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Abstract
Auction-based federated learning (AFL) is an im-1

portant emerging category of FL incentive mech-2

anism design, due to its ability to fairly and effi-3

ciently motivate high-quality data owners to join4

data consumers’ (i.e., servers’) FL training tasks.5

To enhance the efficiency in AFL decision support6

for stakeholders (i.e., data consumers, data owners,7

and the auctioneer), intelligent agent-based tech-8

niques have emerged. However, due to the highly9

interdisciplinary nature of this field and the lack10

of a comprehensive survey providing an accessible11

perspective, it is a challenge for researchers to enter12

and contribute to this field. This paper bridges this13

important gap by providing a first-of-its-kind sur-14

vey on the Intelligent Agents for AFL (IA-AFL)15

literature. We propose a unique multi-tiered tax-16

onomy that organises existing IA-AFL works ac-17

cording to 1) the stakeholders served, 2) the auction18

mechanism adopted, and 3) the goals of the agents,19

to provide readers with a multi-perspective view20

into this field. In addition, we analyse the limita-21

tions of existing approaches, summarise the com-22

monly adopted performance evaluation metrics,23

and discuss promising future directions leading to-24

wards effective and efficient stakeholder-oriented25

decision support in IA-AFL ecosystems.26

1 Introduction27

Federated Learning (FL) is a collaborative machine learning28

(ML) paradigm that is able to train useful models while re-29

specting user privacy and data confidentiality [Yang et al.,30

2019; Konečnỳ et al., 2016; Zhang et al., 2021]. FL has31

gained significant attention from academia [Yang et al., 2019]32

and industry [Liu and others, 2020; Liu and others, 2022a]33

alike, leading to a diverse range of techniques [Kairouz et al.,34

2021]. In FL, there are two types of participants: data con-35

sumers (DCs, who often perform the role of FL servers), over-36

seeing the distribution and aggregation of global FL mod-37

els, and data owners (DOs, who often play the role of FL38

clients), responsible for training the FL model using their39

local data. FL follows a distributed approach where each40

DO trains a local model on its private dataset, and shares it41

DATA OWNER

Owns useful 
data, potentially 

sensitive

Needs data to 
build AI models

AFL Ecosystem

AUCTIONEER

DATA CONSUMER

Oversights

Figure 1: An overview of the AFL ecosystem.

with the corresponding DC. The DC then aggregates the re- 42

ceived local models following an aggregation algorithm (e.g., 43

FedAvg [McMahan and others, 2017]) to obtain the global 44

model, which is then distributed back to the DOs for further 45

training until convergence criteria are met. This design en- 46

sures that private local data are not exposed to any party other 47

than the original owner, thus reducing privacy risk. 48

Despite these advantages, existing FL works generally as- 49

sume that all DOs agree to participate in the FL training pro- 50

cess when requested [Thi Le and others, 2021]. However, 51

in practice, DOs are self-interested entities who consider a 52

complex set of factors (e.g., costs, potential risks of privacy 53

exposure, expected utility gains) before deciding to join an 54

FL task. This has motivated the study of FL incentive mecha- 55

nisms [Khan and others, 2020], which aims to develop effec- 56

tive mechanisms that align the interests of DOs with the goals 57

of DCs. They play a crucial role in encouraging DOs to ac- 58

tively participate in FL and make valuable contributions, ul- 59

timately leading to improved performance and broader adop- 60

tion of FL in real-world applications. 61

Auction-based approaches have gained significant atten- 62

tion recently as an effective way to design FL incentive mech- 63

anisms. They offer a promising approach to motivating DOs 64

to participate in FL in a fair and efficient manner. Under the 65

typical auction-based FL (AFL) setting1, three key stakehold- 66

ers are involved: 1) DCs, 2) DOs, and 3) an auctioneer (as 67

illustrated in Figure 1). The auctioneer plays a crucial role 68

1A possible example open AFL marketplace can be the Hierar-
chical Auctioning in Crowd-based Federated Learning system [Gao
et al., 2023]: https://hacfl.federated-learning.org/.



in coordinating the auction process, while DOs and DCs pro-69

vide the auctioneer with their available data resources and bid70

values, respectively. The auction process as well as the entire71

AFL ecosystem center around the decision-making process72

of each stakeholder. The decisions made by each stakeholder73

impact the outcomes of AFL. To deal with the complexity, dy-74

namism and personal nature of the context and the decision-75

making process, intelligent agents are often adopted to pro-76

vide these stakeholders with AFL decision support, thereby77

inspiring the field of Intelligent Agents for AFL (IA-AFL).78

IA-AFL is highly interdisciplinary in nature. It requires79

expertise from machine learning, multi-agent systems, game80

theory and auction theory, etc. This makes it challenging81

for researchers new to the field to grasp the latest develop-82

ments. Currently, there is no survey paper on this impor-83

tant and rapidly developing field. To bridge this gap, we84

conduct a comprehensive survey of research works focusing85

on IA-AFL in this paper.2 We analyse the AFL ecosystem86

in detail, with a focus on the diverse stakeholders involved87

and their decision-making priorities. Based on this analy-88

sis, we propose a unique multi-tiered taxonomy of IA-AFL89

that organises existing works according to 1) the stakeholders90

served, 2) the auction mechanism adopted, and 3) the goals91

of the agents to provide readers with a multi-perspective view92

into this field. In addition, we analyse the limitations of ex-93

isting approaches, summarise the commonly adopted perfor-94

mance evaluation metrics, and discuss promising future di-95

rections towards effective and efficient stakeholder-oriented96

decision support in IA-AFL ecosystems.97

2 Preliminaries98

2.1 A Typical AFL Ecosystem99

As shown in Fig. 1, a typical AFL ecosystem involves three100

primary stakeholders [Tang and Yu, 2023c]: 1) DOs, who101

act as the sellers possessing potentially sensitive but valuable102

data and training resources; 2) DCs, who act as buyers of103

such data and training resources to build ML models; and 3)104

an auctioneer, overseeing the matching of DOs with DCs and105

providing essential governance oversight for the ecosystem.106

DCs submit their bidding profiles (including the bidding107

prices and their FL tasks) to the auctioneer. DOs submit their108

asking profiles (including the FL tasks they are able to join109

and their asking prices) to the auctioneer. The auctioneer de-110

termines the winners, and the corresponding market prices111

based on the submitted asking profiles and the bidding pro-112

files under a predefined auction mechanism, and informs the113

winners. The winning DCs then pay the DOs. Through such114

an auction process, each DC recruits DOs to join its FL task.115

Afterward, each DC orchestrates the FL model training pro-116

cess with its recruited DOs following an adopted FL protocol.117

2.2 AFL Stakeholder Concerns118

In the AFL ecosystem, the stakeholders play distinct roles119

with different interests and concerns.120

2Although some of the papers included in this survey do not ex-
plicitly mention agents, their focus on providing decision support for
stakeholders in AFL reflects their potential as useful building blocks
for realizing an agent-based AFL system.

The auctioneer’s role is pivotal, overseeing the auction 121

process and facilitating information flow between participat- 122

ing DOs and DCs. Its main focus is to maintain the sustain- 123

able operation of the AFL ecosystem by attracting and retain- 124

ing more participants, optimizing key performance indicators 125

for the entire ecosystem, and providing governance oversight. 126

Data consumers, acting as buyers in the auction market, 127

are primarily concerned with effective selection or bidding 128

for DOs to meet their key performance indicators (KPIs), 129

while staying within budget constraints. 130

Data owners, acting as sellers in the auction market, prior- 131

itize maximizing their monetary rewards. They are also keen 132

on safeguarding data privacy by optimizing data resource al- 133

location and the setting of reserve prices (i.e., the minimum 134

acceptable price for selling the corresponding data resources). 135

2.3 Terminology 136

For ease of understanding, we provide a brief overview of key 137

terminology adopted by the AFL field: 138

Commodity / data resources: In AFL, the term commod- 139

ity refers to the object being exchanged between DCs and 140

DOs, denoting a specific value for buying or selling. It can 141

represent a unit of data (e.g., a training sample), commu- 142

nication bandwidth committed by a DO, or a unit of com- 143

pute resource. In this paper, we use the terms data resources 144

and commodity interchangeably unless a specific distinction 145

is necessary. 146

Valuation: Valuation in AFL involves the assessment of 147

the monetary value of data resources. Different DCs and DOs 148

may assign value to data resources differently based on their 149

individual preferences. Valuation can be either private, undis- 150

closed to others, or public. 151

Utility: For DCs, utility is defined as the difference be- 152

tween their valuation of the auctioned data resources and the 153

eventual payment made for those resources. For DOs, util- 154

ity is defined as the difference between the total payments re- 155

ceived from DCs and the costs incurred for the data resources, 156

including communication and computation costs. 157

Social welfare (SW): SW is the sum of utilities for some or 158

all participants in an AFL ecosystem. It provides a measure 159

of the collective benefit derived from all transactions. 160

2.4 Types of Auction 161

AFL ecosystems can adopt various auction mechanisms 162

based on their specific application scenarios [Qiu and others, 163

2022], including 1) double auction, 2) combinatorial auction, 164

3) reverse auction, and 4) forward auction. Double auctions 165

[Friedman, 2018] accommodate multiple DOs and DCs, with 166

both sides submitting asks and bids to the auctioneer. Com- 167

binatorial auctions [De Vries and Vohra, 2003] are effective 168

when DCs bid for data resource bundles, ideal for acquiring 169

complementary data types. Reverse auctions [Parsons and 170

others, 2011] involve DOs competing for FL tasks, while for- 171

ward auctions involve DCs competing for data resources. 172

Winner determination and pricing methods in AFL auc- 173

tions fall into three categories [Tu and others, 2022]: 1) first- 174

price sealed-bid (FPSB) , 2) second-price sealed-bid (SPSB) , 175

and 3) Vickrey Clarke-Groves (VCG). Under FPSB, the high- 176

est bidder wins the auction and pays the bid price. The sim- 177



plicity of FPSB might lead to inefficiencies and overpayment.178

Under SPSB, the highest bidder wins the auction, but pays179

the second-highest bid price. SPSB encourages truthful bid-180

ding to reveal true item valuation. Under VCG, winners are181

determined by maximizing the total benefit, considering ex-182

ternalities. Payments are determined based on the value con-183

tributed by other bidders for efficient and accurate price dis-184

covery [Vickrey, 1961].185

3 The Proposed IA-AFL Taxonomy186

Based on the stakeholders, the types of auctions involved187

in AFL and their respective goals, we propose a taxonomy188

for the IA-AFL literature as shown in Figure 2. Specifi-189

cally, it first separates IA-AFL literature into data consumer-190

oriented, data owner-oriented, and auctioneer-oriented meth-191

ods. Since all auction mechanisms introduced in the last sec-192

tion can be adopted by the AFL process, we further clas-193

sify IA-AFLworks based on their respective adopted auction194

mechanisms. Then, as stakeholders can have different goals,195

we further divide IA-AFL works based on their objectives.196

This hierarchical taxonomy provides a clear overview of the197

current IA-AFL landscape.198

3.1 Intelligent Agents for Data Consumers199

Based on the adopted auction mechanism, DC-oriented200

IA-AFL works can be broadly categorized into two distinct201

groups: 1) those designed for reverse auctions, and 2) those202

designed for forward auctions. These agents are instrumental203

in facilitating strategic decision-making for DCs, ensuring ef-204

fective participation in the AFL market while maximizing key205

performance indicators (KPIs) derived from the collaborative206

FL model training process.207
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Figure 2: The IA-AFL taxonomy. DC, DO, SW and SC denote data
consumer, data owner, social welfare and social cost, respectively.

For Reverse Auction 208

Under reverse auction, existing methods assume that there is 209

only one DC and multiple DOs in the AFL marketplace. The 210

intelligent agent for the DC plays a crucial role in selecting 211

DOs. It makes decisions by evaluating DOs’ asking profiles, 212

assessing their potential contributions to the model, and align- 213

ing with the DC’s objectives. Existing IA-AFL works for 214

DCs under reverse auction can be broadly classified into two 215

categories based on their designed objectives: 1) social wel- 216

fare / social cost optimization approaches, and 2) DC KPI 217

optimization approaches. 218

Social welfare / social cost optimization: To optimize the 219

social welfare objective, [Jiao and others, 2020] first groups 220

DOs based on Earth Mover’s Distances (EMD) [Zhao and 221

others, 2018]. The DC then greedily selects DOs from each 222

group, determining payments based on marginal virtual so- 223

cial welfare density. To enhance social welfare, the authors 224

incorporate a graph neural network to manage relationships 225

among DOs, and use deep reinforcement learning to deter- 226

mine the winning DOs and their payments. In [Le and others, 227

2020], the workflow is similar, with a key distinction in the 228

formulation of the DO selection process as a social cost min- 229

imization problem. 230

However, these works primarily focus on DO selection 231

and payment determination over a single FL communication 232

round. In [Zhou et al., 2021], the DC is assisted in selecting 233

and paying DOs for different FL communication rounds. The 234

work decomposes the social cost minimization problem into 235

a series of winner determination problems (WDPs) based on 236

the number of global FL iterations. Each WDP is solved us- 237

ing a greedy algorithm to determine winning DOs, and a pay- 238

ment algorithm for computing remuneration to the winners. 239

In [Yuan and others, 2021], the focus is on social cost min- 240

imization over the long run. The proposed FLORA method 241

utilizes multiple polynomial-time online algorithms, includ- 242

ing a fractional online algorithm and a randomized rounding 243

algorithm, to select winning DOs and control the training ac- 244

curacy of the global FL model. It also includes a payment 245

algorithm to assist the DC in decision-making regarding DO 246

selection and payment determination. 247

Different from the above two methods, which are designed 248

for social cost minimization, [Wu and others, 2023] focuses 249

on social welfare maximization. To achieve this goal, the pro- 250

posed method follows deep reinforcement learning to select 251

DOs and determine their payments under the VCG auction. 252

Data consumer KPI optimization: In [Fan et al., 2020], 253

the proposed method DQDRA maximizes the DC’s valua- 254

tion by determining winning DOs and the corresponding pay- 255

ments with a monotone greedy algorithm after receiving ask- 256

ing profiles from all DOs. Unlike DQDRA, which requires 257

knowledge about the global distribution of all data for win- 258

ning DO determination, RRAFL proposed in [Zhang et al., 259

2021] leverages blockchain and reputation mechanisms in- 260

stead. Winning DOs are selected based on their respective 261

reputation, which are evaluated through historical contribu- 262

tions to the global FL model stored on the blockchain. Ex- 263

panding on this, [Zhang et al., 2022a] enhances RRAFL 264

by introducing a novel contribution evaluation method us- 265

ing weighted samples. This adds nuance to the evalua- 266



tion process, potentially offering a more sophisticated un-267

derstanding of individual DOs’ contributions. In [Zhang et268

al., 2022b], RRAFL is extended by segmenting FL train-269

ing tasks into multiple time steps based on global itera-270

tions, allowing adaptation to online learning applications.271

In [Zeng et al., 2020], the proposed method FMORE helps272

the DC select the top K DOs with the highest score us-273

ing the Lagrange multiplier method. [Batool et al., 2022;274

Batool et al., 2023] follow a similar method by incorporat-275

ing blockchains [Kang and others, 2020; Kim et al., 2019]276

and contract theory [Kang and others, 2019] to select DOs.277

The aforementioned reputation-based DO selection meth-278

ods do not explicitly consider the quality of the DOs, which is279

crucial for FL model performance. To address this limitation,280

[Deng and others, 2021] proposed FAIR, which integrates a281

quality-aware model aggregation algorithm with the reverse282

auction mechanism. FAIR determines winning DOs using283

a greedy algorithm based on Myerson’s theorem [Myerson,284

1998] to maximize the DC’s valuation.285

Unlike methods determining winning DOs and the cor-286

responding payments in one communication round with a287

given budget, [Yang and others, 2023; Tan et al., 2023;288

Tan and Yu, 2023] study how to allocate the DC’s budget289

across multiple global FL communication rounds. [Yang290

and others, 2023] proposed BARA, an online reward bud-291

get allocation algorithm based on Bayesian optimization.292

Considering the urgency of recruitment, [Tan et al., 2023;293

Tan and Yu, 2023] help the DC determine time-averaged op-294

timal budget allocation for DOs.295

Limitations: Existing works in this area often operate un-296

der the assumption of a monopolistic AFL market, where297

multiple DOs vie to join the FL training tasks of a single DC.298

However, this assumption diverges from the reality of practi-299

cal AFL marketplaces, where numerous DCs may compete to300

attract multiple DOs for their respective FL training tasks.301

For Forward Auction302

Works in this field focus on maximizing the utility of a given303

DC within an AFL marketplace, which often involves multi-304

ple DCs. In [Tang and Yu, 2023c], a utility-maximizing bid-305

ding strategy, FedBidder, is designed for the DCs. It leverages306

various auction-related insights (e.g., DOs’ data distributions,307

suitability to the task, DCs’ bidding success probabilities, and308

budget constraints). The study emphasizes the crucial roles309

played by the estimation of DOs’ utility and the appropriate310

winning function design in determining the optimal bidding311

function. To solve the optimal bidding function effectively,312

a utility estimation algorithm was proposed with two repre-313

sentative winning functions introduced, deriving two forms314

of optimal bidding functions for the DCs.315

However, this approach overlooks the intricate relation-316

ships among DCs, which can be simultaneously competitive317

and cooperative. To address this issue, researchers have ex-318

plored incorporating more than one agent for each DC. In319

[Tang and Yu, 2023a], the AFL ecosystem is modeled as a320

multi-agent system to guide DCs in strategically bidding to-321

wards an equilibrium with desirable overall system charac-322

teristics. The proposed approach, MARL-AFL, assigns two323

agents to each DC: 1) a bidding agent for determining bid324

prices, and 2) a bar agent for setting the bidding lower bound 325

for the corresponding bidding agent. The bar agent is in- 326

troduced to address potential collusive behaviors among bid- 327

ding agents, such as bidding with an extremely low bid price, 328

which can be detrimental to the health of the entire ecosys- 329

tem. Both the bidding agents and the bar agents are designed 330

based on deep Q-networks (DQN) [Mnih and others, 2015]. 331

In [Tang and Yu, 2023b], MultiBOS-AFL is proposed to 332

assist the DC in bidding for DOs in competitive AFL market- 333

places. Unlike FedBidder and MARL-AFL, which assume 334

that the entire team of DOs required for an FL task must 335

be assembled before training can commence, MultiBOS-AFL 336

helps the DC bid for DOs gradually over multiple FL model 337

training sessions. To achieve this goal, each DC is assigned 338

two agents: one for optimizing inter-session budget pacing, 339

and the other for optimizing intra-session bidding. 340

Limitations: In this area, existing studies often assume 341

that DOs arrive sequentially before the auction begins. How- 342

ever, real-world scenarios frequently involve DOs arriving in 343

diverse orders, either before or during FL training tasks. The 344

current body of research lacks robust solutions to navigating 345

these dynamic and evolving situations effectively. 346

3.2 Intelligent Agents for Data Owners 347

In AFL, DOs function as the sellers, offering their valuable 348

data resources to DCs. This transaction leads them to even- 349

tually become participants in the FL training processes ini- 350

tiated by various DCs, with the prospect of receiving mone- 351

tary rewards in return. Consequently, intelligent agents tai- 352

lored for DOs play a crucial role in providing guidance on 353

strategic decision-making related to the allocation of their 354

data resources and determining the asking profiles for these 355

resources. Their final objective is to optimize the monetary 356

profits derived from their involvement in AFL. 357

For Reverse Auction 358

Data owner energy cost minimization: In [Thi Le and oth- 359

ers, 2021], the data resource trading process between a data 360

consumer and multiple data owners is modeled as a reverse 361

auction. Upon receiving FL training task profiles from the 362

data consumer, which include the maximum tolerable time 363

for FL training, each data owner optimizes asking profiles. 364

These profiles, encompassing parameters like uplink trans- 365

mission power, local accuracy level, and CPU cycle fre- 366

quency, are fine-tuned iteratively to minimize energy costs. 367

Data owner utility maximization: In [Lu et al., 2023], 368

a within-cluster DO selection scheme was proposed for re- 369

verse auction to address the problem of uneven data resource 370

consumption in a given cluster. DOs determine bid prices 371

by maximizing their total utility. Similarly, [Le and others, 372

2020] also focuses on maximizing DO utility. However, un- 373

like [Lu et al., 2023] which solves the utility maximization 374

problem to obtain bid prices, [Le and others, 2020] aims to 375

derive asking profiles including CPU cycle frequency, uplink 376

transmission power and training costs, in order to maximize 377

utility. In [Zeng et al., 2020], when a DO receives an FL 378

training task and a scoring function from the DC, the pro- 379

posed method assists it in deciding whether to bid based on its 380

available data resources. If the DO chooses to bid, decisions 381



regarding the number of resources to allocate and the corre-382

sponding charges to the DC are made using Euler’s method.383

Limitations: To the best of our knowledge, only these four384

studies currently address the issue of agent-based DO deci-385

sion support. However, each of these works only concen-386

trates on a single aspect of a DO’s concerns. In practice, each387

decision made by a DO should encompass multiple facets si-388

multaneously to meet its KPIs. Focusing solely on one aspect389

may lead to sub-optimal solutions.390

3.3 Intelligent Agents for the Auctioneer391

In an AFL ecosystem, the auctioneer serves as the coordi-392

nator and administrator, overseeing the flow of information393

between DOs and DCs, and facilitating the trading processes.394

Therefore, intelligent agents designed for the auctioneer are395

pivotal in offering strategic guidance for matching DOs and396

DCs. The ultimate goal is to optimize the monetary prof-397

its derived from their engagement within the AFL ecosys-398

tem. Existing methods in this domain are designed for four399

main auction mechanisms: 1) reverse auction, 2) combinato-400

rial auction, 3) double auction, and 4) VCG/SPSB auction.401

For Reverse Auction402

Data consumer utility maximization: In [Seo and others,403

2021], the auctioneer, represented by the software-defined404

network controller, facilitates decision-making between the405

DC and DOs. It determines the minimum number of global406

communication rounds required to meet the quality require-407

ments of the FL model. This decision-making process occurs408

within the context of a reverse auction-based data trading sys-409

tem. Similarly, in [Seo and others, 2022], a software-defined410

network controller serves as the auctioneer, positioned be-411

tween the DC and DOs. The proposed method in this paper412

assists the auctioneer in making decisions during the selec-413

tion of winning DOs. The objective is to maximize the utility414

of the DC, via a greedy method.415

Limitations: Like the IA-AFL approaches designed for416

the DC under reverse auction, these methods also operate un-417

der the assumption of a monopolistic AFL market. This as-418

sumption might constrain the practical applicability of these419

methods in real-world scenarios.420

For Combinatorial Auction421

Social welfare maximization: [Xu and others, 2023] aims422

to maximize social welfare and protect the utility of the auc-423

tioneer. The approach involves two main stages: 1) the com-424

binatorial auction stage, where the platform selects winners425

who make the total utility of the platform and themselves426

greater than zero, and 2) the bargaining stage, where win-427

ners are classified into two categories with different payment428

methods after completing the training model. The goal is to429

ensure the utility of the auctioneer remains positive.430

Limitations: [Xu and others, 2023] operates under the431

premise of a monopoly AFL market, assuming a single plat-432

form orchestrating the auction processes. While this setting433

provides a basis for understanding, a critical challenge lies in434

expanding participation, particularly attracting more DOs to435

engage in AFL. Enticing a diverse range of participants and436

optimizing the platform’s functionality under more realistic,437

competitive scenarios remains an open area for exploration.438

For Double Auction 439

Under double auction settings, the auctioneer agent ulti- 440

mately coordinates agents serving DOs and DCs. Therefore, 441

they are treated as auctioneer agents by extension. 442

Data consumer utility maximization: FEST [Roy and 443

others, 2021] matches DOs and DCs with the goal of maxi- 444

mizing DC utility. This utility is a composite function involv- 445

ing the DC’s valuation for data resources, the DO’s asking 446

price, and the corresponding execution time and reputation 447

value. FEST assist DOs in determining winning candidate 448

DCs using a greedy approach, followed by helping DCs se- 449

lect DOs to maximize their utility. 450

Social welfare / social cost optimization: [Mai et al., 451

2022] assists the auctioneer in matching DCs and DOs, with 452

the aim of maximizing social welfare. DOs submit asking 453

profiles, and DCs submit bidding profiles to the auctioneer, 454

which, in turn, uses the Lagrangian function to perform 455

DO-DC matching. In [Wang and others, 2023], the focus is 456

on social cost minimization under double auction. The au- 457

thors formulate a nonlinear mixed-integer program for long- 458

term social cost minimization. They propose an algorith- 459

mic approach to generate candidate training schedules and 460

solve the problem using an online primal-dual-based algo- 461

rithm [Buchbinder and others, 2009] with a carefully embed- 462

ded payment design. 463

Limitations: Current methods predominantly operate un- 464

der a centralized framework, where a central server contin- 465

uously aggregates global system information and computes 466

optimal decisions for the auctioneer. While the merits of 467

a centralized architecture, such as rapid convergence and 468

global optimality, are evident, they come at the cost of signifi- 469

cant communication and computation overhead, especially in 470

large-scale AFL ecosystems. Whenever there are shifts in the 471

requirements of DCs, the auctioneer must collect extensive 472

information across the entire ecosystem and recompute deci- 473

sions. Moreover, in the event of hardware failures or attacks 474

on the auctioneer, the entire ecosystem can be compromised. 475

For VCG Auction 476

Social welfare maximization: FVCG [Cong and others, 477

2020b] helps the auctioneer determine the amount of accept- 478

able data to maximize its utility, factoring in data quality and 479

privacy cost from DOs. It adopts a composite neural network- 480

based payment function to derive payments for each DO, aim- 481

ing to maximize social welfare and ensure fairness among 482

DOs. Extending FVCG, [Cong and others, 2020a] introduced 483

PVCG, which incorporates a game-theoretical model for the 484

co-creation of virtual goods. PVCG helps the auctioneer 485

determine the acceptance of input resources from each DO 486

based on its asking profile, and imposes penalties if it fails to 487

deliver the claimed resources. The objective is to maximize 488

social welfare and mitigate information asymmetry. 489

Limitations: As the number of DOs increases, the need for 490

more effective and efficient models to learn how to compen- 491

sate DOs effectively becomes apparent for both FVCG and 492

PVCG. Furthermore, it is crucial to evaluate the effectiveness 493

of FVCG and PVCG in comparison to other sharing rules, 494

such as Shapley value [Liu and others, 2022b] and labour 495

union [Gollapudi and others, 2017]. 496



For SPSB Auction497

Data consumer utility maximization: In [Xu and oth-498

ers, 2021], a multi-bid auction mechanism is introduced to499

address bandwidth allocation challenges for self-interested500

DCs. The primary objective is to maximize the utility of DCs.501

Under this method, DCs submit bidding profiles specifying502

their requested bandwidth and unit price to the auctioneer.503

The auctioneer then allocates the bandwidth to DCs based on504

the market clearing price, and each DC incurs charges accord-505

ing to the SPSB auction mechanism.506

Data owner utility maximization: In [Lim and others,507

2020], the focus is on multiple DCs engaging in competi-508

tive bidding for data resources from a specific DO. The bids509

from DCs undergo a transformation, and the winning DCs510

are selected, with payments determined using the SPSB auc-511

tion mechanism. The overarching objective is to maximize512

the utility of the DO. [Ng and others, 2020a; Ng and oth-513

ers, 2020b] incorporate Unmanned Aerial Vehicles (UAVs) as514

wireless relays to enhance communication between DOs and515

DCs. The optimal coalitional structure between UAV coali-516

tions and DO coalitions is determined through the SPSB auc-517

tion, aiming to maximize the utility of the UAV coalitions.518

Limitations: Existing works in this area operate under519

the assumption that a DO can participate in at most one FL520

training task at any given time. In practice, DOs may have521

spare capacities to engage in multiple FL tasks concurrently.522

In such cases, resource allocation strategies should consider523

both the bandwidth and computing resources of the DOs.524

Exploring and adapting auction mechanisms to address the525

complexities arising from DOs’ simultaneous involvement in526

multiple FL tasks is an open research question.527

4 Evaluation Methodology528

To assess IA-AFL methods, a combination of theoretical529

analysis and experimental evaluation is commonly adopted.530

4.1 Theoretical Analysis531

Given the nature of the auction and the emphasis on incentive532

mechanisms in FL, IA-AFL methods are expected to attain533

certain desirable properties [Zeng and others, 2021; Qiu and534

others, 2022; Ali and others, 2021].535

1. Budget Balance (BB): The budget balance property536

should hold, i.e., the total payments for DOs must not537

surpass the budget allocated by the DCs.538

2. Collusion Resistant (CR): This property imposes that539

no subgroups of participants can achieve higher profits540

through collusion or unethical conduct.541

3. Pareto Efficiency (PE): IA-AFL methods must meet the542

PE requirement when maximizing the social welfare of543

the entire AFL ecosystem.544

4. Fairness: This property means that the entire AFL545

ecosystem should achieve a predefined fairness notion,546

such as contribution fairness, regret distribution fairness,547

or expectation fairness [Shi and Yu, 2023].548

5. Individual Rationality (IR): An IA-AFL method is549

deemed IR only if the profits for all participants are non-550

negative.551

6. Incentive Compatibility (IC) / Truthfulness: Achieving 552

IC/Truthfulness indicates that it is optimal for all partic- 553

ipants to truthfully declare their contributions and cost 554

types. Reporting untruthful information does not yield 555

additional gain. 556

7. Computational efficiency (CE): This property demands 557

that the incorporated agents must guarantee the comple- 558

tion of the auction process and payment within polyno- 559

mial time for operational efficiency in AFL. 560

4.2 Experimental Evaluation Metrics 561

Experimental evaluation plays a pivotal role in assessing and 562

validating the efficacy of IA-AFL methods. It is instrumen- 563

tal in gauging the performance of these agents under com- 564

plex settings. The following experimental evaluation metrics 565

are commonly adopted by existing literature to quantitatively 566

measure the effectiveness and impact of IA-AFL: 567

1. Quality-of-Experience (QoE). QoE is expressed as the 568

ratio between FL task completion time to the deadline of 569

the task. It measures the speed at which a DC receives 570

service from a DO, providing insights into the respon- 571

siveness and efficiency of the IA-AFL method. 572

2. Utility. It reflects the utility attained by DCs or DOs dur- 573

ing the successful execution of FL tasks. A higher value 574

indicates greater satisfaction with the received results, 575

offering insights into the effectiveness of decisions made 576

by the IA-AFL method. It can be expressed in various 577

forms (e.g., the averaged form or the summation form). 578

3. Task Completion Ratio. This metric is expressed as the 579

number of successful trades by DCs and is calculated 580

as the ratio of the total number of winning DCs to the 581

total number of DCs in the AFL marketplace. A higher 582

task completion ratio indicates that more FL tasks are 583

successfully allocated to DOs, providing a measure of 584

the efficiency of the IA-AFL method. 585

4. Payment. Payment for DOs quantifies the financial com- 586

pensation they received for the successful completion of 587

FL tasks. This metric reflects the economic incentive 588

and compensation provided to DOs, highlighting their 589

contributions to the AFL marketplace under the given 590

IA-AFL method. 591

5. Social welfare: Social welfare is a comprehensive metric 592

that considers the collective well-being or total utility of 593

all participants in the AFL marketplace, including both 594

DCs and DOs. It provides a holistic measure of the over- 595

all effectiveness and fairness of the AFL ecosystem by 596

considering the welfare of all stakeholders. 597

5 Promising Future Research Directions 598

Through our survey, it can be observed that AFL is still in its 599

early stages of development, with various challenges yet to be 600

addressed. This section delves into potential future directions 601

for this nascent and interdisciplinary field. 602

5.1 Dynamic Decision Update 603

Existing IA-AFL methods are generally static approaches, 604

represented by linear or non-linear functions. These functions 605



derive their parameters from historical auction data through606

heuristic techniques. However, these static methods face a607

challenge when applied to new auctions, as the dynamics of608

these auctions may differ significantly from historical data.609

The inherent dynamism of the AFL market poses a consid-610

erable obstacle for static bidding methods to achieve desired611

outcomes in novel auction scenarios consistently.612

To address this challenge, incorporating dynamic deci-613

sion updates for both DOs and DCs, in accordance with the614

principles of demand-supply economics [Nedelec and others,615

2022], is a promising direction. Such dynamic pricing ap-616

proaches extend the auctioneer’s role as well. A promising617

avenue for future exploration involves utilizing deep learn-618

ing approaches to comprehend and model the behaviors of619

both DOs and DCs. Integrating these learned behaviors into620

various decision-making processes holds the potential to sig-621

nificantly enhance their utilities, adapting to the evolving dy-622

namics of AFL marketplaces.623

5.2 Multi-Agent Systems624

AFL involves diverse stakeholders, each assuming distinct625

roles and harboring varied concerns. AFL, at its core, con-626

stitutes a multi-agent system (MAS), where intelligent enti-627

ties interact dynamically within a complex framework. As628

illustrated in [Tang and Yu, 2023b], the relationships among629

DCs add a layer of intricacy, characterized by the simulta-630

neous existence of both competition and cooperation. More-631

over, within this ecosystem, the decision-making process of632

each participant carries direct or indirect repercussions on the633

choices made by other involved parties. Hence, adopting a634

MAS perspective to conceptualize AFL to provide a holistic635

understanding of the intricate interplay among diverse entities636

is a promising research direction [Kraus and others, 2023].637

5.3 Preserving Privacy and Improving Security638

Most existing auction-based mechanisms involve third-party639

entities, such as edge servers acting as auctioneers to manage640

each auction process. However, relying on third-party entities641

raises concerns about security and potential privacy breaches642

[Tang and Yu, 2022]. To address these challenges, several643

studies, including [Batool et al., 2023; Zhang et al., 2021;644

Batool et al., 2022], utilize blockchain technology to safe-645

guard trading information against tampering by malicious en-646

tities. However, implementing an auction algorithm within a647

blockchain network necessitates sharing private information648

among stakeholders, potentially giving rise to privacy con-649

cerns [Tang and Yu, 2022]. Moreover, in most existing works,650

DOs participate in the auction process without directly dis-651

closing their private information, potentially dampening the652

enthusiasm of DOs. Therefore, a critical challenge arises in653

ensuring the security and reliability of auction mechanisms,654

while minimizing the risk of privacy leakage. In addition,655

it is essential to develop strategies to prevent malicious edge656

servers from launching attacks on DOs [Lyu et al., 2020].657

5.4 Online Auction Mechanisms658

The current paradigm of IA-AFL, rooted in traditional auc-659

tion methods, predominantly operates in an offline mode.660

This implies that the initiation of auctions relies on having661

a sufficient number of available bidders. For instance, in 662

[Zeng et al., 2020], the model aggregator initiates the pro- 663

cess of determining winners once a satisfactory number of 664

bids from DOs is received. In such offline auctions, both the 665

DOs and the DCs may experience prolonged waiting times, 666

even if they do not emerge as the eventual auction winners. 667

This can discourage potential participants from actively en- 668

gaging in the AFL marketplace. In contrast, online auction 669

[Zhang and others, 2020] empowers the auctioneer, DCs and 670

DOs to make real-time decisions, such as selecting winners 671

and determining payments, as soon as a participant joins the 672

auction. Online auctions offer the advantage of overcoming 673

time and space constraints, ultimately resulting in cost sav- 674

ings. Therefore, online auction is a promising research direc- 675

tion for designing stronger incentive mechanisms in AFL. 676

5.5 Efficient Contribution Evaluation Methods 677

A crucial phase in the auction process involves the selec- 678

tion of the winning DOs, which heavily relies on evaluating 679

the contributions of each DO. The prevailing approach em- 680

ployed by existing IA-AFL methods centers on contribution 681

evaluation methods based on Shapley values. However, as 682

highlighted in [Liu and others, 2022b], methods grounded in 683

Shapley values are often time-consuming, posing a challenge 684

to the computational efficiency when the system is scaled 685

up. Furthermore, these methods operate under the assump- 686

tion that DCs and other participants will truthfully assess the 687

contribution of each DO, introducing a potential limitation 688

in scenarios where honesty cannot be guaranteed. Hence, 689

exploring alternative, more efficient contribution evaluation 690

methods is a promising research direction to enhance the ef- 691

ficacy of IA-AFL methods. 692

5.6 Explainable AFL 693

As indicated by [Tang and Yu, 2022], explainability is an im- 694

portant aspect for auctions. Therefore, in the realm of AFL, 695

an intriguing future direction is the advancement of Explain- 696

able AFL. This forward-looking approach entails the inte- 697

gration of mechanisms geared towards augmenting the trans- 698

parency and interpretability of both the auction processes and 699

federated training processes [Li et al., 2023]. The implemen- 700

tation of explainability in AFL holds the potential to foster 701

heightened levels of trust, accountability, comprehensibility 702

and auditability regarding the decision-making processes in- 703

volved in both the auction and the federated training phases. 704

6 Concluding Remarks 705

In this paper, we conduct a comprehensive review of IA-AFL 706

methods through a unique multi-tiered taxonomy that organ- 707

ises existing works according to 1) the stakeholders served, 708

2) the auction mechanism adopted, and 3) the goals of the 709

agents. Furthermore, we critically analyze the limitations of 710

current approaches, outline commonly utilized performance 711

evaluation methodologies, and deliberate on promising future 712

directions. To the best of our knowledge, it is the first survey 713

on IA-AFL, providing researchers with an accessible guide 714

into this interdisciplinary field. 715
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