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Abstract
In this paper we present SNACS, a novel method for creating Social Narratives that can be Adapted using
information from Crowdsourcing. Previous methods for automatic narrative generation require that the
primarily author explicitly detail nearly all parts of the story, including details about the narrative. This
is also the case for narratives within computer games, educational tools and Embodied Conversational
Agents (ECA). While such narratives are well written, they clearly require significant time and cost over-
heads. SNACS is a hybrid narrative generation method that merges partially formed preexisting narratives
with new input from crowdsourcing techniques. We compared the automatically generated narratives with
those that were created solely by people, and with those that were generated semi-automatically by a state-
of-the-art narrative planner. We empirically found that SNACS was effective as people found narratives
generated by SNACS to be as realistic and consistent as those manually created by the people or the nar-
rative planner. Yet, the automatically generated narratives were created with much lower time overheads
and were significantly more diversified, making them more suitable for many applications.
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1 Introduction

Narratives correlate and relate events in our world and represent an important part of human ex-
perience. Family members and friends share their experiences via stories. Teachers and leaders
tell stories to convey ideas while entertainers tell stories for fun. There is a growing need for con-
versational agents to understand and validate narratives in settings as diverse as military training,
interactive computer games, elderly companion agents and educational, pedagogical and tutoring
agents [14, 16, 19, 20, 23, 28, 30].

Due to the significance of this problem, many studies have analyzed storytelling, automatic story
generation and interactive narratives. Early works considered a whole story creation without getting
any real-time input from the user [16, 28], while later works focus on interactive narratives where
the user is part of the story and can affect the plotline [5, 20, 21, 23, 30]. Some previous works
use hybrid methods whereby a predefined plot is created and an autonomic agent can later add to or
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adapt the plot in real-time [19, 22]. However, these studies focus on the general plot of the story but
not on the story’s details, which were almost exclusively manually created by content experts.

Our goal is to generate realistic narratives as easily and quickly as possible, but with varied con-
tent. The narratives we create must be of sufficient quality that they be believable, and thus be useful.
Specifically, we present SNACS, an algorithm for generating everyday, social narratives that is cus-
tomized for a specific storyteller and narrative type. The goal is for SNACS to generate everyday,
social narratives that are (a) reasonable (that match the storyteller profile and the input constraints
and limitations), (b) consistent (does not contain any contradictions) and (c) realistic (does not raise
doubts about the credibility of the storyteller and is compatible with common knowledge implica-
tions).

As is the case with several recent works [11, 13, 19, 22], SNACS’ algorithm implements a
hybrid method which constitutes a “fill and adjust" semi-automatic narrative generation method.
However, unique to our work, we add content as follows: We start by generating a dataset of daily,
social narratives from Amazon Mechanical Turk workers using a semi-structured form. The dataset
contains a collection of these acquired narratives written in natural language along with key attributes
from within the narrative and demographic data of the worker. SNACS is a novel algorithm that
decides how to use this information dataset in order to output a personalized narrative by adjusting
its content according to the requested needs of a specific situation. This paper focuses on describing
how the SNACS algorithm operates.

We tested SNACS on four types of social narratives, where the first two types were related
to entertainment activities – going out to see a movie or eating at a restaurant, and the other two
types were related to errand activities – buying groceries or going to the dry cleaners. We present
results that show that SNACS produces narratives which are as reliable, consistent and realistic as
the original narratives and a previously defined planning-based approach [17, 18]. Yet our narratives
were easier to generate and were judged to be significantly more diversified than the planning-based
approach.

2 SNACS Overview, Definitions and Algorithm

We propose and build a system which generates new everyday social narratives using previously
stored narratives collected using crowdsourcing techniques. To help clarify and illustrate SNACS’
definitions and the algorithm flow, please refer to motivating example 1, a narrative which was
generated by SNACS and example 2, the narrative upon which SNACS was based. In example 1,
we wish to provide a believable original narrative for a 31-year-old female, who is single and has no
children. SNACS generated this narrative based on the narrative in example 2 which was written by
a 26-year-old female, who is married and has one child.

I Example 1. : “My sister, my nephew and I went to eat at a restaurant on Friday evening. We
went to the nearby city and ate at “Maggiano’s Little Italy". This restaurant is one of our favorites
so we go there often. Walking in, everything smelled so good and we were greeted at the door and
promptly seated since we had called ahead of time. Our waiter was nice and we ordered a nice glass
of wine and juice for my nephew. We ordered bruschetta and ordered our main course pasta dishes.
My nephew had some mac and cheese. It was very relaxing and the food was amazing. I love going
to “Maggiano’s Little Italy".

I Example 2. “My husband and I went to Olive Garden with our son. This was this past weekend.
We went for dinner on Saturday night. We didn’t want to cook and wanted to get out of the house.
Walking in, everything smelled so good and we were greeted at the door and promptly seated since
we had called ahead of time. Our waiter was nice and we ordered a nice glass of wine and juice for
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my son. We ordered bruschetta and ordered our main course pasta dishes. My son had some mac
and cheese. It was very relaxing and the food was amazing. I love going to Olive Garden."

In this section, we describe how this and other narratives can be generated. Note that while both
narratives are similar in some ways (e.g. both are narratives about going to restaurants, the lengths of
the stories are similar, and both children had mac and cheese), several key differences exist between
stories (e.g. one story refers to a person’s son, the names of the restaurants are different, and were
visited at different times). To explain the process by which some details are retained and others are
tailored to the new situation, we begin by providing definitions for SNACS’ algorithm. We then
describe how information provided through crowdsourcing is used to create a semi-natural language
dataset. Last we describe how this dataset can be used to generate a believable narrative to a new
storyteller, given her demographic properties.

2.1 Definitions

Throughout this paper, we use the following terms to describe the algorithms that we developed. We
notate original to refer to elements from the source story upon which we base the new narrative. We
notate generated for elements related to the narrative that we wish to create. We use examples 1 and
2 to illustrate the definitions and accordingly example 1 is the generated narrative while example 2
is the original narrative.

Narrative Dataset(DS) - is a collection of narrative records R for a specific narrative
type, such as see-a-movie or eat-at-a-restaurant.
Example 2 is an instance of such a record within DS.

Narrative Record (R) - is a 3-tuple <P,A,S> where:
(1) P is the storyteller profile.
(2) A is the narrative attributes vector.
(3) S is the narrative natural language presentation.

A detailed description of the three fields in R immediately follows. The key to the SNACS’
algorithm is how to best select the most appropriate original narrative record from within the
entire set of DS. For that every record R is also associated with a tagging vector named ILV
(described below), which is the base of the SNACS’ selection mechanism. The original narrative
record is then modified to create the generated narrative record.

Storyteller Profile (P) - describes the storyteller’s properties and consists of gender,
age, personal status and number of children.

In examples 1 and 2, the original storyteller profile was: Female, age 26, Married, one child, and
the generated storyteller profile was: Female, age 31, Single, no children.

Narrative Attributes Vector (A) - contains a vector of attributes which accompany
the narrative. It contains general attributes such as participants, a day, part of day, duration and
location. This vector also contains information specific to the narrative domain. It can contain
optional values, and thus can be full or partial. Examples of optional values in the restaurant
narrative include: location, part of day and participants (e.g. a person can eat at a restaurant
alone, but can also go with a spouse, friend or children).

For example, within examples 1 and 2 above, the restaurant narrative attributes are day, part
of day, restaurant name, restaurant type, location and participants. Thus, we represent the
original narrative attributes vector as: <day (Saturday), part of day (night), restaurant name
(Olive Garden), restaurant type (Italian American cuisine), location (downtown) and participants
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(spouse and son)>. The generated narrative attributes vector is: <day (Friday), part of day (even-
ing), restaurant name (Maggiano’s Little Italy), restaurant type (Italian American cuisine), loca-
tion (nearby city) and participants (sister and nephew)>.

Natural Language Narrative Presentation (S) - contains a detailed descrip-
tion of an everyday, social activity written in natural language. The natural language (NL)
presentation is composed of three parts:
(1) The narrative introduction - which describes the main facts of the activity, such as who
went, when, what are the main object names (which movie/restaurant), where and why.
(2) The narrative body - which describes the experience in detail, what was the course of events
and what happened during the experience.
(3) The experience perception - which describes how good or bad the experience was from
the storyteller’s perspective.

We intentionally split the social activity’s detailed description into these three parts. This semi-
structured natural language writing is very applicable when describing social, everyday situ-
ations and and it also centralizes most of the event specific details in the introduction part. This
facilitates us to adjust the narrative to a new storyteller profile and attributes vector during the
narratives generation.

The original narrative presentation in example 2 is composed of the following three parts:
(1) The narrative introduction - “My husband and I went to Olive Garden with our son. This was
this past weekend. We went for dinner on Saturday night. We didn’t want to cook and wanted to
get out of the house."
(2) The narrative body - “Walking in, everything smelled so good and we were greeted at the door
and promptly seated since we had called ahead of time. Our waiter was nice and we ordered a
nice glass of wine and juice for my son. We ordered bruschetta and ordered our main course
pasta dishes. My son had some mac and cheese."
(3) The experience perception - “It was very relaxing and the food was amazing. I love going to
Olive Garden."

Logical Constraints and Common-Sense implications (CS) - contains a set
of handwritten, logical rules which the generated narrative should fulfill in order to be reason-
able, consistent and realistic. For example:
(a) If the activity occurs late at night, then it shouldn’t include small children.
(b) For the see-a-movie activity, the participants should include children if the selected movie
type is a children’s movie.
(c) The storyteller’s profile should match the activity’s participants.
Note that we assume that only the generated story need worry about CS, as we assume that the
records within DS that were generated through crowdsourcing already fulfill these requirements.

Similarity Attributes Vector (SA) - is a vector of N selected attributes from the
storyteller’s profile and narrative attributes vector and is defined as SA = 〈SA1, . . . , SAN 〉.
SNACS uses this vector to assign values for attributes within a generated narrative as we will
explain in this paper.
To generate Social Narratives, SNACS uses a vector of 7 (N=7) known attributes values. These
7 attributes are: gender, age, number of children, personal status, participants, type and part of
day. Note that these 7 attributes include all of the profile information attributes (P), but only a
subset of the narrative attributes (A).

Similarity Level (SL) - we defined three similarity levels: same, similar and other.
We coded these similarity levels as 1, 2 and 3 respectively.
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Importance Level Vector (ILV) - a vector ILV contains N values, corresponds to the
vector SA, and is defined as ILV = 〈ILV 1, . . . , ILV N 〉. Each value in ILV is a value SL
and is used to represent the importance of the compatibility of a given attribute SAi within the
narrative body and the experience perception parts of the narrative.

Within SNACS, every record R within the dataset DS has a vector ILV. These values control
how much importance should be given to having similarity between the original and generated
narratives. Accordingly, if a given attribute within a narrative R can be changed without violating
any common sense implications (CS), then the value for SAi is other. At the other extreme, if
that attribute is critical and even small variations can make the story implausible, then the value
for SAi is same. As we will see in the next section, SNACS considers two ways in which the
vector ILV can be built for every record – either a fixed value across all records within DS for
a narrative type (which we will call SNACS-Bst) or utilizing a content expert to manually tag
every record within DS (which we will call SNACS-Tag).

The fixed (automatic) ILV contains the same value for the gender attribute and a similar value
for all of the other attributes, i.e. <1,2,2,2,2,2,2>. For the narrative in example 2, the manual ILV
is <3,3,3,3,2,1,2>, i.e. <gender (other), age (other), number of children (other), personal status
(other), participants (similar), type (same), part of day (similar)>. Note that the type attribute
got the same value (which means a specific detail) as the narrative contains the sentence “We
ordered bruschetta and ordered our main course pasta dishes."

Matching Level Vector (MLV) - a vector MLV contains N values, corresponds to the
vector SA, and is defined as MLV = 〈MLV 1, . . . , MLV N 〉. Each value in MLV is a value
SL and is used to represent the matching level between the original and generated values of a
given attribute SAi. Within SNACS, we built a comparison method for each attribute, which
gets as input two values and returns one of the three similarity levels, SL. In case one of the
values is missing, it returns the similar value, as we assume SNACS will fill this attribute with a
similar value. As we will see in the next section, SNACS uses the vector MLV to select the best
candidate narrative record R from the DS, in both the SNACS-Bst and SNACS-Tag variations
of the algorithm.

For example, we consider the number-of-children attribute to be the same if the difference
between the original profile and the generated profile is 1 or less, similar if the difference is
less than or equal 3 and other if one person has children and the other does not or when the
difference is greater than 3.
The MLV between examples 1 and 2 will be <1,3,3,3,2,1,2>, i.e. <gender (same), age (similar),
number of children (other), personal status (other), participants (similar), type (same), part of
day (similar)>.

Compatibility Measure (CM) - The novelty of SNACS is its ability to generate new
narratives based on original, acquired narratives. SNACS uses this measure to select the best
candidate for the given storyteller profile and the attributes vector.
The compatibility measure CM of a narrative record R, given the vector ILV, a storyteller profile
P and a (partial) attributes vector A, is calculated as a weighted sum of scores that depends on
the values of the given ILV and the calculated MLV. We describe this calculation later in this
section.

The Problem Statement Given these definitions, we describe how to generate a narrative,
S, written in natural language. Narrative S is built from a storyteller profile P, a (partial) vector of
attributes A (e.g. time, location and participants) and a set of logical implications CS (data constraints
and common knowledge implications). Narrative S must not only be written in natural language but



6 Social Narrative Adaptation using Crowdsourcing

must also be:
(a) reasonable (it matches the storyteller profile and the input attributes),
(b) consistent (does not contain any contradictions) and
(c) realistic (does not raise doubts about the credibility of the storyteller and is compatible with
common knowledge implications).

2.2 The SNACS Algorithm

The key to SNACS’ success is having a varied set of narrative records within DS from which it
can generate new narratives. We used Amazon Mechanical Turk (http://www.mturk.com/), a crowd-
sourcing web service that coordinates the supply and demand of tasks which require human intel-
ligence to create DS. Amazon Mechanical Turk (AMT) has become an important tool for running
experiments with human subjects and was established as a viable method for data collection [1, 15].
Our previous experience in running experiments on AMT has demonstrated that this is an effective
medium for collecting data about various tasks [2, 3].

We crowdsourced the creation of DS as follows: We built a dedicated, semi-structured question-
naire on AMT to collect the narrative records - the profile, P (gender, age, personal status and number
of children), the narrative attributes vector, A (story attributes) and the narrative presentation in nat-
ural language S. In this questionnaire the AMT workers were first asked to provide their profiles.
Then, the workers were asked to describe daily, social narratives in natural language in as much de-
tail as possible, according to the the three narrative parts - introduction, body and perception. Lastly,
the workers were presented with a list of specific questions used to collect the narrative attributes
vector, such as “What was the name of the movie/restaurant?", “With whom did you go?" and, “on
what day?". The completed record was then stored at the narratives dataset. As we receive new
narratives as input from crowdsourcing, we store every record for a given type of narrative (e.g. go-
ing to a movie or eating at a restaurant) within the dataset DSk for that story type. To demonstrate
the generality of SNACS, we created four such datasets (k=4) – see-a-movie, eat-at-a-restaurant,
buying-groceries and dry-cleaning. We crowsourced 10 narrative records for each narrative type.

Once we wish to generate a new narrative for a listener (user) for a new storyteller profile,
we must select the most appropriate narrative record (the original narrative) from DS given that
storyteller’s profile. We then generate the missing narrative attributes in the narrative attributes
vector according to the new storyteller and the chosen record. Finally, we generate the narrative’s
natural language presentation for the given storyteller profile and the generated attributes vector
based on the original chosen narrative’s natural language presentation. The process for these steps
is formally presented as a SNACS’ algorithm and further described later in this section.

The input and output SNACS gets as input from the listener (user) a storyteller profile
P and a vector of optional attributes A (such as participants, or the date). It returns as output a new
narrative record NR which contains a reasonable, consistent and realistic narrative presentation S
written in natural language.

The algorithm’s logical process The algorithm first selects a candidate narrative
record from the dataset (line 1). We present three variations of this selection process below. Then,
SNACS completes the missing narrative attributes (line 2). SNACS generates attributes which are
similar to the selected, original narrative attributes and matches them to the new storyteller profile.
It starts with the participant’s generation, who went and how many people participated in the event.
It generates the objects’ names (movie, restaurant, location) and time frame attributes. For example,
if in the original narrative someone went to see a children’s movie with his daughter and the new
storyteller has no children, the algorithm can choose to include his niece/nephew among the parti-
cipants. Next, the algorithm generates the narrative’s natural language presentation. First, it replaces
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Algorithm 1 An Algorithm to create Social Narratives through Adaptation of Crowd-Sourcing nar-
ratives (SNACS)
Require: Storyteller profile P and a (partial) narrative attributes vector A
Require: Logical common knowledge constraints CS
Require: Narrative dataset DS
Ensure: Reasonable, consistent and realistic narrative record R

1: Select original candidate narrative record OR from dataset DS based on P and A
2: Create a new narrative attributes vector NA and complete it according to P, A, CS and OR
3: Create a new narrative record NR from OR, P and NA
4: Replace the original content of the introduction (first part) in NR with a new generated introduc-

tion based on P and NA
5: Adjust the second and third parts (the body and perception) in NR
6: return The updated NR

the original narrative introduction (line 4), i.e. its first part (who went, when, where, why), with a
newly generated introduction according to the new profile and the new vector of attributes. This is
done by using several predefined Natural Language Generation (NLG) templates with parameters as
we describe later in this section.

Finally (line 5), SNACS applies some adjustments to the body and perception parts of the nar-
rative’s natural language presentation (the second and third parts). This is done by replacing the
references of the original attributes’ vector to the new corresponding narrative attributes’ vector. In
our example, the original participants were a husband and son where the generated participants are
sister and nephew; and the original restaurant’s name was “Olive Garden" where the generated res-
taurant’s name is “Maggiano’s Little Italy". The SNACS algorithm will replace the reference of My
son with My nephew and the reference of Olive Garden with Maggiano’s Little Italy in the fol-
lowing narrative body and perception: “...We ordered bruschetta and ordered our main course pasta
dishes. My son had some mac and cheese. It was very relaxing and the food was amazing. I love
going to Olive Garden."

Original narrative selection We implemented three variations of the SNACS al-
gorithm which differ in how the original candidate narrative record is chosen (at line 1): SNACS-Any,
SNACS-Bst, SNACS-Tag.

The SNACS-Any variation is a baseline measure that randomly chooses one narrative record
from DS. No further logic is performed to check how appropriate that choice is. In contrast, both
the SNACS-Bst and SNACS-Tag variations use a compatibility measure (CM) previously defined.
In both of these variations, this measure is used to select which candidate from among all records in
DS will serve as the base for the generated narrative. As such, the record with the highest CM value
is chosen as the original record.

However, these two variations differ as to how the importance level vector (ILV) is generated.
Within the SNACS-Bst variation, the algorithm uses the a fixed (automatic) ILV <1,2,2,2,2,2,2> for
the CM calculation. In contrast, in the SNACS-Tag variation, a content expert manually tags every
record within DS to create the vector ILV of the importance of every attributes. Referring back
to example 2, the expert tagging generates an ILV of <1,3,3,3,2,1,2>. Note that the SNACS-Tag
variation is much more time consuming than SNACS-Bst. As our results will show in Section 4,
SNACS-Bst and SNACS-tag often choose the same record to serve as the base of the narrative.
This indicates that we can use the much simpler set values in SNACS-Bst and avoid the time of
manually tagging the narratives’ attributes. Within the SNACS-Bst and SNACS-Tag algorithms
a compatibility measure (CM) is then used to select which record in DS will serve as the original
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narrative. We use 3x3 matrix scores for all the possible combinations of ILV i and MLV i values.
For each narrative record R, the algorithm first calculates the MLV for the given storyteller’s profile P
and input attributes vector A. It then calculates the record’s compatibility measure CM as a weighted
sum of the corresponding score from the 3x3 matrix based on the ILV (fixed or manual) and the
calculated MLV values. Finally, it returns the candidate with the highest compatibility measure for
the requested storyteller’s profile and the generated narrative attributes vector.

The narrative introduction generation We generate the narrative introduction
(at line 4) using SimpleNLP [9], a Natural Language Generation (NLG), template-based surface
realization. Realization is a subtask of NLG, which involves creating an actual text in a human
language from a syntactic representation. SimpleNLG is an NLG system that allows the user to
specify a sentence by providing its content words and its grammatical roles (such as the subject or
verb). SimpleNLG is implemented as a Java library and it allows the user to define flexible templates
by using programming variables in the sentence specification. The variable parts of the templates
could be filled in with different values. We had a few NLG templates for each narrative type, which
were randomly chosen during the introduction generation. For example, two of the NLG templates
we use to build a narrative introduction for the see-a-movie narrative are:
(a) Last 〈time〉 I went to a movie with my 〈with〉. We went to see the movie 〈movie〉 at 〈theater〉.
(b) My 〈with〉 and I went to see the movie 〈movie〉 on 〈time〉. My 〈with〉 had seen the trailer and
wanted to see this movie ever since.
Each template can generate a few variations according to the chosen attributes. For example, the first
part of above template (a): “Last 〈time〉 I went to a movie with my 〈with〉" where the participants
are a wife and son and the time is Sunday afternoon, can generate a few variations, such as:
(a) Last Sunday I went to a movie with my family.
(b) Last weekend I went to a movie with my family.
(c) Last Sunday afternoon I went to a movie with my wife and my son.

3 Comparison with a State-of-the-Art Generator

In order to validate the significance of SNACS, we implemented a planning-based algorithm nar-
rative generator for the see-a-movie and eat-at-a-restaurant narratives. One of the most common
approaches for narrative generation is planning-based story generation systems [16, 23, 21, 30, 5].
The planning-based approach uses a causality-driven search to link a series of primitive actions in
order to achieve a goal or to perform a task. For the domain of narratives of every day activities,
hierarchical scripts can capture common ways to perform the activity. Therefore, we implemented
the planner-based generator using a Hierarchical Task Network (HTN). HTN is one of the best-
known approaches for modeling expressive planning knowledge for complex environments. It is a
natural representation for domains where high-level tasks are decomposed into simpler tasks until a
sequence of primitive actions solving the high-level tasks is generated. We used the state-of-the-art
SHOP2 planner [18], a well known HTN planner, which has been evaluated and integrated in many
real world planning applications and domains including: evacuation planning, fighting forest fires,
evaluation of enemy threats and manufacturing processes [17].

Several key similarities and differences exist between generating narratives with SNACS and
using any planner, such as SHOP2. First, in both implementations, we assume that the storyteller’s
profile (P) and a partial vector for A are given. Additionally, we assume that along with P and
A, a set of logical constraints (CS) exists that constrains how any narrative can be built, and that
Natural Language Generation (NLG) templates will assist with creating the narratives’ introduction.
However, key differences exist between the Planner and SNACS regrading how the planner will
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choose the missing narrative attributes and descriptions within the body and the perception of the
narrative as we now detail.

Specifying the Planner Input The HTN planner domain is built according to a plot
graph of basic actions. A plot graph [31] is a script-like structure, a partial ordering of basic ac-
tions/events that defines a space of possible action/event sequences that can unfold during a given
situation. For example, the basic actions for see-a-movie include: travel to theater, choose a movie,
buy tickets, buy snacks, find seats, see the movie and talk about movie. In our implementation
of SHOP2, we manually built the graph plots for two narrative types – see-a-movie and eat-at-a-
restaurant. As is the case in SNACS, the planner algorithm starts by filling in the attributes vector
(A) according to the logical constraints (described below) and then it searches for a valid plan for
the given storyteller profile (P) and the narrative attributes vector (A). As we wanted to get a richer
narrative which includes a detailed description of an everyday, social activity written in natural lan-
guage, we gave the planner an option to tailor natural language descriptions in the basic actions
portion of the narrative, as we describe below. Note that in the SNACS algorithm, this step was not
necessary as we automatically got the narrative’s detailed descriptions from the original narrative.
For example, for the “Buy Snacks" action within the see-a-movie narrative type, we gave the planner
an option to choose one of the following descriptions:

We smelled the popcorn and went to buy some.
We went to get popcorn but it was too expensive.
We got soda and popcorn from the concession stand.
We bought some popcorn and drinks and were annoyed at how expensive it was.
No matter what the price, I just can’t see a movie without a big tub of popcorn.
Snacks at a movie are a complete waste of money! I just bring a snack from home and save the
money.
We decided to buy a large soda to stay cool because the air conditioning wasn’t working in the
movie theater.
Though I am supposed to be on a diet, I just couldn’t resist buying a few chocolates to eat during
the movie.

We defined for each basic action, we defined a set number, 10-15, of different descriptions that
were tailored to the specific narrative. These descriptions were manually handwritten by two experts.
These experts needed approximately one hour (half an hour per expert) to write the set of descriptions
for each basic action option. The experts’ data insured that the implemented SHOP2 planner had a
variety of descriptions with which to build narratives. Part of these descriptions were also manually
tagged by the system’s designer with specific tags, such as movie or restaurant types. Note that this
tagging is part of the manually supported process needed by this approach in addition to the time
spent by the content experts. This tagging gave the generator an option to choose between a generic
description which can be associated with any movie/restaurant type or a specific description which
can be associated with the current selected movie/restaurant type. For example, for the “Talk about
Movie" action we used both generic descriptions, such as:

It was a nice movie though the end was a bit disappointing.
I enjoyed the movie though there was a lot of noise from the back seats during the show.
It was a refreshing and interesting movie even though it was too long for my taste.
The movie wasn’t bad. While I have seen better movies, it was overall a nice way to spend an
evening.
The movie was very nice. I arrived not expecting much and really enjoyed it.

and specific descriptions per movie type, such as
It was the most stunning film, filled with action and spectacular effects. (action movie)
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I enjoyed the movie. A nice story and very moving. The film was very dynamic, constantly
evolving and interesting. (dramatic movie)
The movie was so funny I couldn’t stop laughing. (comedy)
I highly recommend this film to all ages; whether you are a kid or an adult you will find enjoy-
ment in this film. (children’s movie)

The HTN generator flow The SHOP2-based narrative generator starts filling in the miss-
ing attributes vector of the narrative for the given storyteller profile. As the SHOP2-based narrative
generator isn’t based on an original narrative as in the SNACS algorithm, it uses random selection
when there are no logical constraints. The planner implementation first selects the timeframe (when).
Next, it chooses the participants, who went and how many people participated in the event, according
to the given storyteller profile, the selected time frame and the logical constraints. For example, as in
SNACS, if the selected time is night, the narrative planner will not choose children as participants.
Lastly, it chooses the objects’ names (movie, restaurant, location) and the activity reason (why). In
this step, the planner also considers the logical constraints, such as don’t choose a children’s movie
if the participants don’t include a child. Once it has all of the activity attributes’ values, it looks
for a valid the plan according to the domain plot graph. When it has several options from which to
choose, it uses a random tie-breaker to select one option, whether it is between different branches of
the plot graph or between the basic action descriptions.

The HTN generator output It is important to note that the output of this planning al-
gorithm is not natural language. The planner algorithm returns as output a raw, semi-structured
narrative plan which can been seen (partially) below:
(detail action p2 went-to-watch-a-movie)
(detail profile p2 (female 28 married 3))
(detail activity when (4 18 week 3))
(detail activity with kids)
(detail activity name puss-in-boots)
(detail activity loc regal-cinemas)
(detail activity why (my children saw the trailer ...))
(detail action p2 (bought-ticket at-cinema))
(detail action p2 buy-snacks)
(detail action-desc snacks (we bought some popcorn ...))
(detail action p2 found-seat)
(detail action-desc seat (we decided to sit in the first row ...))
(detail action p2 watched-the-movie)
(detail action-desc how (the kids enjoyed the ...))

In order to convert the semi-structured plan into a natural language narrative presentation, we
implemented a dedicated realizator (SimpleNLP based) which receives this raw, semi-structured
narrative plan as an input and returns the narrative presentation written in natural language. This
realizator first generates the narrative introduction based on the chosen narrative attributes vector and
the storyteller profile using the same NLG templates the SNACS generator used. Next, it generates
the event activity descriptions for the body and perceptions parts. For this step, it uses dedicated
templates, which we didn’t need for the SNACS algorithm as we based these parts on the original
narrative thet we had in our dataset. These templates were manually predefined for each one of the
activity actions. Each template generates the basic description of the action in natural language and
combines this output with its’ associate chosen description, if one exist in the plan. For instance, the
following two lines of the plan: (1) (detail action p2 found-seat) and (2) (detail action-desc seat (we
decided to sit in the first row ...)) will generate the following natural language sentences: “We went
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in to find seats and watched the movie. We decided to sit in the first row because the theater was
crowded and I didn’t want anyone to block my view."

Overall, the HTN-based narrative generator has an inherently higher cost associated comparing
to the SNACS algorithm for the following reasons: Both SNACS and the planner do have the steps
of building of the narrative introduction templates and the implementation of the logical constraints.
However, the planning-based algorithm implementation also required some additional manual steps.
These steps include: the manual building of the plot graph; the writing, associating and tagging of
several detailed descriptions for each basic action; and writing a specific realizator for each basic
action. Each one of these steps requires both time and resources from a content expert or a sys-
tem’s designer. In fact, because of this cost overhead, we only used the SHOP2 planner in order to
define two entertainment narrative types – going out to see a movie or eating at a restaurant. We
intentionally did not implement the HTN-based narrative generator for the errand narrative types –
buying groceries and dropping off or picking up dry cleaning, Nonetheless, the narratives produced
by SNACS were as good as those developed by this costly process, as our results detail in the next
section.

4 Experimental Setup and Results

The evaluation of the effectiveness of our narrative generation algorithm SNACS was based on sev-
eral instances of feedback from Amazon Mechanical Turk participants. The people were presented
with narratives generated by our algorithm, the time intensive HTN planning-based generator, the
manually handwritten narratives, and the random baselines (describe below).

4.1 Experimental Setup

Specifically, our evaluation was as follows: For each narrative type, we generate 4 storyteller pro-
files. For each profile, we then generate narratives using both SNACS and the HTN algorithms. As
was previously mentioned, we implemented the HTN-based narrative generator only for the enter-
tainment activities – going out to see a movie or eating at a restaurant, and did not implement it
for the errand activities – buying groceries and dropping off or picking up dry cleaning, due to the
inherent high cost associated with this approach. We also randomly selected four narratives out of a
pool of ten original narratives.

The AMT participants were presented with a questionnaire, in which they were asked to grade
each of the narratives together with their associated storyteller profiles. The questionnaire contains
grades with values from 1 (Least) to 6 (Most). We intentionally chose a scale with an even number
of values as we didn’t want to allow the users to choose a middle value. The questionnaire asked the
participants to grade six aspects of the narratives:

Authentic - Did you find the story authentic?
Reasonable - Did you find the story reasonable?
Profile - Does the story match the storyteller profile (gender, age, personal status, number of
children)?
Coherency - Did you find the story coherent? Does the story make sense overall?
Fluency - What is the fluency level of the story?
Grammar - What is the level of the grammar in each sentence?

Each questionnaire contains between 8-10 narratives and was fill out by 8-10 users, to ensure
we had a least 30 independent grades per narrative type and narrative generation algorithm. In order
to better understand the participants’ responses, we also asked them to explain their choices in free
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text. This ensured that subjects answered truthfully as we were able to manually check these open
questions before accepting a participant’s grades. Additionally, as we estimate that completing a
questionnaire takes 8-12 minutes, we filtered out questionnaires which were filled out within less
than 4 minutes as we assumed that the responses were not valid.

Random baselines We also implemented two random algorithms as baselines to ensure the
validity of our experiments. The first random algorithm, to which we will refer as Rnd-SNACS,
uses the SNACS generator infrastructure. The Rnd-SNACS algorithm randomly chooses one of the
narratives in the collection and then it randomly chooses the participants, the time frame, location
and objects’ names. This version ignores the current storyteller profile, the original use profile, the
original narrative attributes’ vector and the logic constraints and implications. The second random
algorithm, to which we will refer as Rnd-Planner, uses the planning-based generator. Here, we
removed the logical constraints on the participants, time frame and movie or restaurant types from
the domain and the problem instance of the original version and use instead random selections to
fill in the attributes vector and to choose the detailed descriptions. As the logical constraints and
Common-Sense implications (CS) part was removed from these algorithms, we posit that these ran-
dom baselines will generate poor stories. For instance, within the eat-at-a-restaurant narrative type,
the algorithm Rnd-SNACS generated a contradiction regarding the time: “On Thursday night..."
and then later in the story “We went in when the doors opened at 11:00AM ...". Similarly, in a dif-
ferent generated narrative the Rnd-Planner algorithm generated a contradiction regrading how
crowded the restaurant was: “We couldn’t find a seat and had to wait for more than fifteen minutes"
yet later in the same story this algorithm generated, “I liked that fact that it was kind of empty".

4.2 User Feedback Results

Table 1 shows that our novel SNACS algorithm generated revised story events which were rated
by the AMT participants as being as consistent, believable and realistic as the original narratives
and those produced by time-intensive planning technique. This is done without the costly overhead
involved with manually creating narratives or using a planner-based approach.

Table 1 Average Grades

 Movie Restaurant 

Algorithm Mean Std N Mean Std N 

Original 4.75758 1.14040 33 4.68981 1.02365 36 

Planner 4.52083 1.09639 32 4.25000 1.20780 32 

Rnd-Planner 3.71905 1.52097 35 3.35784 1.45998 34 

Rnd-SNACS 2.75238 0.90782 35 3.06481 1.17937 36 

SNACS-Any 4.47475 1.06484 33 4.30303 0.98817 33 

SNACS-Bst 4.42857 1.14567 35 4.52688 1.08277 31 

SNACS-Tag 4.43750 0.94826 32 4.46774 1.11589 31 

 

Table 1 presents the average grade that AMT participants gave for the entertainment narratives. It
is clear that the both of the random variations Rnd-SNACS and Rnd-Planner got lower grades,
between 2.75 and 3.72, which are significantly lower than the generation algorithms and the ori-
ginal narratives’ grades (specifically, the ANOVA test for the movie narratives of Rnd-Planner
compared to original, Planner and SNACS-Bst had a much smaller than 0.05 threshold
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Table 2 Errands Average Grades

 Buy Groceries Dry Cleaning 

Algorithm Mean Std N Mean Std N 

Original 4.09375 1.25291 32 4.51010 1.23106 33 

Rnd-SNACS 3.59896 1.35391 32 3.74479 1.28263 32 

SNACS-Any 3.77451 1.39315 34 4.63333 1.21725 35 

SNACS-Bst 4.37879 1.45492 33 4.75269 0.94953 31 

SNACS-Tag 4.83333 1.00179 32 4.70707 1.15096 33 

level with p=1.95E-4, 4.99E-3 and 9.30E-3 respectively). These results also show that all non-
random generation methods got very similar grades (4.43-4.47) for the movie narratives and that the
SNACS-Bst and SNACS-Tag grades (4.46-4.52) are slightly better for the restaurant narratives
than SNACS-Any method, which got an average grade of 4.30. Comparing to the SNACS based
generator, the Planner generator got slightly better grades for the movie narratives (4.52) and
slightly worse grades for the restaurant narratives (4.25). Although the original grades, 4.76 and
4.39, for the movie and restaurant narratives are slightly higher than all of the other methods, overall
there is no significant difference between all of the SNACS-based algorithms or the planning-based
generator or the original narratives.

Table 2 shows the average grades of the errands narratives, Again, the results show that the ran-
dom variation Rnd-SNACS got lower grades for both the buy groceries and dry cleaning activities.
For the buy groceries activity, SNACS-Tag got a best grade of 4.83 while SNACS-Bst got a best
grade of 4.75 for the dry cleaning activity. In both cases, there is no significant difference between
the grades of SNACS-Tag, SNACS-Bst and the original narratives.

We also tested each grade separately and the results were very similar and can be found in
Table 3 and Table 4. Overall, for all four narrative types, there is no significant difference between
SNACS-Tag, SNACS-Bst and the original narratives.

Table 3 Stories Aspects Grades

Narrative Type Algorithm AvgGrade Authentic Reasonable Profile Coherent Fluency Grammar 

Movie Original 4.75758 4.97 4.94 5.27 4.88 4.48 4.00 
Planner 4.52083 4.56 4.56 4.59 4.56 4.69 4.16 
Rnd-Planner 3.71905 3.00 3.09 4.09 3.51 4.06 4.57 

Rnd-SNACS 2.75238 2.20 2.40 1.66 3.14 3.37 3.74 
SNACS-Any 4.47475 4.39 4.64 4.36 4.64 4.55 4.27 
SNACS-Bst 4.42857 4.51 4.57 4.14 4.63 4.57 4.14 
SNACS-Tag 4.43750 4.88 5.09 3.84 4.56 4.06 4.19 

Restaurant Original 4.68981 4.72 4.89 4.94 4.53 4.75 4.31 

Planner 4.25000 4.09 4.09 4.06 4.19 4.62 4.44 

Rnd-Planner 3.35784 3.03 3.12 3.62 3.00 3.59 3.79 

Rnd-SNACS 3.06481 2.44 2.42 3.22 3.47 3.44 3.39 

SNACS-Any 4.30303 4.39 4.45 4.42 4.18 4.18 4.18 

SNACS-Bst 4.52688 4.71 4.77 4.48 4.74 4.35 4.10 

SNACS-Tag 4.46774 4.61 4.94 4.65 4.45 4.10 4.06 
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Table 4 Errands Aspects Grades

Narrative Type Algorithm AvgGrade Authentic Reasonable Profile Coherent Fluency Grammar 

Buy Groceries Original 4.09375 4.06 4.25 4.47 4.22 3.75 3.81 

Rnd-SNACS 3.59896 3.84 3.56 3.47 3.66 3.53 3.53 

SNACS-Any 3.77451 4.03 3.97 3.47 4.03 3.79 3.35 

SNACS -Bst 4.37879 4.64 4.48 4.58 4.30 4.21 4.06 

SNACS -Tag 4.83333 4.87 4.91 4.91 4.84 4.69 4.78 
Dry Cleaning Original 4.51010 4.61 4.64 4.52 4.58 4.39 4.33 

Rnd-SNACS 3.74479 3.63 3.50 3.78 3.84 4.00 3.72 

SNACS-Any 4.63333 4.51 4.49 4.63 4.80 4.57 4.80 

SNACS-Bst 4.75269 5.03 4.94 4.84 4.84 4.58 4.29 

SNACS-Tag 4.70707 4.58 4.61 4.88 4.91 4.58 4.70 

4.3 Lexical Variability Results

We assume that different people have different communication types. As a result, stories for different
groups will need to use fundamentally different types of language. For example, if we consider a
narrative for elderly women, we want the content to focus on activities with grandchildren or a daily
exercise routine, whereas if we consider a narrative for a small boy who is bedridden for medical
reasons we might instead focus on activities with parents, school or his friends. Besides the essential
purpose of generating a good and realistic narrative, we wanted a method which can generate a
variety of narratives for different profiles with high lexical variability.

It is possible to objectively measure the level of variability between narratives. The basic lexical
variability measure is the Lexical Overlap (LO) method [25, 7] which measures the lexical overlap
between sentences, i.e. the cardinality of the set of words occurring in both sentences. Other studies
suggest a variation of this method for text documents and produce lexical matching similarity scores
which were based on the number of lexical units that occur in both input segments. More recent
studies [4, 6, 10] show that adding semantic analysis, such as WordNet [8] and other statistical
corpus data, can improve the accuracy of classification of similar documents over the basic methods
of lexical matching/overlap.

In our case, we know that the documents are semantically similar as they all describe similar
social situations. As such, we only need to measure the narratives’ lexical variability and therefore
we decided to use lexical matching methods. We chose the Ratio and Cosine models for measuring
lexical overlap because recent work found these to be the most effective [12]. The Ratio model
[29] is a binary model which only considers the occurrences of the words in each document. The
Cosine model [24] is a count model which also considers the number of occurrences of each word
within the document. All narrative evaluation scores have been measured without the Stop Words,
which is the most commonly preferred method. We use the set of English Stopwords taken from
http://www.textfixer.com/resources/common-english-words.txt. The similarity scores are defined as
follows:

The Ratio Model - a binary similarity model (Tversky’s (1977)[29]):

SRatio
ij = aij

aij + bij + cij

The Cosine model - a count similarity model (Rorvig’s (1999)[24]):

SCosine
ij =

∑
k xikxjk

(
∑

k x2
ik

∑
k x2

jk) 1
2



S. Sina, A. Rosenfeld and S. Kraus 15

where:
xik counts the number of times that the k-th word occurs in the document i.
tik denotes whether the k-th word occurs in the document i, i.e:
tik = 1 if xik > 0 and tik = 0 if xik = 0.
For the i-th and j-th documents, the count aij =

∑
k tiktjk is the number of words that are

common to both documents.
For the i-th and j-th documents, the counts bij =

∑
k tik(1− tjk) and cij =

∑
k(1− tik)tjk are

the distinctive words that one document has but the other does not.

SNACS’ major advantage over hand-crafting stories is the time saved. However, as we note
here, SNACS also produced significantly more varied and diversified stories than those based on the
planning-based generation algorithm. Table 5 demonstrates this claim by presenting the similarity
measures, ratio and cosine, for all of the algorithms. As expected, the original narratives, which
are completely hand-written, got the best scores (lower is better) in both measures. The original
narratives got a ratio score of 0.089 and 0.072 and a cosine score of 0.36 and 0.15 for the movie and
restaurant narratives respectively. The average ratio score for the SNACS algorithms (SNACS-Any,

Table 5 Similarity Scores

 Movie Restaurant 

Algorithm Ratio Cosine Ratio Cosine 

Original 0.08915 0.35634 0.07192 0.15028 

Planner 0.20149 0.55960 0.26066 0.52533 

Rnd-Planner 0.19184 0.59161 0.26240 0.51384 

Rnd-SNACS 0.09156 0.40798 0.11768 0.33108 

SNACS-Any 0.08417 0.35171 0.12598 0.30366 

SNACS-Bst 0.09910 0.51831 0.11548 0.32730 

SNACS-Tag 0.10248 0.50804 0.10795 0.32415 

SNACS-Bst, SNACS-Tag and Rnd-SNACS) is 0.094 for the movie narratives and 0.117 for the
restaurant narratives. The average ratio score for the planning-based algorithms (Planner and
Rnd-Planner) is 0.197 for the movie narratives and 0.262 for the restaurant narratives, which are
significant worse than the SNACS algorithms. This difference in the results was seen also in the
cosine scores. The average cosine scores are 0.447 and 0.322 for the SNACS algorithms and 0.576
and 0.520 for the planner based algorithms for the movie and restaurant narratives respectively.
When looking at the generated narratives, the average ratio scores for all of the SNACS algorithms
(SNACS-Any, SNACS-Bst, SNACS-Tag and Rnd-SNACS) were significantly lower (which is
better) than the planning-based algorithms (Planner and Rnd-Planner), for the movie narrat-
ives and for the restaurant narratives (the ANOVA tests for mean difference of the entertainment
narratives’ ratio and cosine scores of Planner compared to SNACS-Tag at the 0.05 significance
level being p=7.65E-4 and 2.31E-3 respectively). Overall, the SNACS algorithms have generated
more variable and versatile narratives.

5 Related Work

Studies of automated storytelling have focused on creating systems to generate novel narratives
based on prior authored knowledge and logical representations of narrative structure. The two most
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common approaches to story generation are case-based reasoning and planning. The case-based
story generators, such as [28, 27, 11], construct novel narratives by reusing prior narratives, or
cases, while planning-based story generation systems, such as [16, 23, 21], use a causality-driven
search to link a series of primitive actions in order to achieve a goal. These methods for automatic
story generation require that a person primarily author explicitly detail most parts of the narrative,
including details about the story and the domain within which it takes place. While such narratives
are well written, manually writing makes the development process costly in both time and resources.
We compared our automatically generated narratives with those that were planning-based generated
and found that overall people found the automatically generated narratives as realistic and consistent
as those manually created by content experts. The main advantages of SNACS are the simplicity
and the rapidity with which it achieves its results. Furthermore, the narratives generated with our
method are much more varied.

Early studies such as TALE-SPIN [16] and MINSTREL [28] focused on the creation of a standard
representation that can be used to describe characters and their goals, the story’s setting, etc. but
didn’t get any real-time input from the user. More recent studies focus on interactive narrative,
which enables the player to make decisions which directly affect the direction and/or outcome of
the narrative experience being delivered by the computer system [5, 20, 21, 23, 30]. As the human
author is not present at run-time, authoring interactive narratives is often a process of anticipating
user actions in different contexts and using computational mechanisms. These studies are similar to
ours in that they need to adjust the story to the new constraints presented by the user, but still differ
from the current study. They all focus on the creative side of the story and on the high level of the
story’s plot and characters’ goals, while the domain and the story’s detailed description were mostly
manually written, and we use the wisdom of the crowd to acquire our domain.

Recently, a few studies have started explore ways to automatically build the knowledge base.
The SayAnything [26] application constructs new stories from fragments of stories mined from on-
line blogs. The user and computer take turns writing sentences of a fictional narrative, where the
sentences contributed by the computer are extracted from Internet weblogs. Our study differs from
this work; SNACS generates new content based on the narrative collection while this work only
selects and reuses appropriate narrative fragments. In [11] the authors apply case-based reasoning
techniques to build an intelligent authoring tool that learns cases from human storytellers who enter
dialogue-based narratives via a custom interface. The cases can only be expressed in terms of a
known set of possible pre-defined actions. They also use an utterances library which was manually
pre-authored and pre-tagged with sets of utterances for each possible dialogue act and therefore lim-
ited to a given domain. The authors in [13] introduce an approach to automatically learn script-like
sociocultural knowledge from crowdsourced narratives. They describe a semi-automated process by
which they query human workers to write natural language narrative examples of a specific, given
situation and learn the set of events that can occur and its typical ordering. Our approach also ac-
quires its knowledge from crowdsourced narratives, but it still differs from this work. We use the
crowd as the source for the detailed description of situation narratives and thus we focus more on
the overall situation and less on the specific, atomic events that compose it.

6 Conclusions and Future Work

In this paper we presented SNACS, a novel approach for generating everyday activities narratives
using crowdsourcing. Instead of manually handwriting, which makes the development process costly
in both time and resources, SNACS uses crowdsourcing to create a varied base of stories. We
compared SNACS to manually handwritten narratives, those generated by SHOP2, a state-of-the-art
HTN planner [18] and random baselines. Our evaluation showed that our SNACS narratives were
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rated as being as believable and consistent as those which are manually handwritten or created from
the HTN planner. Yet, the SNACS-based narratives had the main advantage of ease and the rapidity
with which these narratives were generated. A second significant advantage to SNACS is that these
narratives are rated to be significantly more diversified than those from the HTN planner – all while
still maintaining their believability. SNACS is also more adaptable to creating new narratives and
it can be easily extended to produce narratives for new domains. In future work we would like to
integrate the SNACS algorithm into a dialogue-based application with a virtual human. We would
like to apply our algorithm to different types of applications, such a virtual agent that uses narratives
to help interact better with the elderly and for dialogue-based training systems.
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