it runs over a set of task state functions for every
other task state function in another set.

The second step, as shown in Figure 9.8 is conducted by every leader to fi nd
paths and extend current paths given a set of capsules. In order to form paths
of capsules, the agent should choose only one target state out of each capsule.
This constraint is based on the following lemma. According to this lemmaone
state of one capsule cannot be in a ResBy relation with two different states in
another capsule, with respect to the capsule’s time.

LEMMA 9.4 Let O = (t!,sal, (s1,51)),C? = (2, 502, (53, 53)) then if
ResBy((t!, s}), (12, s2)) then
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= (i) ResBy({t!, sl), (t?, s2)) isfalse and
m (i) ResBy((t!, s3), (t2, s2)) isfalse.

Proof: If a capsule could be in such a relationship with both target states,
the two targets states would stand in a ResBy relation between themselves.
Given that the two target states have the same creation time and that a target
cannot be at the same time in two places, that is not possible.

For the algorithm in Figure 9.8 that creates new paths we add two temporary
fields to two of the structures only for the purposes of the algorithm. The
first is a boolean flag named mark that will be added to the capsule structure.
The second is a pointer to the original capsule that will be added to every
triple stored in a path. In the first phase, every agent tries to fit every state in
unused capsules to an existing path. If the state does not fi t, a new path will be
created, starting at that state. The second phase the agent separates the paths
into accurate and semi-accurate paths according to the number of sampling
agents generating them.

Example: Consider a case in which Finding_new_paths algorithm receives
the following set of capsules as unusedCapsules:

Sensing Agent State Target Sate A Target Sate B
Capsule | Time | Location | Orientation | Location | Velocity | Location | Velocity

0 0 0,0 0 100,100 55 60,60 3-1
1 0 0,0 0 50,50 23 30,40 -2,-2
2 1 0,0 0 105,105 55 63,59 3-1
3 1 0,0 0 70,80 23 52,53 23
4 2 0,0 0 66,58 -1,3 110,110 55
5 3 10,10 0 56,59 23 30,30 33

Let us assume that at the beginning of the algorithm shown in Figure 9.8,
allPaths does not contain a path (line 2). Considering each target state in each
capsule (lines 3 to 5), we start with TargetStateA of capsule 0. Because allPaths
does not contain a path, a new path will be created with TargetStateA of capsule
0 at its head (lines 16 to 18). The next state, TargetStateB of capsule 0, will
be tested to see if it is in a ResBy relation with any of the tails of the paths,
stored in allPaths (line 10). It does not stand in a ResBy relation with the
only tail that exists: TargetStateA of capsule 0. Therefore, a new path will be
created with TargetStateB of capsule 0 at its head (lines 16 to 18). TargetStateA
and TargetStateB of capsule 1 will result in a new path as well. However,
TargetStateA of capsule 2 is in a ResBy relation with TargetStateA of capsule
0 and will join its path as a new tail (line 14). TargetStateB of capsule 2 will do
the same with TargetStateB of capsule 0. At the end of the fi rst phase 6 paths
will be formed, 3 of them are made from more than one capsule.

In Figure 9.9 we summarize the outcome of phase 1. Each arrow corre-
sponds to a ResBY relation between two path points. Every capsule contains
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Step 2 - Finding new pathsalgorithm

In: unusedCapsules

Out: updated unusedCapsules, accurateFunctions, mediocrePaths
% phase 1. make links

(1) sort(unusedCapsules) % by time stamp

(2) allPaths = {}

(3) for each capsule, ¢ = (t, sa, {s1, s2}), in unusedCapsules
(4)  cap.mark=fase % marking for phase 2
(5) for eachtarget state, S, in cap states

(6) linked=false

@) % because of the above assumption and given that the path
(€3] % elements came from capsules there will be only one suitable
9 %path. Therefore, we exit the loop after fi nding such a path
(10) for every last triplet, (t_last, sa_last, s_last), in each path, p,
(11) in allPaths & & not linked

(12) if (ResBy((t_last, s last), (t, si))

(13) or (tlast = t&&sa_last # sa))

(14) p=p*({t,sa,s1))

(15) linked = true

(16) if (not linked)

(17) p = ((t, sa, si))

(18) alPaths=allPaths U {p}

(19)% phase 2: collect target representing paths that has no common capsules
(20)% when giving a greater priority to paths with more viewpoints

(21) sort(all Paths) % by number of viewpoints

(22) paths={}

(23)for each path, p, in allPaths

(24) if (not isAnyCapsuleMarked(p) & & numberOfViewpoint(p) > 1)

(25) markAllCapsules(p)

(26) unusedCapsul es.=unusedCapsules - alCapsules(p)

(27) accuratefFunction=accurateFunction

(28) accurateFunctions= accurateFunctions U pathToFunc(p)

(29)if activated as top-level |eader

(30) mediocrePaths=collectM ediocrePaths(al | Paths)

(3Dese

(32) mediocrePaths={}

(33) Return unusedCapsules, accurateFunctions, mediocrePaths

Figure 9.8. Finding new paths agorithm.
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Figure9.9. An example of an outcome of phase 1

the original sampler state, which is not shown in the fi gure due to space limi-
tations.

In phase 2, the algorithm fi nds that one of the paths in allPaths is formed
by capsules generated by agents with different states. This path is an accurate
path and will be added to the accurate paths set. The algorithm removes all
target states that share the same capsule with accurate paths' target states. At
the end of the second path, the agorithm looks for semi-accurate paths. A
semi-accurate path is a path of target states sensed by the same agent at the
same agent state.

The function pathToFunc receives a path and returns a function based on
it. Inour case it will receive the paths shown in the left side of the fi gure and
return:

f77577Te( ) = ((50
path points: 5 = (0,
((56,59),(2,3)))-

PROPOSITION 9.2 Thefi nding new paths algorithm time complexity is O(12)
where T is the number of targets in the 7 seconds window of time passing
through the controlled area.

50) + (2 3) - t,(2,3)) with respect to the fi rst and the last
{{0,0),0), ((50,50), (2,3))) and me = (3, ((0,10),0),

Proof: In this algorithm, every leader runs over a set of paths for every
capsule in its set of capsules. The paths and the capsule sets are correlated



Simulation, experiments and results 203

_ e —-—I _—

Figure 9.10. Patrol movement pattern

with the number of targets in the time period of 7, and therefore results in a
time complexity of O(T2).

2.3 The movement of a sampler agent

While the integration algorithms play an important role in producing an
accurate infoMap, ultimately, the accuracy of the infoMap fundamentally de-
pends on the accuracy of the observations made by the sampling agents. There
are several degrees of freedom associated with the movements of sampler
agents. At this point in our research we wanted the sampler agents to move
autonomously according to a predefi ned agorithm without making any as-
sumptions regarding target location. We hypothesize that the following criteria
should be considered when determining the sampler agent’s behavior: (i) the
union of al the sensed area at time t should be maximized and (ii) the inter-
section of the areas sensed by sampling agent s at time t and at t+1 should be
minimized. One of the ways to achieve this is to move in the pattern demon-
strated in fi gure 9.10. We refer to this pattern as the Patrol movement pattern.

We compared the patrol movement pattern with a steady random movement
that was used by the agents in [Yadgar 2002; Yadgar 2003]. A steady ran-
dom movement is defi ned as a movement in a random direction and velocity.
Upon reaching the end of the controlled zone, the velocity and the direction is
changed and re-directed into the zone. We found out that most of the time the
patrol movement pattern is more effi cient than the random one. Hence, we will
present our simulation results using the former.
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Figure 9.11. Simulating 2 Doppler radars tracking 30 targets. The dots represent sampled
target states. The shades of lines represent 100% and 50% tracked targets.

3. Simulation, experiments and results
3.1 Simulation environment

We developed a smulation of the Doppler domain to study the problems
associated with the application of the DDM in alarge-scale environment. The
simulation consists of an area of a fi xed size in which Dopplers attempt to
extract the object state functions of moving targets. Each target has an initial
random location aong the border of the area and an initial random velocity
of up to 50 km. per hour in a direction that leads inwards. Targets leave the
area when reaching the boundaries of the zone. Each target that |eaves the
area causes a new target to appear at a random location aong the border and
with arandom velocity in adirection that leads inwards. Therefore, each target
may remain in the area for a random time period. Figures 9.11 and 9.12 are
screendumps of asimulation in progress.

To run our simulations we used a Pentium 4 computer with Windows 2000
as an operating system and 1GB RAM.

1We did not use the RadSim simulator.
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Figure 9.12. Simulating 20 Doppler radars tracking 30 targets. The dots represent sampled
target states and the lines represent tracked targets.

3.2 Evaluation methods

We collected the state functions produced by agents during a simulation. We
used two evaluation criteria in our simulations: (1) target tracking percentage
and (2) average tracking time. We counted a target as tracked if the path iden-
tifi ed by the agent satisfi ed the following: (a) the maximum distance between
the calculated location and the real location of the target did not exceed 1 cen-
timeter, and (b) the maximum difference between the calculated v(t) vector and
the real v(t) vector was less than 1 centimeter per second.

In addition, the identifi ed object state functions could be divided into two
categories: one in which only a single function was associated with a partic-
ular target and was chosen to be part of the infoMap; those functions were
assigned a probability of 100% corresponding to the actual object state func-
tion and denoted as accurate tracking. The other in which two possible object
state functions were associated with a target. Each was assigned a 50% prob-
ability of corresponding to the actual function. We refer to these functions as
“semi-accurate.” We will say that one set of agents did better than another if it
reached a higher tracking percentage and a lower tracking time with respect to
the accurate functions and the total tracking percentage was at least the same.

The averages reported in the graphs below were computed for one hour of
simulated time. The target tracking percentage time was calculated by dividing
the number of targets that the agents succeeded in tracking, according to the
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above defi nitions, by the actual number of targets during the simulated hour.
We considered only targets that exited the controlled zone. The tracking time
was defi ned as the time that the agents needed to fi nd the object state function
of the target from the time the target entered the simulation. Tracking average

time was calculated by dividing the sum of tracking time of the tracked targets

by the number of tracked targets.

Basic settings. The basic setting for the environment corresponded to an
area of 10,000 by 10,000 meters. In each experiment, we varied one of the
parameters of the environment, keeping the other values of the environment
parameters as in the basic settings.

Each Doppler moved one second and stopped for 5 seconds to take 5 mea-
surements. The maximum detection range of a Doppler in the basic setting
was 100 meters; the number of Dopplers was 1,000. The controlled area was
divided into 1,000 equal rectangles, each 400x250 squared meters. Each pa-
trolling Doppler was assigned to such an area and executed the patrol move-
ment pattern. 1,000 Dopplers with a detection range of 100 meters each, can
cover together up to approximately 8,000,000 squared meters, which is 8% of
the controlled area.

The number of targets at a given time point was 1,500. In total, during one
hour 5,700 targets entered the controlled area and 4,200 of them exited the
area.

In the basic setting we used a hierarchy of 4 levels: three levels of zone
group leaders and one of sampler group leaders. Each of the zone group leaders
divided its zone into 4 areas and assigned a sub-leader to each one of them.
Therefore there was one leader at the top level, 4 at the second level, 16 at the
third and 64 at the fourth. Each Doppler sensor communicated with one of the
fourth-level leaders.

3.3 Results

We conducted three sets of tests: (i) evaluating the basic settings, (ii) investi-
gating the influences of the number of levels in the hierarchy, and (iii) studying
the tolerance towards faulty sensing agents, leaders and sensing noises. At this
state of our research, samplers and leaders do not react to the changes in the
functioning agent community.

Basic settings results. Our hypothesis was that by applying the DDM
hierarchy model we would be able to very quickly track many targets. We also
hypothesized that the tracking period for each target would be signifi cant. We
ran the simulation using the basic settings and evaluated the results.

Figure 9.13 shows the percentage of tracked targets as a function of the time
each target remained in a zone. To put this histogram in context we added
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Figure9.13. Tracking percentage by time in zone (Sec.)

the gray graph that corresponds to the right legend. This graph reflects target
distribution with respect to the time spent in the zone.

We can see that the system accurately tracked 83% of the targets. This
was achieved with Dopplers covering only 8% of the area. A little more than
50% of the targets that stayed in the controlled zone less than 360 seconds
were tracked. Note that most of the targets passing through the simulated area
remained in the area less than 720 seconds. During that time the patrol method
tracked many targets and therefore achieved rapid tracking.

Figure 9.14 shows the number of targets that were tracked upon entering a
zone. Most of the tracking was achieved in less than 2 minutes from the time of
a target’s entrance into the zone. The system tracked 71% of its tracked targets
in this period.

Figure 9.15 plots the tracking duration, which is the period of time between
the fi rst and the last time a target was detected. The fi gure indicates that the
system tracks more targets for less duration. However, it tracks most of the
tracked targets for more than 6 minutes.

Level comparison. We investigated the influence of the number of levels
in the hierarchy. Our hypothesis was that too few levels would overload the
leader agents so they would not have enough time to process the information.
We also anticipated that, as more leader agents were involved in generating the
global solution, a less accurate solution would result.

Figure 9.16 presents the tracking performance of the system as a function of
the number of levels in the hierarchy. As we hypothesized, the system tracked
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Figure 9.17. Accurate tracking time (Sec.) as afunction of the number of levels

less targets as the number of levels increased. This can be explained by a
greater fragmentation of the zone, i.e. 4 quartersin 2 levels versus 64 in 4
levels. Thefi gure shows that the decrement is narrow.
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Asshown in Figure 9.17, the average time to track atarget increases as the
number of levels increases. However, it increases only from 100 seconds to
106 seconds while the number of levelsincreases from 1 to 4.

Figure 9.18 presents the duration it took an agent to perform itstask. In this
fi gure we present the maximum time when using the computer capabilities as
detailed above. The maximum time is very close to the average time; there-
fore we do not present the latter here. As we predicted, while using only one
level the agent will need more time than it has. In our case an agent needed
16,000 seconds (about 5 hours) to process data gathered during 1 hour. That
meansthat in the case of one level the system will not converge. Using 2 levels
enabled the system to solve the problem in only 35 minutes. Using 4 levels
decreased the maximum time that an agent needed to process data collected in
an hour to only 10 minutes.

In Figure 9.19 we show the total number of bytes transferred between agents
during one hour, relative to the number of levelsin the hierarchy. The capsules
generated by samplers and sent to sampler group leaders resulted in a trans-
fer of 4AMb. Having a massive communication load may cause a bottleneck
in the receiving agent that may lead to delays. Moreover, such a bottleneck
may result in aloss of important information in case of agents faults. When
adding more levels to the hierarchy, more agents transfer information upwards
and therefore the total number of bytes transferred isincreased. On the other
hand, adding more levels decreases the average number of bytes every agent
receives. In fi gure 9.20 we can see the signifi cance of the reduction of the av-
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erage communication load on the receiving agent when increasing the number
of the levels.

We used a hierarchy formation such that every level has four times more
agents then its leader’s level. Therefore, the total number of leader agents re-
ceiving information in the hierarchy is 1, 5, 21 and 85 when using hierarchy of
1,2,3 and 4 levels. Figure 9.20 show the number of bytes transferred according
to the number of agents.

Dysfunctional sampling agents. To investigate the fault tolerance property
of the hierarchy model in a large-scale environment we disabled some of the
sampling agents. We increased the number of disabled sampling agents from
0% as in the basic settings to 90%, leaving only 10% active agents. We hy-
pothesized that by increasing the number of faulty sampling agents the system
would not perform as well as in the basic settings. Our goal was to place a
bound on the number of dysfunctional sampling agents that the system could
tolerate while still performing well.

Figure 9.21 shows the accurate tracked targets percentage as a function of
the number of samplers which stopped functioning. We found that increas-
ing the number of disabled sampling agents also increases the time it takes to
track targets. By increasing the number of disabled sampling agents by 5% the
average time it takes to track atarget increased by 6%.

Dysfunctional leader agents. A second aspect of the system’s fault tol-
erance is its response to dysfunctiona leaders. In contrast to dysfunctional
samplers, a dysfunctional leader will result in a difference in the coverage of
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the system. For example, consider a case in which a leader responsible for
half of the controlled area stops functioning. Using the patrol Doppler move-
ment pattern will result in a loss of information from half of the samplers. We
hypothesized that performance would be signifi cantly influenced by this fac-
tor. To validate this hypothesis we conducted several simulations in which we
varied the number of dysfunctional sampler leaders.

Figure 9.22 confi rms our hypothesis. It shows that the system could toler-
ate a reduction of up to 13% in the number of functioning sampler leaders.
A reduction of 18% or more resulted in a very low performance level. How-
ever, despite the fact that the system demonstrated poor tracking percentage
for high-rate dysfunctional sampler leaders, we discovered that it still tracked
targets quickly. We hypothesize that adopting a reactive approach that will en-
force division of the area among the active agents will overcome this problem.
We plan to report the results of our investigation of this hypothesis in a future
document.

Noisy communication. As we stated, we would like to show that using
simple and cheap sensors may be benefi cial even if they tend to malfunction
or if communication with their leaders degrades. We conducted a thoughtful
simulation testing the system while using faulty communication between sam-
plers and leaders. We predicted that the system would be tolerant towards such
noise.
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Wefound, as shownin Figure 9.23, that even if 50% of the messages did not
reach their destination (either because of faulty communication or faulty sam-
plers), the system still performed well. Losing 50% of the messages resulted
in areduction of only 5% of the tracked targets and increased the tracking time
by 20 seconds.

4, Related work

The benefi ts of hierarchical organizations have been argued by many. Soand
Durfee draw on contingency theory to examine the benefi ts of avariety of hier-
archical organizations; they describe a hierarchically organized network mon-
itoring system for task decomposition and they also consider organizational
self-design [So 1996]. DDM differs in its organization use to dynamically
balance computational load and aso in its algorithms for support of mobile
agents.

The idea of combining partial local solutions into a more complete global
solution goes back to early work on the distributed vehicle monitoring testbeds
(DVMT) [Lesser 1987]. DVMT also operated in a domain of distributed sen-
sors that tracked objects. However, the algorithms for support of mobile sen-
sors and for the actual specifi cs of the Doppler sensors themselves is novel to
the DDM system. Within the DVMT, Corkill and Lesser investigated various
team organizations in terms of interest areas [Corkill 1983] which partitioned
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problem solving nodes according to roles and communication, but they were
not initially hierarchically organized [Ishida 1992; Scott 1992]. Wagner and
Lesser examined the role that knowledge of organizational structure can play
in control decisions [Wagner 2000].

All of the other approaches discussed in this volume assume that agents are
stationary. Those approaches make use of measurements from three Doppler
sensors, taken at the same time, and intersect the arcs corresponding to each
sensor. The intersection method depends on the coordinated action of three
Doppler sensors to simultaneously sample the target. Such coordination re-
quires good synchronization of the clocks of the sensors and therefore commu-
nication among the Doppler agents to gain that synchronization. In addition,
communication is required for scheduling agent measurements. We have de-
scried an alternative that can make use of uncertain measurements; we focus
on the combination of partial and local information. Note, that even though
our agents associate a time stamp with each capsules, DDM does not require
that the sensors are fully time synchronized. The ResBy relation may allow
small deviation of the time. For example: ResBy((t1,s1), (t2,s2)) may be
sl == s2.0&(sl.x —tlxslw) —(s2.2 —t2% s2.v) < e Using a large e may
indicate high tolerance towards non synchronized clocks. However, increasing
the value of epsilon increases the probability to identify two different targets
as the same one.

In their work, Yu and Cysneiros [Yu 2002] describe challenges related to
large-scale information systems. They claim that large-scale systems have the
potential to support greater diversity, offering more flexibility and better ro-
bustness as well as more powerful functionalities compared to traditional soft-
ware technologies. In our work we address these challenges and propose an
effi cient solution.

Silva et al, have developed the Reflective Blackboard architectural pattern
for large-scale systems [Silva 2002]. This is the result of the composition of
two other well-known architectural patterns: the Blackboard pattern and the
Reflection pattern. They separate control strategies from the logic and data.
In our work we use independent agents that act autonomously. Such a loose
coupling is benefi cial in terms of simplicity, robustness and fault tolerance.

Tel has studied the performance of a network tree with n processors provid-
ing communication between every pair of processors with a minimal number
of links (n-1) [Tel 1991]. The communication complexity in a tree topology
is influenced by the diameter of the number of levels in the tree. Therefore
a tree with fewer levels will have a better communication complexity. How-
ever each node has more computations to perform and can therefore become
a bottleneck. A failure of a node will split the tree into a larger number of
unconnected subsets. In the work we have described, we have investigated the
relation between the number of levels in a hierarchical structure and perfor-
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mance; we have presented suggestions of how to choose the right number of
levels.

5. Conclusions

We have introduced a solution to a modifi ed large-scale ANTSs problem. We
have shown that problems involving hundreds and thousands of Dopplers and
targets cannot be solved in the traditional flat architecture. Distributing the so-
lution into smaller problems that can be solved partially by simple agents is the
approach we adopted. Using many simple and cheap agents instead of a much
smaller number of sophisticated and expensive ones may also be cost-effective:
it is often more affordable to replace and maintain many simple agents than to
depend on a few sophisticated ones. We also suggested ways to combine partial
solutions to form a global solution. We established an autonomous movement
algorithm to be implemented by each sampling agent. We have also shown
that the capabilities of the hierarchical model are greater than those of the flat
one. In particular, we found that the flat model could not solve the problem we
addressed.

We have shown that the number of levels in a hierarchy influences the ac-
curacy of results. As the number of levels increases the number of tracked
targets drops, even though this drop is moderate. However, as the number of
levels increased, the time every agent needed to complete its mission dropped
exponentially. By combining these two results we are able to balance these
two properties. Choosing the right number of levels should also take into con-
sideration the time it takes to track targets. As we have shown, it takes more
time to track targets as the number of levels in the hierarchy is increased.

To conclude, we have shown that the large-scale ANTSs system can perform
well even if agents are very simple and inaccurate. We have shown how partial
information can be combined and how the existence of dysfunctional partici-
pants can be overcome.
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