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Abstract— Reinforcement Learning (RL) for robotic appli-
cations can benefit from a warm-start where the agent is
initialized with a pretrained behavioral policy. However, when
transitioning to RL updates, degradation in performance can
occur, which may compromise the robot’s safety. This degra-
dation, which constitutes an inability to properly utilize the
pretrained policy, is attributed to extrapolation error in the
value function, a result of high values being assigned to Out-
Of-Distribution actions not present in the behavioral policy’s
data. We investigate why the magnitude of degradation varies
across policies and why the policy fails to quickly return to
behavioral performance. We present visual confirmation of our
analysis and draw comparisons to the Offline RL setting which
suffers from similar difficulties. We propose a novel method,
Confidence Constrained Learning (CCL) for Warm-Start RL,
that reduces degradation by balancing between the policy gradi-
ent and constrained learning according to a confidence measure
of the Q-values. For the constrained learning component we
propose a novel objective, Positive Q-value Distance (CCL-
PQD). We investigate a variety of constraint-based methods
that aim to overcome the degradation, and find they constitute
solutions for a multi-objective optimization problem between
maximimal performance and miniminal degradation. Our re-
sults demonstrate that hyperparameter tuning for CCL-PQD
produces solutions on the Pareto Front of this multi-objective
problem, allowing the user to balance between performance
and tolerable compromises to the robot’s safety.

I. INTRODUCTION

Reinforcement Learning (RL) has demonstrated success
in simulated environments [1], [2], [3]. However, RL is
challenging to implement in real-life robotic applications due
to hard-to-define reward functions and the high rate of ex-
ploration required in limited time [4]. Unfortunately, robotic
RL agents struggle to understand the transition dynamics of
environments as intuitively as humans and have difficulty
applying prior knowledge in an effective manner.

For example, consider the classic problem in robotics
where a robot arm must pick up an object and place it in a
goal location while receiving feedback from a sparse reward
function (i.e., 1 if the object was picked up and placed at the
goal and 0 otherwise). Modern RL algorithms fall short in
this seemingly simple task because large amounts of inter-
action are required to acquire a positive feedback signal [5].
Furthermore, without a sophisticated reward shaping function
the probability of stumbling upon the goal through naive
exploration alone may be extremely small. Additionally, in
real-world environments, where interactions are costly, such
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Fig. 1: WSRL initialized with a ∼4K reward expert over
4 seeds in 4 environments. WSRL Degradation in average
episodic reward can be seen in the drop at 50K steps when
the policy is first updated. Degradation is less severe when Q-
net and/or buffer is loaded along with the actor (red, orange)
versus when only the actor is loaded (blue). Similar results
are found in the Fetch robotic environments.

a computationally-intensive algorithm becomes unrealistic.
Excessive exploration using actions with uncertain outcomes
can impact safety within the environment and inflict wear
and tear on the robot as well.

To overcome these issues, many approaches suggest lever-
aging expert data. These involve using expert demonstrations
in RL: to guide and regularize exploration [6]; as ground-
truth to recover a reward function [7]; as examples in the
replay buffer [8]; or as targets for a Behavior Cloning loss.
In the latter, this term is combined with the RL objective [9],
or with the RL objective and L2 Regularization [10].

Another approach is Warm-Start RL (WSRL) [11], [12]
where learning consists of initializing the agent with a
pretrained behavioral policy and improving upon its already
achieved moderate performance through RL. These initial
policies can be created using Imitation Learning on expert
demonstrations or by obtaining a previouly trained RL policy.
This approach to incorporating expert knowledge into RL can
overcome the problem of sparse rewards, increase the sample
efficiency, reduce the training time, and improve the safety of
RL policies. Initializing RL with a pretrained behavioral pol-
icy should also ensure better and more robust performance of
the robotic agent and allow for safe widespread deployment
of self-learning robots in varied and dynamic environments.



In our problem formulation, we assume no previous
knowledge of the value function is available. the value
function must be approximated using a neural network by
training it from scratch. In practice, however, we find that
initializing off-policy algorithms like DDPG [13], SAC [14],
or TD3 [15] with a policy that achieves moderate-to-expert
performance results in an initial severe degradation of the
policy. We refer to this phenomenon as WSRL Degradation.
This problem is intrinsically linked to known complications
associated with Offline RL, first described in [16]. Our pro-
posed method to overcome WSRL Degradation is inspired by
some of the recent Offline RL algorithms: Batch-Constrained
Q-Learning (BCQ) [17], BEAR [18], Behavior-Regularized
[19][20][21], Rerouted-Behavior-Improvement [22], Policy-
Constraint [23], KL-Control [24], and Critic Regularization
[25]. Like our solution, these algorithms share the core
idea that the learned policy should be constrained to the
behavioral policy. Our method uses a constraint that modifies
the learning gradient between IL and RL, a technique which
bears similarity to PCGrad proposed in [26].

The contributions of our paper are as follows:
1) We demonstrate that WSRL Degradation is a common

phenomenon by running WSRL across several environ-
ments and experts that attain various levels of reward.

2) We analyze why degradation occurs, where it is more
severe, and pinpoint the specific causes.

3) We implement several constraint methods, including
Offline RL and Online RL solutions and find that all
methods introduce a trade-off between degradation and
final performance.

4) We propose CCL-PQD which constrains updates based
on a confidence measure of the value function. We
demonstrate that hyperparameter selection results in
solutions that lie on the Pareto Front that balances
maximimal performance and miniminal initial drop
and solves this multi-objective problem [27].

II. ANALYZING WSRL Degradation

We demonstrate WSRL Degradation in four continuous
control environments: Ant-v3, HalfCheetah-v3, Hopper-v3,
and Humanoid-v3 [28]. We begin by training a TD3 agent
and halting once the agent achieves a set level of performance
but with room for improvement. We then copy the policy into
a new TD3 agent without the value function, roll out 50K
steps to initially train the Q-net, and then begin updating the
policy. We observe the degradation after the policy updates
begin [fig. 1]. This process of isolating the RL policy by
discarding the value function and replay buffer simulates the
scenario where there is access to an expert policy through
IL. We use TD3 as the off-policy RL algorithm for our
experiments but other methods built on the same fundamental
core, like SAC and DDPG, exhibit similar degradation.

While the policy ultimately recovers, this degradation is
still undesirable because ideally the robotic agent would
maintain its performance to avoid damage to itself and
the surrounding environment. We note that for some poli-
cies, there is no large dip in performance. For example,

runs initialized with ∼2K discounted reward experts in the
HalfCheetah environment often experience lower degrada-
tion. However, for the majority of runs in most environments
there is severe WSRL Degradation.

We also observe that it takes many iterations (∼500K)
before the policy recovers to the original behavioral perfor-
mance. However, WSRL does converge faster than vanilla
off-policy RL (1M Iterations). Finally, we do not observe the
same degradation in Warm-Start on-policy RL using methods
such as VPG [29], PPO [30], and PPG [31].

To better understand WSRL Degradation we need to
address three key questions:

1) What causes the initial degradation?
2) Why is the degradation smaller for some lower reward

behavioral policies?
3) Why does it take so long for the agent to recover to

the initial behavioral performance?

A. Comparing WSRL to Offline RL
Results from WSRL where the Q-net is loaded compared

to vanilla WSRL[fig. 1] indicate that the degradation of the
policy is related to the initial training of the Q-net. Training
the Q-net on an essentially static dataset (because the policy
is not updated) is reminiscent of the Offline RL setting; we
compare the two and identify common issues and solutions.
In Offline RL, an agent is trained using a buffer of offline
trajectories (produced by a behavioral agent) while being
unable to interact with the environment. Rather than simply
cloning the actions with highest expected discounted reward,
the agent is expected to optimize the policy by maximizing
a value function trained on this offline dataset. It is observed
that off-policy RL algorithms fail when deployed on static
datasets without online interaction. Two key papers, BCQ
[16] and BEAR [18], provide explanations for the inability of
off-policy RL to learn on a static dataset offline and propose
solutions to overcoming the problem.

B. Extrapolation Error
Both BCQ and BEAR identify Extrapolation Error (EE)

as the source of off-policy RL’s inability to learn offline [18]
[17]. EE is described as the error induced by the mismatch
between state-action pairs in the behavioral dataset and state-
action pairs that have no reward data. We refer to the
latter as Out-of-Distribution (OOD) data. The value function
Q(s, a) where action a was never taken should be undefined.
However, because there is no notion of undefined values in
value functions modelled as a neural network approximators,
Q(s, a) outputs defined values even though there are no data
for such state-action pairs. These errant values negatively
impact the off-policy RL algorithm, biasing the model when
calculating the Bellman-Backup |Q − T Q| and the policy
gradient ∇aQ(s, a). We attribute the error to OOD actions
rather than OOD states, because all network updates use fixed
states sβ (i.e., only states seen in the behavioral policy data).

C. Analyzing Extrapolation Error in Warm-Start RL
In WSRL, the behavioral policy is pre-loaded but the Q-

net (denoted QNL) is not loaded and is instead initialized



Fig. 2: Top: Output of QNL on behavioral actions (green)
vs. random actions (blue) over one sampled episode. Both
classes of actions tend to have large Q-values under the same
state distribution despite the agent never taking these random
actions. Bottom: Output of Qβ on behavioral actions (green)
vs. random actions (blue) over one sampled episode. Similar
to the output of QNL, both classes of actions tend to have
large Q-values under the same state distribution.

with random parameters and then pre-trained offline on
behavioral data during the initial phase. We analyze1 QNL’s
performance on a static dataset by comparing its output on
behavioral actions aβ against its output on random actions
ar under the state distribution induced by the behavioral
policy πβ over one sampled episode.

We can see that random actions generally have unusually
high Q-values [fig. 2, top] suggesting that the Q-net extrapo-
lates high values to most actions, even if they have never been
taken. This generalization can be attributed to state sβ being
consistent across inputs QNL(sβ , aβ) and QNL(sβ , ar). This
generalization can cause problems during training and is the
source of EE. [32] explain that EE is a common phenomenon
that affects Neural Networks citing [33] who describe how
an insufficient data distribution can drive over-generalization.

As a baseline, we visualize [fig. 2, bottom] the properly
trained original behavioral Qβ’s performance on a static
dataset by comparing its output on behavioral actions aβ
against its output on random actions ar under the same state
distribution induced by the behavioral policy πβ over one
sampled episode.

To visualize EE in QNL we sample a fixed behavioral state
sβ with action aβ , and plot the output QNL(sβ , aβ+ϵ) where
ϵ ∼ U(0, 1). Actions are reduced from a six-dimensional
vector to two dimensions through Principal Component

1Our analysis of WSRL uses a HalfCheetah expert of ∼10K cumulative
episodic reward where WSRL Degradation is most severe; however, results
are consistent for ∼4K HalfCheetah reward experts as well as other
environments.

Fig. 3: Top: QNL(sβ , aβ) (circled, center) vs. QNL(sβ , aβ+
ϵ), where the behavioral policy action has lower Q-value than
some OOD actions (shown as lighter-colored points on the
right). Bottom: Qβ(sβ , aβ) (circled, center) vs. Qβ(sβ , aβ+
ϵ) where the behavioral policy action still has slightly lower
Q-value than some OOD actions (to the left).

Analysis (PCA). These results [fig. 3, top] demonstrate EE
where QNL assigns higher values for many OOD actions in
a given state than for the behavioral action. Ultimately, the
policy will be updated in the direction of those OOD actions
with higher Q-values.

As a baseline, we fix the behavioral state and plot the
output Qβ(sβ , aβ + ϵ) [fig. 3, bottom]. We first remark that
the output range is lower for QNL and rises as training
continues but it is the relative values that are the most
important. We then note the presence of high Q-values in
OOD actions for both QNL and Qβ . This similarity suggests
that EE should also be present in the loaded behavioral value
function Qβ . Why then does training with Qβ lead to stable
policy updates whereas QNL results in severe degeneration
in policy performance?

We analyze the relative values of QNL(sβ , aβ) and
Qβ(sβ , aβ) compared to QNL(sβ , aβ + ϵ) and Qβ(sβ , aβ +
ϵ). We find that QNL(sβ , aβ) usually plots near the center of
the QNL(sβ , aβ + ϵ) distribution [fig. 4, top] (note that the
PCA graphs in fig. 3 corresponds to the left-most histograms
in fig. 4). In contrast, Qβ(sβ , aβ) is generally higher than
most Qβ(sβ , aβ + ϵ) [fig. 4, bottom]. This difference is also
manifest when loading a behavioral policy of ∼4K cumula-
tive reward where QNL(sβ , aβ) is in the 46th percentile on
average versus Qβ(sβ , aβ) in the 66th percentile on average.

That QNL(sβ , aβ) plots in the center of the distribution
indicates that the value-function is not well trained on OOD
actions and assigns them similar values that are normally
distributed. In contrast, Qβ clusters the values of most
OOD actions below that of aβ reflecting higher knowledge
of the surrounding action space likely due to Qβ having
been trained on a wide range of actions in the same state
distribution, as well as on actions in sub-optimal states. Qβ’s



Fig. 4: Top: Histogram (top left) corresponding to PCA
graph [fig. 3, bottom] with histograms of 3 other randomly
sampled states. QNL(sβ , aβ) is in the 52nd percentile on
average and is not maximal compared to QNL(sβ , aβ + ϵ).
Bottom: Histogram (bottom left) corresponding to PCA
graph [fig. 3, top] with histograms of 3 other randomly
sampled states. Qβ(sβ , aβ) are in the 95th percentile on
average and are maximal compared to Qβ(sβ , aβ + ϵ).

wider range of knowledge mitigates EE and results in a
policy gradient ∇θQβ(s, πθ(s)) that is more robust.

We can now answer our first question as to why the
policy initially degrades. Due to OOD generalization, the
Q-net returns higher values for some actions never taken
by the partially trained behavioral policy, i.e., Q(sβ , aβ +
ϵaction) > Q(sβ , aβ) for those actions. The policy gradient
∇θQϕ(s, πθ(s)) will therefore point towards these OOD
actions and the policy will be updated to take unknown
actions and degrade.

D. Gradient Error due to Extrapolation Error

To answer the second question as to why the degradation
is smaller for some lower reward behavioral policies we
compare the norm of the gradients ||∇aQ(s, a)|| of WSRL
for ∼4K versus ∼10K cumulative reward in the HalfCheetah
environment. When training the Q-net offline we observe
that the average norm of the gradient for the higher reward
expert is larger (∼0.08) than that of the lower reward expert
(∼0.04). As Q(s, a) is trained on higher reward trajectories,
the gradients ∇Q(s, a) will be larger. Formally, for c > 1,
if

R10K =

T∑
i=t

γi−tr10K = c ·R4K > R4K =

T∑
i=t

γi−tr4K

(1)
and the Q-function is trained to output higher values for
(s, a) ∼ τ

Qπ10K (s, a) = E
τ∼π10K

[R10K(τ)] = c ·Qπ4K (s, a) >

Qπ4K (s, a) = E
τ∼π4K

[R4K(τ)]
(2)

and the inequality holds under differentiation and under the
norm which is also positive:

||∇Qπ10K (s, a)|| = c · ||∇Qπ4K (s, a)|| > ||∇Qπ4K (s, a)||
(3)

This explains why the degradation is less severe for the
lower reward expert since the lower gradient is itself a
constraint on the agent to not take large update steps.

Fig. 5: Histogram of the output of frozen QNL.

We can scale down the policy gradient to some threshold
by the norm s.t. for g = ∇θQϕ(s, πθ(s)) : if ∥g∥ >
threshold : then g ← threshold·g

||g|| . This ensures that the
norm of the updated gradient will equal the threshold since∥∥∥ threshold·g

||g||

∥∥∥ = threshold
||g|| · ||g|| = threshold.

This results in reduced degradation, though the improve-
ment in performance over time is proportional to the thresh-
old of the gradient clipping. Scaling the gradient by lowering
the learning rate η s.t. θt+1 = θt + η · ∇θtQϕ(s, πθt(s))
also results in less degradation. These methods are effective
at overcoming degradation, but come with the trade-off of
slower learning and require tuning through trial-and-error.

To answer the third question as to why it takes so long for
the agent to recover to its original performance, we freeze
updates on QNL after the Offline training phase and update
the policy from πβ to an updated version πU by training
for one epoch. We examine the output of QNL over a sam-
pled episode of: behavioral states and actions (sβ , πβ(sβ));
behavioral states and updated policy actions (sβ , πU (sβ));
updated states along with actions sampled from a separate
behavioral trajectory (sU , πβ(sβ)); and updated policy states
and actions (sU , πU (sU )).

We first observe that only behavioral state input to the
Q-net results in EE [fig. 5, right] in contrast to behavioral
action input which is assigned significantly lower value
[fig. 5, left]. We then note the large magnitude of the
update by considering that the same Q-net used for updating
the policy gave lower evaluation for policies after being
updated, i.e., Q(sβ , aβ) > Q(sβ , πU=β+η·∇aβ

Q(sβ ,aβ)(sβ)).
This indicates that the update is so large that it shifts the
policy OOD, as confirmed by the Q-net assigning these
actions larger values than if the policy had remained in the
behavioral state distribution. Instead, the values assigned are
closer to the default random values in the range [−1, 1] used
to initialize the Q-net. Once the policy has radically deviated
from the behavioral state distribution to one where it has
no prior knowledge, the policy gradient will no longer be
a reliable indicator. The agent will have no data regarding
actions that can return it to the behavioral distribution and the
probability of re-encountering a behavioral state is low due
to the high dimensionality of the state space. To recover fully,
the policy will have to explore and learn Q-values for the new
state distribution in order to find a reliable gradient towards
a better policy. Some gradient signal from behavioral policy
data is retained however, because performance converges



faster than training from scratch.

E. Bootstrapping Error due to Extrapolation Error
The inability to recover behavioral performance is also

related in part to why off-policy algorithms fail to learn
offline. We follow [23] who explain that the issue lies
with the calculation of the Bellman Backup |Q − T Q|.
When training the Q-net offline, the update step utilizes
an untrained policy’s predicted action π(s′β) to bootstrap
onto Q(s′β , π(s

′
β)) that is never directly updated via the

Bellman Backup since π is a randomly initialized policy
that returns an action not in the behavioral distribution. As
demonstrated in our work, Q(s′β , π(s

′
β)) may be assigned

a value close to Q(s′β , a
′
β)) where a′β is the action actually

taken in the next state. However, maximizing over an average
Q-value for s′β without discriminating between particular
actions will result in a policy gradient ∇aQ(s′β , a = π(s′β))
that updates the policy to take erroneous actions that can
only be corrected through online trial and reward feedback,
a option unavailable in off-policy RL.

WSRL also contains an offline phase where the Q-net
is trained on behavioral trajectories (with added exploration
noise and without access to reward data) before the policy
is updated. However, Offline RL is initialized with a random
policy whereas WSRL is initialized with a behavioral policy
where π(s′β) = a′β and therefore the value Q(s′β , πβ(s

′
β))

can properly propagate through the Bellman Backup. Where
Bootstrapping Error comes into play is in the online phase
once the state distribution has already shifted such that
s′ is no longer in the behavioral distribution resulting in
a bootstrapped target Q(s′, π(s′)) that has not yet been
updated through reward feedback. This generates a poor
Q-net estimate and therefore an unreliable policy gradient
that prevents the policy from quickly returning to behavioral
performance. Learning the true values of OOD trajectories is
the only way of returning to better performance, but this is
constrained by the low joint probability of selecting an OOD
trajectory from the buffer given that each prior trajectory has
been sampled and propagated via Bellman Backup.

III. OVERCOMING WSRL Degradation
After analyzing it’s source, we now aim to develop meth-

ods that reduce WSRL Degradation and as a result guarantee
the safety and reliability of the robotic agent. To achieve this
we limit the probability of the policy entering a shifted state
distribution which reduces the effect of EE by preventing
the policy from becoming stranded in a region where it
has no prior knowledge and cannot return to the behavioral
distribution. We build upon solutions proposed for Offline
RL, which typically constrain agent updates to keep the
policy close to the behavioral policy. This can be achieved
in two ways: directly constraining the policy or introducing
a penalty during updates.

A. Offline RL Constraint Methods
One implementation of policy constraint is an agent that

learns a layer ξθ that perturbs behavioral actions and is con-
strained within some bounds [−α, α]. This is the approach

in BCQ [16] where the policy update is calculated as:

max
θ

E [Qϕ(s, aβ + ξθ(s, aβ))] (4)

Another approach is to constrain the policy updates:

max
θ

E [Qϕ(s, πθ(s))] s.t.[D(aβ , πθ(s))] ≤ ϵ (5)

where D is a distribution distance metric. This method is
used in BEAR [18] where D is Kernel-MMD [34].

B. Offline RL Penalty Methods

Another approach is to constrain updates by introducing a
penalty on values that lie further from the behavioral distri-
bution. This penalty, represented as a distribution distance D
between the agent and behavioral policy, can be introduced
in the Q-net update by minimizing ϕ over:

E
[∣∣r + γ

(
Qϕ′(s′, a′β)− αD

(
a′β , πθ(s

′)
))
−Qϕ(s, aβ)

∣∣2]
or in the policy update objective:

max
θ

E [Qϕ(s, πθ(s))− αD(aβ , πθ(s))] (6)

This method is used in [24] and [19] which define D as either
KL-divergence, Kernel-MMD, or Wasserstein Distance.

C. Online RL Constraint Methods

As a baseline, we implement online versions of Of-
fline RL constraint and penalty methods across a range
of hyperparameter values α. These include a BC penalty
on the policy update; with a learned perturbation policy
(analogous to online BCQ); and with a BC penalty on
the Q-net update. We found degradation was significantly
reduced in the first two methods but not in the latter for
any α ∈ [3e-9, 3e-8, ..., 3e-1]. Lowering the learning rate or
reducing the gradient are other effective online constraint
methods (we omit other offline RL methods such as BEAR
and CQL since they do not translate readily to the online
setting as we assume access only to the expert policy and
not the rewards). All of these methods, however, may still
be subject to degradation, require arbitrary parameters for
tuning, and result in slower learning that is inversely related
to the constraint. In addition, WSRL differs from Offline
RL in that the policy can interact with the environment
and improve over the behavioral policy. Rather than simply
implementing an online version of an Offline RL algorithm
that maintains a constant constraint, we prefer a method that
slowly relaxes the constraint over time eventually reducing
to vanilla off-policy RL.

IV. CONFIDENCE CONSTRAINED LEARNING FOR
WARM-START OFF-POLICY RL

We propose Confidence Constrained Learning (CCL) for
WSRL which uses a constrained Offline RL algorithm as a
basis, and a scheduler that relaxes the constraint over time
according to an appropriate metric, ultimately transitioning
to vanilla off-policy RL. For our base constrained algorithm
we selected a form of Policy Penalty defined as:

αQ(s, π(s)) + (1− α)Distance(aβ , a) (7)



TABLE I: Comparing CCL-PQD to Warm-Start and vanilla TD3 in HalfCheetah with regards to safety and performance.

Env Method Expert α- Min Max Avg VaR VaR VaR CVaR CVaR CVaR
Rule Reward start (95) (99) (99.9) (95) (99) (99.9)

Half TD3 0 -576.9 11171.0 7478.7 -4.3 -55.4 -156.0 -44.3 -155.5 -779.9
Cheetah WS-TD3 4K -589.2 9625.8 7180.2 -5.6 -49.7 -1611.2 -189.1 -886.0 -8056.2

CCL-PQD 4K 1e-2 2689.8 8520.6 6193.6 -4.2 -7.4 -8.6 -6.6 -11.9 -42.8

Half TD3 0 -576.9 11171.0 7478.7 -4.3 -55.4 -156.0 -44.3 -155.5 -779.9
Cheetah WS-TD3 10K -1084.4 11381.3 8864.9 -12.0 -41.9 -1775.1 -206.8 -959.3 -8875.5

CCL-PQD 10K 1e-4 7393.4 10875.4 10168.6 -3.5 -4.7 -5.3 -4.7 -7.6 -26.7

where α is the constraint factor that facilitates interpola-
tion between the vanilla policy gradient (α = 1), where
degradation compromises the robot’s safety, and imitating
the behavioral policy (α = 0), where safety is guaranteed
but performance does not increase.

The metric used by the scheduler to update α is a
confidence measure of the Q-net corresponding to the EE
that allows for large policy updates when the risk of EE
is low and constrains the update otherwise. This confidence
measure P is the percentile of the Q-net output on sampled
trajectories Q(s, a) compared to Q(s, a+ ϵ) defined as:

P =
N(Q(s, a) > Q(s, a+ ϵ))

N(Q(s, a+ ϵ))
(8)

We map the percentile, from the values between com-
pletely random and full certainty [0.5, 1], to the range of
α values between the minimal safe policy penalty and
unconstrained vanilla policy gradient [α start, 1]. We found
that a logarithmic scale is preferable for the mapping where
α ranges from 10[log10(α start),0].

A. Positive Q-value Distance

There are many candidates when choosing a distance
function; we define the Positive Q-value Distance (PQD)
which modifies an auxiliary distance function D(aβ , a). The
standard update vector for the distance is:

v = -∇aD(aβ , a) · ∇ϕπϕ(a|s) (9)

For better results we want to reduce the distance to actions
with the highest Q-return and ignore poor actions produced
by exploration. In particular, we utilize the components of the
distance function gradient that do not decrease the average
Q-value of the actions and therefore our update will be v =
qPQD · ∇ϕπϕ(a|s) where

qPQD =

{
∇aD(aβ , a) ⊥ -∇aQ

π
θ (s, a) ∇aD · -∇aQ ≤ 0

∇aD(aβ , a) ∇aD · -∇aQ > 0
(10)

where ∇aD · -∇aQ is a shorthand for ∇aD(aβ , a) ·
-∇aQ

π
θ (s, a) and ∇aD(aβ , a) ⊥ -∇aQ

π
θ (s, a) =

∇aD(aβ , a)−
-∇aQ

π
θ (s, a)

∥-∇aQπ
θ (s, a)∥2

∇aD(aβ , a) · -∇aQ
π
θ (s, a)

(11)
Intuitively, where ∇aD · -∇aQ > 0, the distance gradient
overlaps with the policy gradient in the same direction for
those components of proj-∇aQ∇aD. This follows from the

scalar projection where (⃗a · b⃗)/||⃗b||2 > 0 ⇐⇒ a⃗ · b⃗ > 0.
This implies that following the distance gradient for those
components will not decrease the Q-value average of the
policy. However, following distance gradient components s.t.
∇aD · -∇aQ ≤ 0, will decrease the Q-value average of
the policy. Therefore, we follow the vector rejection ∇aD
onto -∇aQ defined as a⃗− (⃗a · b⃗)/||⃗b||2 · b⃗ which restricts the
components of the distance gradient to those that decrease
the distance but do not decrease the Q-value average.

When integrating PQD into CCL we modify our original
objective such that the final update vector is:

(1− α)qPQD + αqPQD · ∇ϕπϕ(a|s) (12)

where qPQD = ∇aQ(s, a) − qPQD, the remaining policy
gradient.

V. CCL-PQD EVALUATION

We evaluate CCL with PQD as the primary distance func-
tion (CCL-PQD) and BC as the auxiliary distance function,
and assess CCL-PQD performance with respect to safety and
performance. For our experiments we experiments a budget
of 1M timesteps which may not result in convergence for all
environments but more accurately reflects real-life scenarios.
We compare results against vanilla TD3 and its Warm-Start
counterpart in [fig. 6] and [Table I]. A higher Min value
indicates less degradation and a safer robotic agent, and a
higher Max value indicates better overall performance. We
also evaluate Value at Risk (VaR) and Conditional Value at
Risk (CVaR) as additional safety metrics as proposed in [35].
We find CCL-PQD to be a powerful method for maintaining
agent safety while increasing performance since it obtains the
best results for VaR, CVaR, and highest minimal drop (see
bolded values) while remaining competitive with the other
methods in terms of average and maximum reward.

While CCL-PQD does not always achieve the highest
maximum and average reward, it still eliminates or sig-
nificantly reduces degradation. In constraint methods, it is
common to expect a trade-off between degradation and
learning over time. Selecting a constraint method and tuning
its constraint factor translates to solving a multi-objective
optimization problem where the set of best solutions lie on
the Pareto Front that best balances maximimal performance
and miniminal initial drop [fig. 7]. Our results, from many
robotic environments, indicate that CCL-PQD often spans
the Pareto Front across the possible values for the constraint
factor, ensuring that the permitted risk to the robotic agent’s



Fig. 6: CCL-PQD compared to Warm-Start and vanilla TD3. We generate ϵ over 500 samples. CCL-PQD minimizes
degradation and maintains safety of the robotic agent while increasing performance.

Fig. 7: Comparing constraint methods with various constraint factors α. CCL-PQD often spans the Pareto Front.

safety in favor of performance gains is optimal. Other
constraint methods usually plot behind the Pareto Front with
Warm-Start on-policy RL (PPO) producing less degradation

but lower final performance and Warm-Start off-policy RL
(DDPG, TD3, SAC) resulting in more degradation but higher
performance in the long run. We note that BC Policy Penalty



appears at times on the Pareto Front but not as consistently
as CCL-PQD. We also observe in our experiments in the
Fetch Push environment that solutions do not produce a
visible Pareto Front since CCL-PQD is optimal for both
objectives. The results also include an ablation test of PQD
that demonstrate its effectiveness as a safe optimization
objective with minimal degradation but slow incremental
improvement. Finally, our results demonstrate that CCL-PQD
is an effective method for improving upon behavioral policies
in a safe manner without degradation, not only in dense
reward environments such as HalfCheetah and Humanoid,
but in sparse reward robotic environments like Fetch as well.

VI. CONCLUSION

The goal of our work was to study Warm-Start RL
Degradation, analyze its root cause, and develop a solu-
tion to overcome it in robotic environments. We ascribed
this degradation to Extrapolation Error, demonstrated why
degradation is worse for higher reward environments due to
Gradient Error, and explained why the policy fails to return
quickly to behavioral performance due to Bootstrapping
Error and distributional shift. We proposed CCL combined
with a novel metric PQD that does not always achieve
the highest maximum and average reward but eliminates or
significantly reduces degradation, a critical component for
real-life robotics. We demonstrated the trade-off that exists
for many constraint methods where higher performance is
possible when more degradation is risked. CCL-PQD often
performs along the Pareto Front giving the user the power
to optimize this trade-off in a wide range of applications.
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