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SAMI: An Algorithm
for Solving the Missing Node Problem

using Structure and Attribute Information
Sigal Sina, Avi Rosenfeld, and Sarit Kraus

Abstract—An important area of social network research is identifying missing information which is not visible or explicitly represented
in the network. Recently, the Missing Node Identification problem was introduced where missing members in the social network
structure must be identified. However, previous works did not consider the possibility that information about specific users (nodes)
within the network may be known and could be useful in solving this problem. Assuming such information such as user demographic
information and users’ historical behavior in the network is known, more effective algorithms for the Missing Node Identification
problem could potentially be developed. In this paper, we present three algorithms, SAMI-A, SAMI-C and SAMI-N, which leverage this
type of information in order to perform significantly better than previous missing node algorithms. However, as each of these algorithms
and the parameters within these algorithms often perform better in specific problem instances, a mechanism is needed to select the
best algorithm and the best variation within that algorithm. Towards this challenge, we also present OASCA, a novel online selection
algorithm. We present results that detail the success of the algorithms presented within this paper.

Index Terms—Algorithms, Social networks, K-means, missing nodes.
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1 INTRODUCTION

S OCIAL networks, which enable people to share information
and interact with each other, have become a key Internet ap-

plication in recent years. These networks are typically represented
as graphs where nodes represent people and edges represent some
type of connection between these people [1], such as friendship or
common interests. Scientists in both academia and industry have
recognized the importance of these networks and have focused
on various aspects of social networks. One aspect that is often
studied is the structure of these networks [1]–[12]. Previously, a
missing link problem [1], [2] was defined as attempting to locate
which connections (edges) will soon exist between nodes. In
this problem setting, the nodes of the network are known, and
unknown links are derived from existing network information,
including node information. More recently a new missing node
identification problem was introduced [13], [14] which locates
and identifies missing nodes within the network. Previous studies
have shown that combining the nodes’ attributes can be effective
when inferring missing links or attributes [7], [15]. We show
how specific node attributes, such as demographic or historical
information about specific nodes, can also be used to better solve
the missing node problem, something that previous works did not
consider.

To better understand the missing node problem and the con-
tribution of this paper, please consider the following example: A
hypothetical company, Social News Inc., is running an online news
service within LinkedIn. Many LinkedIn members are subscribers
of this company’s services, yet it would like to expand its customer
base. Social News maintains a network of users, which is a subset
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of the group of LinkedIn users, and the links between these users.
The users of LinkedIn who are not members of the service are not
visible to their system. Social News Inc. would like to discover
these LinkedIn nodes and try to lure them into joining their
service. The company thus faces the missing node identification
problem. By solving this problem, Social News Inc. could improve
its advertising techniques and aim at the specific users which
haven’t yet subscribed to their service.

Recent algorithms which were developed to solve similar
problems, such as MISC [13] and KronEM [10], used the structure
of the network but did not consider information about specific
nodes. The MISC algorithm, which is most similar to our work,
focused on a specific variation of the missing nodes problem where
the missing nodes requiring identification are “friends" of known
nodes. An unidentified friend is associated with a “placeholder"
node to indicate the existence of this missing friend. Thus, a given
missing node may be associated with several “placeholder" nodes,
one for each friend of this missing node. Following this approach,
the missing node challenge is to try to determine which of the
“placeholder" nodes are associated with the same unidentified
friend. In other words, what is the correct clustering of the
“placeholder" nodes? As was true in Eyal et al.’s work [13], we
also assume that tools such as automated text analysis or image
recognition software can be used to aid in generating placeholder
nodes. For example, a known user makes reference to a coworker
who is currently not a member of the network, or has friends which
are not subscribers of Social News Inc. and are thus only visible
as anonymous “users". Such mining tools can be employed on all
of the nodes in the social network in order to obtain indications of
the existence of a set of missing nodes.

The key contribution of this paper is how to integrate in-
formation about known nodes in order to help better solve
the missing node problem. Towards this goal, we present three
algorithms suitable for solving this missing node problem:
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SAMI-A (Structure and Attributes Missing node Identification
using Attributes’ similarity), SAMI-C (Structure and Attributes
Missing node Identification using Concatenate affinities), and
SAMI-N (Structure and Attributes Missing node Identification
using social-attribute Network). The first algorithm, SAMI-A,
calculates a weighted sum of two affinity components: one based
on the network graph structure, as in previous work [13], and a
new measure based on common attributes. The second algorithm,
SAMI-C, concatenates the two affinity components: one based on
the network graph structure and a new measure based on common
attributes. The third algorithm, SAMI-N, combines the known
nodes’ attribute data into a Social-Attribute Network (SAN) – a
data structure previously developed by [7], [16], [17]. We then
again use a weighted sum of different components in the SAN to
create the affinity measure.

We found that all clustering-based algorithms – all of the
algorithms that we introduced, SAMI-A, SAMI-C and SAMI-N,
as well as the MISC algorithm on which they were based – were
each best suited for specific problem instances. Furthermore, we
found that parameters in each of these algorithms might need
tuning for different problem instances with different missing nodes
or network sizes. Thus, an important question is to discover which
of these algorithms, and which tuned parameter value in each
algorithm, is best suited for a specific problem instance. Towards
solving this problem, we present OASCA, an Online Algorithm
Selection for Clustering Algorithms. While the idea of tuning
an algorithm for a specific problem instance is not new, the
application of these approaches to clustering algorithms is not
trivial. During online execution, OASCA solves this challenge by
using a novel relative metric to predict which clustering algorithm
is best suited for a given problem instance. This facilitates effective
selection of the best clustering algorithm.

2 RELATED WORK

In solving the Missing Node Identification problem, this research
is based on several existing areas of research for solving the
challenge of identifying Missing Information in Social Networks.
Specifically, we use variations of two existing research areas: clus-
tering algorithms and metrics built for the missing link problem.

Many works have previously addressed the Missing Infor-
mation in Social Networks problem, which attempts to uncover
hidden information in social networks. One important aspect that
is often studied is the structure of social networks [1]–[12].
Previously, a Link Prediction problem [1], [2] was defined as
the attempt to locate the connections (edges) that will soon exist
between nodes. In this problem setting, the nodes of the network
are known, and unknown links are derived from existing network
information, including complete node information. Various meth-
ods have been proposed to solve the Link Prediction problem.
Approaches typically attempt to derive which edges are missing by
using measures to predict link similarity based on the overall struc-
ture of the network. However, these approaches differ according
to which computation is best suited for predicting link similarity.
For example, Liben-Nowell and Kleinberg [1] demonstrated that
measures such as the shortest path between nodes and different
measures relying on the number of common neighbors can be
useful. They also considered variations of these measures, such
as the use of an adaptation of Adamic and Adar’s measure of
the similarity between webpages [18] and Katz’s calculation for
the shortest path information, which weighs the short paths more

heavily [19] than the simpler shortest path information. After
formally describing the missing node identification problem, we
detail how the spectral clustering algorithm can be combined with
these link prediction methods in order to effectively solve the
missing node identification problem.

Many other studies have researched problems of missing
information in social networks. Guimera and Sales-Pardo [20]
propose a method that performs well for detecting missing links
as well as spurious links in complex networks. Their method
is based on a stochastic block model, where the nodes of the
network are partitioned into different blocks, and the probability
of two nodes being connected depends only on the blocks to which
they belong. Some studies focus on understanding the propagation
of different phenomena through social networks as a diffusion
process. These phenomena include viruses and infectious diseases,
information, opinions and ideas, trends, advertisements, news and
more. Gomez-Rodriguez et al. [6] attempted to infer a network
structure from observations of a diffusion process. Specifically,
they observed the times when nodes get infected by a specific
contagion, and attempted to reconstruct the network over which
the contagion propagates. The reconstruction is done through the
edges of the network, while the nodes are known in advance.
Eslami et al. [3] studied the same problem. They modeled the
diffusion process as a Markov random walk and proposed an
algorithm called DNE to discover the most probable diffusion
links.

Sadikov et al. [11] also studied the problem of diffusion of
data in a partially observed social network. In their study they
proposed a method for estimating the properties of an information
cascade, the nodes and edges over which a contagion spreads
through the network, when only part of the cascade is observed.
While this study takes into account missing nodes and edges
from the cascade, the proposed method estimates accumulative
properties of the true cascade and does not produce a prediction of
the cascade itself. These properties include the number of nodes,
number of edges, number of isolated nodes, number of weakly
connected components and average node degree.

Other works attempted to infer missing link information from
the structure of the network or information about known nodes
within the network. For example, Lin et al. [12] proposed a
method for community detection, based on graph clustering, in
networks with incomplete information. In these networks, the links
within a few local regions are known, but links from the entire
network are missing. The graph clustering is performed using an
iterative algorithm named DSHRINK. Gong et al. [7] proposed a
model to jointly infer missing links and missing node attributes
by representing the social network as an augmented graph where
attributes are also represented by nodes. They showed that link
prediction accuracy can be improved when first inferring missing
node attributes. Freno et al. [5] proposed a supervised learning
method which uses both the graph structure and node attributes
to recommend missing links. A preference score which measures
the affinity between pairs of nodes is defined based on the feature
vectors of each pair of nodes. Their algorithm learns the similarity
function over feature vectors of the graph structure. Kossinets
[21] assessed the effect of missing data on various networks and
suggested that nodes may be missing, in addition to missing links.
In this work, the effects of missing data on network level statistics
were measured and we empirically showed that missing data
causes errors in estimating these parameters. While advocating its
importance, this work does not offer a definitive statistical solution
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to overcome the problem of missing data.
In this work we present significant advancements in the state-

of-the-art Missing Node Identification research. The missing node
problem is relatively new, with only several works currently
available on this subject [10], [13]. All of the works consider only
the network structure in solving this problem. Eyal et al. [13],
[14] presented the MISC algorithm, which was the first to develop
how to use spectral clustering in the missing node identification
problem. The spectral clustering algorithm of Jordan, Ng and
Weiss [22] is a well documented and accepted algorithm, with
applications in many fields including statistics, computer science,
biology, social sciences and psychology [23]. The main idea
behind Eyal et al.’s work [13], [14] was to embed a set of data
points, which should be clustered, in a graph structure representing
the affinity between each pair of points based on the structure of
the network. One contribution of this paper is to consider how
specific node attributes’ data, such as demographic or historical
information about specific nodes, can be used to better solve the
missing node problem, something that Eyal et al. [13], [14] did
not consider. Furthermore, in this work we demonstrate that using
K-means clustering is more effective than spectral clustering,
especially in solving the missing node problem in large-scale
networks that need to consider the nodes’ attributes data.

Kim and Leskovec [10] tackled the network completion prob-
lem, which is a similar problem that deals with situations where
only a part of the network is observed and the unobserved
part must be inferred. They proposed the KronEM algorithm,
which uses an Expectation Maximization approach and where the
observed portion of the network is used to fit a Kronecker graph
model of the full network structure. The model is used to estimate
the missing part of the network, and the model parameters are then
re-estimated using the updated network. This process is repeated
in an iterative manner until convergence is reached. The result is
a graph which serves as a prediction of the full network. Their
research differs from ours in several key ways. First, and most
technically, the KronEM prediction is based on link probabilities
provided by the EM framework, while our algorithm is based on
a clustering method and graph partitioning. Second, our approach
is based on the existence of missing node indications obtained
from data mining modules such as image recognition. When these
indications exist, our algorithm can be directly used to predict
the original graph. As a result, while KronEM is well suited for
networks with many missing nodes, SAMI is effective in local
regions of the network with a small number of missing nodes
where data mining can be employed. More importantly, as we
previously found [24], our proposed algorithms, SAMI-A and
SAMI-N (with the spectral clustering algorithm variation), can
achieve significantly better prediction quality than KronEM or
even the more closely related MISC algorithm [13], [14].

Recently, many studies have considered different ways to
incorporate additional information in addition to the network
structure in order to solve different problems related to the Missing
Information in Social Networks problem. One area of research
focused on the idea of using attributes of specific nodes. This idea
was previously considered within different problems, however
none of the studies considered using the information within the
Missing Node Identification problem.

Several previous works [7], [16], [17] propose a model to
jointly infer missing links and missing node attributes by rep-
resenting the social network as an augmented graph where the
nodes’ attributes are represented as special nodes in the network.

They show that link prediction accuracy can be improved when
including the node attributes. In our work, we apply a similar
approach in the SAMI-N algorithm, but infer the identity of
missing nodes instead of missing links or missing node attributes.
Other approaches studied different ways of leveraging information
about known nodes within the network in order to better solve the
missing link or missing attribute problems. For example, Freno et
al. [5] proposed a supervised learning method which uses both the
graph structure and node attributes to recommend missing links.
A preference score which measures the affinity between pairs
of nodes is defined based on the feature vectors of each pair of
nodes. The proposed algorithm learns the similarity function for
feature vectors using the visible graph structure. Backstrom and
Leskovec [25] approach the predicting and recommending links
problem. A link recommendation problem is a different way to
view the missing link problem, where the aim is to suggest to each
user a list of people with whom the user is likely to create new
connections. They developed an algorithm based on supervised
random walks that naturally combine the information from the
network structure with both node and edge attributes.

Kim and Leskovec [15] developed a Latent Multi-group
Membership Graph (LMMG) model with a rich node feature
structure. In their model, each node belongs to multiple groups
and each latent group models the occurrence of links as well
as the node feature structure. They showed how LMMG can
be used to summarize the network structure, to predict links
between the nodes and to predict missing features of a node.
Brand [26] proposed a model for collaborative recommendation.
He studied various derived quantities and showed that normalized
correlation-based rankings, such as angular-based quantity, are
more predictive and robust to perturbations of the graph’s edge
set than rankings based on commute times, hitting times and
related graph-based dissimilarity measures. Similarly, we also use
a normalized measure in order to avoid biases towards nodes with
high degrees, as can be seen in detail in Section 3.2.

A second key contribution of this paper is how to select, online
and during task execution, the best clustering algorithm. We found
that the previously developed MISC algorithm [13], as well as the
SAMI-A, SAMI-C and SAMI-N extensions that we propose in
this paper, are each best suited for specific clustering instances.
Thus, a mechanism is needed to select the best algorithm for
a given problem. Previously, Rice [27] generally defined the
algorithm selection problem as the process of choosing the best
algorithm for any given instance of a problem from a given set of
potential algorithms. However, the key challenge is how to predict
which algorithm will perform the best. Several previous works per-
form no prediction and instead run all algorithms for a short period
in order to learn which one will be best for a given problem. For
example, Minton et al. [28] suggested running all algorithms for a
short period of time on the specific problem instance. Secondary
performance characteristics were then compiled from this prelim-
inary trial in order to select the best algorithm. Talman et al. [29]
considered an agent that must choose which heuristic or strategy
will help it the most in achieving its objectives. They proposed
an algorithm for deciding how much information to acquire in
order to make a decision while incurring minimal cost. Gomes and
Selman [30] suggest running several algorithms (or randomized
instances of the same algorithm) in parallel, thereby creating an
algorithm portfolio. However, in our problem the true structure of
the network is not known, making it impossible to predict which
algorithm will definitively be best. Using algorithm selection in
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conjunction with clustering algorithms has also recently begun to
be considered. Halkidi and Vazirgiannis [31] considered how to
determine the number of optimal clusters in a given clustering
algorithm, such as K-means. Kadioglu et al. [32] considered how
optimization problems could be solved through created clusters of
optimal parameters. However, to the best of our knowledge, we
are the first to consider how to select online between different
clustering algorithms and between the parameters within each
of these algorithms. This is the key contribution of the OASCA
algorithm presented in this paper.

This work includes three significant differences compared to
the preliminary results which were published in Sina et al. [24]:
First, we were able to significantly improve the SAMI algorithm
(section 4) in terms of runtime and memory consumption with-
out performance degradation (see Table II). Second, we include
extensive experiments with larger networks and larger numbers
of missing nodes (section 8.3). Third, in this paper we also
conduct a thorough study about dealing with partial and inaccurate
information (section 9). Overall, this paper presents an extensive
and thorough study for solving the missing node problem using
structure and attribute information.

3 OVERVIEW AND DEFINITIONS

In this section we define the missing node problem which we
address. We also provide general formalizations about social
networks and evaluation metrics used throughout the paper.

3.1 Problem Definition

We assume that there is a social network represented as an undi-
rected graph G = (V,E), in which n = |V | and e = 〈v, u〉 ∈ E
represents an interaction between v ∈ V and u ∈ V . In addition
to the network structure, each node vi ∈ V is associated with
an attribute vector ~AVi of length l. Referring back to the Social
News Inc. example found within the Introduction, the social
network contains nodes which are participants, and where edges
are relationships and attributes are node specific information, such
as a person’s country of origin, skills and membership time in
various professional groups in the network. We assume that each
value in the attributes’ vectors is binary, i.e. each node has or
does not have a given attribute. Formally, we define a binary
attributes matrix A of size nxl where Ai,j indicates whether
or not a node vi ∈ V has an attribute j. We choose to use
a binary representation for the attributes in order to ease our
implementation, as was done previously by other studies [7], [17].
Nevertheless, any other attribute type can be transformed into
one or more binary attributes. We use discretization to transform
all continuous real-value attributes, such as active time, into one
or more binary attributes. For example, membership time can be
quantified as binary values whether or not a person is a member
within a specific group. Similarly, a person’s membership time
can be translated into three binary attributes – Long-time-Loyal-
Customer, Medium-time-Customer and New-Member – using a
threshold vector of size three. All categorical attributes, such as
country, are transformed into a list of binary attributes, each for
any value, e.g. USA, UK, Canada, where a given person does or
does not live in that country.

Some of the nodes in the network are missing and are not
known to the system. We previously defined this problem [13] by
denoting the set of missing nodes as Vm ⊂ V , and we assume

that the number of missing nodes is given1 as N = |Vm|. We
denote the rest of the nodes as known, i.e., Vk = V \ Vm, and the
set of known edges is Ek = {〈v, u〉 | v, u ∈ Vk ∧ 〈v, u〉 ∈ E}.
Towards identifying the missing nodes, we focus on a part of the
network, Ga = (Va, Ea), that we define as being available for
the identification of missing nodes. In this network, illustrated
in Figure 1, each of the missing nodes is replaced by a set of
placeholders. Formally, we define a set Vp for placeholders and a
set Ep for the associated edges. For each edge 〈v, u〉 ∈ E where
v ∈ Vm is a missing node and u ∈ Vk, a placeholder is created.
That is, for each original edge 〈v, u〉, we add a placeholder v′

for v to Vp and connect the placeholder to the node u with a
new edge 〈v′, u〉, which we add to Ep. We denote the source
of the placeholder, v′ ∈ Vp, with s(v′). Putting all of these
components together, Va = Vk ∪ Vp and Ea = Ek ∪ Ep.
For a given missing node v, there may be many placeholders
in Vp. The missing node challenge is to try to determine which
of the placeholders should be clustered together and associated
with the original v, thus allowing us to reconstruct the original
social network G. To better understand this formalization, please
again consider the Social News Inc. example from the Introduc-
tion. An edge between two users indicates that these two users
communicated together. We might have additional information
regarding the registered users, such as previous jobs, member-
ships, skills and non-professional interests. We consider the Social
News Inc. subscribed users to be the known nodes and the other
LinkedIn users are the anonymous users, for whom Social New
Inc. only has references from its current subscribed users. We
would like to identify which of the anonymous users are actually
the same person. Thus, our purpose is to output a placeholder
clustering C and a predicted graph Ĝ = (V̂ , Ê) where V̂ =
Vk ∪ {vc|a new node vc for each cluster c ∈ C} and Ê = Ek ∪
{(u, vc) |a new edge for each placeholder v ∈ c, (u, v) ∈ Ev} .

3.2 Affinity Measures
Both the previously developed MISC algorithm as well as the
SAMI-A, SAMI-C and SAMI-N algorithms proposed in this
paper use affinity measures as part of their clustering algorithms.
Specifically, these algorithms calculate an affinity measure be-
tween each pair of nodes in the network and send it to the
clustering algorithm to determine which of the placeholders are as-
sociated with the same source node. Spectral clustering is a general
algorithm used to cluster data samples using a certain predefined
similarity (which is known as an affinity measure) between them.
It creates clusters that maximize the similarity between points
in each cluster and minimize the similarity between points in
different clusters [22]. Thus, the success of the algorithm depends
on the affinity matrix. While several affinity measures based on
network structure have been studied previously [13], in this paper
we use the two measures that have yielded the best results thus far:
Relative Common Neighbors (RCN) [1] and Adamic/Adar (AA)
[18]. Additionally, we use one affinity measure based on common
attributes among the nodes (ATT). Note that this measure is not
based on the general structure of the network, but on similarities
between specific nodes’ attributes.

These affinity measures are calculated between each pair of
nodes, vi and vj , in the network. The Relative Common Neighbors
measure, RCN ij , calculates the number of common neighbors

1. Previous work [13] has found that this number can also be effectively
estimated.
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Fig. 1: A full network (on the left); the known network and the visible network obtained by adding the placeholders for the missing
nodes 1 and 5 (in the middle); and the correct clustering of the placeholders (on the right). The placeholders in each cluster are

combined into one node which represents a missing node.

between vi and vj . The Adamic/Adar measure, AAij , checks the
overall connectivity of each common neighbor to other nodes in
the graph and gives more weight to common neighbors who are
less connected. The common attribute affinity measure, ATT ij ,
is based on the nodes’ attributes’ similarity and it is defined as
the number of common attributes between the two nodes divided
by the size of the unified attribute set of the two nodes. This
measure was inspired by the homophily relationship (love of the
same) previously studied in [33]. Formally, let Γ(i) denote the
group of neighbors for a given node, vi, in the network graph.
We define the RCN ij , AAij and ATT ij affinity measures as:
RCN ij= |Γ(i)

⋂
Γ(j)|

min(|Γ(i)|,|Γ(j)|) , AAij=
∑

u∈Γ(i)
⋂

Γ(j)
1

log(|Γ(u)|) and

ATT ij= |S(i)
⋂

S(j)|
|S(i)

⋃
S(j)| . We consider the nodes that act as place-

holders for missing nodes to be connected to their neighbor’s
neighbors for both the RCN and the AA measures, even though
they only have one neighbor each. We divide the RCN measure
by min(|Γ(i)|, |Γ(j)|) to act as a normalizing effect in order to
avoid biases towards nodes with a very large number of neighbors.
In the ATT measure, S(i) is defined as the set of attributes of
node vi. Note that we do not have attributes for nodes that are
placeholders, thus to each placeholder we assign the attributes of
its neighbor and optionally also the attributes of its neighbor’s
neighbors (depending on the algorithm preference). We will refer
to these affinity measures matrices as MRCN , MAA and MATT ,
respectively.

3.3 Evaluation Measures

We considered two types of evaluation measures in order to gauge
the effectiveness of the algorithms presented: Graph Edit Distance
(GED) and Purity. GED compares the output graph of a given
algorithm, Ĝ = (V̂ , Ê), to the original network graph, G, from
which the missing nodes were removed. GED is defined as the
minimal number of edit operations required to transform one graph
to the other [34]. An edit operation is the addition or deletion of
a node or an edge. Since finding the optimal edit distance is NP-
Hard, we use a previously developed simulated annealing method
[34] to find an approximation of the GED. The main advantage of
this method of evaluation is that it is independent of the method
used to predict Ĝ, making it very robust. It can be used to compare
any two methods as long as they both produce a predicted graph.
The disadvantage of computing the GED lies in its extended
computational time. Due to this expense, a purity measure, which
can be easily computed, can be used instead. Purity is an accepted
measure of checking the quality and accuracy of a clustering-based
algorithm [35]. The purity measure attempts to assess the quality

of the predicted clustering (placeholders) compared to the true
clustering (the missing nodes).

In evaluating our algorithms, we first consider the original
network, then remove nodes to make them “missing". We can then
evaluate how accurate our algorithms were in identifying the true
structure of the network. Within the GED measure we check how
many edit operations separate the two networks. The purity mea-
sure is calculated in two steps as follows: Step one – classify each
cluster according to the true classification of the majority of sam-
ples in that cluster. Here, we classify each cluster according to the
most frequent true original node v ∈ Vm of the placeholder nodes
in that cluster; Step two – count the number of correctly classified
samples in all clusters and divide by the number of samples. In
our case, the number of samples (nodes) that are classified is |Vp|.
Formally, in our problem setting, where ck is defined as the set of
placeholders which were assigned to cluster k, purity is defined
as: purity(C)= 1

|Vp|
∑

kmaxv∈Vm
|ck ∩{v′ ∈ Vp | s(v′) = v}|.

4 THE SAMI ALGORITHMS

Algorithm 1 presents the pseudo code for the base of all three
SAMI algorithm variations. The algorithm is based on the MISC
algorithm [13] with two major changes: first, we add the attribute
information of known nodes to the affinity matrix; and second,
the SAMI algorithms no longer process the affinity measures of
missing nodes by spectral clustering. Instead, they exclusively use
the K-means clustering algorithm on the placeholder’s affinity
matrix. We chose to implement these changes for two reasons.
First, we wanted to improve the performance of the original
MISC algorithm when dealing with large scale networks. In MISC,
spectral clustering was applied to the affinity matrix of the entire
network– of both known nodes and placeholders. As we now apply
K-means only on the matrix of a small number of placeholder
nodes, we can efficiently process even larger networks. Second,
we had to overcome a memory consumption challenge with the
SAMI-A algorithm which was caused by the MATT matrix
calculation. The analysis of the 2K training datasets shows that the
attributes affinity matrix MATT is very dense (average of 60%-
70%), while the structure affinity matrices MRCN and MAA

are very sparse (average 4%-6%). Thus, the estimated memory
for the attribute affinity matrix MATT , where n is the network
size and d is the percentage of non-zero values (0.6-0.7), is
mem = n2 ∗ d ∗ 8 Bytes ≈ 5.5 ∗ n2 Bytes. Accordingly, the
estimated memory is mem ≈22MB for n = 2K , mem ≈1.4GB
for n = 16K and mem ≈55GB for n = 100K . In our previous
work [24], we had two thresholds: popularity and noise, which
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helped reduce the density of the attributes affinity matrix to 7%-
15%. This maintained the advantage in the results as compared
to the algorithm without attributes. However, this solution only
enables us to scale up to 32K node networks.

Additionally, as we do not have attributes for nodes which
are placeholders, we assume placeholders are similar to their
neighbors and thus assign the placeholders the attributes of their
neighbors. Furthermore, we considered assigning the attributes of
the neighbors of link distance 2 – the placeholders’ neighbor’s
neighbors. If these attributes conflicted, we assigned the place-
holder both attribute values. In our preliminary tests, we found that
overall SAMI-A and SAMI-N performed significantly better when
assigning the placeholder the attributes of its neighbor, as opposed
to assigning the attributes of its neighbor’s neighbors. However,
the SAMI-C variation overall performed significantly better when
additionally assigning the attributes of its neighbor’s neighbors.
Thus, in our evaluation for the SAMI-A and SAMI-N algorithms,
we assigned placeholders the attributes of the neighbor, but for the
SAMI-C algorithm we also assigned the attributes of its neighbor’s
neighbors.

Algorithm 1 SAMI (Structure and Attributes Missing node
Identification)
Input: Gk = 〈Vk, Ek〉 – the known part of the network
Ga = 〈Va, Ea〉 – the available part of the network
N – the number of missing nodes
Vp – the placeholder nodes
α : G(V,E) −→ R|Vp|×|Vp| – a procedure for calculating
the affinity matrix of placeholder nodes in a graph
Output: C ∈ N|Va\Vk| - a vector indicating the cluster index
of each placeholder node,
Ĝ =

(
V̂ , Ê

)
– prediction of the full network graph

1: A ←− α(Ga) – calculate the affinity matrix of the place-
holder nodes in the graph

2: C ←− k_means(A,N) – cluster the rows that match the
placeholder nodes to N clusters

3: V̂ ←− Vk, Ê ←− Ek – initialize the output graph to contain
the known network

4: For each cluster c ∈ C create a new node vc ∈ V̂
5: For each placeholder v in cluster c and edge (u, v) ∈ Ea,

create an edge (u, vc) ∈ Ê
6: Return C , Ĝ =

(
V̂ , Ê

)
We now present three approaches for adding node information:

SAMI-A, SAMI-C and SAMI-N. The novelty of these algorithms
lies in how they use the information to create new affinity mea-
sures to better solve the missing node problem.

4.1 The SAMI-A Algorithm
The first algorithm, SAMI-A (Structure and Attributes Missing
node Identification using Attributes’ similarity), calculates an
affinity measure based on a weighted sum of two components. The
first component is based on the network structure, as in the MISC
algorithm [13]. We implemented affinity measures based on RCN
and AA (see Section 3 for definitions). The second component is
based on the number of common attributes between two nodes.
Formally, we define MARCN

ij and MAAA
ij as: MARCN

ij =(1-
w)RCN ij + wATT ij and MAAA

ij =(1-w)AAij + wATT ij

where MARCN
ij and MAAA

ij are the matrix of affinity measures

for the SAMI-A algorithm using the RCN and AA measures,
respectively. w is an input parameter which represents the relative
weight of the attributes’ similarity measure. It will determine how
much weight will be given in the attribute matrix for the network
structure (1-w) versus the attributes’ information (w).

4.2 The SAMI-C Algorithm
The second algorithm, SAMI-C (Structure and Attributes Miss-
ing node Identification using Concatenate affinities), creates the
affinity measure as a concatenation of the structure and attributes
affinity matrices instead of a weighted sum of the two components,
as in SAMI-A. Formally, we define MCRCN and MCAA as:
MCRCN=[MRCNMATT ] and MCAA=[MAAMATT ] where
MCRCN and MCAA are the matrix of affinity measures for the
SAMI-C algorithm using the RCN and AA measures, respectively.

4.3 The SAMI-N Algorithm
The third algorithm, SAMI-N (Structure and Attributes
Missing node Identification using social-attribute Network),
combines the known nodes’ attribute data into a Social-Attribute
Network (SAN) – a data structure that was already developed
[7], [16], [17]. We then use a uniform weighted sum of different
components within the SAN to create the affinity measure.
The algorithm first builds the SAN network from the original
network and the attributes matrix. It starts with the original
network Gv , where each original node and link in the SAN
network are called a social node and social link, respectively.
It defines a new attribute node for each binary attribute and
adds it to the SAN network. It then adds a link – called an
attribute link – between a social node and an attribute node
if the social node has this attribute (i.e. TRUE value in the
attributes matrix), as illustrated in Figure 2. As the SAN network

Fig. 2: Social-Attribute Network (SAN) with original attribute
nodes.

has two types of nodes and links, social and attribute, it must
adjust the affinity measures for this new type of network. This
is done in line with previous work [7] with the option of giving
weight to each node, whether social or attribute. Formally,
we define the MNRCN

ij and MNAA
ij affinity measures as:

MNRCN
ij =

∑
u∈Γ(i)

⋂
Γ(j) w(u)

min(
∑

u∈Γ(i) w(u),
∑

u∈Γ(j) w(u))

MNAA
ij =

{ ∑
u∈Γ(i)

⋂
Γ(j)

w(u)
log(|Γs(u)|) if vi, vj ∈ Vv∑

u∈Γs(i)
⋂

Γs(j)
w(u)

log(|Γ(u)|) else
where MNRCN

ij and MNAA
ij are the matrix of affinity measures

for the SAMI-N algorithm using the RCN and AA measures,
respectively. Γ(u) is defined as the group of neighbors of node
u according to the SAN graph which includes both social and
attribute links. Γs(u) is defined as the group of social nodes which
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are neighbors of node u according to the SAN graph, and w(u) is
node u’s weight. Note that in our implementation, we use only one
input parameter w, and we therefore use the same weight value,
w(u) = w/(1 − w), for all of the attribute nodes and w(u) = 1
for all of the social nodes. We again divide bymin(. . .) in order to
avoid biases towards nodes with a very large number of neighbors.

5 THE OASCA ALGORITHM

In preliminary tests, we found that for different problem instances
the best results are obtained from different clustering-based algo-
rithms, including the SAMI-A, SAMI-C and SAMI-N algorithms
we introduced, as well as the MISC algorithm on which they were
based. We also found that the weight parameters within the SAMI-
based algorithms might need to be tuned for different problems
with varying numbers of missing nodes or network sizes. Thus,
it is important to reveal which algorithm variation is best suited
for a specific problem instance. Towards solving this problem,
we present OASCA, an Online Algorithm Selection for Clustering
Algorithms, which is based on the general algorithm selection
approach previously proposed by Rice [27].

Following this approach, we define the OASCA algorithm as
follows: First, OASCA runs the given portfolio of q clustering
algorithms {CA1 . . . CAq} and saves the clustering results, Ci,
of each algorithm. Specific to our missing node problem, Ci

represents the output of the placeholders’ clustering. In order to
evaluate the algorithms’ clustering results, we could not use the
purity measure, since in a real world environment there is a lack of
objective knowledge about the true original mapping of the place-
holders. Thus, we had to define and calculate a novel measure,
RSi, which is based on a relative purity measure RPj(Ci) and
forms the core of the OASCA algorithm. The RPj(Ci) measure
assesses the quality of the clustering result Ci in relation to other
portfolio algorithms’ results. Formally, for each two clustering
results, Ci and Cj , where j 6= i and sj(v) is the source
mapping of the placeholders according to the result Cj , we define:
RPj(Ci) = 1

|Vp|
∑

kmaxv∈Vm
|ck ∩ {v′ ∈ Vp | sj(v′) = v}|

and RSi =
∑

j 6=iRPj(Ci). Lastly, OASCA returns the clustering
results C∗ with the highest score, i.e. C∗ = argmaxiRSi.
Specifically, in this paper, we consider a portfolio which can
include the MISC, SAMI-A, SAMI-C and SAMI-N algorithms,
each with the two affinity types defined above (RCN and AA) and
a set of weight values that are learned according to the procedure
presented in Section 6.3.

6 EXPERIMENT METHODOLOGY

In this section, we describe the Steam social network used for
evaluating the algorithms in this paper. We detail the methodology
of our evaluation including the different networks considered
and their missing nodes. As previously described, the SAMI-A
and SAMI-N algorithms need to consider a weight, w, which
will determine the weight that we will assign to the attributes’
information in our algorithms. Specifically, in SAMI-A this value
will determine the relative weight that will be given in the affinity
matrix for the network structure (1-w) versus the attribute infor-
mation (w), and in SAMI-N this weight determines the relative
value of information in attribute nodes. Thus, in this section we
also describe our procedure for learning the weight parameter
values for the different algorithms and then we introduce MIK,
an algorithm that exclusively uses K-means clustering to serve as
a baseline similar to the MISC algorithm [13].

6.1 Dataset Description

We use a previously developed social network dataset, Steam [36]
(http://steamcommunity.com), to empirically evaluate our work.
The Steam community network is a large social network of players
on the Steam gaming platform. The data we have is from 2011
and contains 9 million nodes (“anonymous" users) and 82 million
friendship edges. Each user had the following data: country (the
origin of the user; 50% voluntarily put country), member since
(the date when the user opened his Steam account), a list of game
playing times (number of hours played in the last two weeks)
and a list of group memberships. We chose groups of attributes:
country, playing time and player group association. These three
groups form a total of 60 attributes – one for the country, another
with 20 attributes of different game playing times and the third
with 39 different official associations. As we are interested in
studying the missing node problem where attribute information
exists about known nodes, we had to ensure that the nodes within
our dataset in fact contained such information. Towards this end,
we crawled the social network and only selected nodes that have
at least 2 games or groups. This crawling reduced the dataset
size to 1.3 million nodes (users). The next challenge we had to
address in using a dataset of this size was processing the data
within a tractable period and overcoming memory constraints. To
extract different networks’ samples, we used a Forest Fire (FF)
walk [37], [38], which starts from a random node in the dataset
and begins ‘burning’ outgoing links and the corresponding nodes
with a burning probability of 0.75. This is a variation of BFS walk,
which randomly chooses only part of the node’s outgoing links.
We used this method as we want dense networks where each node
has several links so that we can demonstrate the missing nodes
problem, but still sample networks which preserve, as much as
possible, the original dataset features. We crawled a 16K network
from this reduced dataset, marked it as the training dataset and
removed these nodes from the dataset. We then re-sampled this
16K node training dataset in order to extract several 2K training
networks, which we used to learn parameters. Finally, we extracted
several test networks with different sizes from the remaining
dataset.

6.2 Experimental Setup

The experimental setup (see flowchart in Figure 3) starts by
sampling a network from the dataset. This sampling is repeated ten
times, each starting from a different random node, in order to avoid
randomization errors and biases, creating ten different networks
for each size. In the following step,N nodes are randomly selected
as missing nodes. This is repeated ten times from each one of the
networks, resulting in different random instances of the problem
setting for each combination of graph size and N . The randomly
selected missing nodes are removed from each instance. Each
missing node is replaced with a placeholder for each of its links
to remaining nodes in the network. The resulting graph is inputted
into the algorithm, which produces a clustering of the placehold-
ers. By uniting the placeholders in each cluster into a new node and
connecting the new node to the neighbors of the placeholders in
the corresponding cluster, the SAMI algorithms create a predicted
network. The goal of these algorithms is that the predicted network
will resemble the structure of the original network from which
the random nodes were removed. The clustering produced by the
algorithms is evaluated using the purity measure described above,
and the average purity value achieved for all of the instances
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Fig. 3: A figure explaining the evaluation methodology for the experiments within this work.

and/or for the instances of a specific N is reported. The GED is
also evaluated by comparing the predicted network to the original
network. This result is also averaged over the different instances
and/or for the instances of a specific N and is reported as well. In
each experiment report, we indicate the network’s size, the values
of the N different missing nodes and the number of repetitions.
Nearly all points in the tables and the graphs of the relevant figures
below are the average of 100 runs (10 networks repeated 10 times)
of the algorithm on randomly generated configurations.

6.3 Learning the Weight Parameter Values
We used the training datasets to empirically learn the best weight
w for the SAMI-A and SAMI-N algorithms. Recall from Sections
4.1 and 4.3 that the weight w is used differently in the SAMI-A
and SAMI-N algorithms. In the SAMI-A algorithm, the weight
w is used for the weighted sum of the structure affinity and the
attributes affinity. In the SAMI-N algorithm, we used the uniform
weight w(u) = w/(1 − w) value for all attribute nodes and
w(u) = 1 for all of the social nodes in the affinity measure
calculation for the SAN network. We ran the algorithms with
both affinity measure types, RCN and AA, using the 2,000 node
training sample networks, where we randomly removed a set of
missing nodes of sizes 10, 30, 50, 70, 100 and 150 which were,
respectively, approximately 0.5%, 1.5%, 2.5%, 3.5% 5.0% and
7.5% of the network and a range of weights between 0.2 and 0.8
with 0.1 steps. Because we had only six training networks, we
repeated the run 20 times. Table 1 shows the results for the 2,000
node training networks, where each value in the table represents
the averages of all the runs for all of the missing node values (i.e.
6 missing node parameters X 6 training networks X 20 iterations
per configuration = 720 runs). Based on these training results, we

used the following weight parameters: w=0.4 for RCN SAMI-A,
w=0.2 for RCN SAMI-N, w=0.8 for AA SAMI-A and w=0.2 for
AA SAMI-N.

TABLE 1: The purity results for the 2,000 node training networks
with different weights.

6.4 Comparison Configuration
We evaluated our four algorithms – SAMI-A, SAMI-C, SAMI-N
and OASCA – using the known nodes’ attribute information from
the Steam dataset. For comparison, we first compared our SAMI
algorithms to the original MISC algorithm and a variation of the
SAMI-A and SAMI-N algorithms that are denoted SAMI-A-SC
and SAMI-N-SC, respectively, which were based on the original
MISC algorithm [14], [24]. However, because these algorithms
are based on spectral clustering, they will not scale well to larger
networks with the known nodes’ attribute information due to the
inherent high overhead with the full affinity matrices. Thus, we
also evaluated a variation of the MISC algorithm, that we term
MIK, which skips the spectral clustering step of the original algo-
rithm and uses the K-means clustering algorithm directly on the
placeholder structure affinity matrix. This enables a fairer compar-
ison with the original algorithm yet facilitates a proper evaluation
on larger networks. We chose not to compare our new algorithms
to KronEM, another recently developed algorithm which only uses
the network graph structure, and does not use attributes. This is
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due to the fact that we already showed in our previous work [24]
that both MISC and SAMI-A-SC outperform KronEM. As stated
in that study, the KronEM algorithm accepts a visible graph and
the number of missing nodes as its input. Consequently it is not
based on the existence of placeholders and thus does not use them.
Accordingly, it is not surprising that KronEM’s performance does
not improve when attributes from known nodes are considered.
Finally, we also considered a Random assignment algorithm that
assigns each placeholder to a random cluster. This algorithm is a
baseline that represents the most naive of assignment algorithms.
All algorithms based on affinity have two variations according to
the network graph structure affinity matrix – Relative Common
Neighbors measure (RCN) or Adamic/Adar (AA). The OASCA
algorithm was evaluated with a portfolio that is based on variations
of SAMI-A, SAMI-C, SAMI-N or MIK algorithms, each with
RCN and/or AA measures.

7 COMPARISON RESULTS

We first compared the K-means-based algorithms with the
spectral-clustering-based algorithms. Specifically, we compared
MISC, SAMI-A-SC, SAMI-N-SC, MIK, SAMI-A and SAMI-N
with RCN and AA measures. We used the best weight from the
training experiment for each of the two variations of SAMI-A
and SAMI-N shown in Table 1. We ran 10 networks of 2,000
nodes where we randomly removed N missing nodes, using 5
missing node values of 10, 20, 30, 40 and 50, which respectively
represented 0.5%, 1.0%, 1.5%, 2.0% and 2.5% of the network. We
repeated each configuration 10 times to attain 100 results for each
one of the missing node values. Table 2 shows the results (the
higher the better) for the 2,000 node networks with RCN (above)
and AA (below) measures. Each value in the table represents
the average purity value over all of the runs (100 samples). We
empirically observed that the RCN measure is successful even
without MISC’s spectral clustering preprocessing stage, while
the AA measure is less successful and evidently requires this
stage for its success. For the RCN measure, the K-means-based
algorithms yielded better results than the spectral-clustering-based
algorithms.

Overall, SAMI-A and SAMI-N performed significantly better
than MIK (the ANOVA results for the mean difference of SAMI-A
and SAMI-N compared to MIK at the 0.05 significance level were
p=0.02 and 0.04, respectively). For the AA measure, SAMI-A
and SAMI-N also performed significantly better than MIK (the
ANOVA results for the mean difference of SAMI-A and SAMI-N
compared to MIK at the 0.05 significance level were p=1.29E-
15 and 5.13E-3, respectively). However, spectral-clustering-based
algorithms performed better than the K-means-based algorithms,
with SAMI-A-SC achieving the best results. Nonetheless, overall
RCN SAMI-A and RCN SAMI-N performed significantly better
than AA SAMI-A-SC (the ANOVA results for the mean differ-
ence at the 0.05 significance level were p=4.22E-8 and 1.13E-7,
respectively).

We proceeded to compare the OASCA algorithm using ten
samples of the 2,000 node networks with the same number of
missing nodes. In these runs, we used the 3 weight values for
each of the two variations of SAMI-A and SAMI-N, and we
ran the OASCA algorithm to empirically confirm its effective-
ness with a portfolio of q=14, which includes SAMI-A with 3
weight values, SAMI-N with 3 weight values and MIK algorithms
with both the RCN and AA measures. We also ran the OASCA

TABLE 2: Results of the comparison for the 2,000 node networks
with RCN (above) and AA (below) measures.

algorithm with the spectral-clustering-based algorithms, which
we label OASCA-SC, with a portfolio of q=14, which includes
the SAMI-A-SC with 3 weight values, SAMI-N-SC with 3
weight values and MISC algorithms. Figure 4 shows the purity
results for the OASCA and OASCA-SC algorithms for each option
of missing nodes and the overall average result. It is apparent
that OASCA achieved better results (the higher the better) than
OASCA-SC for all of the missing node values. These results
were significantly better where the ANOVA results for the mean
difference of OASCA from all of the runs and missing nodes’
values compared to OASCA-SC at the 0.05 significance level was
p=2.72E-7. Moreover, the OASCA results were also significantly
better than the RCN SAMI-A and RCN SAMI-N algorithms (the
ANOVA results for the mean difference at the 0.05 significance
level were p=2.31E-2 and 4.48E-4, respectively). Note that the
results of all of the algorithms with or without attributes were
significantly better than the Random algorithm whose average
purity results varied between 0.3921 for 10 missing nodes and
0.3128 for 50 missing nodes.

Fig. 4: Results of the comparison for the the 2,000 node networks
with OASCA and OASCA-SC.
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Fig. 5: Purity results for the 10,000 node networks with 50 (left)
and 150 (right) missing nodes and with a different attribute

population percentage threshold.

8 EVALUATION AND RESULTS

We then tested our SAMI-based algorithms and the OASCA al-
gorithm with different configuration setups in order to evaluate
the effect of the different parameters that might influence the
algorithm’s performance. Consequent to the results provided in
section 7, which show that the RCN measure always outperforms
the AA measure in the SAMI-based algorithms using K-means,
the following experiments were performed with the RCN measure
only.

8.1 Dealing with Frequent Attributes
We assessed whether attributes with high frequency can impact the
algorithms’ results. We presumed that including popular attributes
in the affinity matrix would negatively affect the performance as
they would add noise in the clustering algorithm, causing false
indications that nodes containing the frequent information are
similar. To evaluate this possibility, we considered a popularity
threshold, which removes attributes from the matrix that appear
with greater frequency than in the current network. We tested
this hypothesis on 10,000 node networks with different population
thresholds and randomly removed a set of missing nodes of sizes
10, 20, 30, 40, 50, 70, 100 and 150.

Figure 5 shows the average purity results (the higher the better)
for MIK, SAMI-C, SAMI-A and OASCA algorithms with the
RCN measure for each attributes’ population percentage threshold
option for the 50 missing nodes (left) and for the 150 missing
nodes (right). The results show that when we removed the most
popular attributes we could improve our results, and when the
number of missing nodes increases, it is better to use a lower
population percentage threshold, as the likelihood of false posi-
tives increases with more placeholder nodes. For example, when
the number of missing nodes is greater than or equal to 70 or
100, the results for SAMI-A with a popularity threshold of 50%
are significantly better than the results without a threshold (the
ANOVA results for the mean difference of SAMI-A without a
popularity threshold compared to a popularity threshold of 50%
when the number of missing nodes ≥ 70 or ≥ 100 at the 0.05
significance level were p=4.06E-2 and 1.32E-2, respectively). And
when the number of missing nodes is greater than or equal to 100,
the results for OASCA with a popularity threshold of 50% and 35%
are significantly better than the results without a threshold (the
ANOVA results for the mean difference at the 0.05 significance
level were p=3.12E-3 and 2.12E-2, respectively). These results
again confirm that the OASCA algorithm performs best when
followed by the SAMI-A algorithm.

Fig. 6: Purity results for the 10,000 node networks with 50 (left)
and 150 (right) missing nodes and with different percentages of

assigned attributes.

Overall, the evaluation shows that high frequency attributes
can negatively impact the average purity results and using a
popularity threshold can improve the results. We conclude that
when the number of missing nodes increases, it is better to use the
less popular attributes. Thus, in the consequent experiments we
used a popularity threshold of 50% for small to medium numbers
of missing nodes, and a popularity threshold of 35% when a
large number (greater than 150) of missing nodes needed to be
identified.

8.2 Assigning Attributes to the Placeholder Nodes
As noted, we lack attribute information regarding the placeholder
nodes and consequently we assign the attributes of neighbors to
these nodes in SAMI-A and SAMI-N as well as the attributes of
the node’s neighbors’ neighbors in SAMI-C. In these experiments
we evaluated the impact of assigning attributes on the algorithms’
results in order to determine whether all of the neighbors’ at-
tributes or only partial attributes (based on uniform distribution
instead of popularity) should be assigned to the placeholders to
improve the results. We used a percentage parameter, with values
between 100% and 50%, as a random selection threshold for
assigning the attributes to the placeholder nodes. We ran a test
with the 10,000 node networks with a 50% popularity threshold
and randomly removed the set of missing nodes of sizes 10, 20,
30, 50, 70, 100 and 150 as in the previous experiment.

Figure 6 depicts the average purity results for MIK, SAMI-C,
SAMI-A, SAMI-N and OASCA algorithms with the RCN measure
for each percentage threshold option for 10,000 node networks
with 50 missing nodes (left) and 150 missing nodes (right). As
expected, the results demonstrate that the percentage of attribute
assignment has a higher impact on SAMI-A and SAMI-N al-
gorithms, which only assign the placeholder the attributes of its
neighbor, than on SAMI-C, which also assigns the placeholder
the attributes of its neighbor’s neighbors, and thus has information
redundancy and lower sensitivity. Specifically, the results are
significantly worse for SAMI-A and SAMI-N when the percent-
age value is 60% (the ANOVA results for the mean difference
of SAMI-A and SAMI-N when using 100% of the attributes
compared to only 60% of the attributes at the 0.05 significance
level were p=2.77E-2 and 3.87E-2, respectively). It also shows
that SAMI-N, which uses the attributes as embedded nodes in the
SAN network, has a more complex dependency on the specific
assigned attributes and its results are less stable than those of
SAMI-A. For example, the results with 50 missing nodes (on the
left) are lower with 80% assignment than with 70% assignment
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and the results with 150 missing nodes (on the right) are lower
with 90% assignment than with 80% assignment. For the SAMI-C
algorithm, where we assigned attributes of the neighbors of a
link distance of 2 – the placeholders’ neighbor’s neighbors, we
obtained stable results when the percentage value was between
100% and 70% for all missing nodes. For a percentage of 60%
the results were slightly worse, while for a percentage of 50%
the results were slightly better. Nonetheless neither of the results
are significantly different than the results of SAMI-C with 100%
of the attributes. For the OASCA algorithm, when the number of
missing nodes is 150 (on the right), the best results were obtained
with 70%; however, this result is not significantly better compared
to the results when all attributes were assigned. Additionally the
results for OASCA were significantly worse when the percentage
value was 60% (the ANOVA result for the mean difference at
the 0.05 significance level was p=3.10E-2). We conclude that a
percentage value of 70% for attribute assignment can improve
OASCA’s results without significant change in the results of the
other algorithms. Also, since the results of SAMI-N were not
better than the results of SAMI-A, i.e., they were less stable, and
also took longer to calculate as a result of the need to reconstruct
the network for each iteration, we decided not to run the SAMI-N
algorithms in the subsequent experiments.

8.3 Scaling Up to More Missing Nodes and Large-Scale
Networks
Subsequently, we evaluated the impact of the number of miss-
ing nodes and the network size on the algorithms’ results. We
presumed that as the number of missing nodes increases, the
additional information gained from the algorithms from the known
nodes’ attributes decreases and may in fact become detrimental.
The reasoning behind this supposition is that as the number
of placeholders increases, the probability of finding nodes with
similar attributes in other placeholders inside the network in-
creases. Thus, in large scale networks the number of missing nodes
rises in tandem with their placeholders, creating an increased
likelihood of false positives. As this occurs, we postulate that the
SAMI-based algorithms would at some threshold underperform in
comparison to the MIK algorithm. While the MIK algorithm only
considers the network structure, the SAMI algorithms additionally
consider attributes. As the number of missing nodes increases, the
large amounts of additional information considered by the SAMI
algorithm will generate progressively more false positives because
of the similarity of information in the placeholders. We explored
this possibility by testing configurations with 25,000 and 100,000
node networks with a 35% popularity threshold and randomly
removed a set of missing nodes of sizes 50, 100, 200, 300 and
500.

Figure 7 shows the average purity results for MIK, SAMI-C
and SAMI-A for the 25,000 node (on the left) and 100,000 node
(on the right) networks. For the 25,000 node network, the results
of the OASCA algorithm were significantly better than the MIK
and SAMI-C algorithms when the missing nodes were less than
or equal to 300 (the ANOVA results for the mean difference of
OASCA compared to MIK and SAMI-C at the 0.05 significance
level were p=2.91E-20 and 2.82E-13, respectively). Nonetheless,
for the 500 missing node problem, OASCA and MIK performed
almost the same, and the results of SAMI-C were significantly
worse (the ANOVA results for the mean difference of OASCA
compared to SAMI-C at the 0.05 significance level was p=6.88E-
27). However, the results of SAMI-A were equal to OASCA for

Fig. 7: Purity results for the 25,000 node (left) and 100,000 node
(right) networks with missing nodes.

300 missing nodes and significantly better for 500 missing nodes
(the ANOVA results for the mean difference of SAMI-A compared
to OASCA and MIK at the 0.05 significance level were p=0.0078
and 0.0128, respectively). For the 100,000 node networks, the
results for the OASCA algorithm were significantly better than the
MIK, SAMI-A and SAMI-C algorithms when the missing nodes
were less than or equal to 100 (the ANOVA results for the mean
difference of OASCA compared to MIK, SAMI-A and SAMI-C at
the 0.05 significance level were p=4.846E-16, 6.0E-3 and 9.12E-
5, respectively). However, for the 200 and 300 missing nodes, the
results of SAMI-A were significantly better (the ANOVA results
for the mean difference of SAMI-A compared to OASCA, MIK
and SAMI-C at the 0.05 significance level were p=1.27E-6, 2.7E-
3 and 5.00E-5, respectively). Then again, the results for the 500
missing node configuration show that the MIK algorithm, which
does not use the attribute data, performs significantly better than
all of the other algorithms (the ANOVA results for the mean
difference of MIK compared to OASCA, SAMI-A and SAMI-C
at the 0.05 significance level were p=2.67E-6, 9.46E-5 and 1.35E-
38, respectively). In light of these results we conclude that the use
of the known nodes attribute data, which in our case is mainly
group memberships and game play times, can improve the results
for networks with no more than several hundred missing nodes.
However, when the number of missing nodes increases beyond
this point, especially in a large scale network, using attributes
which are not anchored in the network structure can negatively
affect the results.

9 PARTIAL AND INACCURATE INFORMATION

We also studied how partial and inaccurate information within
the placeholders and the known nodes’ attributes data can impact
the algorithms’ accuracy. With the algorithms and experiments
described previously the assumption was that all placeholders’
information can be identified with complete certainty and all of
the known nodes’ attributes data is available. Thus, when a node
was removed from the original graph in the experiments described
above, a placeholder was correctly connected to each one of the
removed node’s neighbors. Realistically, assuming indications of
missing nodes in the network are obtained from a data mining
module, such as image recognition and text processing, it is likely
that missing node information will be partial and noisy. We con-
sidered four different types of uncertainty regarding information
within the network. In the first case, we considered the possibility
that insufficient placeholders exist to correctly identify all missing
nodes. We then considered a second case where not all of the
known nodes’ attributes data is available. Third, we considered
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a case where extra placeholders exist. In this case, we assumed
that the actual missing nodes are found in the set of placeholders,
but extraneous information exists about additional placeholders
which do not correspond to actual nodes in the network. Last,
we considered a case where extraneous information exists about
known nodes. For the first case (insufficient placeholders), we used
evaluations based on Graph Edit Distance, as the actual number
of placeholders is unknown based on the data. In this problem,
the purity measure is not appropriate as it requires knowledge
about the actual number of missing nodes and placeholders in
its calculation. In contrast, the Graph Edit Distance measure is
based on calculating the number of transformations between the
original and actual networks – something that can be calculated
even without knowing the number of missing nodes. For the
other uncertainty problem categories, e.g., where there are missing
attributes, extra placeholders or attributes, we again assumed that
the number of placeholders is known, allowing us once again to
consider the purity measure in our evaluation.

9.1 Addressing Missing Placeholders

Under the assumption that a data mining module provides us with
indications of the existence of placeholders, scenarios will likely
occur whereby the module provides incomplete results, whereby
some of the placeholders are not generated. This mistaken in-
formation will not only add false negatives of non-detection of
placeholders, but false positives may also exist in the form of false
alarms of wrong/noisy detection of placeholders. To assess how
robust the SAMI-based algorithms are for incomplete placeholder
information, we measured how this partial information would
affect the missing nodes’ identification. For this purpose we
conducted a set of experiments where we ran 10 networks with
a size of 2,000 nodes ten separate times, where we randomly
removed a set of missing nodes of sizes 10, 20, 30, 40 and 50
and the percentage of known placeholders ranged from 10% to
100% of the total placeholders that should have been created when
removing the missing nodes. Figure 8 displays the Graph Edit
Distance (the lower the better) achieved by the MIK, SAMI-C and
SAMI-A algorithms for each percentage of known placeholders.
Each point in the graph represents the average Graph Edit Distance
achieved for the 100 runs. The results show that SAMI-A achieved
the best results (the lower the better) when the percentage of
known placeholders ranged from 100% to 40%. However, the re-
sults show that the performance decreases when less placeholders
are known, resulting in a higher Graph Edit Distance between
the original graph G and the predicted graph Ĝ. Moreover, once
30% of the placeholders are unknown, the SAMI-based algorithms
perform the same as the MIK algorithm, which does not use the
known nodes’ attribute data.

This scenario raises questions regarding the algorithms’ abil-
ity to address missing information with large percentages of
placeholders. As some placeholders are unknown, the resulting
graph predicted by the algorithm would lack the edges between
each unknown placeholder and its neighbor. To formulate this
new problem we altered the input of the original missing node
identification problem. Recall that Vp is the group of all of the
placeholders generated from the missing nodes and their edges.
We defined the following new groups: V k

p , E
k
p - the group of

known placeholders and their associated edges; and V u
p , E

u
p - the

group of unknown placeholders and their associated edges, such
that Vp = V k

p ∪ V u
p and V k

p ∩ V u
p = φ. For each missing

Fig. 8: GED results for the 2,000 node networks with a different
known placeholder percentage.

node v ∈ Vm and for each edge 〈v, u〉 ∈ E, u ∈ Vk, we
added a placeholder v′ either to V k

p or to V u
p and an edge

〈v′, u〉 to Ek
p or to Eu

p , accordingly. The available network
graph, Ga = 〈Va, Ea〉, now consists of Va = Vk ∪ V k

p and
Ea = Ek ∪ Ek

p . In addition, we defined the indicator function
I (v) which returns the value 1 for each known node v ∈ Vk if
it is connected to an unknown placeholder, otherwise it returns 0,

i.e: I (v) =

{
1 if ∃u ∈ V u

p ∧ 〈v, u〉 ∈ Eu
p

0 otherwise
The value of I (v) is unfortunately unknown to the system in
this scenario. Instead, we modeled the data mining module’s
knowledge as S (v) = I (v) + X(v), a noisy view of I (v) with
additive random noise X(v), where X is an unknown random
variable. The formal definition for this problem setting is thus:
given a known network Gk = 〈Vk, Ek〉, an available network
Ga = 〈Va, Ea〉, the value of S (v) for each v ∈ Vk and the
number of missing nodes N , divide the nodes of Va\Vk into
N disjoint sets Vv1 , . . . , VvN such that Vvi ⊆ Vp are all the
placeholders of vi ∈ Vm, and connect each set to additional nodes
in Vk such that the resulting graph has a minimal GED from the
original network G.

In previous work [14], we proposed two possible compen-
sation algorithms for solving this problem. The first algorithm,
Missing Link Completion, added the additional step of missing
link prediction to the existing missing node algorithm in order
to complete the edges that were missing due to the unknown
placeholders. The second algorithm, Speculative MISC, used a
different approach for S (v), where a new placeholder was added
and connected to every node v whose indication value S (v) was
greater than T . Next, the original (MISC) algorithm was used
on the new graph to predict the original graph. Our previous
work showed that the Speculative MISC algorithm outperforms
the Missing Link Completion by achieving a lower GED. Con-
sequently in this work we chose to use the Speculative MISC
algorithm as the basis for comparison. We extended this algorithm
for the missing node with the attribute problem by using a new
indicator SATT (v) which also takes into account the attribute
data. For each potential placeholder v ∈ Vk, we calculated its
maximal attribute affinity with all of the known placeholders,
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TABLE 3: GED results for the 2,000 node networks with 30%
known placeholders and different compensation methods.

IATT (v) = argmaxuATTvu for all u ∈ V k
p and then we used

the following integrated indicator SATT (v) to add the potential
missing placeholders, i.e. SATT (v) = S(v)+IATT (v)

2 .
To study this point, we compare the MIK, SAMI-A and

SAMI-C algorithms with full knowledge of the placeholders and
where only 30% of the placeholders are known (the previous
experiment showed a major deterioration in the results at 30%),
with and without the two indicator-based compensation methods
S(v) and SATT (v). We set the value ofX(v) with Gaussian noise
with a mean of 0 and standard deviation of 1/4. Table 3 shows the
results of average GED for all of the runs for all of the missing
node values with 2,000 node networks. As expected, the best
results (the lower the better) were achieved with full knowledge
of the placeholders (first row). Again, it is apparent that when
only 30% of the placeholders are known (second row), the three
algorithms achieve almost the same results. The third row presents
the results with the original compensation algorithm, which only
uses the original indicator S(v), and the fourth row depicts the
results with the SATT (v) indicator. The results with the SATT (v)
indicator are significantly better than the results with the original
indicator S(v) (the ANOVA results for the mean difference at
the 0.05 significance level for SAMI-A and SAMI-C with the
SATT (v) indicator compared to the original indicator S(v) were
p=3.53E-2 and 1.16E-3, respectively). Overall when only 30%
of the placeholders are known, the best results were achieved by
the SAMI-C algorithm with the SATT (v) indicator which were
significantly better than the results of SAMI-C with SATT (v)
and MIK with S(v) (the ANOVA results for the mean difference
at the 0.05 level were p=1.17E-3 and 6.69E-7, respectively). The
compensation algorithms enable us to mitigate the degradation in
the results from over 15% down to 4%.

9.2 Addressing Missing Attributes

In the second scenario, as in the first, we again considered that not
all of the known nodes’ attribute data is available. As in Section
4, we assigned the placeholders the attributes of their neighbor
in SAMI-C and also of their neighbor’s neighbors in SAMI-A,
thus considering two types of missing attributes – the attributes of
the placeholder’s neighbor and the attributes of the placeholders’
neighbor’s neighbors. To simulate this scenario, we used a uniform
distribution of the placeholders’ neighbors to remove a percentage
of the nodes’ attributes at either a distance of 1 or 2 from
the placeholder representing the original true missing node. For
example, if a given node X has one placeholder, in the distance
1 method we would remove a percentage of X’s attributes (the
placeholder’s neighbor) and in the distance 2 method we would
remove a percentage of the attributes of Y, which is a visible
neighbor of X (placeholders’ neighbors’ neighbors). To study the
impact of this factor we conducted a set of experiments where
we ran 10 iterations of 10 networks with a size of 10,000 nodes
and randomly removed N missing nodes, namely a set of missing
nodes of sizes 10, 20, 30, 40, 50, 70, 100 and 150, and varied

Fig. 9: Purity results for the 10,000 node networks with different
known attribute percentages.

the known percentage of attributes from 100% to 10% (i.e. we
removed from 0% to 90% of the attributes) for the two types of
missing attributes.

Figure 9 shows the average purity results for the 10,000 node
networks for each one of the assumed known attribute percentages
for the two types of missing attribute information methods – on
the left are the missing attributes of the placeholder’s neighbor
(distance 1), and on the right are the missing attributes of the
placeholders’ neighbors’ neighbors (distance 2). The MIK results
are shown as a baseline for the SAMI-based algorithms. As
expected, the missing attribute information of distance 1 (on the
left) has almost no effect on the results of SAMI-C, as this
algorithm used the attributes of both distance 1 and distance 2,
and thus used the existing attributes from distance 2 to remain
effective. However, it is apparent that for SAMI-A, when the
percentage of known attributes in distance 1 is 50% or less, the
results degrade dramatically, and when the percentage of known
attributes in distance 1 is 30% or less, the results are even worse
than the results of MIK that does not use the attribute information.
These results are compatible with the results of our presented tests
in section 8.1 where we evaluated the popularity threshold and in
section 8.2 where we evaluated how the assigned attributes can
impact the algorithms’ results. Here we removed the attributes
with uniform distribution and not according to the popularity
threshold as we did in Section 8.1. Thus though the degradation is
apparent in the results in a smaller number of missing attributes,
it is similar to the results presented in Section 8.1. For the missing
attribute information of distance 2 (on the right), the results clearly
demonstrate that the missing attributes had almost no impact on
the results of both SAMI algorithms. There is a degradation in
SAMI-C’s results only when the known percentage of attributes
in distance 2 is 10%. We conclude that the known node attributes
can help improve the results compared to the MIK algorithm even
when there is only partial data.

9.3 Evaluating the Effect of Extraneous Placeholders
In the third scenario, we considered the impact of having too
many placeholders in the algorithms. In this possibility, we again
assumed that some noise exists in the number of placeholders
because of errors made by a data mining module in providing
indications of possible missing nodes. However, this time we con-
sidered that false positives may provide indications of placeholders
when they in fact do not exist. To evaluate this possibility, we
considered three methods of how to add the extraneous place-
holders, one global method and two local methods. In the global
method, we added extraneous placeholders which were randomly
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TABLE 4: Purity results for the 10,000 node networks with
different placeholder extraneous noise.

connected to the network nodes. The motivation behind the global
method is that we wished to ascertain the impact of random noise
in the network. Adding extraneous placeholders in this fashion
replicates this type of noise. In the local methods we added
extraneous placeholders in a uniform distribution to the nodes with
existing placeholders. We added these extraneous placeholders at
either a distance of 2 or 3 from the original true missing node
(placeholder). For example, if a given node X has one placeholder,
in the distance 2 method we would add an extraneous placeholder
to Y, which is a visible neighbor of X. In this experiment, once
again we used the 10 samples of a 10,000 node network. From
each network, we randomly removed a set of missing nodes of
sizes 10, 20, 30, 40, 50, 70, 100 and 150. To each network we
added extraneous placeholders of 5%, 15% and 25% of the number
of true placeholders using the three methods described above:
global, local with a distance of 2 and local with a distance of 3. We
repeated this test 10 times. The results in Table 4 show the average
mean purity for all of the runs. These results clearly demonstrate
that the extraneous placeholders only had a slight effect on the
algorithms’ results. While the global extraneous placeholders had
almost no impact, both local types of extraneous placeholders led
to only a slight degradation in the results. These results contrast
with the results in the previous section. Note that while having too
few placeholders strongly degrades the results, having extraneous
placeholders only slightly decreases the algorithms’ performance.

9.4 Evaluating the Effect of Extraneous Attributes

In this last scenario, we again considered the impact of having
extraneous attributes on the algorithms, for example due to noise
in the known node attributes in a data mining module. However,
this time we considered that false positives may provide incorrect
values for attributes that in fact do not exist. To evaluate this
possibility, similar to the previous case, we again considered
three methods of how to add the extraneous attributes, one global
method and two local methods. In the global method, we added
extraneous attributes which were randomly connected to the net-
work nodes. The motivation behind the global method is that we
wished to ascertain the impact of random noise in the network.
Thus, adding extraneous attributes in this fashion replicates this
type of noise. In the local methods we added extraneous attributes
in a uniform distribution to the nodes with existing placeholders.
We added these extraneous attributes at either a distance of 1
(placeholder’s neighbor) or 2 (placeholders’ neighbor’s neighbors)
from the original true missing node (placeholder). For example, if
a given node X has one placeholder, in the distance 1 method
we would add an extraneous attribute to X and in the distance
2 method we would add an extraneous attribute to Y, which is
a visible neighbor of X. In this experiment, we again used the

TABLE 5: Purity results for the 10,000 node networks with
different attributes extraneous noise.

10 samples of a 10,000 node network. From each network, we
randomly removed a set of missing nodes of sizes 10, 20, 30,
40, 50, 70, 100 and 150. To each network we added extraneous
placeholders of 5%, 15% and 25% of the number of true place-
holders using the three methods described above: global, local
with a distance of 1 and local with a distance of 2. We repeated
this test 10 times. The results in Table 5 show the average mean
purity for all of the runs for the SAMI-A and SAMI-C algorithms.
These results clearly demonstrate that the extraneous attributes
had almost no impact on the algorithms’ results. These results are
compatible with our previous test, which show that the known
nodes’ attribute data, including redundancy, and removing part of
the data or, in this case, adding some noise, only slightly affects
the algorithms.

10 CONCLUSIONS AND FUTURE WORK

We believe that this paper represents the first work that thoroughly
examines the missing node identification problem by including
information about both the network structure and attribute infor-
mation of known nodes. The first key contribution of this paper
is the method presented to integrate information about the known
nodes in order to better solve the missing node problem. Towards
this goal, we presented three clustering-based algorithms suitable
for this problem – SAMI-A, SAMI-C and SAMI-N. All of these
algorithms combine the nodes’ specific attribute information in
three ways. SAMI-A calculates a weighted sum of two affinity
components, one based on the network graph structure and the
other based on specific node attributes. SAMI-C creates the affin-
ity measure as concatenation of the structure and attributes affinity
matrices instead of using a weighted sum of the two components.
SAMI-N first combines the known nodes’ attribute data into a
Social-Attribute Network (SAN) and then uses a weighted sum of
different components in the SAN to create the affinity measure.
We showed that SAMI-A, SAMI-C and SAMI-N outperform the
recently introduced algorithms, MIK and MISC [13], which do not
use the nodes’ specific information.

The second key contribution of this paper is the novel OASCA
algorithm provided, which is an online algorithm selection for
clustering algorithms. Even though the RCN SAMI-A performed
on average significantly better than other variations of SAMI-A,
SAMI-C and SAMI-N algorithms or the MIK algorithm upon
which it is based, each of the other algorithms were at times
best suited for specific problem instances. We also found that
parameters in each of these algorithms might need to be tuned
for different problem instances with different missing nodes or
network sizes. Thus, an important question was how to discover
which of these algorithms, and which tuned parameter value in
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each algorithm, is best suited for a specific problem instance.
OASCA solved this challenge during online execution by using
a novel relative measure to identify which clustering algorithm,
from a given algorithm portfolio, is best suited for a given problem
instance. OASCA allows us to choose, online, the best classifier
without running all possibilities in advance. Though this was done
in previous selection approaches [28], [30], [31] it was not applied
a real-world environment.

Our evaluation shows that the OASCA algorithm gives the best
results overall. Furthermore, the OASCA algorithm is a general
online algorithm selection approach, and its input and output
do not depend on the problem domain. Consequently, OASCA is
also potentially suited for choosing from among other clustering
algorithms in addition to the ones we present for the missing node
identification problem. In the future, we would like to explore
additional ways to improve the implementation of our proposed
algorithms, SAMI-A, SAMI-C and SAMI-N, and continue evalu-
ating these algorithms on additional datasets. We would also like
to further explore the potential of the OASCA algorithm with a
larger set of algorithms and additional datasets.
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