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Delegating Decisions in Strategic Settings
Paul E. Dunne, Paul Harrenstein , Sarit Kraus, and Michael Wooldridge

Abstract—In this article, we formalise and investigate the follow-
ing problem. A number of decisions must be delegated to a collec-
tion of agents; once the decisions are delegated, the agents to whom
the decisions are delegated will then make these decisions rationally
and independently, in pursuit of their own preferences. A principal
is able to determine how decisions will be delegated, and seeks to
do so in such a way that, when the decisions are ultimately made,
some overall goal is satisfied. The principal delegation problem, is
then, given such a setting, whether it is possible for the principal
to delegate decisions in such a way that, if all the agents to whom
decisions have been delegated then make their respective decisions
rationally, the principal’s goal will be achieved in equilibrium.
We also distinguish the distributed allocation problem where the
agents can delegate decisions among themselves. Here we not only
require that the principal’s goal will be achieved in equilibrium,
but moreover that the allocation to the agents is stable, in the sense
that no coalition of agents can redistribute the decisions delegated
to them among themselves so as to be better positioned to satisfy
their individual goals in equilibrium. We formalise these problems
using Boolean games, which provides a very natural framework
within which to capture the delegation problem: decisions are di-
rectly represented as Boolean variables, which the principal assigns
to agents. After motivating and formally defining the principal
and distributed delegation problems, we investigate these compu-
tational complexity of several varieties of these problems, along
with some issues surrounding it. Impact Statement: Our research
concerns the ubiquitous problem of how to incentivise agents to
decide on courses of action that are simultaneously desirable from
the global perspective and rational from a local game-theoretic
perspective. The design of mechanisms so as to achieve this is
through steering the strategic capabilities of interested agents by
delegating decisions to them in specific ways. We distinguish the
cases in which the delegation is effectuated by a principal and
where the agents are delegating decisions among one another. Our
reliance on the mathematical framework of Boolean games to
formalise the principal and distributed delegation problems offers
valuable insights into the computational complexity of these prob-
lems. The delegation problem touches on many important applica-
tions, not only in everyday life, but also in Artificial Intelligence, in
particular Multi-Agent Systems.
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I. INTRODUCTION

THROUGHOUT our lives, we must inevitably delegate
to other agents decisions whose outcome will affect us,

even though we know full well that the agents we delegate the
decisions to are self-interested, and will make these decisions in
their own interest. Examples of this problem are legion. Thus,
one can think of the chair of a university department, who must
allocate teaching and admin responsibilities to faculty members,
who may have the interests of their research area prevail over
a well-balanced curriculum, diversity of research, or a well-
balanced budget. Or of a film studio producing a film and has to
appoint a director, a screen writer, as well as a casting manager.
In computer science, the designer of a multi-agent system can
be seen to delegate tasks to multiple largely autonomous agents.
In each case some leeway in the execution of the delegated
task has to be granted, and we face the problem how to best
delegate which responsibilities to which decision makers. In
this paper, we formally analyse this issue, which we will refer
to as the principal delegation problem, so as to investigate its
computational properties. We also study a more cooperative
setting, where the agents have to assign responsibilities among
one another in the absence of a principal. This setting would be
more appropriate, for instance, in the case where a couple of
friends who are organising a party and who have to divide the
tasks of finding a venue, hiring a DJ, and engaging a catering
service. Or in the case where four allied powers occupying an
enemy city have to decide who is to be responsible for the
city’s food supply, its infrastructure, and its public security. This
problem we refer to as the distributed delegation problem.

To illustrate the principal delegation problem we use the
following fictional political scenario as a running example.

Example 1: Consider the case of a Prime Minister of a not
further specified Western European country, who has to reshuffle
their cabinet. There are vacancies in the departments of Finance,
of Trade, and of Energy. In the upcoming months, in each of
these departments there is an important decision to be made.
The minister of Finance will have to decide whether or not to
raise taxes, the minister of Trade will have to decide whether to
renegotiate a free-trade agreement with trade-block A or enter a
new one with trade-block B, and the Energy minister will have to
commit to a coal-phase out or pursue other measures. How these
decisions will affect the (environmental) future of the country is
tabulated in Fig. 1.

There are three candidates, an environmentalist, a free-trade
libertarian, and a populist, each of whom has different (but
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Fig. 1. PM’s predicament. Different policy decisions in the departments of
Finance, Energy, and Trade affect the future course the country is to take.
The three circles in the bottom right of each cell indicate the preferences of
the three ministerial candidates, the environmentalist, the free-trade libertarian,
and populist, respectively. A filled circle indicates approval, an empty circle
disapproval. The PM strives for a joint equilibrium decision that at a majority
of the ministers approve.

dichotomous) preferences over what the country’s future should
look like. Thus the environmentalist prefers green (italicised)
outcomes, and the free-trade libertarian prefers not to raise taxes,
unless the country ends up in trade-block B without a coal phase-
out. The populist wants to join trade-block B, unless there is
going to be a green economy, in which case only A is acceptable.

The prime minister is confronted with the task of appointing
ministers for each of the three ministries from among the three
candidates. Different ways of appointing the three ministers lead
to different outcomes, as the candidates will have to pursue their
goals with different strategic capabilities. Moreover, the prime
minister themselves may have their own objectives, in our case, a
stable cabinet in which a majority of the three ministers supports
the political course that results as a consequence of the ministers’
decisions. How can the prime minister achieve this?

By making the libertarian Finance minister, assigning the
populist to Energy, and putting the environmentalist in charge
of the Trade department, it can easily be checked that there is a
unique Nash equilibrium, in the sense that it is the only outcome
where none of the ministers would like to revise their decision
unilaterally. This equilibrium would result in a future based on
solar and wind energy. Alternatively, if the environmentalist, the
libertarian, and the populist are responsible for Energy, Trade,
and Finance, respectively, another but also unique equilibrium
ensues, resulting in a sophisticated green economy in block A.
In either case, the prime minister’s objective of majority support
in the cabinet is fulfilled as well. This will not always be the
case though. For instance, if the populist were to decide which
trade-block to join, the libertarian whether to raise taxes, and the
environmentalist on the coal phase-out, then there is no equilib-
rium, let alone one that is acceptable to the Prime Minister.

The formal model we use to frame the delegation problem
is based on Boolean games, which were originally introduced
by [1]–[5]. In a Boolean game, the agents are players, and each
player i is assumed to have a goal, represented as a propositional
formula γi over some set Φ of Boolean variables. Each player i
has some subset Φi of the variables Φ, with the idea being that
the variables Φi are under the unique control of player i. The

Fig. 2. Partial game of Example 1 under four different allocations, αa|t|c,
αc|a|t, αt|c|a, and αa|c|t, of departments to ministers. In each game, the envi-
ronmentalist chooses rows, the free-trade libertarian columns, and the populist
matrices. Nash equilibria are underlined.

choices/strategies available to i correspond to all the possible
allocations of truth (�) or falsity (⊥) to the variables in Φi. A
player would ideally like to choose an allocation for its variables
so as to satisfy its goal γi, but whether i’s goal is in fact satisfied
will depend on the choices made by others; and whether their
goal is satisfied will in turn depend on the choice made by i, and
others.1

Example 2: Thus, in Example 1, the binary decisions relating
to tax levels, the coal phase-out, and the choice of free-trade
agreement can be formalised, respectively, as three proposi-
tional variables t, c, and a, which each can take the value �
(tax increase, coal phase out, free-trade with A) or ⊥ (no tax
increase, no coal phase-out, free-trade with B). The players are
the candidates and each can be uniquely appointed minister to
one or more of the three departments, or to none. �

Boolean games have two main features that make them well-
suited to studying delegation problems. First, the strategies of
the players are given by subsets of variables over which they
have unique control. This affords a natural set-theoretic struc-
ture. Setting the truth-value of a given propositional variable
could be regarded as a subtask that is delegated to the player
controlling that variable. The subtask of setting the truth-value
of a propositional variable can in principle be delegated to any
of the players and independently of the other variables assigned
to their control. Second, in a Boolean game, player satisfaction
depends in a systematic way on the truth-values assigned to the
propositional variables, but not on the identity of the players
who assigned the truth-value to the variables. Loosely speaking,
different ways in which control over the variables is distributed
over the players may affect the strategic structure of the game,
but not its preference structure. Also see Fig. 2 for an illustration
of this point.

1As one reviewer aptly observed, the principal delegation problem could also
be modelled as a Stackelberg game [6], [7, pp.97–98], where the principal is the
leader and the players the followers. Boolean games, however, allow us to focus
more on the internal structure of the allocations rather than on the leader-follower
hierarchy.
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Fig. 3. Partial game of Example 3 under allocationsα andα′. Player 1 chooses
rows, player 2 chooses columns, and player 3 chooses matrices.

In the variant of Boolean games that we use to model the
delegation problem, we therefore assume that some of the vari-
ables in Φ may be initially unallocated, i.e., not assigned to
any player’s variable set Φi. We have seen how the unallocated
variables are assigned to the players may essentially affect the
Nash equilibria of the resulting game where all variables are
allocated. An external principal (corresponding to the prime
minister in the example above) must allocate these variables to
players within the game, i.e., the decision about which unallo-
cated variable is assigned to which player is determined by the
principal. Once the principal has made an allocation, then the
resulting Boolean game is played in the normal way. Thus, a
player i is able to determine values for all the variables Φi that
it is initially allocated, as well as values for the variables that
were allocated to them by the principal. Note that the principal
is not part of the resulting Boolean game: the values chosen
for variables Φ are made by the players in the game. Thus
the only way the principal can influence a game is in choosing
the allocation of originally unallocated variables to players. The
principal will make an allocation with some overall objective
in mind. We represent the objective by a Boolean formula Υ
over the variables Φ. If the principal is successful in allocating
variables to players, then the result is that players will rationally
choose values for variables so that the objective Υ is satisfied
in equilibrium. Thus the overall problem faced by the principal
is as follows: Can I assign the unallocated variables to players
in such a way that if the players then play the resulting game
rationally, my objective Υ will be satisfied in equilibrium? We
refer to this as the principal delegation problem. This problem
was investigated before in [8] under the name of the delegation
problem.

The observation that the way variables are allocated to the
players essentially affects the Nash equilibria of the games after
allocation lies at the heart of the principal delegation problem.
It need not only be the principal who may have an interest in
how variables are allocated and which Nash equilibria result as
a consequence. This could also hold for the players to whom
tasks are being delegated. To illustrate this point, consider the
following example.

Example 3: Consider the situation wherein three students are
to prepare a common meal and have to decide who is to get
tomatoes (p) or beans (p̄) from the greengrocer’s, cheese (q) or
cream (q̄) form the creamery, and spaghetti (r) or rice (r̄) from
the grocer’s shop. They have varying preferences over the meals
they can make with the ingredients bought.

Fig. 3 depicts the two Boolean games that result in two
different ways, α and α′, in which these tasks are allocated. In
the former, the variables p, q, and r are controlled by player 1,
player 2, and player 3, respectively. In the latter, players 1 and 2
have exchanged control over p and q. Suppose both player 1’s
and player 3’s goal is given by (r → (p ∧ ¬q)) ∧ (¬r → (p↔
¬q)), and player 2’s goal by (r → (p ∧ ¬q)) ∧ (¬r → (p↔
q)).
In the game under allocationα, there is one Nash equilibrium,

which renders true ¬p ∧ ¬q ∧ r and satisfies no player’s goal.
By contrast, the unique equilibrium in the game underα′ satisfies
p ∧ q ∧ r and as such is strictly better for both players 1 and 3
with respect to the equilibrium under α, whereas player 2 is
indifferent between the equilibria that result under α and α′.
Therefore, the three players could have an incentive to form a
coalition and reallocate the variables they control among one
another. We could therefore say that allocation α is blocked by
the players, and therefore fails to be stable in the game-theoretic
sense of the word. Observe that, by the same reasoning, the
coalition consisting of players 1 and 2 could be said to be
similarly incentivised to collude and deviate. Interestingly, and
as the reader may verify, this is not the case for the coalition with
players 1 and 3, the two beneficiaries of the first reallocation!
Finally, given allocationα′, no coalition can be found that would
like to reallocate their variables so as to guarantee a better Nash
equilibrium: any such coalition would have to involve player 2
and at least one other player, but the latter would be worse off
in any outcome where player 2 is better off. �

In Section V, we formally address this possibility of coalitions
of players blocking allocations, i.e., the possibility that some
coalitions cooperate by reallocating allocated variables among
its members, and to do so to their advantage. More precisely, we
consider the following distributed delegation problem: Can we
assign the unallocated variables to players in such a way that
is both stable, i.e., no coalition is incentivised to reallocate the
variables among themselves, and will satisfy our objective Υ in
equilibrium?

In the remainder of this paper, we formalise and study the
principal and distributed delegation problems, focussing particu-
larly on computational issues. After this introduction, we present
the formal preliminaries in Section II. Section III is devoted to
the fundamental principal delegation problem, both in its weak
and strong forms. In Section IV, we investigate a variant of
the principal delegation problem in which the principal seeks
an allocation that will result in an equilibrium that maximises
some objective function. Section V deals with the distributed
delegation problem. In Section VI, we conclude by evaluating
our results and discussing related work, and pointing out direc-
tions for future research.

II. PRELIMINARY DEFINITIONS

We now introduce the variation of Boolean games that we use
in the present paper, which is directly descended from previous
Boolean game models (compare, e.g., [1], [3]–[5]).

a) Propositional Logic: Let {�,⊥} be the set of Boolean
truth-values, with “�” being truth and “⊥” being falsity. Let
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Φ = {p, q, . . .} be a finite, fixed, and non-empty vocabulary of
Boolean variables. The set of well-formed formulae of propo-
sitional logic over Φ is then constructed using the conventional
Boolean operators “∧”, “∨”, “→”, “↔”, and “¬”, as well as
the constants “�” and “⊥”. We abuse notation by using � and
⊥ to denote both the syntactic constants for truth and falsity
respectively, as well as their semantic counterparts. We will often
find it useful to abbreviate clauses such as p ∧ ¬q ∧ r to pq̄r. A
valuation is a total function v : Φ → {�,⊥}, assigning truth
or falsity to every Boolean variable. We write v |= φ to mean
that the propositional formula φ is true under, or satisfied by,
valuation v, where the satisfaction relation |= is defined in the
standard way. Let V (Φ) denote the set of all valuations over
Φ, omitting the parameter Φ when clear from the context. We
write |= φ to mean that φ is valid, i.e., that v |= ϕ holds for all
valuations v. We denote the fact that |= φ↔ ψ by φ ≡ ψ.

b) Quantified Boolean Formulas: As well as propositional
logic, we make use of Quantified Boolean Formulas (QBFs).
QBFs extend propositional logic with quantifiers ∃X and ∀X ,
whereX ⊆ Φ. A formula ∃Xφ asserts that there is some assign-
ment of truth-values to the variables X such that φ is true under
this assignment, while a formula ∀Xφ asserts thatφ is true under
all assignments of truth-values to the variables X . QBFs are
very powerful: for example the satisfiability of a propositional
formula φ over variables Φ can be expressed by the QBF ∃Φφ.
Quantifiers in QBFs can be nested: the formula ∃X∀Y φ asserts
that there is some assignment of values toX such that no matter
how values for variables Y are assigned, the formula φ will be
satisfied.

c) Boolean Games and Partial Boolean Games A partial
(Boolean) game, which is formally given by a tuple

P = (N,Φ,Φ1, . . . ,Φn, γ1, . . . , γn),

is populated by a set N of n agents , the players of the game.
Each player i is assumed to have a goal , characterised by
a propositional formula γi. Each player i controls a possibly
empty subsetΦi of the overall finite set of Boolean variablesΦ =
{p, q, . . .}, i.e., i has the unique ability to set the value of each
variable p inΦi to either� or⊥. We will require that no variable
is controlled by more than one player, i.e, for distinct players i
and j, we assume Φi ∩ Φj = ∅. Readers who are familiar with
Boolean games might also be expecting to see the requirement
that every variable is controlled by an player, but for the moment,
we do not make this assumption.

Thus, in a partial game, it is possible that some variables
in Φ are not allocated to players, i.e., that Φ1 ∪ · · · ∪ Φn �= Φ.
We let ΦU = Φ \ (Φ1 ∪ · · · ∪ Φn) denote the set of unallocated
variables. Two extremal points are worth identifying: ifΦU = Φ
and if ΦU = ∅. If the former, Φ1 = · · · = Φn = ∅, and so all
variables are unallocated. In the latter case, there are no unallo-
cated variables and so every variable is assigned to some player.
Then,ΦU = ∅, and we also refer to the partial game as a Boolean
game.

d) Outcomes, Preferences, and Choices: The outcomes of a
(partial) Boolean game over Φ are given by the set of valuations
V (Φ). The preferences of each player i over the outcomes (val-
uations) are defined by the formula γi in a very straightforward

way: player i strictly prefers all those outcomes that satisfy its
goal γi over all those that do not, but is indifferent between
outcomes that both satisfy their goal, and between outcomes that
both do not satisfy their goal.2 It is convenient to define for each
player i a utility function ui : V (Φ) → {0, 1} over outcomes
which captures these preferences such that, for all valuations v
in V(Φ),

ui(v) =

{
1 if v |= γi,

0 otherwise.

Given outcomes v1 and v2, we write v1 �i v2 to mean that
ui(v1) ≥ ui(v2), with the corresponding strict �i and indiffer-
ent ∼i subrelations defined in the usual way.

When playing a (partial) Boolean game, a player iwill aim to
choose an assignment of values for the variables Φi under their
control so as to satisfy their goal γi. However, γi may contain
variables controlled by player distinct from i, who will also be
trying to get their goals satisfied; and their goals in turn may be
dependent on the variables Φi.

Formally, a choice for an player i is a function vi : Φi →
{�,⊥}, i.e., an allocation of truth or falsity to all the variables
under i’s control. Let V i denote the set of choices for player i.
If an player i controls no Boolean variables at all, i.e., if Φi = ∅,
we assume that i has only one action, which we denote by ∅.
A strategy profile is a tuple �v = (v1, . . . , vn) in V 1 × · · · × V n

consisting of exactly one choice for one player. The strategy pro-
file (v1, . . . , vi−1, v

′
i, vi+1, . . . , vn) we also denote by (�v−i, v′i).

There is a natural correspondence between outcomes and
strategy profiles, and we often treat outcomes for Boolean games
as valuations, for example writing (v1, . . . , vn) |= φ to mean
that the valuation defined by the outcome (v1, . . . , vn) satisfies
formulaφ. Of course, for partial Boolean games, whereΦU �= ∅,
this correspondence between outcomes and strategy profiles
does not hold in general.

e) Allocations: Partial games can be made into fully fledged
Boolean games by allocating any unallocated Boolean vari-
ables to the players. Formally, an allocation is a total func-
tion α : ΦU → N , with the intended interpretation that, for
p ∈ ΦU , under allocation α, variable p is allocated to player
α(p). With a small abuse of notation, we let αi denote the
set of variables allocated to player i under allocation α, i.e.,
αi = {p ∈ ΦU : α(p) = i}. Let A (P ) denote the set of all
allocations over partial game P . Note that A (P ) will have
cardinality |N ||ΦU |, which is exponential in |ΦU |.

If ΦU = ∅, we will assume that there is a single
“empty” allocation possible. Consequently, the set of al-
locations is non-empty even for Boolean games. A par-
tial game P = (N,Φ,Φ1, . . . ,Φn, γ1, . . . , γn) together with
an allocation α defines a Boolean game G(P, α) =
(N,Φ,Φ′

1, . . . ,Φ
′
n, γ1, . . . , γn) where Φ′

i = Φi ∪ αi for all
players i. We also say that Boolean gameG(P, α) extends partial

2We thus assume that players’ preferences are dichotomous, which is tra-
ditional in the literature on Boolean games. Several richer models of player
preferences have been proposed as well (e.g., [9]–[11]). We expect that adopting
these models would only slightly affect the computational results presented in
this paper.
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gameP viaα. We let G (P ) denote the set of Boolean games that
may be obtained from partial game P through some allocation,
i.e., G (P ) = {G(P, α) : α ∈ A (P )}.

f) Nash Equilibrium: The well-known notion of (pure) Nash
equilibrium (see, e.g., [12]) is readily defined for Boolean games.
For Boolean games, we say a strategy profile �v = (v1, . . . , vn)
is a Nash equilibrium if there is no player i and no strategy
v′i ∈ V i for i such that (�v−i, v′i) �i (�v−i, vi). We denote the
Nash equilibrium outcomes of a Boolean game G by N (G).
As we are dealing with pure, i.e., non-randomised, strategies, it
can very well be that a (partial) Boolean game has no equilibria,
that is, it could be that N (G) = ∅ for a given game G. If
�v = (v1, . . . , vn) is a Nash equilibrium and v the corresponding
valuation, then we also say that v is sustained by a Nash
equilibrium, or, with some abuse of terminology, also that the
valuation v is a Nash equilibrium. Moreover, let S (P ) denote
the set of allocations over partial game P such that under these
allocations, the resulting game has a Nash equilibrium, i.e.,

S (P ) = {α ∈ A (P ) : N (G(P, α)) �= ∅}.
As we argued above, the natural correspondence between

strategy profiles and valuations does not hold for partial Boolean
games. With preferences being defined over valuations, this
renders the definition of a Nash equilibria in partial games as
a property of strategy profiles problematic. Nevertheless, we
can still define an outcome or valuation v : Φ → {�,⊥} to be
sustained by a Nash equilibrium in a partial game P if there is
no player i and no choice v′i ∈ V i with (v−i, v′i) �i v, where
(v−i, v′i) is the valuation v′′ such that, for all p ∈ Φ,

v′′(p) =

{
v′i(p) if p ∈ Φi,

v(p) otherwise.

In an effort to avoid convoluted formulations, we also say,
with a further abuse of terminology, that in such a case the
valuation v itself is a Nash equilibrium of the partial game P .
We now have the following simple but useful proposition, which
intuitively says that allocating variables to players never results
in new equilibria emerging. Rather, the outcomes sustained by
an equilibrium in a Boolean game are a subset of the outcomes
sustained by a Nash equilibrium of any underlying partial game.

Proposition 1: Let P = (N,Φ,Φ1, . . . ,Φn, γ1, . . . , γn) be a
partial Boolean game, and α : ΦU → N an allocation. Then, ev-
ery outcome that is sustained by a Nash equilibrium of G(P, α)
is sustained by a Nash equilibrium of P .

Proof: Let v be an outcome and assume for contraposition
that v is not sustained by a Nash equilibrium. Then, there is
some player i and strategy v′i such that (v−i, v′i) �i v. In that
case, v′i ⊆ Φi and hence also v′i ⊆ Φi ∪ αi. But then we may
also conclude that v is not sustained by a Nash equilibrium in
G(P, α) either. �

g) Computational Complexity: Although largely self-
contained, our technical presentation is necessarily terse, and
readers may find it useful to have some acquaintance with the
theory of computational complexity (see, e.g., [13], [14]).

Throughout the paper, we assume familiarity with the classes
P, NP, coNP, and, more generally, the polynomial hierarchy,

i.e., the classesΔp
0 = Σp

0 = Πp
0 = P andΔp

k+1 = PΣp
k ,Σp

k+1 =

NPΣp
k , and Πp

k+1 = coNPΠp
k , for k ≥ 0.

III. THE PRINCIPAL DELEGATION PROBLEM

We now come to the first main problem we con-
sider in this paper. We start with a partial game P =
(N,Φ,Φ1, . . . ,Φn, γ1, . . . , γn), with associated unallocated
variable set ΦU . The set ΦU will represent the decisions that
are to be delegated to players in the game. The allocation of ΦU
to players is done by a principal, who has complete freedom to
allocate the variables ΦU to the players in N .3

Once an allocation is made, the partial game becomes a
Boolean game, and the players will then make rational choices,
resulting in some outcome. Recall that the way in which the
variables can be allocated to the players may affect the strategic
structure of the resulting Boolean game, in particular which
outcomes are sustained by Nash equilibria.

Now, we assume that the principal will in fact make the allo-
cation with a particular objective in mind, which we represent
by a Boolean formula Υ. The idea is that the principal will
try to choose an allocation so that, if the players then play the
resulting Boolean game rationally, they will choose an outcome
satisfying Υ.

Following [5]—who study the implementation of a princi-
pals’ goal in Boolean games with taxes rather than through
delegation—we will study two variations of the delegation
problem, which we refer to as weak and strong. In the weak
variation, the principal’s objective Υ is required to be satisfied
in some Nash equilibrium of the resulting Boolean game, while
in the strong variation, Υ is required to be satisfied in all Nash
equilibria.

A. Weak Principal Delegation

Formally, the WEAK PRINCIPAL DELEGATION problem is de-
fined as follows:

WEAK PRINCIPAL DELEGATION

Given: A partial game P with ΦU as the set of unallocated
variables, and an objective Υ in L(Φ)

Problem: Does there exist an allocationα : ΦU → N such that
Υ is satisfied in at least one Nash equilibrium of the
Boolean game G(P, α)?

We say this problem is “weak” because we only require thatΥ
is satisfied in one Nash equilibrium ofG(P, α). We will consider
stronger versions below. Notice that WEAK DELEGATION is
equivalent to checking the following condition:

∃G ∈ G (P ) : ∃�v ∈ N (G) : �v |= Υ.

The outermost existential quantifier emphasises that the task of
the principal can be understood as choosing a game from the
space of possible games G (P ).

3For both the players and the principal, we assume the same epistemic
preconditions that hold for Nash equilibrium. In particular, we assume principal
and the players have common knowledge over all players’s goals.
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TABLE I
ALLOCATIONS IN EXAMPLE 1 TOGETHER WITH THEIR

WEAK AND STRONG IMPLEMENTABILITY

If (P,Υ) is a positive instance of the WEAK DELEGATION

problem, then we say that Υ can be weakly implemented in
P . Again following [5], we refer to weakly implementing a
tautology—i.e., implementing Υ where Υ ≡ �—as stabilisa-
tion. The rationale for this terminology is that weakly imple-
menting a tautology will result in a game that has at least
one Nash equilibrium. It is easy to see that � can be weakly
implemented in P if and only if there is at least one allocation
α such thatG(P, α) allows for a Nash equilibrium. To illustrate
weak delegation, we recall Example 1.

Example 4: The prime minister’s predicament in the In-
troduction can be modelled as a partial Boolean game P =
({1, 2, 3},ΦU ,Φ1,Φ2,Φ3, γ1, γ2, γ3) with the environmental-
ist, the libertarian, and the populist being players 1, 2, and 3,
respectively, ΦU = {t, c, a}, Φ1 = Φ2 = Φ3 = ∅, and

γ1 = tca ∨ (a↔ (t↔ c̄)) γ2 = t↔ (ā ∧ c̄)
γ3 = ā↔ (t ∧ c).

There are 33 = 27 allocations in total, each of which we
denote by αX|Y |Z where X , Y , and Z are understood as the
variables assigned to 1, 2, and 3, respectively. Thus, e.g., for
αa||tc we have that αa||tc1 = {a}, αa||tc2 = ∅, and αa||tc3 = {t, c}.
The four Boolean games depicted in Fig. 2 are obtained by
combining P with the allocations αa|t|c, αc|a|t, αt|c|a, and
αa|c|t.

The prime minister’s (principal’s) objective—majority sup-
port for the energy policy to be followed—is given by ΥPM =
(c↔ a) ∨ t̄cā. Inspecting Fig. 2, we thus find that assignments
αa|t|c, αc|a|t, and αa|c|t all weakly implement the prime minis-
ter’s objective, be it that the witnessing equilibrium for αa|t|c

is a future with solar and wind energy, whereas for αc|a|t and
αa|c|t this is a sophisticated green economy in trade-block A.
Also observe that αa|c|t also allows for an equilibrium that does
not meet the PM’s objective. By contrast, αc|t|a does not weakly
implement ΥPM, as it does not allow for any equilibria at all.
Table I tabulates all allocations in which ΥPM can be weakly
implemented. �

Since we have a domain with Boolean formulae, and there are
clearly exponentially many allocations of variables to players,
it comes as no surprise that the WEAK DELEGATION problem is
computationally hard. However, the good news is that it is no

harder than the problem of determining the existence of pure
strategy Nash equilibria in Boolean games, as we now show.

Theorem 1: WEAK PRINCIPAL DELEGATION is Σp
2 -complete.

Proof: Allocations α are clearly small with respect to the
size of the partial game, and verifying that outcomes are Nash
equilibria in Boolean games is in coNP (cf.,[3]). Recall that
Σp

2 = NPcoNP. It then follows that the WEAK DELEGATION

problem is in Σp
2 : guess an allocation α and an outcome �v,

and verify both that �v |= Υ and that �v is a Nash equilibrium
in Boolean game G(P, α).

For hardness, we reduce the problem of checking whether
a Boolean game has any pure strategy Nash equilibria, which
is known to be Σp

2 -complete (see, [3]). Given a Boolean game
G that we wish to check for the existence pure strategy Nash
equilibria simply define the corresponding partial game P to
be game G—so that ΦU = ∅—with objective Υ = �. Notice
that the only possible allocation is the empty allocation, which
defines the identity under the function G(· · · ). Now consider
the WEAK DELEGATION problem:

∃α ∈ A (P ) : ∃�v ∈ N (G(P, α)) : �v |= Υ.

Since Υ = � and the only allocation possible is the empty
allocation, this reduces to: ∃�v ∈ N (G(P, α)) : �v |= �. Since
the empty allocation is the identity under G(· · · ), and �v |= �
for all �v, this further reduces to ∃�v ∈ N (G), which is exactly
the problem of checking for the existence of pure strategy Nash
equilibria in Boolean games. �

B. Strong Principal Delegation

The strong principal delegation problem differs from the weak
version in that it requires the objective Υ to be satisfied in all
Nash equilibria of the Boolean game that results from an allo-
cation. Formally, we define STRONG DELEGATION as follows:

STRONG PRINCIPAL DELEGATION

Given: A partial game P with ΦU as the set of unallocated
variables, and an objective Υ in L(Φ)

Problem: Does there exist an allocation α such that both:

i) G(P, α) has at least one Nash equilibrium,
ii) all Nash equilibria of G(P, α) satisfy Υ?
To see how the strong delegation problem differs from the

weak delegation problem, we consider again the partial game of
Example 1 from the Introduction.

Example 5: In Table I we summarise which allocations
strongly implement the PM’s objective ΥPM, and which ones do
not. Strong implementability requires the existence of a Nash
equilibrium after the principal’s allocating the variables (cf.,
condition ( ii ) in STRONG PRINCIPAL DELEGATION ). This is why
ΥPM is not implemented by αc|t|a, the only allocation that does
not allow any equilibria. By contrast, the reason why ΥPM is
not strongly implemented by αa|c|t either is that the existence of
the equilibrium ac̄t (low emission plants), which is supported
by one minister only. Interestingly, there is no allocation for
this partial game under which all equilibria only have minority
support even though equilibria exist. �
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Before appraising the computational complexity of strong
principal delegation, it is useful to introduce two related auxil-
iary decision problems, OBLIVIOUS PARTIAL GAME and STRONG

PRINCIPAL DELEGATION-Ø. Before we do so, we first recall the
following result from [3], where a strategy vi for player i is a
understood to be a winning strategy, if the (partial) valuation
defined by vi is completely under i’s control and, irrespective of
the choices made by other player or players, vi ensures that i’s
goal is satisfied.

Proposition 2 (Bonzon et al. [3]): Consider a two-player
zero-sum4 Boolean game G = ({1, 2},Φ,Φ1,Φ2, γ1, γ2).
Then, �v = (v1, v2) is a pure strategy Nash equilibrium for G
if and only if v1 is a winning strategy for player 1 or v2 is a
winning strategy for player 2.

Now we introduce oblivious partial games as an auxiliary
concept as follows. Given a principal’s objective Υ, we say
that partial Boolean game P with unallocated variables ΦU is
oblivious, if for every allocation α, the resulting Boolean game
G(P, α) has at least one Nash equilibrium satisfying Υ, i.e.,
if for every α ∈ A (P ), there is at least one �v ∈ N (G(P, α))
with�v |= Υ. Informally, oblivious games have the property that,
whichever delegation of decisions to players is made, there will
be at least one acceptable valuation available, i.e., which is both
an equilibrium and satisfies Υ.

We now consider the following decision problem OBLIVIOUS

PARTIAL GAME.
OBLIVIOUS PARTIAL GAME

Given: A partial game P with ΦU as the set of unallocated
variables, and an objective Υ in L(Φ)

Problem: Is P an oblivious partial game given Υ?

We find that OBLIVIOUS PARTIAL GAME is Πp
3-complete.

Proposition 3: OBLIVIOUS PARTIAL GAME is Πp
3-complete.

The problem remains Πp
3-hard even when restricted to three-

player games.
Proof: First observe that an instance (P,Υ) of OBLIVIOUS

PARTIAL GAME is accepted if and only if

∀α ∈ A (P ) ∃ �v ∈ V (Φ)such that �v

∈ N (G(P, α))and �v |= Υ

This computation required to check this condition can easily be
carried out within Πp

3 .
For hardness we use a variant of the well-known quantified

Boolean formula validity problem QBF3,∀, where instances of
the formψ(X,Y, Z) are accepted if for all assignments x : X →
{�,⊥} of values to X , there is an assignment y : Y → {�,⊥}
of values to Y such that for every assignment z : Z → {�,⊥}
of values to Z we have (x, y, z) |= ψ.

The variation we use, and which we call HALF-QBF3,∀, restricts
attention to valuations x : X → {�,⊥} that set exactly half
of the variables in X to �, i.e., an instance ψ(X,Y, Z) of
HALF-QBF3,∀ is accepted if and only if for all x : X → {�,⊥}
with |{p ∈ X : x(p) = �}| = |X|/2, there is a y : Y → {�,⊥}

4That is to say, for every valuation v, exactly one of γ1 or γ2 is satisfied.

such that for all z : Z → {�,⊥}:

(x, y, z) |= ψ(X,Y, Z).

We can straightforwardly show that, modified thus, the problem
remainsΠp

3-hard, for instance, by using the “padding argument”
methods in [15] (in particular, Lemma 3.7).

Given an instance ψ(X,Y, Z) of HALF-QBF3,∀, we construct
the three-player partial Boolean game Pψ, with players 1, 2,
and 3, and

Φ1 = Y ∪ {r} Φ2 = Z ∪ {s} Φ3 = ∅ ΦU = X .

Furthermore, define the players’ preferences as follows:

γ1 = (EQ(X) → ψ) ∨ (r ↔ s)

γ2 = (EQ(X) ∧ ¬ψ ∧ (r ↔ ¬s)) ∨ ¬MAJ(X)

γ3 = EQ(X)

Here r and s are fresh variables. Moreover, EQ(X) denotes
the propositional function that evaluates to true if and only if
the assignment sets exactly half of the variabels in X to �.
Similarly,MAJ(X) is the propositional function that evaluates
to true if and only if the assignment sets at least half of
X to �. Note that the propositional functions EQ(X) and
MAJ(X) can be encoded in polynomial size formulae (see,
e.g., [16]). Accordingly, the construction of Gϕ can be effected
in polynomial time. Finally, set Υ = �.

As clearly every valuation thus satisfies Υ, it now suffices to
show that ψ(X,Y, Z) is an accepting instance of HALF-QBF3,∀
if and only if for every allocation α : X → {1, 2}, the game
G(Pψ, α) has at least one Nash equilibrium.

First assume that ψ(X,Y, Z) is an accepting instance of
HALF-QBF3,∀ and consider an arbitrary allocation of α : ΦU →
{1, 2, 3} of X . We show that there is a Nash equilibrium in
G(Pψ, α). We distinguish two cases: ( i ) |α1 ∪ α3| < |X|/2,
and ( ii ) |α1 ∪ α3| ≥ |X|/2.

If ( i ), it follows that |α2| > |X|/2. Let �v∗ = (v∗1, v
∗
2, v

∗
3) be

any strategy profile such that v∗2(p) = ⊥ for all p ∈ Φ2 ∪ α2,
and v∗1(r) = ⊥. Then, (v∗1, v

∗
2, v

∗
3) |= ¬MAJ and (v∗1, v

∗
2) |=

r ↔ s. Hence, (v∗1, v
∗
2, v

∗
3) satisfies both γ1 and γ2, but not γ3.

Observe, however, that player 3 cannot get their goal satisfied
by playing any other strategy, and we may conclude that �v∗ is a
Nash equilibrium of G(Pψ, α).

Now assume (ii). Then there is a X ′ ⊆ α1 ∪ α3 such that
|X ′| = |X|/2. Let x∗ : X → {�,⊥} be the partial valuation
such that x∗(p) = � if and only if p ∈ X ′. Having assumed
that ψ(X,Y, Z) is accepted as an instance of HALF-QBF3,∀,
there is some y∗ : Y → {�,⊥} with (x∗, y∗, z) |= ψ for all
z : Z → {�,⊥}. Define the strategy profile �v∗ = (v∗1, v

∗
2, v

∗
3)

such that, for all p ∈ Φ1 ∪ α1 and q ∈ α3,

v∗1(p) =

⎧⎪⎨
⎪⎩
� if p ∈ X ′ and x∗(p) = �,

or p ∈ Y and y∗(p) = �,
⊥ otherwise

v∗3(q) =

{
� if q ∈ X ′ and x∗(q) = �,
⊥ otherwise.
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Let furthermore v∗(p) = ⊥ for all p ∈ Φ2 ∪ α2. Observe that
thus both �v∗ |= EQ(X) and �v∗ |= ψ. Accordingly players 1
and 3 have their respective goals γ1 and γ3 achieved at �v∗, and
have no incentive to deviate. Finally, to see that player 2 does
not have such an incentive either, and thus that �v∗ is a Nash
equilibrium, consider an arbitrary strategy v′2 for player 2. If
there is some p ∈ α2 ∩X such that v′2(p) �= v∗2(p), then v′(p) =
�. Hence neither (v∗1, v

′
2, v

∗
3) |= EQ(X) nor (v∗1, v

′
2, v

∗
3) |=

¬MAJ(X). Now consider the case where v′2(p) = v∗2(p) for all
p ∈ α2 ∩X and v′2(p) �= v∗2(p) for some p ∈ Y ∪ {s}. Because
ψ(X,Y, Z) is accepted as an instance of HALF-QBF3,∀, it then
holds that (v∗1, v

′
2, v

∗
3) |= ψ. In either case we may conclude that

(v∗1, v
′
2, v

∗
3) �|= γ2 and that player 2 does not want to deviate.

For the opposite direction, assume for contraposition that
ψ(X,Y, Z) is not accepted as an instance of HALF-QBF3,∀. Then,
there is some x : X → {�,⊥} with x(p) = � for exactly half
of the variables p ∈ X such that for all y : Y → {�,⊥} we can
find a z : Z → {�,⊥} such that (x, y, z) �|= ψ. Let X� = {p ∈
X : x(p) = �} and X⊥ = {p ∈ X : x(p) = ⊥}. Now consider
the allocation α that assigns control over all variables in X
to player 3, i.e., α1 = α2 = ∅ and α3 = X . We show that the
Boolean gameG(Pψ, α) does not admit a Nash equilibrium. To
this end, consider an arbitrary strategy profile �v = (v1, v2, v3).
First observe that, if �v(p) |= EQ(X), it is not the case that
v3(p) = � for exactly half of the variables inX . Hence, player 3
would deviate to such a strategy to get their goal achieved, and
�v is not a Nash equilibrium.

For the remainder of the proof we may therefore assume
that �v |= EQ(X). Now suppose furthermore that �v |= ψ and,
without loss of generality, that �v |= r. Having assumed that
ψ(X,Y, Z) is not accepted as an instance of HALF-QBF3,∀,
it follows that there is a strategy v′2 for player 2 such that
(v1, v

′
2, v3) |= ¬ψ. We may also stipulate that v′2(s) = ⊥, and

hence (v1, v′2, v3) |= (r ↔ ¬s). Accordingly, (v1, v′2, v3) |= γ2
and again it follows that �v is not a Nash equilibrium.

Finally assume that �v |= EQ(X) ∧ ¬ψ. Then, if �v |= r ↔ s,
it can easily be seen that player 2 would like to deviate by setting
s to the opposite value of r under �v. If, on the other hand, �v �|=
r ↔ s, player 1 would like to deviate by matching the value of
r to that of s under �v. In either case, �v is not a Nash equilibrium,
which concludes the proof.

One consequence of Proposition 3 is that we can now easily
establish Σp

3-hardness for the variant of the strong delegation
problem where we allow N (P, α) to be empty. This problem
we refer to as STRONG PRINCIPAL DELEGATION-Ø and is formally
defined as follows.

STRONG PRINCIPAL DELEGATION-Ø

Given: A partial game P with ΦU as the set of unallocated
variables, and an objective Υ in L(Φ)

Problem: Does there exist an allocationα : ΦU → N such that
Υ is satisfied in all Nash equilibria of the Boolean
game G(P, α)?

We now have the following intermediate result.
Proposition 4: STRONG PRINCIPAL DELEGATION-Ø is Σp

3-
complete. The problem remains Σp

3-hard even when restricted
to three-player games.

Proof: Let P be a partial game and Υ a principal’s objective.
Then, by the laws of first-order logic, we have that there is an
allocation α ∈ A (P ) such that �v |= Υ for all Nash equilibria �v
of G(P, α) if and only if it is not the case that for all allocations
α ∈ A (P ) there is a Nash equilibrium �v of G(P, α) with
�v |= ¬Υ. Hence, the function f that maps every pair (P,Υ)
to (P,¬Υ) serves as a many-one reduction from STRONG PRIN-
CIPAL DELEGATION-Ø to the complement of OBLIVIOUS PARTIAL

GAME. Observing that for Υ′ = ¬Υ we have ¬Υ′ = ¬¬Υ ≡ Υ,
we find that it serves equally well as a many-one reduction
from the complement of OBLIVIOUS PARTIAL GAME to STRONG

PRINCIPAL DELEGATION-Ø. As by Proposition 3 we know that
OBLIVIOUS PARTIAL GAME is Πp

3-complete, we may conclude
that STRONG PRINCIPAL DELEGATION-Ø is Σp

3-complete as well.
Although STRONG PRINCIPAL DELEGATION-Ø admits problem

instances which are accepted in the case that N (P, α) = ∅,
whereas the form of STRONG PRINCIPAL IMPLEMENTATION does
not allow this, it is not difficult to show that the additional
constraint cannot make the strong delegation problem increase
in complexity. Specifically, we are now in a position to prove
the main result of this section.

Theorem 2: STRONG PRINCIPAL IMPLEMENTATION is Σp
3-

complete. The problem remains Σp
3-hard even for three-player

games.
Proof: We recall that instances of STRONG PRINCIPAL

IMPLEMENTATION are given by pairs (P,Υ) with P =
(N,Φ.Φ1, . . . ,Φn, γ1, . . . , γn) a partial Boolean game and Υ
a propositional function. Let and ΦU ⊆ Φ the set of unallocated
decisions. Then, (P,Υ) is accepted as an instance of STRONG

PRINCIPAL IMPLEMENTATION if and only if

∃α(∀v(v ∈ N (P, α) → v |= Υ) ∧ N (P, α) �= ∅),
which is equivalent to,

∃α(∀v(v �∈ N (P, α) ∨ v |= Υ) ∧ N (P, α) �= ∅).
In order for N (P, α) to be non-empty, it must contain at least
one valuation w. Hence we can rewrite the expression as,

∃(α,w)(∀v(v �∈ N (P, α) ∨ v |= Υ) ∧ (w ∈ N (P, α)))

To keep notation brief, we express the condition above as
∃(α,w)∀v χ1(α,w, v). Similarly the condition v �∈ N (P, α)
is witnessed by an player i together with a partial valuation ui
of decisions in their control, i.e., v �∈ N (P, α) is captured by,

∃(u, i)(v �|= γk ∧ (v−i, ui) |= γk ∧ u ∈ {�,⊥}Φi∪αi),

which we subsequently express as ∃(u, k)χ2(α, v, u, i).
Finally that w ∈ N (P, α) requires that no j has a beneficial

deviation in the event of w �|= γj by controlling the values of
Φi ∪ αi. This leads to w ∈ N (P, α) being of the form

∀(s1, s2, . . . , sn)
n∧
j=1

(w |= γj ∨ sj �∈ {�,⊥}Φi∪αj

∨ (w−j , sj) |= γj)

which will be denoted as ∀�s χ3(�s, w, α). Combining these
expressions, it is immediate that (P,Υ) will define a positive
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instance of PRINCIPAL STRONG DELEGATION if and only if

∃(α,w)∀(v,�s)∃(u, i)(χ1(α,w, v)

∧ χ2(α, v, u, i) ∧ χ3(�s, w, α))

It remains to note that the individual tests χ1, χ2 and χ3 can
be performed in time polynomial in the size of the representing
formulae.

For Σp
3-hardness, we reduce HALF-QBF3,∀ to the comple-

ment of STRONG PRINCIPAL DELEGATION using a construction
that varies on the one presented in the proof for hardness of
OBLIVIOUS PARTIAL GAME in Proposition 3. Given an instance
ψ(X,Y, Z) of HALF-QBF3,∀, we thus construct a partial gameP ′

ψ

and define an objective Υ′ such that ψ(X,Y, Z) is an accepting
instance of HALF-QBF3,∀ if and only if for all allocations α ∈
A (P ′

ψ), either there is some �v ∈ N (G(P ′
ψ, α)) with �v �|= Υ′ or

N (G(P ′
ψ, α)) = ∅.

Thus let ψ(X,Y, Z) be an instance of HALF-QBF3,∀. Then,
we construct the five-player partial Boolean game P ′

ψ, with
players 1, 2, and 3, such that

Φ1 = Y ∪ {r} Φ2 = Z ∪ {s} Φ3 = {t} ΦU = X .

Furthermore, define the players’ preferences as follows:

γ′1 = ((EQ(X) → ψ) ∨ (r ↔ s)) ∧ ¬t
γ′2 = ((EQ(X) ∧ ¬ψ ∧ (r ↔ ¬s)) ∨ ¬MAJ(X)) ∧ ¬t
γ′3 = EQ(X)

Here r, s, and t are fresh variables, andMAJ(X) andEQ(X)
are as before. Let, moreover, Υ′ = t. Again, this construction
can be effected in polynomial time.

Now assuming that ψ(X,Y, Z) is an accepted instance of
HALF-QBF3,∀, we can reason along analogous lines as in the proof
of Proposition 3, that a Nash equilibrium�v ofG(P ′

ψ) with�v �|= t
is guaranteed to exist.

For the opposite direction, assume that ψ(X,Y, Z) is not an
accepted instance of HALF-QBF3,∀. By considering the allocation
α ∈ A (P ′

ψ)withα3 = X , we find, in an analogous way as in the
proof of Proposition 3, thatG(P ′

ψ, α) has no Nash equilibrium�v
with �v �|= t. Now, conclude the proof by noting that any strategy
profile �w = (w1, w2, w3) such that w3(t) = � and w3(p) = �
for exactly half of the propositional variables p ∈ X , will be a
Nash equilibrium inG(P ′

ψ, α), be it one with �w |= t. To see this,
observe that in �w, player 3 has their goal fulfilled. This is not
the case for players 1 and 2, but no matter how they deviate,
t will remain true and falsify their respective goals γ1 and γ2.
Hence, �w ∈ N (G(P ′

ψ), α), and a fortiori N (G(P ′
ψ, α)) �= ∅,

as desired.

IV. DELEGATION AS OPTIMISATION

So far, we have assumed that the principal is motivated
to choose an allocation so that an objective Υ is satisfied in
equilibrium; the idea being that the objective represents what
the principal wants to achieve through delegation. We now gen-
eralise this approach, by assuming that in delegating decisions,
the principal is attempting to maximise some objective function

of the form:

f : V (Φ) → R+,

where V (Φ) is the set of valuations over Φ: Thus, an objective
function assigns a positive real number f(v) to every valuation
v in V (Φ). Recalling that a strategy profile�v for a Boolean game
corresponds to a valuation in V (Φ), we will also write f(�v) to
mean the value through f of the valuation corresponding to �v.
Notice that our original formulation of delegation with respect to
objective formulae Υ is a special case of the setting we are now
considering, where the function fΥ is defined for an objective
formula Υ ∈ L as follows:

fΥ(�v) =

{
1 if �v |= Υ

0 otherwise.

The objective function f gives the value to the principal of every
outcome �v. But how can we use f to obtain the value of an
allocation ? An allocation α for a partial game P will define
a Boolean game G(P, α), and this game will in turn have an
associated set of Nash equilibria N (G(P, α)). Our basic idea
is to define the value of an allocation α for a partial game P
through an objective function f to be the value of the worst
Nash equilibrium in N (G(P, α)) (cf., [17]). However, there
is a catch: what happens if N (G(P, α)) = ∅? In this case, we
say the value of α through f is undefined. Formally, given a
partial game P , allocation α ∈ A (P ), and objective function
f : V (Φ) → R+, we denote the value ofα through f as f̂(P, α):

f̂(P, α)

=

{
min{f( �v}) : � ∈ N (G (P, α))v ifN (G(P, α)) �= ∅,
undefined otherwise.

Now, given a partial game P and an objective function f
as above, the optimal allocation will intuitively be the one
that maximises the value of f̂ . Here, however, we must deal
with the situation where there is no allocation that leads to
a game with Nash equilibria. Recalling that S (P ) = {α ∈
A (P ) : N (G(P, α)) �= ∅}, we are thus interested in allocations
that maximise the function f̂(·, ·) on S (P ), i.e., allocations α
such that

α ∈ arg max
α∈S (P )

f̂(P, α).

To fix ideas and notations, we have the following example.
Example 6: We work with the partial game introduced in

Example 1. Consider the objective function f defined such
that f(v) = |{x ∈ Φ: v |= x}|, i.e., f counts the number of
variables assigned � in a valuation. Intuitively, f could be seen
as measuring the level of effort needed to get the government’s
policy through parliament. Hence,

f(t̄c̄ā) = 0 f(t̄c̄a) = f(t̄cā) = 1 f1(t̄ca) = 2

f(tc̄ā) = 1 f(tc̄a) = f(tcā) = 2 f1(tca) = 3

Inspecting Fig. 2, we find that f̂(P, αa|t|c) = 2 because at̄c is
the unique Nash equilibrium inG(P, αa|t|c) and f(at̄c) = 2. By
similar reasoning, we find that f̂(P, αc|a|t) = 3. As f assumes
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a maximal value of 3, it thus follows that αc|a|t is optimal with
respect to f . Observe that f̂(P, αt|c|a) is undefined as there are
no equilibria in G(P, αc|t|a). �

Next, we want to consider the problem of computing
argmaxα∈S (P ) f̂(P, α) . A key difficulty here is with respect to
the issue of representing the objective function f . Representing
the function f in a problem instance by explicitly listing all
input/output pairs (�v, f(�v)) will not be practicable, as there will
be 2|Φ| such pairs in total. We need a compact representation
for f , and for the purposes of this paper, we use a well-known
scheme based on weighted Boolean formulae (see, e.g., [9]).

Formally, we will say a feature is a pair (φ, x), where φ ∈ L
is a propositional formula, and x ∈ R+ is a positive real num-
ber. A feature set, F , is simply a finite set of features, i.e.,
F = {(φ1, x1), . . . , (φk, xk)}. Every feature set F induces an
objective function fF , as follows:

fF (�v) =
∑

{xi : (φi, xi) ∈ F and �v |= φi}
The feature set corresponding to our original objective formula
Υ would be a singleton set {(Υ, 1)}. Now, standard arguments
from Boolean function theory tell us that ( i ) the feature set
representation is complete , in the sense that for every objective
function f there exists a feature set F such that f = fF , and ( ii
) the feature set representation is more compact than the explicit
representation for many objective functions f ; however ( iii
) there are objective functions for which the smallest equivalent
feature set will be broadly of the same size, i.e., some objective
functions will require exponentially many features.

We first consider the following decision variant of the optimal
delegation problem.

OPTIMAL DELEGATION

Given: A partial game P , feature set F , and k ∈ R+

Problem: If the term maxα∈S (P ) f̂F (P, α) is defined, is it the

case that maxα∈S (P ) f̂F (P, α) ≥ k?

It is straightforward to establish the following:
Proposition 5: OPTIMAL DELEGATION is Σp

2 -complete.
Proof sketch: Let partial game P , feature set F , and allo-

cation α be given. Then, the problem of determining whether
f̂F (P, α) is defined is Σp

2 -complete. To see this, merely observe
that this problem is directly equivalent to determining whether
the game G(p, α) has a Nash equilibrium. At this point, notice
that the problem of deciding whether maxα∈S (P ) f̂F (P, α)
is equivalent to checking whether S (P ) �= ∅, which is Σp

2 -
complete by the proof of Theorem 1. The claim then follows
immediately from these two observations.

With this result in place, we are can also address the compu-
tational complexity of the following function problem.

OPTIMAL DELEGATION*
Given: A partial game P and feature set F
Provide: An allocationα that maximises the function f̂F (P, ·),

i.e., α ∈ argmaxα∈S (P ) f̂F (P, α), if S (P ) �= ∅,
and ∅ otherwise.

We can now state the main result of this section.
Theorem 3: OPTIMAL DELEGATION* is in FPΣp

2 .

Proof: Check whether α∗(P, fF ) is defined, and if not return
0. Otherwise, define a value μ as follows:

μ =
∑

(φi,xi)∈F

xi

That is, μ is the largest value that an optimal allocation could
possibly take. We thus have:

0 ≤ max
α∈S (P )

f̂(P, α) ≤ μ.

We can then use binary search to find the value f̂F (P, α∗)
of an optimal allocation α∗ maximising f̂F , by invok-
ing a Σp

2 -oracle for the decision variant OPTIMAL DEL-
EGATION of the problem. We start by asking whether
maxα∈S (P ) f̂(P, α) ≥ 1

2μ; if the answer is “no”, then we

ask whether maxα∈S (P ) f̂(P, α) ≥ 1
4μ, while if the answer is

“yes”, we ask whether maxα∈S (P ) f̂(P, α) ≥ 3
4μ, and so on.

We will converge to the value of the optimal allocation with at
most polynomially many queries to a Σp

2 -oracle for the decision
variant OPTIMAL DELEGATION of the problem (cf., [13], p. 416).
Given the value of the optimal allocation, we can then find an
optimal allocation with at most a further |N × Φ| queries to a
Σp

2 -oracle. �

V. THE DISTRIBUTED DELEGATION PROBLEM

Given a partial Boolean game, it may very well happen that
for some player the Nash equilibria under one allocation yields
them a higher payoff than the Nash equilibrium that arises under
another one. Thus, intuitively, the players’ preferences over out-
comes induce preferences over allocations. As players may have
a joint interest in some allocation being implemented rather than
another, they may benefit from reallocating the propositional
variables amongst themselves. Accordingly, the game-theoretic
concept of core stability, in the sense of stability against coalition
deviations, becomes relevant.

It is worth observing that in Example 3 under both α and α′,
player 3 is assigned control over the same propositional variable
r. Still, player 1’s goal is satisfied in the Nash equilibrium that
emerges under α′, but not in the one under α. Thus, their pref-
erences over allocations are not only dependent on the variables
assigned to her control, but also on the way control over the
remaining variables is distributed over the other players. The
allocation of a particular set of propositional variables to one
player can thus be said to impose externalities on the other
players. In this respect, our setting differs from many other
allocation settings studied in the literature.

In order to systematically extend the players’ preferences over
outcomes to preferences over allocations, a couple of points
deserve attention.

First, whether a group of players would prefer a reallocationα′

of the variables they have under their control under an allocation
α depends essentially on the outcomes that ensue underα andα′.
In the previous parts we used the concept of Nash equilibrium to
single these out. The allocation problem, however, is in principle
independent of this choice for Nash equilibrium, in the sense that
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every other way to select outcomes under specific allocations de-
fines its own set of delegation problems. Second, Nash equilibria
in Boolean games, even when all variables are allocated, are
guaranteed neither to exist nor to be unique. In view of these
concerns, we augment the model with an outcome function,
which associates with each allocation of a given partial game
a unique outcome. This enables us to approach the (distributed)
delegation problem from a generic point of view, while still
allowing us concentrate on more restrictive outcome functions
that select Nash equilibria whenever they exist. In the latter
case, the outcome function basically plays the role of an oracle
breaking ties among the equilibria. If under some allocation no
Nash equilibria exist, we stipulate the outcome function to select
an outcome that is least preferred by all players.

Formally, an outcome function for a partial Boolean game P
is a function

h : A (P ) → V (Φ) ∪ {0},
where 0 is an additional null outcome such that ui(0) = 0 for
all players i. We say an outcome function h for a partial Boolean
game is Nash-consistent if h(α) selects a Nash equilibrium of
G(P, α), if there is one, and 0, otherwise.

We are now able to formally define the notions of stability that
we have sketched out above. Thus, we say that, given outcome
function h for a partial Boolean game P and allocation α, a
coalition S of players (strongly) blocks α under h if there is
some allocation α′ with α−S = α′

−S such that h(α′) �i h(α)
for all players i ∈ S. We also say that S weakly blocks α under
h if both h(α′) �i h(α) for all i ∈ S, and h(α′) �i h(α) for
some i ∈ S. Intuitively, S blocks an allocation α if the players
inS can reallocate the propositional variables under their control
among themselves such that h yields a outcome that better for
them all. Coalition S weakly blocks α, if the players in S can
reallocate the propositional variables under their control among
themselves such that h yields a outcome that is not worse for
any of the players in S and strictly better for some.

An allocation α is now said to be (weak) core stable under
outcome function h whenever there is no coalition (strongly)
blocking α under h. Allocation α is strong core stable, if no
coalition S weakly blocks it. To illustrate these notions, let us
consider an example.

Example 7: Three robbers have to cross a forest, through
which lead two roads, the high road and the low road. The
robbers, however, are quarrelsome and the forest is infested with
wolves, who will eat any solitary robber. If all three robbers
go one road together, they will quarrel, and subsequently be
mangled by the wolves. Any group of two, however, will survive.
They now have to decide whether to take the high road or the
low road, or they can have one of the others make the decision
for them. The question is now, who has to decide for whom
which road to take? Obviously, at most two of the robbers can
survive and we assume that surviving is the only thing they are
interested in.

The situation can be modelled as a partial Boolean game,
where p, q, and r are the decision variables for which road
robber 1, robber 2, and robber 3 takes: if a variable is set to true,
then the high road is taken, else the low road. For allocations, we

Fig. 4. The partial Boolean game described in Example 7 under four different
allocations. Robber 1 chooses rows, robber 2 chooses columns, and robber 3
chooses matrices. In the pure Nash equilibria are indicated by the payoffs to the
players being underlined.

adopt the same conventions as in Example 4 and have αX|Y |Z

denote the allocation in which robbers 1, 2, and 3 are assigned the
variables inX ,Y , andZ, respectively. Fig. 4 depicts the Boolean
games under allocations αa = αp|q|r, αb = αp|r|q , αc = αq|r|a,
and αd = αq|pr|.

First consider the outcome function h such that,

h(α) =

⎧⎪⎨
⎪⎩
pqr̄ if α(p) = 2,

p̄qr if α(p) = 3,

pq̄r if α(p) = 1.

Then, trivially, every allocation is (weakly) core stable, as it can
easily appreciated that under h there are always at least two
robbers’ goals are satisfied at h(α) for every allocation α and
at least two dissatisfied robbers are required for an outcome to
be strongly blocked. By contrast, the game does not allow for
core stable allocations under h. To see this let α be arbitrary
allocation. Then, α is blocked by coalition {2, 3} if α(p) = 2,
by {1, 3} if α(p) = 3, and by {1, 2}, if α(p) = 1. Now, observe,
however, that h is not Nash consistent. For example, for alloca-
tionαb we haveαb(p) = 1. Henceh(αb) = pq̄r, which however
fails to be a Nash equilibrium of G(P, αb) (see Fig. 4(b)).

Now let g be a Nash consistent outcome function with g(α) =
pqr̄ and g(α′) = pq̄r̄. Then, coalition {2, 3} (weakly) blocksαa

and allocation αa is not strong Nash core stable under g. This
is in contrast to allocation αb, which is strong Nash core stable
under g, as, with some effort, can be verified by the reader. �

A first question that naturally arises is if, and under which
conditions, stable allocations are guaranteed to exist. The fol-
lowing proposition settles this issue, and features an interesting
contrast between weak and strong core stability.

Proposition 6: Strong core stable allocations are not guar-
anteed to exist for partial Boolean games, not even under
Nash-consistent outcome functions. By contrast, core stable
allocations are guaranteed to exist in partial Boolean games,
even under general outcome functions.

Proof: For the first part, consider the partial game P =
(N,Φ,Φ1,Φ2,Φ3, γ1, γ2, γ3) depicted in Fig. 5, where N =
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Fig. 5. Partial Boolean game showing that strong Nash stable allocations are
not guaranteed to exist. Players 1, 2, and 3 control variables p (choosing rows), q
(choosing columns), and r (choosing left or right matrix), respectively. Variable
s is unassigned, i.e., ΦU = {s}, and the player who controls s decides whether
the outcome falls in the upper two matrices (s) or in the lower two matrices s̄.
The three underlined outcomes, pqrs, p̄q̄r̄s, and p̄q̄rs̄, are the Nash equilibria of
the partial game, and they remain Nash equilibria of the Boolean games unless
s is assigned to player 3, player 2, or player 1, respectively.

{1, 2, 3},Φ = {p, q, r, s},Φ1 = {p},Φ2 = {q}, andΦ3 = {r}.
Accordingly, ΦU = {s}, and there are three allocations, α1, α2,
andα3, each of which assigns control over s to player 1, player 2,
and player 3, respectively, i.e., αi(s) = i for 1 ≤ i ≤ 3. The
three Nash equilibria of P are given by pqrs, p̄q̄r̄s, and p̄q̄rs̄.
Now consider outcome function h:

f(α) =

⎧⎪⎨
⎪⎩
pqrs if α = α1

p̄q̄r̄s if α = α3

p̄q̄rs̄ if α = α2

Moreover, it is easy to check that coalition {1, 3} weakly blocks
α1, coalition {2, 3} weakly blocks α3, and coalition {1, 2}
weakly blocks α2. We may conclude that strong core stable al-
locations are not guaranteed to exists for partial Boolean games.
Noting that h defined to be Nash-consistent, it moreover follows
that strong Nash core stable allocations are not guaranteed to
exist either.

For the second part, consider an arbitrary partial game P and
outcome function h. Let α be an allocation that allocates all
unassigned propositional variables in ΦU to one player i. If α is
core stable under h, we are done, so assume that this is not the
case. Then, there is a coalition S and allocation α′ with α′

−S =
α−S such that uj(f(α)) = 0 and uj(f(α)) = 1 for all j ∈ S.
Observe that i ∈ S and that α′

k = ∅ for all k /∈ S. Now assume
for contradiction that there is a coalitionT blockingα′, i.e., there
is an allocation α′′ with α′′

−T = α′
−T such that uk(f(α′)) = 0

and uk(f(α′′)) = 1 for all k ∈ T . Without loss of generality, we
may assume that T is not empty, and hence α′′ �= α′. Observe
that T ⊆ N \ S. Accordingly, α′

k = ∅ for all k ∈ T . It follows
that α′′ = α′, a contradiction. We may conclude the proof by
observing that this argument still holds if h is assumed to be
Nash consistent. �

We now define the distributed delegation problem, which asks,
for a given partial game, whether a stable allocation can be

found that satisfies the principal’s objective. We say that outcome
function h is polynomial if it yields h(α) in polynomial time on
input α. We state the problem generically, but one can vary as
to whether weak core stability or strong core stability is to be
considered, and whether the outcome functions are required to
be Nash consistent or not.

DISTRIBUTED DELEGATION

Given: A partial Boolean game P and polynomial outcome
function h, and a formula Υ in L(Φ)

Problem: Does there exist an allocation α that is core stable
under h such that Υ is satisfied at h(α)?

Before we show that DISTRIBUTED DELEGATION is not harder
than WEAK PRINCIPAL DELEGATION , we first establish the com-
putational complexity of a the related problem of deciding
whether a given allocation is core stable in a given game under
a given outcome function. Formally, we define the problem
ALLOCATION STABILITY as follows.

ALLOCATION STABILITY

Given: Partial gameP , polynomial outcome function h, and
allocation α

Problem: Is allocation α core stable under h in P ?

We now have the following auxiliary coNP-completeness
result, of which the hardness part can be interpreted as saying
that allocation is coNP-hard even when restricted to polynomial
and Nash consistent outcome functions. For computationally
more complex outcome functions the problem may very well
become harder as well.

Proposition 7: ALLOCATION STABILITY is coNP-complete,
even if restricted to Nash-consistent outcome functions and
strong core stability.

Proof: To see that ALLOCATION STABILITY is in coNP, ob-
serve that for a given coalition S, and allocation α′, check
whether α−S = α′

−S and whether h(α) �|= γi and h(α′) |= γi
for all i ∈ S. Under the prevailing assumptions, these checks
can all be performed in polynomial time. Then, α is not core
stable if and only if all these checks yield a positive answer.

For coNP-hardness, we reduce from the complement of SATIS-
FIABILITY. Given a propositional formula ϕ on the propositional
variablesΦ = {p1, . . . , pk}, construct partial gamePϕ with five
players, 0, 1, 2, i⊥, and i� and defined on {p, q, r} ∪ Φ, where
p, q, and r are fresh variables not in Φ. Let Φ0 = {r}, and
Φ1 = Φ2 = Φi⊥ = Φi� = ∅. Hence, ΦU = Φ ∪ {p, q}. Let the
players’ goals be given by:

γ0 = ⊥ γ1 = γ2 = ϕ ∧ pqr γi⊥ = γi� = pqr

Define v0 as the valuation with v0(x) = ⊥ for all x ∈ Φ ∪
{p, q, r}. Observe that v0 is a Nash equilibrium of Pϕ under
α for every allocation α. We now associate a valuation vα with
every allocation α. If α is such that α1 = {p} and α2 = {q} or
α1 = {q} and α2 = {p}, then let vα be such that vα(r) = �
and for x ∈ Φ ∪ {p, q}:

vα(x) =

⎧⎪⎨
⎪⎩
� if x ∈ Φ and α(x) = i�, or

if x ∈ {p, q}, α1 = {q}, and α2 = {p},

⊥ otherwise.
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For all other allocationsα, set vα = v0. Now, define the outcome
functionh∗ such thath∗(α) = vα for all allocationsα. It is worth
observing that h∗ is Nash-consistent. Moreover, on input α, the
valuation h∗(α) can be computed in time polynomial in the size
of ϕ.

Now, letα∗ be any allocation such thatα0 = ∅,α∗
1 = {p}, and

α∗
2 = {q}. Accordingly, α∗

i⊥ ∪ α∗
i� = Φ. Note that than vα∗ |=

p̄q̄ and that vα∗ is sustained by a Nash equilibrium inG(Pϕ, α∗).
We now prove that:

α∗ is Nash core stable under h∗ iff ϕ is not satisfiable.

First assume that ϕ is satisfiable and that w : Φ → {⊥,�} is a
witnessing valuation. Let α′ be the allocation such that α′

0 = ∅,
α′
1 = {q}, α′

2 = {p}, and

α′
i⊥ = {x ∈ Φ: w(x) = ⊥} α′

i� = {x ∈ Φ: w(x) = �}.

Hence, vα′ |= pq and vα′ |= ϕ. Let S = {1, 2, i⊥, i�}. Then,
α∗
−S = α′

−S . As vα∗ �|= γi whereas vα′ |= γi for all i ∈ S, coali-
tion S blocks α∗. Accordingly, α∗ is not core stable. As h∗ is
Nash-consistent, α∗ is not Nash-core stable either.

For the opposite direction, assume thatϕ is not satisfiable and
for contradiction that there is a coalition S and an allocation α′

such that α∗
−S = α′

−S , h∗(α∗) �|= γi and h∗(α′) |= γi for all i ∈
S. As v �|= γi for all valuations v and all i ∈ {0, 1, 2}, it follows
that S = {i�, i⊥}. However, h∗(α′) �|= pqr for all allocations α′

with α∗
{0,1,2} = α′

{0,1,2}, and a contradiction ensues. Hence, α∗

is Nash core stable under h∗.
For strong Nash stability, the arguments are analogous, mod-

ulo a couple of obvious technical details.
Using similar proof techniques we now prove the main result

of this section. Here, as with ALLOCATION STABILITY , the hard-
ness part provides a lower bound that holds even for polynomial
and Nash-consistent outcome functions. For outcome functions
that are harder to compute, the problem may become harder
accordingly.

Theorem 4: DISTRIBUTED DELEGATION is Σp2-complete, even
for Nash-consistent outcome functions and strong Nash core
stability.

Proof: As allocations are small relative to the input, we can
check for a given allocationαwhether h(α) |= Υ, and, by virtue
of Proposition 7, we can consult a coNP-oracle to check whether
α is (strong) (Nash) core stable. Then, a (strong) (Nash) core
stable allocation α exists under h if and only if these two checks
yield postive answers. Overall, we obtain membership of Σp2.

To see that DISTRIBUTED DELEGATION is in Σp2-hard, we
reduce from QBF2,∃. Let Q = ∃X∀Y ϕ be a QBF2,∃ in-
stance. We first construct a partial Boolean game PQ =
(N,Φ,Φ1, . . . ,Φn, γ1, . . . , γn) along with a polynomial and
Nash-consistent outcome function h∗ and formula Υ such that
Q is valid if and only if there is a Nash core stable allocation α∗

under h∗ in PQ.
Let PQ have nine players 0, i1, i2, i�, i⊥, j1, j2, j�, and

j⊥. Furthermore, let Φ = X ∪ Y ∪ {p, q, r}, where p, q, and r
are fresh variables not occurring in X ∪ Y . Furthermore, set
Φ0 = {r} and Φi = ∅ for any player i other than 0. Thus, ΦU =

X ∪ Y ∪ {p, q}. Define the players’s goal be given by:

γ0γi1 = ⊥ γi1 = γi2 = ϕ ∨ pqr γi⊥ = γi� = pqr

γj1 = γj2 = ¬ϕ ∧ p̄q̄r γj⊥ = γj� = p̄q̄r

With every allocation α we now associate a valuation vα. Let
us call an allocation α “ live ” if αi1 ∪ αi2 = {p}, αj1 ∪ αj2 =
{q},X ⊆ αi⊥ ∪ αi� , and Y ⊆ αj⊥ ∪ αj� . For live allocations α
we set vα(r) = �, and for all z ∈ X ∪ Y ∪ {p, q}:

vα(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
� if z ∈ X ∪ Y and z ∈ αi� ∪ αj� , or

if z ∈ {p, q}, p ∈ αi1 , and q ∈ αj1 , or

if z ∈ {p, q}, p ∈ αi2 , and q ∈ αj2 ,

⊥ otherwise.

For all other allocations α, set vα = v0. Now, define the
outcome function h∗ such that h∗(α) = vα for all allocations α.
Observe that h∗ is Nash-consistent. Moreover, on input α, the
valuation h∗(α) can be computed in time polynomial in the size
ofα, which is again small relative toϕ. Finally, letΥ = ϕ ∧ pqr.

We prove that there is a core stable allocation α under h∗ with
h∗(α) |= ϕ ∧ pqr if and only if Q = ∃X∀Y ϕ is valid.

For the “if”-direction, assume that Q = ∃X∀Y ϕ is valid.
Then, there is a v : X → {⊥,�} ∪ {p, q, r} such that for all
w : Y → {⊥,�}, we have that v ∪ w |= ϕ and v′(p) = v′(q) =
v′(r) = �. Then, there is also a live allocation α such that
h∗(α) = v. Hence h∗(α) satisfies ϕ ∧ pqr. Now assume for
contradiction there is some coalition S blocking α, i.e., there
is some α′ with α−S = α′

−S such that ui(h∗(α′)) �i ui(h∗(α))
for all i ∈ S. Because of the latter, we find that α′ must be
a live allocation. Some reflection reveals that {j1, j2} ⊆ S ⊆
{j1, j2, j⊥, j�} and that h∗(α′) �|= ϕ. It follows that h∗(α)(x) =
h∗(α′)(x) for all x ∈ X . But then it would follow that h∗(α′) |=
ϕ, a contradiction.

For the “only if”-direction, assume that Q = ∃X∀Y ϕ is not
valid. Then for every v : X → {⊥,�}, there is some w : Y →
{⊥,�} such that v ∪ w �|= ϕ. To show that there is no Nash
stable allocation α with h∗(α) satisfying ϕ ∧ pqr, consider an
arbitrary α. Without loss of generality we may assume that α
is live, otherwise h∗(α) = v0 and h∗(α) �|= ϕ ∧ pqr. Let S =
{j1, j2, j⊥, j�} and observe that h∗(α) �|= γj for j ∈ S. Without
loss of generality, we may assume thatα(p) = i1 andα(q) = j1.
By assumption, there is some valuation v′ with v′ |= ¬ϕ and
v′(x) = h∗(α) for allx ∈ X . Some reflection reveals that we can
define an allocation α′ such that h∗(α′) = v′ and h∗(v) |= ¬ϕ ∧
p̄q̄r. Hence, h∗(α′) |= γj for all j ∈ S. As moreover, α−S =
α′
−S , it follows that S blocks α under h∗, and we may conclude

that there is no Nash stable allocation α with h∗(α) |= ϕ ∧ pqr.
A very similar construction shows that DISTRIBUTED ALLO-

CATION remains Σp
2 -hard for strong Nash core stability.

It is worth observing that the outcome function is part of
the input of DISTRIBUTED DELEGATION. For specific (Nash-
consistent) outcome functions, the computational complexity
of the distributed delegation may need to be assessed indepen-
dently. For instance, one could be specifically be interested in
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Nash-consistent choice functions that for each allocation choose
a Nash equilibrium that maximises social welfare.5

VI. DISCUSSION, RELATED WORK, AND FUTURE DIRECTIONS

We have introduced and investigated the problem of how to
optimally delegate decisions to self-interested agents. We mod-
elled this delegation problem using the setting of Boolean games.
We argued that Boolean games provide a natural framework
within which to model the delegation of Boolean decisions:
individual decisions naturally map to Boolean variables, owned
by individual agents. We distinguished between the principal
delegation problem, where one principal delegates decisions
to subordinate agents, and the distributed delegation problem,
where the subordinate agents can form coalitions and allocate
unallocated variables as they see fit.

Our main results have been mainly negative, in the sense
that, even in the elemental Boolean games framework, they
all point to a high computational complexity of the various
delegation problems we have investigated in this paper. WEAK

PRINCIPAL DELEGATION , STRONG PRINCIPAL DELEGATION and
DISTRIBUTED DELEGATION are all at least Σp

2 -hard, while OPTI-
MAL DELEGATION is FPΣp

2 -complete. By inspecting the proof
of Theorem 1 it can be recognised that the hardness of WEAK

PRINCIPAL DELEGATION reduces to the hardness of deciding
whether a Nash equilibrium exists in a Boolean game. This
raises the question whether the computational complexity of
the (principal) delegations problems could be brought down by
considering other solution concepts instead of Nash equilibrium
to single out the relevant outcomes under a given allocation.

In this context it is worth emphasising that Theorem 4 es-
tablishes that the computational complexity of DISTRIBUTED

DELEGATION is the same for general polynomial and (polyno-
mial) Nash-consistent outcome functions. This indicates that
the intractability of the distributed delegation problem cannot
(solely) be attributed to the computational hardness of checking
and finding Nash equilibria in Boolean games. The sheer number
of allocations, which is exponential in the number of unallocated
variables, seems to be a major culprit, and justifies the expecta-
tion that many efficient algorithms for the distributed delegation
problem will be based on limiting the number of allocations that
will have to be considered. In an similar vein, one could explore
the different ways in which the problems presented in this paper
can be restricted, e.g., by considering restrictions on the players’
goals or the principal’s objective function.

In our formal setting, we allow for allocations that concentrate
control over variables in only a very few agents, which may
be undesirable for many applications. Moreover, Section V
suggests the existence of a trade-off between stability of an
allocation and extreme concentration of power in a few agents.

5One could also define stability on allocation-equilibrium pairs: (α,�v)would
then be stable if for all coalitions S, all allocations α′ with α−S = α′

−S , and all
equilibria �v′ under α, we have �v �i �v

′ for all i ∈ S. By an argument analogous
to the proof of Theorem 1, it can then be shown that the accompanying decision
problem whether a stable pair (α,�v) with �v satisfying objective Υ exists in a
partial game is Σp

2 -complete, and reduces to deciding the existence of a Nash
equilibrium in a Boolean game.

It would therefore be an interesting line of future research
to investigate the delegation problems in connection with the
various concepts of fairness, (social) welfare, and efficiency
(e.g., Pareto optimality) that have been suggested in the literature
(cf., e.g., [18], Part II).6

Our work can be seen to belong to a stream of work in
mechanism design in Boolean games, which investigates mech-
anisms so as to incentivise players to choose strategies that are
simultaneously desirable, commonly from a principal’s point
of view, and rational from a game theoretic perspective. The
mechanisms in point usually aim to modify the Nash equilibria
of the Boolean games by imposing taxes on the strategies that
are available to the players. This line of research was initiated by
[19] and was followed up by, e.g., [5], [20]–[24]. Our work on
the principal and distributed delegation problems in this paper
has a cognate motivation, but importantly differs in the way the
players’ incentives are engineered, namely by manipulating the
strategies they have at their disposal rather than by levying taxing
on playing them.

The delegation problem is also closely related to the principal-
agent problem studied in economics (see, e.g., [25]). A typical
setting for the principal agent problem is where a principal en-
gages the services of an agent to work on behalf of the principal,
typically for a fee. The basic issue studied in the principal-agent
problem is that the agent will be self-interested, and it may not
be feasible for the principal to observe the actions of the agent;
in which case, how can the principal be certain that the agent
is indeed acting in the principals interests? Typical solutions
to the principal-agent involve designing incentive schemes that
will help to align the preferences of the agent with those of the
principal.

Our work is also relevant to logics of propositional control
[26]–[28]. Originally developed in [26], these logics are specif-
ically intended to reason about scenarios in which a collection
of agents each have control over some set of Boolean variables.
In [27], Gerbrandy extended this work by also allowing agents to
share control over propositional variables. We should also point
to other formalisms for reasoning about delegation [29], [30].
However, in these other works, the focus is rather different to
out own. For example, in [29] the focus is on decentralised trust
management, while [31] presents a logic of delegation based on
the STIT (“see to it that”) operator. The use of logical systems
such as QBF and DCL-PC to analyse delegation would also be
worth pursuing in more detail.

Other directions for future research include looking at the
problem from the perspective of Stackelberg (leader-follower)
games, introducing costs to delegation actions, so that we can
consider secondary preferences over allocations, and of course
investigating tractable instances of the problem, and developing
efficient heuristics for the decision problems we present.
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