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Abstract

Issue salience is a major determinant in voters’ decisions. Can-
didates and political parties campaign to shift salience to their
advantage - a process termed priming. We study the dynam-
ics, strategies and equilibria of campaign spending for voter
priming in multi-issue multi-party settings. We consider both
parliamentary elections, where parties aim to maximize their
share of votes, and various settings for presidential elections,
where the winner takes all. For parliamentary elections, we
show that pure equilibrium spending always exists and can
be computed in time linear in the number of voters. For two
parties and all settings, a spending equilibrium exists such
that each party invests only in a single issue, and an equi-
librium can be computed in time that is polynomial in the
number of issues and linear in the number of voters. We also
show that in most presidential settings no equilibrium exists.
Additional properties of optimal campaign strategies are also
studied.

1 Introduction
Political parties and candidates invest substantial resources
in campaigns aimed at winning over voters. Interestingly,
research reveals that these campaigns often do not directly
alter voters’ views or attitudes toward candidates and issues.
Rather, campaigns tend to influence the relative salience of
various topics, thereby shaping the importance voters assign
to these issues (Moniz and Wlezien 2020; Macdonald 2023;
Druckman 2004). Consequently, an essential element in polit-
ical campaigns involves strategically guiding the salience of
issues to the candidates’ advantage, a process known in po-
litical science as priming (Bartels 2006). Political campaigns
are costly, and candidates have limited budgets. Thus, from
a strategic perspective, the question is how to best invest
the available campaign budget in order to obtain the most
beneficial priming for a given candidate, and whether an
equilibrium investment profile exists. From a computational
perspective, the question is how to compute the optimal and
equilibrium investments, if they exist. These are the topics
of this paper.

The importance of issue salience in voting has recently
gained attention in the context of election control and manip-
ulation (Lu et al. 2019; Estornell et al. 2020). In these works,
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priming is viewed in the context of election manipulation
and hence assumed to be limited to a single malicious actor.
We view priming in the context of campaigning and study
equilibria thereof.

1.1 Summary of Results
We consider two core settings, which we term parliamen-
tary and presidential. In the parliamentary setting, parties
aim to maximize their share of votes. In the presidential
case, the primary goal is to be ranked first. For the presiden-
tial setting, we consider several variants, which relate to a
possible secondary goal of increasing the share of votes.1
The different variants, formally defined in detail in Section
2, are: (i) uind: the sole goal is to be ranked first, with no
secondary goal, (ii) uplus: a weighted average the goal of
being ranked first and increasing the share of votes, with
the weight highly skewed towards the former, (iii) umax:
the primary goal is to be ranked first, only if this cannot be
achieved then increasing the share is considered as a goal,
with significantly lesser utility. Throughout, we consider
plurality ballot form, wherein each voter casts one vote for
its most favorable candidate/party (Meir et al. 2010).

For each setting and variant, we consider the question of
whether a Nash equilibrium necessarily exists and whether,
knowing the strategies of the other players, a best-response
necessarily exists. Our main results are summarised in Table
1. For the parliamentary setting, both a Nash equilibrium
(in pure strategies) and best-response always exist. When
there are only two candidates, it is further the case that
in equilibrium each candidate invests its entire budget in
priming of a single issue. For the presidential setting, for
both variants that include a secondary goal, a Nash equi-
librium need not exist in the general case, and not even a
best-response. For the variant where the sole goal is winning,
with no other considerations, a best response does exists,
and we do not know if a Nash equilibrium necessarily exists.
We note, however, that the Nash equilibria in this variant
may be unnatural, in the sense that they require candidates
to invest not for their own good, but rather for the benefit
of others. In all presidential variants, if there are only two
candidates, an equilibrium exists wherein each candidate

1without such a secondary goal, unnatural behavior can emerge
wherein candidates invest against their own good.



invests its entire budget in priming of a single issue.
Whenever a Nash equilibrium is guaranteed to exist, we

provide an algorithm that is linear in the number of voters
to compute it. For the two candidates case, the algorithms
are also polynomial in the number of issues and candidates.
For the general parliamentarian case, the algorithm may be
exponential in the number of issues and candidates.

Due to limited space, the full proofs appear in the ap-
pendix. In the main body we mostly provide limited proofs
and outlines.

1.2 Related Work
Campaign management and bribery have been researched
extensively in the literature (see (Schlotter, Faliszewski, and
Elkind 2011; Faliszewski et al. 2015; Knop, Kouteckỳ, and
Mnich 2020; Zagoury et al. 2021). And for extensive review
see (Simpser 2013; Islam, Mohajan, and Moolio 2010)). Both
these terms refer to a setting where individual voters are in-
fluenced to alter their vote, and the main question is how to
choose these voters. We consider situations where changing
voters’ decision-making is only possible by general cam-
paign messages, which alter the importance of different
issues.

Ad delivery algorithms also aim to change voters’ ac-
tions. They promise to lower the cost of advertising and
increase the efficiency of campaigns through detailed target-
ing, where advertisers can specify the users they would like
to reach using attributes (Danaher 2023; Kreiss 2011). How-
ever, it was shown (e.g., (Ali et al. 2021; Cotter et al. 2021))
that targeting may not work as intended, and may shape the
political ad delivery in ways that may not be beneficial to
the political campaigns and to societal discourse.

Campaign communications that direct voter attention to
the considerations that campaigns emphasize are termed
‘priming’. This phenomenon has been studied repeat-
edly over the years in many contexts (from psychology
(Kuzyakov, Friedel, and Stahr 2000; Molden 2014) to nat-
ural language processing (Shaki, Kraus, and Wooldridge
2023; Zhou, Frank, and McCoy 2024; Fenster, Zuckerman,
and Kraus 2012)). Regarding elections, Matthews (Matthews
2019) showed clear evidence of issue priming throughout six
US national elections. Macdonald (Macdonald 2023) showed
that citizens’ core values are less affected by campaign-
related priming effects, supporting our approach that the
effect of investing in priming depends on the issue.

In (Hillygus and Shields 2008)[Chapter. 1] the importance
of wedge issues is discussed, showing the possibility to at-
tract attention to topics that are less important and even
those that are not the strongest of the candidates.

There are several works that model the utility of voters,
which take issues’ importance into consideration. For ex-
ample, in (Kollman, Miller, and Page 2018)’s model, termed
spatial elections, each voter attaches both a weight and an
aspired value to each of the issues, and every candidate has
a position on every issue. Each voter votes for the candi-
date with minimal weighted Euclidean distance between its
positions and the voter’s ideal positions. They consider the
problem of finding the optimal positions for candidates in
order to maximize their votes.

(Lu et al. 2019) consider issue salience priming/manip-
ulation in the spatial preference framework. assuming a
single primer/manipulator. They consider the case of binary
salience, and a manipulator that can determine which issues
the voters care about and which not. Voters vote determin-
istically to the candidate who is closest to them (on the
salient issues). (Lu et al. 2019) view priming (which they
term control by manipulation) as a type of attack by a ma-
licious entity, and hence only consider priming by a single
entity. The paper derives strongly negative results, and con-
cludes that computing effective manipulation is hard even
for two candidates, or for a single voter.

(Estornell et al. 2020) extend (Lu et al. 2019) and consider
issue priming in the setting of weighted spatial preferences
(rather than binary), and a manipulator that is constrained
by a budget (for shifting the weights). They consider both
the deterministic setting - where the voter necessarily votes
for the closest candidate - and stochastic settings - where
the probability of voting for a candidate is monotone in
the weighted distance, and both the parliamentary and the
presidential elections (which they term MaxSupport and
Majority Vote). Following (Lu et al. 2019), (Estornell et al.
2020) consider only a single manipulator. They show that
in the most general setting, the control problem is NP-hard,
but that the stochastic setting - which is the more similar to
ours - is tractable if the probability of voting for a candidate
is linear in their weighted distance from the voter (there are
also versions of the deterministic setting that are tractable).

Our work differs from (Estornell et al. 2020) and (Lu et al.
2019) in several ways. Our voter preference model strictly
subsumes the spatial model. On the other hand, we only
consider the stochastic case and assume that the probabil-
ities are linear in the relative weighted distances (which
corresponds to the stochastic setting for which the problem
is tractable). More importantly, we consider the strategic
setting where priming is performed by multiple candidates
in the race and seek an equilibrium in such a setting - a topic
not considered in (Estornell et al. 2020) and (Lu et al. 2019)
at all.

(Denter 2020) considers the problem of campaign invest-
ment management in a setting where campaigns have two
simultaneous effects: (i) Persuasion: increasing the quality
of the policy in the issue as perceived by the voters through
policy advertising and (ii) Priming: making the issue more
salient, thereby increasing the issue’s perceived importance
(as in our model). The paper considers only the case of two
candidates and two issues, and does not provide any algo-
rithms. We note that the exact model of how campaigns
alter the salience is somewhat different between our model
and that of (Denter 2020), which leads to different results
concerning the existence of an equilibrium.

2 Model
We consider the following stylized model. There is a set V of
voters, a set C of candidates/parties, and a set I = {1, . . . , n}
of issues. For each candidate c, issue i, and voter v, there
is a quality score qvi (c), reflecting voter v’s perception of
candidate c’s competence in handling issue i. We assume
that all quality scores are non-negative and

∑
c∈C qvi (c) ≤ 1.



setting variant best response Nash equilibrium Nash equilibrium
2 candidates

parliamentary ufrac
✓exists

(Theorem 2)
✓exists

(in pure strategies)
(Theorem 4)

✓exists (with pure strategies,
single issue investments)

(Theorem 5)

presidential

uplus

✗ need not
exist

(Theorem 9)

✗ need not
exist

(Corollary 2)

✓exists (with pure strategies,
single issue investments)

(Theorem 8)

umax

✗ need not
exist

(Theorem 11)

✗ need not
exist

(Theorem 12)

✓exists (with pure strategies,
single issue investments)

(Section 4.3)

uind
✓exists

(Theorem 7) ? open
✓exists (with pure strategies,

single issue investments)
(Theorem 6)

Table 1: Summary of results. Whenever Nash equilibrium is guaranteed to exist, it can be computed in time linear in the
number of voters. For two candidates, the time is also polynomial in the the number of issues.

So, the scores reflect relative competence, and can be viewed
as the probability of v to vote c if issue i were the only issue
at stake; and 1−

∑
c∈C qvi (c) is the probability that v does

not vote.
The salience of issue i for voter v represents how impor-

tant this issue is for v. Before the campaign, this salience
is svi (0). Since we only care about the relative salience
(which is what governs the voting decision), we assume
that

∑
i∈I s

v
i (0) = 1 for every v ∈ V , and that svi (0) ≥ 0

for every v ∈ V, i ∈ I .
Each candidate c has a total campaign budget W c ≥ 0,

which it can distribute among the issues in order to increase
their salience, with wc

i ≥ 0 denoting the amount invested
in promoting issue i. So,

∑
i∈I w

c
i ≤W c (where inequality

occurs when some of the budget is not used). The total budget
of all candidates is W ∗ =

∑
c′∈C W c′ . The total investment,

over all candidates in issue i is denotedwi. The vectorswc =
(wc

1, . . . , w
c
n),w =

∑
c∈C wc are c’s investment profile and

the total investment profile, respectively. In addition, w−c =∑
c′ ̸=c w

c′ is the total investment vector of all candidates
except c.

Given a total investment of wi in issue i, the salience of
this issue for voter v is denoted svi (wi). Investment in an
issue linearly increases its salience:

svi (wi) = ρiwi + svi (0) (1)

Here, ρi ≥ 0 reflects the easiness, or difficulty, of increasing
the salience of the issue; a large ρi means that it is relatively
easy to increase the salience, while a small ρi - the opposite.
The rationale is that some issues, say those that seem totally
unimportant to the electorate, may require more investment
to increase their salience than others.

Given investmentw, quality scores qvi (c), and the salience
scores svi (wi), the relative salience is:

svi (w) =
svi (wi)∑
j∈I s

v
j (wj)

The probability that v casts its vote for candidate c is
the weighted sum of the candidates’ quality scores over the
different issues, weighted by their relative salience:

pv(c,w) =
∑
i∈I

qvi (c) · svi (w) = qv(c) · sv(w)

The following claim provides that the pv(c,w)’s indeed cor-
respond to the necessary probability structure:
Claim 1. For any possible w, pv(c,w) ≥ 0, for all v, c. In
addition,

∑
c∈C pv(c,w) ≤ 1 for every v.

Note that the probabilities need not sum to 1. The remain-
ing probability is the probability that the voter chooses not
to vote at all. This could happen, for example, if the voter
deems all candidates incompetent in the salient issues. If
we wish to avoid such behavior we can further require that∑

c∈C qvi (c) = 1 for all i and v. Hence the total expected
number of votes candidate c gets is

p(c,w) =
∑
v∈V

pv(c,w)

We consider two settings: parliamentary elections, where
each candidate (/party) aims to maximize its fraction of votes,
and presidential elections, where candidates seek to win the
elections. It is assumed throughout that the number of voters
is sufficiently large so that the actual number of votes any
candidate gets is essentially the expectation.

The expected fraction of voters voting for candidate c is
thus

r(c,w) =
p(c,w)∑

c′∈C p(c′,w)



The victory indicator is:

v(c,w) =


1

|argmax
c′∈C

p(c′,w)| c ∈ argmax
c′∈C

p(c′,w)

0 otherwise

Parliamentary Elections Here, the utility of c is simply
uc
frac(w) = r(c,w) (2)

Presidential Elections We consider several versions of
presidential setting. The simplest is just taking the victory
indicator:

uc
ind(w) = v(c,w)

This means, however, that candidates with no chance to
win are agnostic to the number of votes they get. This view
overlooks the reality that even candidates with little chance
of winning care deeply about their vote count. A strong
voter base provides lasting political capital, influencing both
the candidate’s future prospects and their party’s direction
(Anagol and Fujiwara 2016). In order to mitigate this, we
propose two alternative utility functions. The first is just
the sum of the indicator multiplied by a constant with the
relative fraction of votes:

uc
plus(w) = V · v(c,w) + r(c,w)

Where V ∈ R determines the importance of the victory
indicator, versus that of the votes’ fraction. With this utility
function both the losing and the winning candidates care to
maximize their votes’ fraction.

And another one is the maximum between the indicator
multiplied by a constant and the number of relative votes:

uc
max(w) = max(V · v(c,w), r(c,w))

With this utility, only losing candidates care to maximize
their fraction of votes, while a candidate that wins alone is
agnostic.

It is assumed that V ≥ |C|, so that even a tie with with
all candidates yields higher utility than the highest votes’
fraction without winning.
The Priming Game. The different utility functions define
a game, with the players being the candidates/parties, and
the pure strategies being the investment profiles wc. We
say that an investment wc is split if at least two issues get
a positive investments: ∃i ̸= j with wc

i ≥ wc
j > 0. The

investment is focused if it is not split. We denote by Sc the
investment strategy of c and S = (Sc)c∈C . Note that the
Sc’s may be mixed. The following is trivial.
Fact 1. The games associated with ufrac, uind, uplus are con-
stant sum games, but not that of umax.

2.1 Simplifications
The expression for r, v, and accordingly also for all the differ-
ent utility functions, involves separate terms for each voter,
each of which is itself rather complex. With potentially mil-
lions of voters, this may seem like a problem, especially if
further calculations need to be performed on these expres-
sions (e.g. computing the equilibria). Fortunately, the follow-
ing theorems provide that this complexity can be greatly
simplified, as follows.

Lemma 1. When introducing an issue 0 for which all can-
didates are ranked 0 by all voters (i.e. qv0(c) = 0 for all
v ∈ V, c ∈ C), the utilities of all candidates are identical
whether they do not invest part of their budget or whether
they invest it in issue 0.

The above lemma assures us that we can assume all play-
ers always invest all their budget, some of it potentially in
issue 0. From now on we will always assume 0 is included
in I and all candidates invest their entire budget.

Now, we can simplify the problem even further, by aggre-
gating the voters’ rating:
Theorem 1. It holds that,

r(c,w) =
Qc ·w
Q∗ ·w

v(c,w) =


1

|argmax
c′∈C

Qc′ ·w|
c ∈ argmax

c′∈C
Qc′ ·w

0 otherwise

For

Qc
i =

∑
v∈V

∑
i∈I q

v
i (c) · svi (0)

W ∗ +
∑
v∈V

qvi (c) · ρi

Q∗
i =

∑
c∈C

Qc
i

Since all the different utility functions depend only on
r(c,w), v(c,w), we don’t need to actually consider individ-
ual voters after calculating Qc : ∀c ∈ C , and the represen-
tation size is independent of the number of voters.

And we say that,
Definition 2.1. The rank of an issue i for candidate c is Qc

i .

3 Parliamentary Elections
3.1 Best Response Strategies
We start with studying the players’ best response strategies.
Theorem 2. In the parliamentary setting, a best response
(against any finite support strategy profile) always exists.

The proof follows from the continuity of ufrac.

Split investments. While players can split their invest-
ment between issues, the following proposition establishes
that doing so is never a better response to pure strategies
of the other candidates than focusing the entire investment
on a single issue. The following theorem is key to the exis-
tence and computation of a pure Nash equilibrium in the
parliamentary setting.
Theorem 3. For any candidate c, pure investment w−c of
the other candidates, and response wc with strictly positive
investment only in a set J of issues: wc is a best response (for
c) if and only if for any issue j ∈ J a focused investment in j
(alone) is a best response.

The proof of the theorem rests on two main lemmas.



Lemma 2. Given two feasible investments x,y of c, and an
investment z = r · x + (1 − r) · y : 0 < r < 1 between
them, as responses against pure strategies w−c of the other
candidates, z is a best response if and only if x,y are best
responses.

This follows from the structure of ufrac, and the fact that
∂uc

frac(r·x+(1−r)·y)
∂r does not change sign for 0 ≤ r ≤ 1.

Lemma 3. Let z be a feasible investment with a strictly
positive investment in a set J ⊆ I of issues, and let x be an
investment with positive investments only in issues in J .

There exists ϵ > 0 such that y = z+ϵ ·(x−z) is a feasible
investment.

We return to the proof of Theorem 3:

Proof. Let z be a best response to w−c with a strictly pos-
itive investment in a set J ⊆ I of issues, and let x be a
response with positive investments only in issues in J .

By the above lemma, there exists ϵ > 0 such that y =
z + ϵ · (x− z) is a feasible investment.

Since z is between x,y, by Lemma 2 it holds that x,y
are also best responses, and in particular x is.

For the other direction, the proof is by induction. We
assume that every response involves positive investment
only in up to n issues in J is optimal, and show that every
response with positive investment in up to n+ 1 issues in
J is optimal.

Let z be an investment in n + 1 issues in J , assumed
without a loss of generality to be the first n + 1 issues.
Let x = (z1 + zn+1, z2, z3, ..., zn, 0, 0, ..., 0) and y =
(0, z2, z3, ..., zn, z1 + zn+1, 0, 0, ..., 0). It can be seen that
z is between x,y, and that x,y each involves positive in-
vestments only in a set of n issues, and must then be best
responses. Hence, by Lemma 2 it holds that z is also a best
response.

The claim for n = 1 holds by assumption.

The theorem implies directly that there always exists a
best-response which is focused. Accordingly, finding a best-
response strategy is easy: compute the utility of all focused
investments and choose the best.

The best response strategies can further be characterized
using the following definition and lemmas.
Proposition 1. The utility of a candidate c from investing in
issue i is characterized only by Qc

i and Q
−c
i =

∑
c′ ̸=c Q

c′

i .

Proposition 2. For a candidate c and issues i, j, if Qc
i ≥

Qc
j , Q

−c
i ≤ Q−c

j , there exists a best response with no invest-
ment in j.
If one of the inequalities is strict, every response with a

positive investment in j is not a best response.

In other words, considering issues, candidates care only
about their own ranking and the sum of the ranking of
others, not about how this sum is split. With everything else
equal, it’s better to invest in issues for which your ranking is
higher, or issues for which the sum of the others’ rankings
is lower.

3.2 Nash Equilibrium
Theorem 4. In the parliamentary setting, there always exists
a Nash equilibrium with pure strategies (but possibly split
investments).

Proof. The proof is by that of Theorem 1.2 in (Fudenberg
and Tirole 1991), and similar to the standard proof of the
Nash’s theorem (e.g. Theorem 1.1 in the same work).

The strategies space are indeed convex, as the only con-
strain for every candidate c is that

∑
i∈I w

c
i = WC , and it’s

easy to see that the utility of every candidate is continuous
in the investments of all the candidates.

Although the utility of every candidate is not quasi-
concave, this requirement is used in the proof only to show
that the optimal responses of every candidate are convex.
Indeed, say that there are two best responses, one involves a
set J of issues with positive investments and the other a set
K . Then, by Theorem 3 every focus investment in any issue
in J ∪K is a best response. Then, by the same theorem any
split investment in these issues is, hence the best responses
are convex.

Finding the Equilibrium. By Theorem 4, a pure equilib-
rium always exists. We explain how to find it.

In a pure equilibrium, every candidate c strictly invests
in a set Ic ⊆ I of issues. By Theorem 3, c is indifferent to
any investment that involves only the issues in Ic.

The algorithm is as follows.
Algorithm 1: computing Nash equilibrium. Iterate
over all possible (nonempty) sets of strictly invested issues
Ic ⊆ I : c ∈ C . For every iteration, define the following set
of linear equations and constraints.

The variables are the investment of the different can-
didates, wc

i : c ∈ C, i ∈ Ic. For ease of illustra-
tion, we let Bc =

∑
c′ ̸=c

∑
i′∈Ic′ wc′

i′ · Qc
i′ and B∗ =∑

c′ ̸=c

∑
i′∈Ic′ wc′

i′ ·Q∗
i′ .

The constraints are:
1. The investments are valid: candidates invest exactly their

budget, and the investments are non-negative.∑
i∈Ic

wc
i = 1, wc

i ≥ 0 ∀c ∈ C, i ∈ Ic

2. Candidates are indifferent between focused investments
in issues they (strictly) invest in. Let an arbitrary ic ∈ Ic

be the representative issue of c. For c ∈ C, ic ̸= i ∈ Ic:

W c ·Q∗
i ·Bc +W c ·Qc

ic ·B∗ + (W c)2 ·Qc
ic ·Q∗

i

= W c ·Q∗
ic ·Bc +W c ·Qc

i ·B∗ + (W c)2 ·Qc
i ·Q∗

ic

3. The candidates prefer their current investment rather
than any other focus investment. For c ∈ C , a single
representative i ∈ Ic, and every j ̸∈ Ic:

W c ·Q∗
i ·Bc +W c ·Qc

j ·B∗ + (W c)2 ·Qc
j ·Q∗

i

≤W c ·Q∗
j ·Bc +W c ·Qc

i ·B∗ + (W c)2 ·Qc
i ·Q∗

j

For every iteration, if the above set of equation has a
solution, it is a Nash equilibrium and we can stop.



The algorithm is exponential in the number of candidates
and issues, as we iterate over all possible subsets of issues
for every candidate. However, it is linear in the number
of voters, as the simplified problem representation size is
independent of the number of voters (Section 2.1).

3.3 Two Candidates
Best Response Strategies When there are only two can-
didates, the structure of the best response strategies can be
further refined.

For candidates c, c′ and issues i, i′ denote w(c� i, c′� i′)
the investment wherein c investment all and only in i and
c′ all and only in i′.
Lemma 4. For candidates c, c′ and issues i, i′, j, j′, if

Qc
i < Qc

i′ (3)
uc
frac(w(c� i, c′� j)) < uc

frac(w(c� i′, c′� j)) and,
(4)

uc′

frac(w(c� i′, c′� j)) < uc′

frac(w(c� i′, c′� j′)) (5)

Then

uc
frac(w(c� i, c′� j′)) < uc

frac(w(c� i′, c′� j′)) (6)

In other words, if one candidate prefers one issue over
another, and the other candidate responds, the first candidate
still prefers the first issue over the second, assuming its
ranking on it is higher. This lemma will allow us to compute
the Nash equilibrium, as we later show.
Nash Equilibrium We will show that every 2-candidates
game has a pure and focus equilibrium, such that every
candidate is investing all his budget in a single issue. This
can be shown by Lemma 4: we let each candidate begin by
investing in the issue on they are ranked the lowest. We then
let each, in turns, respond by investing in the least higher-
ranked issue that is a better response than their current
investment (if exists). By the above lemma, this process will
necessarily terminate with a Nash equilibrium.

Formally, the algorithm to find an equilibrium, given C =
{c, c′}, is as follows:

Algorithm 2: Compute Nash Equilibrium for two candidates.

1. Let i← argmin
i′∈I

Qc
i′ , j ← argmin

j′∈I

Qc′

j′

2. While true:
(a) I ′ = {i′ ∈ I : uc

frac(w(c � i′, c′ � j)) >

uc
frac(w(c� i, c′� j)) ∧Qc

i′ > Qc
i}

(b) J ′ = {j′ ∈ I : uc
frac(w(c � i, c′ � j′)) >

uc
frac(w(c� i, c′� j)) ∧Qc

j′ > Qc
j}

(c) If I ′ ̸= ∅, i← argmin
i′∈I′

Qc
i′

(d) Else if J ′ ̸= ∅, j ← argmin
j′∈J′

Qc
j′

(e) Else return (i, j)

Theorem 5. In the parliamentary setting, in the case of 2
candidates there always exists a Nash equilibrium with pure
strategies and focused investments. Algorithm 2 results in such
equilibrium with time complexity of O(|I|2 + |V |).

4 Presidential Elections
We consider the various settings of presidential elections.

The following example shows that, in contrast to ufrac’s
Theorem 3, candidates can benefit from splitting their in-
vestment between more than one issue. Here, the only way
for c1 to win (partially) is to invest half in 1 and half in 2,
which is the only best response. This example holds for all
three presidential utility functions - uind, uplus, and umax.

c1 c2 c3

Qc
1 1 2 0

Qc
2 1 0 2

W c 1 0 0

4.1 Victory Indicator, uind
Two Candidates The case of two candidates is especially
important for the presidential case. The following is intuitive.

Theorem 6. For the uind presidential utility, and the case of
two candidates c, c′, a dominant strategy for c is to invest all
budget in the issue i ∈ I that maximizes Qc

i −Qc′

i .
As the goal is to be the candidate with the most votes, and

in a two-candidate game it is entirely aligned with candi-
dates maximizing the difference between the votes of them-
selves and the other. It is straightforward then that a Nash
equilibrium always exists and how to find it.
General Number of Candidates
Theorem 7. For the uind presidential utility, a best response
(against any finite support strategy profile) always exists.

Proof. If a best response does not exist, then an infinite se-
ries of strictly better responses exists. However, since the
number of possible investment profiles of the other candi-
dates is finite, and for every investment profile the number
of possible utility values for the responding candidate is fi-
nite (losing and tie with another k candidates 0 ≤ k < |C|).
Hence, the overall number of outcomes is finite, hence such
an infinite series cannot exist.

A possible problem with the uind utility function is that
losing candidates are indifferent to the number of votes they
get, which may result in a counter-intuitive equilibrium.
Consider the following example:

c1 c2 c3

Qc
1 1 0 0

Qc
2 0 1 0

Qc
3 0 0 1

W c 1 1 1



In the above game, the case where all candidates invest
all their budget in issue 1 is an equilibrium, as c1 still wins
regardless if one of the other candidates changes his action.
However, this equilibrium looks unnatural since these in-
vestments are clearly against their own interest. Although
it’s an equilibrium, we don’t expect real-world campaigns
to result in such an equilibrium.

In order to make the resulting equilibria more natural,
we will slightly change the utility function such that losing
candidates also care about the number of votes they get.

4.2 Indicator Plus Fraction, uplus
When summing the victory indicator (multiplied by a con-
stant larger than |C|) with the votes fraction, both winning
and losing candidates still try to maximize their share of
votes. Hence, an unnatural Nash equilibrium such as that
discussed in Section 4.1 is not possible.
Two Candidates For two candidates, the game is in fact
similar to that of ufrac, the parliamentary case, and not to
that of uind, the other presidential game.
Theorem 8. Every pure, focused Nash equilibrium for two
candidates under ufrac is also a Nash equilibrium under uplus.

Intuitively, ufrac, uind are similar in the case of two can-
didates because, when there is only one candidate to play
against, maximizing the share of votes is entirely aligned
with trying to be the candidate with the most votes.

Based on the above theorem we have:
Corollary 1. For theuplus presidential utility, with two candi-
dates, a pure Nash equilibrium with focus investments always
exists, and can be found using Algorithm 2.

General Number of Candidates For a general number
of candidates, the situation differs significantly.
Theorem 9. With the uplus presidential utility, a best in-
vestment need not exist, even when only one candidate has a
positive investment budget.

In the proof we show a game where, for the investing
candidate, one issue is better in order to maximize his share
of votes, and any minimal investment in the other issue is
required to win. That way, the investing candidate wants to
invest ”almost all” in the first and the rest in the other issue.
However, since it’s always possible to invest even more in
the first issue and even less in the second, a best investment
does not exist. It is straightforward now that,
Corollary 2. With the uplus presidential utility, a Nash equi-
librium need not exist.

Since with only one investing candidate a Nash equilib-
rium is characterizes a best response.

4.3 Maximum of Indicator and Fraction, umax

When taking the maximum between the victory indicator
(times V ) and the votes fraction, only losing candidates will
try to maximize their share of votes.
Two Candidates Similarly to Section 4.2, every equilib-
rium under ufrac is an equilibrium under umax, and the
proof is done in a similar manner.

General Number of Candidates The difference between
umax and uplus is that for the former winning candidates
are agnostic to their fraction of votes. As a result, the case
of Theorem 9, where the only investing candidate wants
to invest as much as possible in one issue to maximize his
fraction, and any positive amount in another to ensure his
victory, does not happen here. Indeed,
Theorem 10. With the umax presidential utility, a best re-
sponse to pure strategies always exists.

However,
Theorem 11. With the umax presidential utility, a best re-
sponse need not exist.

As in a case where the responding candidate has a chance
to win and to lose, depending on the investments of the
other candidates, the game is similar to that of uplus, as he
cares about both the fraction of votes and whether he wins.

Finally, we can see that,
Theorem 12. With the umax presidential utility, a Nash
equilibrium need not exist.

For a case similar to the described above.

5 Conclusions and Discussion
This study investigates voter priming strategies and equilib-
rium in multi-party, multi-issue elections, providing insights
into the computational and strategic aspects of campaign
spending. Notably, in all cases where an equilibrium is guar-
anteed to exist, it takes the form of a pure equilibrium. This
outcome simplifies theoretical analysis and computational
implementation, offering a clear framework for predicting
candidate behavior. Pure equilibria allow candidates to adopt
intuitive strategies, eliminating the need for probabilistic
approaches that are harder to interpret and implement.

Despite this, the results reveal certain counterintuitive
aspects of the model that merit closer examination. In par-
ticular, the analysis establishes that in the two-candidate
setting equilibrium in single-issue investments always exists.
This result, while mathematically sound, diverges from real-
world observations where candidates typically distribute
their campaign budget across multiple issues. The divergence
may be due to the linearity assumption in the model, cre-
ating incentives for candidates to concentrate all resources
on a single issue. A more realistic model could perhaps pos-
tulate diminishing returns on salience investment, which
would encourage a more balanced allocation of resources.
We leave the study of such a model to future research.

Another promising avenue for future work is to consider
scenarios where candidates invest resources not only in
priming voter attention on specific issues but also in im-
proving their perceived quality on the different issues. This
addition would provide a richer framework that captures the
interplay between issue salience and perceived candidate
quality, reflecting a broader range of campaign strategies
observed in practice.
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7 Appendix
7.1 Proofs from Section 2
Lemma 1. When introducing an issue 0 for which all can-
didates are ranked 0 by all voters (i.e. qv0(c) = 0 for all
v ∈ V, c ∈ C), the utilities of all candidates are identical
whether they do not invest part of their budget or whether
they invest it in issue 0.

We begin by proving the following lemma:
Lemma 5. It holds that,

r(c,w) =
B

c
+Q

c ·w
B

∗
+Q

∗ ·w
(7)

v(c,w) =


1

|argmax
c′∈C

B
c
+Q

c·w| c ∈ argmax
c′∈C

B
c
+Q

c ·w

0 otherwise

For all c ∈ C , where B
c
=

∑
v∈V

∑
i∈I q

v
i (c) · svi (0), Q

c

i =∑
v∈V qvi (c) · ρi and B

∗
=

∑
c′∈C Bc′ , Q

∗
=

∑
c′∈C Q

c′

.

Proof. By definition:

p(c,w) =
∑
v∈V

pv(c,w) =
∑
v∈V

∑
i∈I

qvi (c) · svi (w)

=
∑
v∈V

∑
i∈I

qvi (c) ·
svi (wi)∑
j∈I s

v
j (wj)

=
∑
v∈V

∑
i∈I

qvi (c) ·
ρiwi + svi (0)∑

j∈I(ρjwj + svj (0))

=
∑
v∈V

∑
i∈I

qvi (c)
ρiwi + svi (0)

1 +
∑

j∈I ρjwj

=

∑
v∈V

∑
i∈I q

v
i (c)(ρiwi + svi (0))

1 + ρ ·w

=

∑
v∈V

∑
i∈I(q

v
i (c) · ρiwi + qvi (c) · svi (0))
1 + ρ ·w

=
B

c
+
∑

i∈I wi

∑
v∈V qvi (c) · ρi

1 + ρ ·w

=
B

c
+
∑

i∈I wi ·Q
c

i

1 + ρ ·w

=
B

c
+w ·Qc

1 + ρ ·w
Hence:

r(c,w) =
p(c,w)∑

c′∈C p(c,w)
=

B
c
+w·Qc

1+ρ·w∑
c′∈C

Bc′+w·Qc′

1+ρ·w

=

B
c
+w·Qc

1+ρ·w∑
c′∈C Bc′+w·Qc′

1+ρ·w

=
B

c
+Q

c ·w∑
c′∈C Bc′ +Q

c′

·w

=
B

c
+Q

c ·w
B

∗
+Q

∗ ·w

For the second part of the lemma, we can see that

argmax
c∈C

B
c
+Q

c
= argmax

c∈C

B
c
+Q

c ·w
B

∗
+Q

∗ ·w

= argmax
c∈C

r(c,w) = argmax
c∈C

p(c,w)∑
c′∈C p(c′,w)

= argmax
c∈C

p(c,w)

Hence

v(c,w) =


1

|argmax
c′∈C

p(c′,w)| c ∈ argmax
c′∈C

p(c′,w)

0 otherwise

=


1

|argmax
c∈C

B
c
+Q

c·w| c ∈ argmax
c∈C

B
c
+Q

c ·w

0 otherwise

And now we go back for the proof of Lemma 1:

Proof. We can see that

Q
c

0 =
∑
v∈V

qv0(c) · ρi =
∑
v∈V

0 · ρi = 0

For all c ∈ C . Hence:

Q
∗
0 = (

∑
c′∈C

Q
c′

)0 =
∑
c′∈C

Q
c′

0 = 0

We know that

r(c,w) =
B

c
+Q

c ·w
B

∗
+Q

∗ ·w
=

B
c
+

∑
i∈I Q

c

i · wi

B
∗
+
∑

i∈I Q
∗
i · wi

=
B

c
+Q

c

0 · w0 +
∑

0̸=i∈I Q
c

i · wi

B
∗
+Q

c

0 · w0 +
∑

0̸=i∈I Q
∗
i · wi

=
B

c
+

∑
0̸=i∈I Q

c

i · wi

B
∗
+

∑
0̸=i∈I Q

∗
i · wi

Hence, all investments into w0 does not change the utility
of any of the players, exactly like not investing this amount
in the first place.

Theorem 1. It holds that,

r(c,w) =
Qc ·w
Q∗ ·w

v(c,w) =


1

|argmax
c′∈C

Qc′ ·w|
c ∈ argmax

c′∈C
Qc′ ·w

0 otherwise



For

Qc
i =

∑
v∈V

∑
i∈I q

v
i (c) · svi (0)

W ∗ +
∑
v∈V

qvi (c) · ρi

Q∗
i =

∑
c∈C

Qc
i

Proof. It holds that,

Qc
i =

∑
v∈V

∑
i∈I q

v
i (c) · svi (0)

W ∗ +
∑
v∈V

qvi (c) · ρi

= Q
c

i +
B

c

i

W ∗

Q∗
i =

∑
c∈C

Qc
i = Q

∗
i +

B
∗
i

W ∗

And we can see that

r(c,w) =
B

c
+Q

c ·w
B

∗
+Q

∗ ·w
=

W ∗ · B
c

W∗ +Q
c ·w

W ∗ · B
∗

W∗ +Q
∗ ·w

=
( B

c

W∗ ,
B

c

W∗ , ...,
B

c

W∗ ) ·w +Q
c ·w

( B
∗

W∗ ,
B

∗

W∗ , ...,
B

∗

W∗ ) ·w +Q
∗ ·w

=
(( B

c

W∗ ,
B

c

W∗ , ...,
B

c

W∗ ) +Q
c
) ·w

(( B
∗

W∗ ,
B

∗

W∗ , ...,
B

∗

W∗ ) +Q
∗
) ·w

=
Qc ·w
Q∗ ·w

The second equation in the theorem is obtained in an
identical manner to that of Lemma 5.

7.2 Proofs from Section 3
Theorem 2. In the parliamentary setting, a best response
(against any finite support strategy profile) always exists.

Proof. The utility of a candidate is continuous in his invest-
ment, and the constraints for his investment form a closed
set.

Lemma 2. Given two feasible investments x,y of c, and an
investment z = r · x + (1 − r) · y : 0 < r < 1 between
them, as responses against pure strategies w−c of the other
candidates, z is a best response if and only if x,y are best
responses.

Proof. Consider, for 0 ≤ t ≤ 1:

f(t) = uc
frac(z) = uc

frac(t · x+ (1− t) · y)

=
Qc · (w−c + t · x+ (1− t) · y)
Q∗ · (w−c + t · x+ (1− t) · y)

=
a+ t · b+ (1− t) · d
A+ t ·B + (1− t) ·D

For a = Qc · w−c, b = Qc · x, d = Qc · y and A =
Q∗ ·w−c, B = Q∗ ·x, D = Q∗ ·y. Now, it can be verified
that

f ′(t) = − (B +A) · d− (D +A) · b+ (B −D) · a
((D −B) · t−D −A)2

Hence, the sign of f ′(t) is constant, and f is strongly mono-
tonic, or constant.

If x,y are best responses, they must result in identical
utility, hence f(0) = f(1), and the function is constant,
hence f(r) = f(0) = f(1) and z is also a best response.

For the other direction, assume z is a best response, and at
least one of x,y is not, assuming without a loss of generality
that x is not. Then f(r) ≥ f(0), f(r) > f(1). However,
this contradicts monotonicity, so x,y both must be best
responses.

Lemma 3. Let z be a feasible investment with a strictly
positive investment in a set J ⊆ I of issues, and let x be an
investment with positive investments only in issues in J .

There exists ϵ > 0 such that y = z+ϵ ·(x−z) is a feasible
investment.

Proof. First, we find ϵ > 0 for which the investment in every
issue is not negative. Since zi = 0 means xi = 0, for every i
such that zi = 0 it holds that zi+ ϵ · (xi− zi) ≥ 0. Now, for
every zj > 0, it is straightforward from the Archimedean
property that there exists δj > 0 such that for every δ′j ≤ δj ,
it holds that zj < δ′j ·(zi−xi) ≥ 0, hence zi+ϵ·(xi−zi) ≥ 0.
We then take ϵ = min

j:zj>0
δj .

Second, we ensure that the total sum of the investment
does not exceed the budget:∑

i∈I

yi =
∑
i∈I

(z + ϵ · (x− z))i

=
∑
i∈I

zi + ϵ · (
∑
i∈I

zi −
∑
i∈I

xi)

= W c + ϵ · (W c −W c) = W c

We conclude that y is a feasible investment.

Proposition 1. The utility of a candidate c from investing in
issue i is characterized only by Qc

i and Q
−c
i =

∑
c′ ̸=c Q

c′

i .

Proof. Denoting S the possible investments of the other
players, such that every w−c is their total investment with
probability pw−c , the expected utility of c is, for investment
wc:

∑
w−c∈S

pw−c ·
Qc ·w−c +Qc ·wc

Q∗ ·w−c +Q∗ ·wc

=
∑

w−c∈S

pw−c ·
Bc +Qc

i · wc
i

B∗ +Q∗
i · wc

i

=
∑

w−c∈S

pw−c ·
Bc +Qc

i · wc
i

B∗ + (
∑

c′∈C Qc′
i ) · wc

i

=
∑

w−c∈S

pw−c ·
Bc +Qc

i · wc
i

B∗ + (Qc
i +

∑
c′ ̸=c Q

c′
i ) · wc

i



For Bc = Qc · w−c +
∑

k∈I−{i} Q
c
k · wc

k and B∗ =

Q∗ ·w−c +
∑

k∈I−{i} Q
∗
k · wc

k .

Proposition 2. For a candidate c and issues i, j, if Qc
i ≥

Qc
j , Q

−c
i ≤ Q−c

j , there exists a best response with no invest-
ment in j.

If one of the inequalities is strict, every response with a
positive investment in j is not a best response.

Proof. Denoting S the possible investments of the other
players, such that every w−c is their total investment with
probability pw−c , the expected utility of c is, for investment
wc:

uc
frac(w

c|S) =
∑

w−c∈S

pw−c ·
Qc ·w−c +Qc ·wc

Q∗ ·w−c +Q∗ ·wc

=
∑

w−c∈S

pw−c ·
bw

−c,wc

+Qc
i · wc

i +Qc
j · wc

j

Bw−c,wc +Q∗
i · wc

i +Q∗
j · wc

j

For bw
−c,wc

= Qc · w−c +
∑

k∈I−{i,j} Q
c
k · wc

k and
Bw−c,wc

= Q∗ ·w−c +
∑

k∈I−{i,j} Q
∗
k · wc

k .

Considering the expected utility from the two possible
investments, wc,1,wc,2, the only difference is in the last
two terms of the numerator and denominator of the fraction
for every summand, as bw−c,wc

, Bw−c,wc are independent
of wc

i , w
c
j .

For every w−c ∈ S, we claim that its summand in
uc
frac(w

c,2|S) is greater than in uc
frac(w

c,1|S). To see this:
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It can be easily verified that bw−c,wc ≤ Bw−c,wc , that
Q−c

i ·w
c,1
i +Q−c

j ·w
c,1
j ≥ Q−c

i ·w
c,2
i −Q−c

j ·w
c,2
j and that

Qc
i · w

c,2
i + Qc

j · w
c,2
j ≥ Qc

i · w
c,1
i − Qc

j · w
c,1
j (note that

wc,1
i + wc,1

j = wc,2
i + wc,2

j ). Hence, the above equation is
positive.

(As bw−c,wc,1

, bw
−c,wc,2 are identical, we letwc be either

wc,1,wc,2)

Theorem 13. Algorithm 1 is exponential in the number of
candidates and issues, and linear in the number of voters. The
algorithm always returns a pure Nash equilibrium.

Proof. In order to see that the algorithm work, we first ex-
amine the constraints.



It’s easy to see that the validness constraints hold iff the
investment is a feasible investment.

Next, for the issue indifferent constraints, we can see that:

Bc +W c ·Qc
ic

B∗ +W c ·Q∗
ic

=
Bc +W c ·Qc

i

B∗ +W c ·Q∗
i

⇔

(Bc +W c ·Qc
ic) · (B∗ +W c ·Q∗

i )

= (Bc +W c ·Qc
i ) · (B∗ +W c ·Q∗

ic)⇔
W c ·Q∗

i ·Bc +W c ·Qc
ic ·B∗ + (W c)2 ·Qc

ic ·Q∗
i

= W c ·Q∗
ic ·Bc +W c ·Qc

i ·B∗ + (W c)2 ·Qc
i ·Q∗

ic

In the last passage the only non-linear term, Bc · B∗,
canceled itself from both sides of the equation. This condi-
tion is necessary and enough by Theorem 3 for an optimal
response.

Finally, for the alternative investments constraints:

Bc +W c ·Qc
j

B∗ +W c ·Q∗
j

≤ Bc +W c ·Qc
i

B∗ +W c ·Q∗
i

⇔

(Bc +W c ·Qc
j) · (B∗ +W c ·Q∗

i )

≤ (Bc +W c ·Qc
i ) · (B∗ +W c ·Q∗

j )⇔
W c ·Q∗

i ·Bc +W c ·Qc
j ·B∗ + (W c)2 ·Qc

j ·Q∗
i

≤W c ·Q∗
j ·Bc +W c ·Qc

i ·B∗ + (W c)2 ·Qc
i ·Q∗

j

Again in the last passage Bc · B∗ cancels itself from both
sides of the equation.

Recall that by Theorem 3 there exists an optimal focus
investment.

It can be seen that the number of constraints and vari-
ables is identical; B∗, Bc : c ∈ C are directly associated
with an equation, and for every candidate c there is one
validness equation and |Ic| − 1 indifference equations, re-
sult in |Ic| equations at total which is identical to the number
of variables associated with c. No additional variables are
presented.

Hence, and since all introduced constraints hold if and
only if the solution is an equilibrium, the algorithm will
eventually find a (pure) Nash equilibrium that exists by
Theorem 4.

Lemma 4. For candidates c, c′ and issues i, i′, j, j′, if

Qc
i < Qc

i′ (3)
uc
frac(w(c� i, c′� j)) < uc

frac(w(c� i′, c′� j)) and,
(4)

uc′

frac(w(c� i′, c′� j)) < uc′

frac(w(c� i′, c′� j′)) (5)

Then

uc
frac(w(c� i, c′� j′)) < uc

frac(w(c� i′, c′� j′)) (6)

Proof. Since candidates are investing in different issues (c
only in i, i′ and c′ only in j, j′), we can assume a budget of
1 for every candidate, by normalizing every issue accord-
ingly (i.e. dividing the ranking of each player by the original
budget).

By negation, we assume eqs. (3) to (5) hold but not eq. (6),
hence:

Qc
i +Qc

j

Q∗
i +Q∗

j

= uc
frac(w(c� i, c′� j))

< uc
frac(w(c� i′, c′� j)) =

Qc
i′ +Qc

j

Q∗
i′ +Q∗

j

⇔

(Qc
i +Qc

j) · (Q∗
i′ +Q∗

j ) < (Qc
i′ +Qc

j) · (Q∗
i +Q∗

j )⇔
t1 = Qc

i′ ·Q∗
i +Qc

i′ ·Q∗
j +Qc

j ·Q∗
i

−Qc
i ·Q∗

i′ −Qc
i ·Q∗

j −Qc
j ·Q∗

i′ > 0

And:

1− uc
frac(w(c� i′, c′� j)) = uc′

frac(w(c� i′, c′� j))

< uc′

frac(w(c� i′, c′� j′)) = 1− uc
frac(w(c� i′, c′� j′))⇔

Qc
i′ +Qc

j′

Q∗
i′ +Q∗

j′
= uc

frac(w(c� i′, c′� j′))

< uc
frac(w(c� i′, c′� j)) =

Qc
i′ +Qc

j

Q∗
i′ +Q∗

j

⇔

(Qc
i′ +Qc

j′) · (Q∗
i′ +Q∗

j ) < (Qc
i′ +Qc

j) · (Q∗
i′ +Q∗

j′)⇔
t2 = Qc

i′ ·Q∗
j′ +Qc

j ·Q∗
i′ +Qc

j ·Q∗
j′

−Qc
i′ ·Q∗

j −Qc
j′ ·Q∗

i′ −Qc
j′ ·Q∗

j > 0

And by negation:

Qc
i′ +Qc

j′

Q∗
i′ +Q∗

j′
= uc

frac(w(c� i′, c′� j′))

≤ uc
frac(w(c� i, c′� j′)) =

Qc
i +Qc

j′

Q∗
i +Q∗

j′
⇔

(Qc
i′ +Qc

j′) · (Q∗
i +Q∗

j′) ≤ (Qc
i +Qc

j′) · (Q∗
i′ +Q∗

j′)⇔
t3 = Qc

i ·Q∗
i′ +Qc

i ·Q∗
j′ +Qc

j′ ·Q∗
i′

−Qc
i′ ·Q∗

i −Qc
i′ ·Q∗

j′ −Qc
j′ ·Q∗

i ≥ 0

By eq. (3) it holds that Qc
i′ > Qc

i . Hence, all the terms in
the next equation are positive:

(Qc
i′ +Qc

j′) · t1 + (Qc
i′ −Qc

i ) · t2 + (Qc
i′ +Qc

j) · t3

With (Qc
i′−Qc

i ), t2 being strictly positive, the above equa-
tion is strictly positive. However, expanding it reveals it’s
algebraically zero.

Hence, the negation assumption cannot hold, and it must
be that uc

frac(w(c� i, c′ � j′)) < uc
frac(w(c� i′, c′ �

j′)).

Theorem 5. In the parliamentary setting, in the case of 2
candidates there always exists a Nash equilibrium with pure
strategies and focused investments. Algorithm 2 results in such
equilibrium with time complexity of O(|I|2 + |V |).



Proof. We denote ik, jk the k’th issues c, c′ invest in, respec-
tively. i1, j1 are the issues on which c, c′ are ranked the
lowest, correspondingly. ik+1 is the least higher-ranked re-
sponse of c to jk that yields strictly higher utility than ik , and
similarly jk+1 is the least higher-ranked response of c′ to
ik that yields higher utility than jk . This process terminates
when no better response exists for both candidates.

We will prove the next claim by induction:
uc
frac(w(c� i′, c′� jk)) < uc

frac(w(c� ik, c
′� jk)) for

all i′ ∈ I such that ik is higher-ranked than i′.
The claim is trivial for k = 0. Assuming the claim is true

for k, and that the process is not terminated yet:
By assumption, uc

frac(w(c� i′, c′� jk)) < uc
frac(w(c�

ik, c
′� jk)) for all i′ ∈ I such that Q∗

i′ < Q∗
ik

. By the pro-
cess’ definition uc

frac(w(c� i′, c′ � jk)) < uc
frac(w(c�

ik+1, c
′� jk)) for all i′ ∈ I such that Q∗

ik
< Q∗

i′ < Q∗
ik+1

,
and in addition uc

frac(w(c� ik, c
′� jk)) < uc

frac(w(c�
ik+1, c

′ � jk)). Together, we have uc
frac(w(c � i′, c′ �

jk)) < uc
frac(w(c � ik+1, c

′ � jk)) for all i′ ∈ I such
that Q∗

i′ < Q∗
ik+1

.
By definition, uc

frac(w(c� ik+1, c
′� jk)) ¿ uc

frac(w(c�
ik+1, c

′ � jk+1)) (since we have a fixed-sum game) and
Q∗

jk
< Q∗

jk+1
. Now, for every i′ : Q∗

i′ < Q∗
ik+1

, we can
use lemma 4 and we get that uc

frac(w(c� i′, c′� jk+1)) <

uc
frac(w(c� ik+1, c

′� jk+1)) for all i′ ∈ I such that Q∗
i′ <

Q∗ik+1
, and thus complete the induction step.

The analog proof for the other candidate can be obtained
in a similar manner. Together, we can see that when search-
ing for best responds for some candidate, we indeed need
to consider only higher-ranked issues than the current in-
vestment, necessarily terminating in a (pure, focused) Nash
equilibrium.

For the complexity, by lemma 5 and theorem 1, computing
the simplified version of the problem takes O(|V |) steps.

The first line of the algorithm takes O(|I|) steps. For the
second line, since in every iteration of the loop we advance
either i or j and we do not repeat issues, the number of
iterations is at most 2 · |I|.

Computing the utility of candidates given focus invest-
ments is constant (as there are only two candidates), and is
done for every issue, hence the first two steps in the loop
takes O(|I|) time each. Performing argmax over issues also
take O(|I|) time, hence every iteration takes O(I) time,
results in total time of O(|I|2) for the loop.

7.3 Proofs from Section 4
Theorem 6. For the uind presidential utility, and the case of
two candidates c, c′, a dominant strategy for c is to invest all
budget in the issue i ∈ I that maximizes Qc

i −Qc′

i .

Proof. The difference between the number of votes c, c′ get
is fwc′ (wc) = p(c,w)− p(c′,w) = Qc ·wc +Qc ·wc′ −
Qc′ ·wc −Qc ·wc′

= b+ (Qc −Qc′
) ·wc

For b = (Qc −Qc′
) ·wc′ . It can be seen that in order to

maximize f with a valid wc it is best to have wc
i = W c for

i = argmax
i∈I

Qc
i −Qc′

i .

Now, as the utility of c is monotonic in f (zero for neg-
ative value, half for zero, one for one), it is indeed a best
response to invest in argmax

i∈I

Qc
i −Qc′

i . As this expression is

independent of the investment of c′, it must be a dominant
strategy.

Theorem 8. Every pure, focused Nash equilibrium for two
candidates under ufrac is also a Nash equilibrium under uplus.

Proof. Say a Nash equilibrium under ufrac is not a Nash
equilibrium under uplus. Then one of the candidates can
improve it’s utility by investing differently. However, by the
definition of uplus, it means this candidate either improve
it’s relative fraction of votes r, or it’s victory indicator v.
However, improving r implies it’s possible to improve the
utility under ufrac, which is a contradiction. Improving
v means that the player was losing and is now on tie or
better (hence improving it’s fraction of votes from less than
0.5 to 0.5 or higher), or that the player was on tie and is
now winning alone, (hence improving it’s share from 0.5
to higher that this). Either way, we get that one candidate
can improve its fraction of votes and hence its utility under
ufrac, which is a contradiction.

Theorem 9. With the uplus presidential utility, a best in-
vestment need not exist, even when only one candidate has a
positive investment budget.

Proof. Consider the following game.

c1 c2 c3

Qc
1 10 0 11

Qc
2 10 9 9

W c 1 0 0

Denoting w(x) = (x, 1− x) : 0 ≤ x ≤ 1 an investment
of x in issue 1 and of 1− x in issue 2, we get that:

p(c1,w(x)) = 10

p(c2,w(x)) = 9 · (1− x)

p(c3,w(x)) = 11 · x+ 9 · (1− x)

It can be seen that c1 wins alone if and only if x < 0.5,
hence in every best response it must hold. However:

r(c1,w(x)) =
10

11 · x+ 18 · (1− x)

Which is monotonic in x (within the boundary). Hence,
the best investment is max

x<0.5
x, which clearly does not exist.

Theorem 10. With the umax presidential utility, a best re-
sponse to pure strategies always exists.



Proof. If, in the best response under uind (exists by Theo-
rem 7), the responding candidate gets a tie or wins, it is also
a best response under umax, as the responding candidate is
indifferent to his fraction of votes if he doesn’t lose.

Otherwise, the responding candidate cannot win or get a
tie, and can only maximize his fraction of votes. In that case
the best response under ufrac (exists by Theorem 2) is also
a best response under umax.

Theorem 11. With the umax presidential utility, a best re-
sponse need not exist.

Proved together with:
Theorem 12. With the umax presidential utility, a Nash
equilibrium need not exist.

Proof. Consider the following game:

c1 c2 c3 c4

Qc
1 1 1 1− ϵ 1

Qc
2 1 1− ϵ 1 + ϵ 0

W c 1 1 0 0

We will show that there exists an ϵ > 0 such that the
game has no equilibrium.

We first claim that for small enough ϵ, when considering
only the fraction of votes, r, investing in issue 2 strictly
dominates investing in 1 for both c1, c2. This can be seen
for ϵ = 0 by Proposition 2. Now, since the fraction of votes
is a continuous function, it must be true for positive small
enough ϵ too.

If c1 invests deterministically all its budget in 1, then the
only best response for c2 it to invest all in 1 and get a tie.
However, in that case investing all in 1 is not a best response
for c1 (e.g. it is better to invest 0.9 in 1 and 0.1 in 2 and win
alone), hence it cannot be an equilibrium.

If c1 invests deterministically all its budget in 2, then the
only best response for c2 it to invest all in 2. However, in
that case investing all in 1 is a better response for c1, hence
it cannot be an equilibrium.

If c2 invests deterministically all its budget in 1, then the
only best response for c1 is to invest part of its budget in
1 and part in 2, in order to be the only winner. However,
in that case c2 loses and it’s utility is determine only by its
fraction of votes, a case in which he would prefer to invest
in 2 instead. Hence, this case too cannot be an equilibrium.

Similarly, it can be seen that in an equilibrium c2 is not
investing part of it’s budget in 1 and part in 2, because in
this case he is losing and would prefer to invest all in 2.

Denoting x > 0, 1−x > 1 the probabilities of c2 to invest
all in 1, 2 correspondingly, the utility of c1 is:

x · V2 + (1− x) · V when investing all in 1.
x ·V +(1−x) ·r(c1, (a, 2−a)) when investing 0 < a < 1

in 1 and a positive amount in 2.
x· V2 +(1−x)·r(c1, (0, 2)) when investing all in 2, which

is strictly dominated by the first option.
Since the only options that are not strictly dominated by

others are the first two, and since as was claimed before in

an equilibrium it cannot be that c1 invests deterministically
in 1, it must be that c1 has a positive chance to invest 0 <
a < 1 in 1 and a the rest in 2, with expected utility of
x · V + (1− x) · r(c1, (a, 2− a)).

However, from Proposition 2, it can be seen that
r(c, (a, 2 − a)) is strongly monotonic in a, and no maxi-
mum limited to 0 < a < 1 exists. Hence, no equilibrium
exists.

It can be seen that for some x, a best response does not
exist too; i.e., for every x, a close enough to 1 it must be that
x·V+(1−x)·r(c1, (a, 2−a)) is greater thanx·V2 +(1−x)·V ,
however there is still no maximum since a < 1, hence no
best response exists.


