
Auton Agent Multi-Agent Syst
DOI 10.1007/s10458-010-9133-6

Practical voting rules with partial information

Meir Kalech · Sarit Kraus · Gal A. Kaminka ·
Claudia V. Goldman

The Author(s) 2010

Abstract Voting is an essential mechanism that allows multiple agents to reach a joint
decision. The joint decision, representing a function over the preferences of all agents, is
the winner among all possible (candidate) decisions. To compute the winning candidate,
previous work has typically assumed that voters send their complete set of preferences for
computation, and in fact this has been shown to be required in the worst case. However,
in practice, it may be infeasible for all agents to send a complete set of preferences due to
communication limitations and willingness to keep as much information private as possible.
The goal of this paper is to empirically evaluate algorithms to reduce communication on
various sets of experiments. Accordingly, we propose an iterative algorithm that allows the
agents to send only part of their preferences, incrementally. Experiments with simulated and
real-world data show that this algorithm results in an average of 35% savings in communica-
tions, while guaranteeing that the actual winning candidate is revealed. A second algorithm
applies a greedy heuristic to save up to 90% of communications. While this heuristic algo-
rithm cannot guarantee that a true winning candidate is found, we show that in practice, close
approximations are obtained.

Keywords Multi-agent systems · Computational social choice · Voting

M. Kalech (B)
Information Systems Engineering, Ben-Gurion University, Beer-Sheva, Israel
e-mail: kalech@bgu.ac.il

S. Kraus · G. A. Kaminka
Computer Science Department, Bar-Ilan University, Ramat-Gan, Israel

C. V. Goldman
Samsung Telecom Research, Herzliya, Israel

123

Auton Agent Multi-Agent Syst

1 Introduction

Voting is an essential mechanism that allows multiple agents to reach a joint decision, which
reflects the preferences of all agents [3,13]. A voting protocol is a function that determines a
winning decision among all candidate decisions. Its inputs are the preferences of the agents.
Its output is the decision regarding the winning candidate, which commits all participating
agents. As such, voting is fundamental to multi-agent systems.

Previous work on voting mechanisms have typically assumed that the voters provide their
complete set of preferences to the voting protocol. Indeed, Conitzer and Sandholm [3] show
that for many of the voting protocols, in the worst case one cannot do better than simply
letting each voter communicate all of its preferences, so as to form a total order over the
candidates’ decisions.

However, in practice, several reasons conflict with the requirement for all voters to send
their complete set of preferences to the voting center agent (hereinafter “center”), calculating
the votes:

– First, bandwidth and communications costs may make it impractical to send the entire
set of preferences at once.

– Second, sending the entire preference set requires having the voter actually ranking its
preferences over the entire set of candidates. In practice, voters may wish to rank candi-
dates only as necessary (lazy commitment), since that can be less expensive or time-con-
suming than the complete ranking.

– Third, some voters may intermittently offline; if they miss the single opportunity to vote
at the beginning of the process, they will be completely cutoff.

– Finally, sending the entire preference set may violate the sender’s privacy with respect to
the center agent, collecting the votes (although there are existing efforts that independently
tackle this particular concern [1,18]).

As a concrete example, consider a meeting scheduling application, in which human users
vote on meeting times (e.g., such as [14]). It can be difficult for the user to specify preferences
for all possible slots as there are hundreds in a month: Picking the best three slots is much
easier for the human user than ranking all possible slots. It is also costly to communicate
all preferences to the agent conducting the vote. Not all users are constantly online, and
some may be late entering the voting process, and would thus like to seamlessly add their
preferences. Finally, sending the entire set of preferences essentially blocks parallelization
of meeting scheduling: Users must wait for one vote to finalize before specifying their entire
set of preferences for another meeting.

In practice, of course, humans often schedule meetings without requiring the full set of
preferences to be sent by all attendees. Instead, they vote incrementally, providing only a
subset of their preferences at a time, and only communicating additional votes if needed. In
other words, the theoretical worst case scenario as discussed in [3] is not necessarily common
in practice.

This raises the challenge of partial-order voting, where agents only supply a subset of their
preferences at any given time. Unfortunately, previous investigations have mainly focused
on theoretical understanding of partial-order voting, without providing a complete protocol
[3,12]. Konczak and Lang [8] present an algorithm which attempts to compute possible win-
ning candidates, given a subset of preferences. It also attempts to find inevitably winning
candidates, if those can be found using partial information. Pini et al. [11] consider the com-
plexity of this process, and generalize it. Other related investigations are discussed in the
next section. None of the investigations provides an evaluation using real-world data.

123

Auton Agent Multi-Agent Syst

The primary goal of this paper is to introduce practical partial-order voting protocols to
reduce communication by iteratively aggregating agents’ preferences. We prove the proper-
ties of these algorithms analytically, and empirically evaluate their ability to reduce commu-
nications in various sets of experiments in simulation and real-world domains.

In particular, in Sect. 3 we present an iterative algorithm that allows the agents to incre-
mentally send their preferences, converging to a winning candidate. The algorithm proceeds
iteratively, by asking the agents to send the value of only one candidate each iteration. The
value of a candidate is its score based on the voting protocol. For instance, in Range voting
the score is taken from a pre-defined range, in Borda the score is the candidate’s place in the
candidates vector (m−1, m−2, . . . , 0); m being the number of candidates. The agents send
the candidates in a decreasing order of their preference values. After each iteration, utiliz-
ing the technique outlined in [8], the center receiving the preferences of the agents checks
whether enough information has been sent to declare a winner. We present and prove the
correctness of this algorithm for various voting rules: for rank-based rules (Borda, Copeland,
Maximin, Bucklin), and for non-ranking rules (Range, Approval, and Cumulative).

To further reduce the preferences communicated by the agents, we also present a greedy-
heuristic algorithm in Sect. 4. This algorithm significantly reduces the number of candidates’
preference values that are sent. It stops after only a few iterations and chooses the most pre-
ferred candidates. Consequently it cannot guarantee that it will find the winner that would
have been determined in a voting with full information. However, we show that in practice it
works well.

Experiments with simulated and real-world data on Borda and Range rules are presented
in Sect. 5. The experiments show that the iterative algorithm saves much communication
while guaranteeing that a winning candidate will be found. In particular it saves 18–52% of
the communication depending on the distribution of the agents, and 25–45% depending on
the size of agents group. The heuristic algorithm saves up to 90% of communications, though
it does not guarantee that a true winning candidate will be found. Nonetheless, the results
show that the quality of the candidate it finds, compared to the real winning candidate, is very
high. In addition, the experiments show that mainly two factors influence the communication
of the iterative algorithm and the quality of the winner in the heuristic algorithm: (1) the
homogeneity of the agents (the similarity of the preference values of the agents over the
candidates), and (2) the diversity among the candidates’ preference values.

2 Related work

There has been work that addresses voting in systems where agents send partial information,
but most of them do not propose algorithms to reduce communication, and focus instead
on the use of the partial information in static form. Furthermore, while most previous work
proposes theoretical analysis of solving a voting problem, we evaluate our algorithms empir-
ically.

Conitzer and Sandholm [3], analyze the communication complexity of various voting
protocols and determine upper and lower bounds for communication. In general, they show
that for most of the voting protocols in the worst case the agents should send the entire set
of preferences for the candidates.

Konczak et al. [7,8] address the case of partial information, where the agents do not set the
preferences for all the candidates. In this case they show how to compute the sets of possible
winners and necessary winners. These sets determine which of the candidates are inevitably
pruned from the candidate set and which are necessary winners. We adopt their approach

123

Auton Agent Multi-Agent Syst

to propose a systematic preference aggregation protocol in which the agents do not need to
send their entire set of preferences.

Walsh [15] surveys the computational complexity of possible and necessary winners in
various of voting rules. In that paper Walsh studies this problem along two dimensions:
weighted or unweighted votes, and a bounded or unbounded number of candidates. Xia
and Conitzer [17] continue to investigate this computational analysis where the votes are
unweighted and the number of alternatives is not bounded in more rules other than STV rule.

Walsh [16] considers the question of how to decide when to stop eliciting preferences
as the winner is guaranteed. Obviously this question relates to the possible and necessary
winners computation. He shows that the computational complexity of deciding when to stop
elicitation is affected by the way the agents elicit their preferences.

Pini et al. [11] generalize the problem to address incomparability between candidates
beyond regular relations and unknown relations. They prove that the computational com-
plexity of computing possible winners and necessary winners is polynomial for voting rules
which are monotonic and independent of irrelevant alternatives (IIA). They present a poly-
nomial algorithm to determine the winners by eliciting preferences. However, they do not
suggest how to select the next candidate to ask about in order to reduce communication.
Also they do not empirically evaluate their algorithm. We, on the other hand focus on the
evaluation of communication. Thus we present iterative voting procedures both for Range
voting that satisfies IIA, as well as to Borda that does not satisfy IIA. We present experimental
results that evaluate our algorithms.

Gelain et al. [5] consider a similar problem of soft constraint problems where some of the
preferences may be unspecified. They propose a branch and bound algorithm in which the
user reveals as few preferences as possible to find an optimal solution. This work assumes that
the agents provide a complete set of candidates but a partial set of preferences. In contrast,
we propose incremental algorithms in which the candidate’s set is not necessarily known in
advance to the center. In addition, we propose a greedy heuristic which significantly reduces
the number of revealed preferences.

Lang et al. [9] focus on majority voting and show how to apply sequential majority com-
parisons with an unknown tree. The idea of sequential comparison is similar to the iterative
algorithms in this paper; however, Lang et al. focus on majority voting, while we present
our approach using two other voting rules. Furthermore, the major contribution of our paper
which goes beyond Lang et al.’s work and other previous work, is the empirical evaluation
of our iterative voting procedures.

The idea of reducing communication by communicating the preferences in a decreasing
order has been proposed in other contexts. For instance, Hudson and Sandholm [6] propose in
combinatorial auction that the elicitor will ask the bidders for the next-most valuable bundle,
based on the assumption that each bidder ranks its bundles in order of decreasing valuation.
Faltings and Macho-Gonzalez [4] also present a model of open constraint optimization prob-
lems where the agents submit their preferences in a decreasing order to find an assignment
to a set of variables that is optimal with respect to their preferences. As far as we know, no
previous work has proposed this idea for voting systems.

3 Iterative voting procedure

In a regular voting procedure, voters submit to the center a complete set of their prefer-
ence values for a set of candidates. The center calculates the winners based on the voting
protocol. Formally, given a set of voter agents A = {a1, . . . , an}, and a set of candidates

123

Auton Agent Multi-Agent Syst

C = {c1, . . . , cm}, a voting protocol defines a winner determination function from the agents’
votes to the set of candidates [2].

We present iterative voting algorithms to minimize the number of preference values the
agents are required to submit in order to determine the winners. The key idea is that after the
initial call for votes, the voters (agents) incrementally send their preference values in rounds,
one preference each round in a decreasing order of their preferences. After each round, they
wait for the center to decide whether sufficient information has been received to determine a
winner, or additional candidates’ preference values need to be sent. In each round the center
calculates the subset of candidates that no longer have any chance of winning and prunes
them from the candidate set. The iterative algorithm is terminated once the set of candidates
includes only the winners, and from that point the agents no longer send preference values.

To implement voting in rounds, in each round we need to calculate the set of candidates
that no longer have a chance of winning, and the set of candidates that must be winners based
on the information sent so far. Based on these sets we can decide whether we can stop and
declare the winners.

To do this, we adopt the definitions of possible and necessary winners provided by Konc-
zak and Lang [8], for a given set of partially-ordered preferences. They define the set of
possible winners as containing the candidates that win at least in one complete extension
of the partial preference relations among the candidates. That is, a candidate C is a possible
winner if there is at least one total order extension of the partial order of the preferences, in
which C wins. Analogously, the necessary winners set contains the candidates that win in
all complete extensions of the partial preference relations among the candidates.

It is unnecessary to generate all the complete extensions in order to check possible and
necessary winners. It is sufficient to generate only the extensions that provide the most opti-
mistic and pessimistic scenarios. For instance, in score-based voting rules (like Borda) a
possible winner is a candidate whose maximum score is greater than the minimum score
of all the other candidates, and a necessary winner is a candidate whose minimum score is
greater than the maximum score of all the others.

The computation process of the possible and necessary winners, as well as the winner
determination function depend on the voting protocol. In Sect. 3.1 below, we discuss iter-
ative Range voting as representative of non-ranking voting rules. In Range voting (unlike,
for instance, Cumulative) a voter can assign its scores to the candidates independently of
each other. The independence of the assignments is very important in iterative voting where
the voter assigns the candidates iteratively. In Sect. 3.2, we focus on iterative Borda voting
as a representative of rank-based rules, since it is considered as a very common rule in the
literature (see, e.g., [3,7–9,15–17]).

We have focused on Borda and Range rules since they differ in two attributes which
influence the iterative algorithm:

1. Range voting satisfies the independence of irrelevant alternatives criterion, while Borda
does not. This criterion determines that if ci is preferred over c j , then by changing the
preference of a third candidate ck, c j must not be preferred over ci . This criterion must
be addressed in iterative voting since the voters do not explore their whole set of prefer-
ences, thus it is important whether a new preference of a candidate may affect the order
of the other candidates.

2. Implementing the iterative algorithm with Borda rule requires the number of candidates
to be known to the center while when implementing it with Range this information is
not necessary. This requirement also differentiates between the other voting rules. For
instance, the Copeland and Maximin voting rules require the center to know the number

123

Auton Agent Multi-Agent Syst

of candidates while Bucklin and Cumulative do not. This point is important since there
are voting systems in which the center does not necessarily know the set of candidates
in advance.

Finally, in Sect. 3.3, we discuss iterative voting for other voting rules. We discuss other rank-
based rules (Copeland, Maximin, Bucklin), and non-ranking rules (Approval, Cumulative).
We show how iterative voting can be applied for each of these voting rules.

3.1 Iterative range voting

In Range voting, voters are asked to assign a point value within a specified range for each
candidate. The candidate with the highest total number of points is the winner. Thus if an
agent significantly prefers a candidate to the others, it will assign that candidate the high-
est value. On the other hand if a certain candidate is an impossible candidate for an agent,
then it will assign that candidate the lowest value.1 By providing the preference values in a
decreasing order the user does not have to assign his preference values to all the candidates
but only to those that he actually submits.

Let us formalize this process. In Range voting, the agents assign values to the candidates
from a predefined domain D = {d1, . . . , dk}, where d1 stands for the lowest value and dk

denotes the highest. Agent ai ’s preferences are represented by a scoring function vi : C → D
that assigns a value dl to every candidate c j ∈ C . Oi

t = {〈cp, dq 〉i1, . . . , 〈cr , ds〉it } is a set
of pairs, where 〈c j , dk〉if stands for vi (c j) = dk in iteration f . This set is maintained in a
decreasing order of the candidates’ preference values of agent ai sent through iteration t .
OA

t = {O1
t , . . . , On

t } is a set of Oi
t sets.

As mentioned above, in score-based voting rules, in order to check the possible and nec-
essary winners we must define the possible maximum and possible minimum scores of a
candidate. In Range voting, the pessimistic value (possible minimum) of a candidate is the
lowest bound of the range. The optimistic value (possible maximum) is the upper bound.
However, in our iterative algorithm, we exploit the fact that the candidates are sent in a
decreasing order, so the optimistic value of each new candidate must be equal or lower than
the value of the candidates that have been priory submitted. The function pmax A

t (c j , OA
t)

(described in Algorithm 1) computes the possible maximum of candidate c j , based on the
preference values of the agents through iteration t :

Definition 1 (Range voting Possible Maximum) pmax A
t (c j , OA

t) = ∑
i pmaxi

t (c j , Oi
t),

where

pmaxi
t (c j , Oi

t) =
{

d if ∃d : 〈c j , d〉 ∈ Oi
t

ds, where < cr , ds >i
t∈ Oi

t otherwise
(1)

The meaning of pmax function is, that for those agents that have already submitted c j the
value is the one they have assigned (d), while for those agents that have not sent it yet, the
value is the last value they have sent (in iteration t) since the candidates are submitted in a
decreasing order. In the same way we define a function of the possible minimum of candidate
c j through iteration t : pmin A

t (c j , OA
t).

Definition 2 (Range voting Possible Minimum) pmin A
t (c j , OA

t) = ∑
i pmini

t (c j , Oi
t),

where

pmini
t (c j , Oi

t) =
{

d if ∃d : 〈c j , d〉 ∈ Oi
t

d1 otherwise
(2)

1 Obviously, though Range voting is very susceptible to manipulation, we assume no manipulation in this
paper.

123

Auton Agent Multi-Agent Syst

Algorithm 1 describes the calculation of the possible maximum of candidate c′, in the
Range voting protocol. The algorithm receives the candidate c′ and OA

t (the preference val-
ues of the agents through iteration t). The main loop reviews the agents, and for each one of
them it searches for candidate c′ (lines 4–9). If it is found (line 5) then it adds the value d
of that candidate to the max and stops the search. If the candidate is not found, then it was
not submitted by that agent and its maximum value is equal at most to the value of the last
candidate of that agent (line 11). The calculation of the possible minimum is the same except
in the case where c′ was not submitted by the agent. In this case it adds the minimal possible
value d1 in domain D (line 11).

Algorithm 1 CALCULATE_MAX_RANGE
(input: candidate c′,

ordered preference values of set A: OA
t

output: the max value of candidate c′)
1: max ← 0
2: for all Oi

t ∈OA
t do

3: f lag← N OT _F OU N D
4: for all 〈c, d〉if ∈ Oi

t and f lag == N OT _F OU N D do

5: if c′ == c then
6: max ← max + d
7: f lag← F OU N D
8: end if
9: end for
10: if f lag == N OT _F OU N D then
11: max ← max + ds , where < cr , ds >i

t∈ Oi
t

12: end if
13: end for
14: return max

Now that we have defined the possible maximum and minimum values of each candidate,
we can define the possible winner and the necessary winner. For these definitions we define
the set Ct ⊆ C which contains the candidates that have been sent by any agent through
iteration t .

Definition 3 (Current Candidates) Ct = {c|〈c, d〉ij ∈ Oi
t , Oi

t ∈ OA
t }

A possible winner is a candidate whose maximum score is greater than the minimum score
of all the other candidates:

Definition 4 (Possible Winner)

C p = {ci |pmax A
t (ci , OA

t) ≥ pmin A
t (c j , OA

t) ∀c j ∈ Ct \ {ci }}
A necessary winner is a candidate whose minimum score is greater than the maximum

score of all the others:

Definition 5 (Necessary Winner)

Cn = {ci |pmin A
t (ci , OA

t) > pmax A
t (c j , OA

t) ∀c j ∈ Ct \ {ci }}
Algorithm 2 presents the iterative process which finds the necessary winners. This algo-

rithm is invoked once the center of the voting initiates a request for a vote. In lines 1–3 the
sets of the ordered preference values of the agents are initialized as well as the sets of the

123

Auton Agent Multi-Agent Syst

possible and necessary winners. Iteratively, the center receives a value from the agents rep-
resenting their next preference value in a decreasing order (Oi

t in lines 6–9). Then it invokes
the Algorithm CALCULATE_POSSIBLE_WINNERS in order to calculate the set of possi-
ble winners (line 11) and CALCULATE_NECESSARY_WINNERS to calculate the set of
necessary winners (lines 12) based on the formulas given in Definitions 4 and 5, respectively.

The CALCULATE_POSSIBLE_WINNERS algorithm prunes the candidates whose max-
imal value is lower than at least one minimal value of another candidate. In a similar manner,
the CALCULATE_NECESSARY_WINNERS algorithm prunes the candidates whose mini-
mal value is lower than at least one maximal value of another candidate (these algorithms are
not presented). The center agent stops the iterative process once the set of the possible win-
ners contains only necessary winners (line 5) (in the first iteration it receives the candidates
from the agents in any case).

Algorithm 2 ITERATIVE_NECESSARY_WINNERS
(output: set of necessary winning candidates Cn)

1: t ← 1
2: O1

t ← ∅, O2
t ← ∅, . . . , On

t ← ∅
3: C p ← ∅
4: Cn ← ∅
5: while C p − Cn
= ∅ ∨ t = 1 do
6: for all ai ∈ A do
7: receive 〈c, d〉it
8: Oi

t ← Oi
t
⋃{〈c, d〉it }

9: end for
10: OA

t ← {O1
t , O2

t , . . . , On
t }

11: C p ← C ALCU L AT E_P O SSI BL E_W I N N E RS(OA
t)

12: Cn ← C ALCU L AT E_N EC E SS ARY _W I N N E RS(OA
t)

13: t ← t + 1
14: end while
15: return Cn

Example 1 Consider a set A = {a1, a2, a3} and candidates set C = {c1, c2, c3, c4}. The
domain of the candidates’ value is D = {1, 2, 3, 4, 5}. The preference values of the agents
are presented in Table 1. For instance, the third column in the first row is given by the function
v1(c3) = 4. The algorithm proceeds in rounds such that in the first iteration the agents send
only the highest valued candidate. a1 sends 〈c1, 5〉, a2 sends 〈c2, 3〉 and a3 sends 〈c1, 4〉.

Let us calculate the possible maximum and minimum values of the candidates, as com-
puted by the center based on incomplete information it receives from the agents The center
has received the value of candidate c1 for agents a1 (5) and a3 (4), but has not received its
value for agent a2. However, it can infer that a2’s possible maximum value is 3, since this
is the value it lastly submitted for c2 (agents send their preference values in a decreasing
order). Therefore, the possible maximum value of c1 is 5+4+3 = 12. Similarly, its possible

Table 1 The candidates’
preference values of the agents in
set A = {a1, a2, a3}

vi (c j) c1 c2 c3 c4

a1 5 3 4 3

a2 1 3 2 2

a3 4 3 2 1

123

Auton Agent Multi-Agent Syst

minimum value for candidate c1 by agent a2 is 1 since it is the minimum value in the domain.
Therefore, the possible minimum value of c1 is 5+ 4+ 1 = 10. The possible minimum and
maximum values of all the candidates after the first iteration (t = 1) are presented in the first
row of Table 8.

In the second iteration a1 sends 〈c3, 4〉, a2 sends 〈c4, 2〉 (it randomly selects between
c3 and c4) and a3 sends 〈c2, 3〉. The possible minimum and maximum values after the sec-
ond iteration (t = 1) are presented in the second row of Table 8. Now, we can see that
pmax A

2 (c3, OA
t) < pmin A

2 (c1, OA
t) and pmax A

2 (c4, OA
t) < pmin A

2 (c1, OA
t), thus, candi-

dates c3 and c4 are no longer possible winners and they are pruned. Lastly, in the third row
of Table 8 we can see that after the third iteration the center concludes that candidate c1 is
the necessary winner since pmin A

3 (c1, OA
t) > pmax A

3 (ci , OA
t) where i = {2, 3, 4}. In this

case, the agents do not send their last candidate since a necessary winner has been found.

Algorithm 2 finds the optimal winners; namely, the final set Cn is equal to the set of win-
ners in a regular Range voting protocol where the agents send their whole set of candidates
in one shot. In order to prove this statement we need to prove that any candidate that does not
belong to the set of necessary winners (Cn) in the final iteration cannot be a winner. Formally:

Lemma 1 Given the final iteration t∗ in iterative Range voting,

∀c ∈ C \ Cn, ∀c′ ∈ Cn : pmax A
t∗(c, OA

t∗) < pmin A
t∗(c
′, OA

t∗).

Proof :

1. Assume c ∈ Ct∗ \Cn (c has been sent by one of the agents but is not a necessary winner)
then c is pruned by definition of the necessary winner (definition 5).

2. Assume c ∈ C \ Ct∗ (c has not been sent by any agent) then we will prove that
pmax A

t∗(c, OA
t∗) ≤ pmax A

t∗(c
′′, OA

t∗) where c′′ ∈ Ct∗ \ Cn .
By definition, pmax A

t∗(c
′′, OA

t∗) =
∑n

i=1 pmaxi
t∗(c
′′, Oi

t∗). Since c has not been sent yet,
and since the agents send their candidates in a decreasing order of their preference val-
ues ∀i ∈ n : pmaxi

t∗(c, Oi
t∗) ≤ pmaxi

t∗(c
′′, Oi

t∗). Therefore,
∑n

i=1 pmaxi
t∗(c, Oi

t∗) ≤∑n
i=1 pmaxi

t∗(c
′′, Oi

t∗), namely, pmax A
t∗(c, OA

t∗) ≤ pmax A
t∗(c
′′, OA

t∗). In the first part of
the proof we proved that ∀c ∈ Ct \ Cn : pmax A

t∗(c, OA
t∗) < pmin A

t∗(c
′, OA

t∗), therefore
pmax A

t∗(c
′′, OA

t∗) < pmin A
t∗(c
′, OA

t∗). ��
Let score(c) denote the final score of c in regular Range voting where the agents send their

whole set of candidates’ preference values in one iteration, then score(c) =∑
i vi (c). The

relation between score(c) and the possible maximum and minimum of c during an iterative
Range voting protocol is presented in the next lemma:

Lemma 2 Given OA
t - a decreasing order of the candidates’ preference values of agents in

set A sent through iteration t in iterative Range voting,

∀t : pmin A
t (c, OA

t) ≤ score(c) ≤ pmax A
t (c, OA

t)

Proof :

1. score(c) ≤ pmax A
t (c, OA

t) : By definition score(c) = ∑
i vi (c). If vi (c) has been

submitted by agents ai , then by Definition 1 pmaxi
t (c, Oi

t) = vi (c). Otherwise,

123

Auton Agent Multi-Agent Syst

pmaxi
t (c, Oi

t) = d ∈ 〈c, d〉it , where 〈c, d〉it is the last preference value that has been
sent in Oi

t , thus pmaxi
t (c, Oi

t) ≥ vi (c). Consequently,
∑

i pmaxi
t (c, Oi

t) ≥
∑

i vi (c).
By Definition 1 pmax A

t (c, OA
t) =∑

i pmaxi
t (c, Oi

t), and score(c) ≤ pmax A
t (c, OA

t).
2. pmin A

t (c, OA
t) ≤ score(c) : If vi (c) has been submitted by agents ai , then by Defini-

tion 2 pmini
t (c, Oi

t) = vi (c). Otherwise, pmini
t (c, Oi

t) = d1, and thus pmini
t (c, Oi

t) ≤
vi (c). Consequently,

∑
i pmini

t (c, Oi
t) ≤

∑
i vi (c). By Definition 2 pmin A

t (c, OA
t) =∑

i pmini
t (c, Oi

t), and pmin A
t (c, OA

t) ≤ score(c). ��
Now, we can prove the next theorem:

Theorem 1 Assume Cw is the set of winners in regular Range voting where the agents send
their whole set of candidates’ preference values in one iteration, then the set Cn in the final
iteration t∗ in iterative Range voting affirms: Cn = Cw.

Proof : In regular Range voting c′ ∈ Cw i f f ∀c ∈ C \ Cw : score(c) < score(c′). Based
on Lemma 1 ∀c ∈ C \ Cn and ∀c′ ∈ Cn pmax A

t∗(c, OA
t∗) < pmin A

t∗(c
′, OA

t∗). By Lemma
2 we know that pmin A

t∗(c
′, OA

t∗) ≤ score(c′) and that pmax A
t∗(c, OA

t∗) ≥ score(c). We
can conclude that ∀c ∈ C \ Cn and ∀c′ ∈ Cn : score(c) < score(c′), and consequently
∀c′ ∈ Cn : c′ ∈ Cw . ��

3.2 Iterative Borda voting

In the Borda voting protocol, every voter ranks the m candidates. The score of the most
preferred candidate is m − 1 points, the second m − 2, etc., and the score of the least pre-
ferred candidate is 0, where m is the size of the candidates’ set. To determine the winner, the
score of each candidate from the agents’ votes is summed up and the winner is the candidate
with the highest score. In contrast to Range voting, the user cannot assign its preferences
numerically. Nonetheless, the voter still does not have to assign his preferences over all the
candidates in advance, but can do it in rounds by submitting his preferences in a decreasing
order as requested.

The Borda protocol does not satisfy the independence of irrelevant alternatives criterion,
which means, that the information about a given candidate could change the preference order
of two other candidates. Although, the center still does not have to know the set of candidates
in advance, it does have to know the size of this set in order to determine the winners as we
prove below.

Let us formalize this process. The tuple Oi
t = 〈ci

p1
, . . . , ci

pt
〉 is a decreasing order of the

candidates submitted by ai through iteration t . OA
t = {O1

t , . . . , On
t } is a set of Oi

t tuples
(i ∈ {1, . . . , n}) of the agents in set A.

As mentioned above, in order to check the possible and necessary winners we must define
the possible maximum and possible minimum scores of a candidate. The score of candidate
c j in Borda is determined by its preference in relation to the other candidates. However, the
center has information only about (1) the candidates that have been sent through iteration
t (OA

t) and (2) the size of the candidate set (|C |). To calculate the possible minimum and
maximum of candidate c j for a certain agent ai , we need to take into consideration two types
of information: (1) the candidates that have been sent by ai through iteration t (Oi

t), (2)
The difference between the size of C and the size of Oi

t . Let Ct\i be the set of candidates
that have not been submitted yet by agent ai by time t , then |Ct\i | denote this difference:
|Ct\i | = |C | − |Oi

t |.

123

Auton Agent Multi-Agent Syst

Based on the first type of information we can calculate the preference of ci in relation to
the candidates that have been sent by agent ai through iteration t . This preference value is
the same both for the possible maximum as well as for the possible minimum. In addition,
we should add the possible score given by the second type of information. If ci

p j
∈ Oi

t

then ci
p j

must be preferred over ∀ck ∈ Ct\i , since ai submits its candidates according to its

preferences in a decreasing order. Therefore, the possible maximum and minimum of ci
p j

in

this case would be |Ct\i |. However, if ci
p j

/∈ Oi
t , then ci

p j
’s possible maximum is |Ct\i | − 1

(assuming ci
p j

is the most preferred in Ct\i), and its possible minimum is 0 (assuming ci is
the least preferred candidate in Ct\i).

Let pre f erencei (c) be the score that candidate c obtains from agent ai ’s vote in a full
information Borda voting protocol, then the possible maximum and minimum are as follows:

Definition 6 (Borda Possible Maximum) pmax A
t (c j , OA

t) =∑
i pmaxi

t (c j , Oi
t), where

pmaxi
t (c j , Oi

t) =
{

pre f erencei (c j) if c j ∈ Oi
t

|C | − |Oi
t | − 1 otherwise

Definition 7 (Borda Possible Minimum) pmin A
t (c j , OA

t) =∑
i pmini

t (c j , Oi
t), where

pmaxi
t (c j , Oi

t) =
{

pre f erencei (c j) if c j ∈ Oi
t

0 otherwise
(3)

Algorithm 3 presents the calculation of the possible maximum of c′ in the Borda protocol.
In lines 5–11 we compute the possible maximum of c′ based on Oi

t . In particular, we search
for c′ in Oi

t . Once it is found, we determine its possible maximum as the size of the rest of
the set Oi

t (line 7). Lines 12–16 address the influence of |Ct\i | on the maximum. If c′ was
found in Oi

t then we add |Ct\i | to the maximum, otherwise the possible maximum is the size
of Ct\i . To calculate the possible minimum, we can use the same algorithm, except for line
13. There, rather than adding |Ct\i | − 1, we add 0 (i.e., not change the result).

Algorithm 3 CALCULATE_MAX_BORDA
(input: candidate c′,

ordered preference values of set A: OA
t

output: the max value of candidate c′)
1: max ← 0
2: for all Oi

t ∈OA
t do

3: |Ct\i | ← |C | − |Oi
t |

4: f lag← N OT _F OU N D
5: for j = 1 to t do
6: if c′ = ci

p j
∈ Oi

t then

7: max ← max + |Oi
t | − j

8: f lag← F OU N D
9: break
10: end if
11: end for
12: if f lag = N OT _F OU N D then
13: max ← max + |Ct\i | − 1
14: else
15: max ← max + |Ct\i |
16: end if
17: end for
18: return max

123

Auton Agent Multi-Agent Syst

Table 2 The possible maximum and minimum values of candidates {C1, C2, C3, C4}
t c1 c2 c3 c4

max min max min max min max min

1 12 10 12 5 N/A N/A N/A N/A

2 11 10 10 7 9 7 9 7

3 11 10 9 7 N/A N/A N/A N/A

Table 3 The preferences of the
agents in set A = {a1, a2, a3} in
Borda protocol

vi (c j) c1 c2 c3 c4

a1 1 2 3 0

a2 0 3 1 2

a3 3 2 1 0

Table 4 The possible maximum and minimum values of candidates {C1, C2, C3, C4}
t c1 c2 c3 c4

max min max min max min max min

1 7 3 7 3 7 3 N/A N/A

2 5 3 7 7 5 3 4 2

The ITERATIVE_NECESSARY_WINNERS algorithm (Algorithm 2), described in
Sect. 3 proceeds exactly in the same manner as the iterative Range voting. The only dif-
ference is that in Borda the center receives the agents’ next candidate (ci

pt
) rather than the

preference value of the candidate (line 9: 〈c, d〉it).
Example 2 Consider a set A = {a1, a2, a3} and a set of candidates C = {c1, c2, c3, c4}. The
preferences of the agents are presented in Table 2. Notice that the preferences of the agents
are arranged in a decreasing order of m− 1 to 0. The algorithm proceeds in rounds such that
in the first iteration the agents send only the most preferred candidate. a1 sends c3, a2 sends
c2 and a3 sends c1.

Let us calculate the possible maximum and minimum values of the candidates. Since a1

has not submitted c1, c1’s possible maximum according to a1 is 2, given that in the optimistic
extension c1 will be the next preferred candidate of a2. Since the center knows that |C | = 4
it can determine its possible maximum as |C | − |O1

1 | − 1 = 2. Its possible minimum is 0
given that in the pessimistic extension it will be sent last (Table 3). The same is true for agent
a2. a3 has submitted c1, we can conclude that it is preferred over the rest of the candidates in
the set |C |− |O3| = 3. Finally, the possible maximum of c1 is 2+2+3 = 7 and its possible
minimum is 0 + 0 + 3 = 3. For symmetric reasons these results are the same for c2 and c3

(presented in Table 4).
In the second iteration a1 sends c2, a2 sends c4 and a3 sends c2. The possible minimum

and maximum values after the second iteration (t = 1) are presented in the second row of
Table 4. a1 still has not submitted c1, thus its possible maximum is 1 and its possible mini-
mum is 0. The same for a2. The possible maximum of c1 based on the preferences sent by
a3 remains 3. Finally, the possible maximum of c1 is 5 and its possible minimum is 3. The
same analysis is true for c3. On the other hand, all the agents submitted their preferences over

123

Auton Agent Multi-Agent Syst

c2, and we can determine its value as 7 with certainty. Now that the possible maximum of
c1, c3 and c4 is less than the minimum of c2 we can prune them and declare c2 as a necessary
winner.

By using the Borda protocol, Algorithm 2 finds the optimal winners. In order to prove this
statement we need to prove, as in the Range voting case, that any candidate not belonging to
the set of the necessary winners (Cn) in the final iteration cannot be a winner. Formally:

Lemma 3 Given the final iteration t∗ in iterative Borda voting,

∀c ∈ C \ Cn, ∀c′ ∈ Cn : pmax A
t∗(c, OA

t∗) < pmin A
t∗(c
′, OA

t∗).

Proof : The same proof as for Lemma 1. ��
Let score(c) denote the final score of c in regular Borda voting, where the agents send

their whole set of preferences in one iteration. Then score(c) =∑
i pre f erencei (c), where

pre f erencei (c) is the preference of candidate c by agent ai . The relation between score(c)
and the possible maximum and minimum of c during an iterative Borda voting protocol is
presented in the next lemma:

Lemma 4 Given OA
t - a decreasing order of the candidates’ preference values of agents in

the set A sent through iteration t in iterative Borda voting,

∀t : pmin A
t (c, OA

t) ≤ score(c) ≤ pmax A
t (c, OA

t)

Proof :

1. score(c) ≤ pmax A
t (c, OA

t) : By definition score(c) = ∑
i pre f erencei (c). If c

has been submitted by agent ai (c ∈ Oi
t), then by Definition 6 pmaxi

t (c, Oi
t) =

pre f erencei (c). If c /∈ Oi
t , pmaxi

t (c, Oi
t) = |C | − |Oi

t | − 1, however c ∈ C \
Oi

t and thus by Borda definition pre f erencei (c) ≤ |C \ Oi
t | − 1. Consequently,

pre f erencei (c) ≤ pmaxi
t (c, Oi

t) and
∑

i pmaxi
t (c, Oi

t) ≥
∑

i pre f erencei (c).
By Definition 6 pmax A

t (c, OA
t) = ∑

i pmaxi
t (c, Oi

t), and accordingly score(c) ≤
pmax A

t (c, OA
t).

2. pmin A
t (c, OA

t) ≤ score(c) : By definition score(c) = ∑
i pre f erencei (c). If c

has been submitted by agent ai (c ∈ Oi
t), then by Definition 7 pmini

t (c, Oi
t) =

pre f erencei (c). If c /∈ Oi
t , pmaxi

t (c, Oi
t) = 0, however, c ∈ C \ Oi

t and thus by
Borda definition pre f erencei (c) ≥ 0. Consequently, pre f erencei (c) ≥ pmini

t (c, Oi
t)

and
∑

i pmini
t (c, Oi

t) ≤
∑

i pre f erencei (c). By Definition 7 pmin A
t (c, OA

t) =∑
i pmini

t (c, Oi
t), and as a result score(c) ≤ pmin A

t (c, OA
t). ��

Now, we can prove the next theorem:

Theorem 2 Assume Cw is the set of winners in regular Borda voting where the agents send
their whole set of candidates’ preferences in one iteration, then the set Cn in the final iteration
t∗ in iterative Borda voting affirms: Cn = Cw .

Proof : The same proof as for Theorem 5, by replacing Lemma 2 with Lemma 4. ��

123

Auton Agent Multi-Agent Syst

3.3 Other voting rules

In this section we will describe variations of the iterative algorithm, for additional voting
rules. However, first we note that some voting rules end in one or two iterations by definition,
and thus are not a potential basis for iterative voting. For instance, in Plurality the agents
submit only one candidate (the most preferred), and in Veto the agents submit solely the veto
candidate (the one assigned 0). Plurality with Runoff ends in a maximum of two rounds of
Plurality voting.

In this section, we focus on voting rules that usually require the whole set of candidates to
determine the winner. For these rules, the basic iterative algorithm is identical to Algorithm
2. The only difference is that in the ranked-based rules the center receives the agents’ next
candidate (ci

pt
, as in Borda), rather than the preference value of the candidate in ranking rules

(line 9: 〈c, d〉it , as in Range voting). Also, the computation of the necessary and possible
winners is the same as described in Sect. 3.1. However, the rules differ in the computation
of the minimum and maximum scores which are affected by the fact that the candidates are
submitted in a decreasing order.

3.3.1 Rank-based rules

The next rules, in the worst case, require the whole set of agents’ preferences:
Copeland: a candidate ci receives one point if it beats candidate c j in a majority pairwise

election. The winner is the one who gathers the most points. Let us demonstrate this with
Example 2, where the preferences of the agents are as follows:

a1 : c3 > c2 > c1 > c4

a2 : c2 > c4 > c3 > c1

a3 : c1 > c2 > c3 > c4

The winner in this case is c2 with a score of 3, since it has a majority in a pairwise election
against each one of the other three candidates. The score of c1 for example is 1 since it has
a majority only against c4.

As mentioned, Algorithm 2 remains the same by letting the voters submit their candidates
in a decreasing order. Algorithm 4 describes the computation of the maximum score of can-
didate c′ based on the incomplete ordered preference values of the voters (OA

t). With the
condition in line 7 we exploit the decreasing order by determining that if c′ has already been
submitted by ai then it must beat c j . To calculate the minimum, we omit lines 9–10, since if
both c′ and c j have not been submitted by voter ai , the pessimistic completion of the score
of c′ is to assume that c′ � c j .

For instance, the expected minimum and maximum of the previous example is presented
in Table 5. Likewise, based on the preferences received in the first iteration, in the optimistic
scenario, c1 has a majority by beating c2 (a1 and a3), and the same by beating c3 and c4.
Thus the maximum of c1 is 3. In the next iteration, c2 has a majority against all the other
candidates thus its minimum and maximum is 3 and it is declared as the necessary winner.

Let score(c) denote the final score of c in regular Copeland voting, where the agents send
their whole set of preferences in one iteration. The relation between score(c) and the possible
maximum and minimum values of c in an iterative Copeland voting protocol is presented in
the next lemma:

123

Auton Agent Multi-Agent Syst

Algorithm 4 CALCULATE_MAX_COPELAND
(input: candidate c′,

ordered preference values of set A: OA
t

output: the max value of candidate c′)
1: max ← 0
2: for all c j ∈ C (c j
= c′) do
3: inc← 0
4: for all Oi

t ∈OA
t do

5: if c′ ∈ Oi
t and c j ∈ Oi

t and c′ � c j then
6: inc← inc + 1
7: else if c′ ∈ Oi

t and c j /∈ Oi
t then

8: inc← inc + 1
9: else if c′ /∈ Oi

t and c j /∈ Oi
t then

10: inc← inc + 1
11: end if
12: end for
13: if inc > |A|/2 then
14: max ← max + 1
15: end if
16: end for
17: return max

Lemma 5 Given OA
t - a decreasing order of the candidates’ preferences of agents in set A

sent through iteration t in iterative Copeland voting,

∀t : pmin A
t (c, OA

t) ≤ score(c) ≤ pmax A
t (c, OA

t)

Proof :

1. score(c′) ≤ pmax A
t (c′, OA

t) : In the Copeland protocol the score of c′ is the number
of candidates c′ beats in a majority pairwise election. Therefore it is sufficient to show
that if in regular Copeland, c′ beats c j then in the computation of the maximum value of
c′, c′ must also beat c j . c′ beats c j if in the preference order of at least half of the voters
c′ � c j . Without loss of generality, assuming c′ � c j is in the preference list of agent a1,
there are three scenarios for considering c′ and c j in the computation of the maximum
value:

(a) Both c′ and c j were submitted by a1.
(b) c′ was submitted but c j was not.
(c) Both c′ and c j were not submitted by a1.

In all three cases Algorithm 4 gives a point to c′. Consequently, the number of points can-
didate c′ receives in the computation of the maximum value is at least the number of points
it would receive in the regular Copeland protocol, and thus score(c′) ≤ pmax A

t (c′, OA
t).

2. pmin A
t (c′, OA

t) ≤ score(c′) : It is sufficient to show that if in regular Copeland, c′ loses
to c j then in the computation of the minimum score of c′, c′ can not beat c j . c′ loses

Table 5 The possible maximum and minimum values of candidates {C1, C2, C3, C4} in Copeland

t c1 c2 c3 c4
max min max min max min max min

1 3 0 3 0 3 0 N/A N/A

2 2 0 3 3 2 0 2 0

123

Auton Agent Multi-Agent Syst

to c j if c′ � c j is in the preference order of at most half of the voters. Without loss of
generality, assuming c j � c′ is in the preference list of agent a1, there are three scenarios
for considering c′ and c j in the computation of the minimum score:

(a) Both c′ and c j were submitted by a1.
(b) c j was submitted but c′ was not.
(c) Both c′ and c j were not submitted by a1.

In all these cases the minimum computation version of Algorithm 4 gives a point to c j

but not to c′ and thus c′ loses. Consequently, the number of points of candidate c′ in the
computation of the minimum score is at most the number of points it would receive in
the regular Copeland protocol, and thus pmin A

t (c′, OA
t) ≤ score(c′).

Now, we can prove the next theorem:

Theorem 3 Assuming Cw is the set of winners in regular Copeland voting where the agents
send their whole set of candidates’ preferences in one iteration, then set Cn in the final
iteration t∗ in iterative Copeland voting affirms that Cn = Cw.

Proof : The same proof as for Theorem 5, while replacing Lemma 2 with Lemma 5. ��
Maximin: Let N (ci , c j) be a function that returns the number of voters that prefer ci to

c j , then the score of ci is min j N (ci , c j). The winner is the one with the highest score. For
instance, in the previous example c2 is the winner with score 2, since at least two agents
prefer c2 to the others. The score of c1 on the other hand is 1 since only a3 prefers it to the
other candidates. Algorithm 5 computes the maximum score of c′ with incomplete setting
OA

t . This algorithm proceeds exactly as Algorithm 4 except lines 13–14 which check the
minimality score of the pairwise comparisons. As in Copeland, to calculate the minimum we
omit lines 9–10.

Algorithm 5 CALCULATE_MAX_MAXIMIN
(input: candidate c′,

ordered preference values of set A: OA
t

output: the max value of candidate c′)
1: max ← |C |
2: for all c j ∈ C (c j
= c′) do
3: inc← 0
4: for all Oi

t ∈OA
t do

5: if c′ ∈ Oi
t and c j ∈ Oi

t and c′ � c j then
6: inc← inc + 1
7: else if c′ ∈ Oi

t and c j /∈ Oi
t then

8: inc← inc + 1
9: else if c′ /∈ Oi

t and c j /∈ Oi
t then

10: inc← inc + 1
11: end if
12: end for
13: if inc < max then
14: max ← inc
15: end if
16: end for
17: return max

Based on the preferences of the agents in the previous example, the maximum of c2 in the
first iteration is 2. The reason for this is that two is the minimum number of agents that prefer
c2 to c1 (a1 and a2). In iteration 2 the minimum number of agents that prefer c2 to another

123

Auton Agent Multi-Agent Syst

Table 6 The possible maximum and minimum values of candidates {C1, C2, C3, C4} in Maximin

t c1 c2 c3 c4
max min max min max min max min

1 2 1 2 1 2 1 N/A N/A

2 1 1 2 2 1 1 0 0

candidate remains two, but both for the maximum as well as for the minimum values, since
in any case at least two agents prefer c2 to any other candidate (Table 6).

Let score(c) denote the final score of c in regular Maximin voting, where the agents send
their whole set of preferences in one iteration. The relation between score(c) and the possible
maximum and minimum values of c according to an iterative Maximin voting protocol is
presented in the next lemma:

Lemma 6 Given OA
t - a decreasing order of the candidates’ preferences of agents in set A

sent through iteration t in iterative Maximin voting,

∀t : pmin A
t (c, OA

t) ≤ score(c) ≤ pmax A
t (c, OA

t)

Proof :

1. score(c′) ≤ pmax A
t (c′, OA

t) : In the Maximin protocol the score of c′ is affected by
the number of agents that prefer c′ to c j . Without loss of generality, assume c′ � c j is
in the preference list of agent a1, and prove that in the computation of the maximum
value of c′, c′ must win a point. There are three scenarios for considering c′ and c j in
the computation of the maximum value:

(a) Both c′ and c j were submitted by a1.
(b) c′ was submitted but c j was not.
(c) Both c′ and c j were not submitted by a1.

In all three cases Algorithm 5 gives a point to c′. Consequently, the number of points
candidate c′ receives in the computation of the maximum value of c′ in the iterative Maxi-
min protocol is at least the number of points it would receive in the regular Maximin
protocol, and thus score(c′) ≤ pmax A

t (c′, OA
t).

2. pmin A
t (c′, OA

t) ≤ score(c′) : As in the previous proof: without loss of generality,
assume c′ � c j is in the preference list of agent a1. In this case c′ will not receive a point
from this agent under the regular Maximin protocol. We prove that in the computation
of the minimum value of c′, c′ will also not receive a point. There are three scenarios
for considering c′ and c j in the computation of the minimum value:

(a) Both c′ and c j were submitted by a1.
(b) c j was submitted but c′ was not.
(c) Both c′ and c j were not submitted by a1.

In all three cases, the minimum computation version of Algorithm 5 gives c j a point but
does not give c′ a point, thus c′ loses. Consequently, the number of points candidate c′
receives in the computation of the minimum score is at most the number of points it would
receive under the regular Maximin protocol, and thus pmin A

t (c′, OA
t) ≤ score(c′). ��

123

Auton Agent Multi-Agent Syst

Now, we can prove the next theorem:

Theorem 4 Assuming Cw is the set of winners in regular Maximin voting where the agents
send their whole set of candidates’ preferences in one iteration, then the set Cn in the final
iteration t∗ in iterative Maximin voting affirms that Cn = Cw .

Proof : The same proof as for Theorem 5, while replacing Lemma 2 with Lemma 6. ��
Bucklin: The score of candidate ci is the smallest k in which it has a majority among the

top k candidates submitted by the voters. In the previous example, c2 is the winner with a
score of 2, since revealing the top two candidates shows that c2 has a majority. c3, on the other
hand, will have a majority only among the top three candidates. This rule could naturally
proceed by submitting the candidates in a decreasing order in rounds. The first candidate(s)
that has a majority is the winner. As long as a winner has not been found, the minimum and
maximum scores are identical for all the candidates since either in the optimistic scenario
they will have a majority in the next round or in the pessimistic scenario they will have a
majority only in the last round. The correctness of the iterative Bucklin is straightforward: in
regular Bucklin voting, the winner is determined by the top k candidates of the voters. The
same is true in the iterative version of Bucklin where the voters reveal their preferences in a
decreasing order, and thus reveal the top k preferences before the others.

In the previous example, in the first iteration no candidate has a majority, but after 2
iterations c2 has a majority and thus it is a necessary winner.

3.3.2 Non-ranking rules

Approval: is a scoring rule which has a scoring vector (1, 1, . . . , 0, 0). Actually, it is a special
case of Range voting with a domain score of D = {0, 1}.

Cumulative: A voter distributes a predefined number of points num over the candidates.
This rule is different than Range, since in Cumulative the candidates’ scores depend on each
other since they must sum num, whereas in Range each candidate is scored independently
of the others. The score of a candidate is its total score over the votes. The candidate with
the highest total score is the winner. For instance, given num = 14, the candidates’ scores
are presented in Table 7 (note that the total sum of each row is 14). The winner is c1 since it
has the highest total sum.

Algorithm 6 computes the maximum optimistic score of candidate c′ based on incom-
plete information over the candidates OA

t in a Cumulative rule where the number of points
to distribute over the candidates is num. This algorithm is similar to the maximum com-
putation in Range voting (Algorithm 1) except line 14. If the center does not yet know the
score of candidate c′ by voter ai , it evaluates the expected maximum of c′ as the mini-
mum between (a) the score sent by ai in the previous round and (b) the difference between
num and the summation of the points of the candidates that have already been submitted

Table 7 The candidates’
preference values of the agents in
set A = {a1, a2, a3}

vi (c j) c1 c2 c3 c4

a1 5 3 3 3

a2 2 6 3 3

a3 7 4 2 1

123

Auton Agent Multi-Agent Syst

by ai (num − sum). To calculate the expected minimum we replace this condition with
max ← max + max(d1, num − sum).

For example, based on the scores presented in Table 7, a1 submits 5 for c1, a2 submits 6
for c2 and a3 submits 7 for c3. The maximum of c1 in the first iteration is 18 since a1 and a3

assigned 5 and 7, respectively, and the maximum that a2 could assign is equal to the score
it already assigned c2 (6). The minimum of c1 is 12 since a1 and a3 already assigned their
values (5 and 7, respectively) and the minimum that a2 could assign c1 is 0.

Algorithm 6 CALCULATE_MAX_CUMULATIVE
(input: candidate c′,

ordered preference values of set A: OA
t ,

number of points to distribute over candidates: num
output: the max value of candidate c′)

1: max ← 0
2: for all Oi

t ∈OA
t do

3: sum ← 0
4: f lag← N OT _F OU N D
5: for all 〈c, d〉if ∈ Oi

t and f lag = N OT _F OU N D do

6: if c′ = c then
7: max ← max + d
8: f lag← F OU N D
9: else
10: sum ← sum + d
11: end if
12: end for
13: if f lag = N OT _F OU N D then
14: max ← max + min(d ∈ 〈c, d〉it , num − sum)

15: end if
16: end for
17: return max

Let score(c) denote the final score of c in regular Cumulative voting where the agents send
their whole set of candidates’ preference values in one iteration, then score(c) =∑

i vi (c).
The relation between score(c) and the possible maximum and minimum values of c in an
iterative Cumulative voting protocol is presented in the next lemma:

Lemma 7 Given OA
t - a decreasing order of the candidates’ preference values of agents in

set A sent through iteration t in iterative Cumulative voting,

∀t : pmin A
t (c, OA

t) ≤ score(c) ≤ pmax A
t (c, OA

t)

Proof :

1. score(c) ≤ pmax A
t (c, OA

t) : By definition score(c) = ∑
i vi (c). If vi (c) has been

submitted by agents ai , then by Algorithm 6 pmaxi
t (c, Oi

t) = vi (c). Otherwise, the
value of pmaxi

t (c, Oi
t) is either (a) pmaxi

t (c, Oi
t) = d ∈ 〈c, d〉it , where 〈c, d〉it is

the last preference value that has been sent in Oi
t , or (b) num − sum. In both cases

pmaxi
t (c, Oi

t) ≥ vi (c). Consequently,
∑

i pmaxi
t (c, Oi

t) ≥
∑

i vi (c). Based on Algo-
rithm 6 pmax A

t (c, OA
t) =∑

i pmaxi
t (c, Oi

t), and score(c) ≤ pmax A
t (c, OA

t).
2. pmin A

t (c, OA
t) ≤ score(c) : If vi (c) has been submitted by agents ai , then

by the minimum computation version of Algorithm 6 pmini
t (c, Oi

t) = vi (c).
Otherwise, pmini

t (c, Oi
t) = d1, and thus pmini

t (c, Oi
t) ≤ vi (c). Consequently,

123

Auton Agent Multi-Agent Syst

∑
i pmini

t (c, Oi
t) ≤

∑
i vi (c). By Algorithm 6 pmin A

t (c, OA
t) = ∑

i pmini
t (c, Oi

t),
and pmin A

t (c, OA
t) ≤ score(c). ��

Now, we can prove the next theorem:

Theorem 5 Assuming Cw is the set of winners in regular Cumulative voting where the agents
send their whole set of candidates’ preference values in one iteration, then the set Cn in the
final iteration t∗ in iterative Range voting affirms that Cn = Cw.

Proof : The same proof as for Theorem 5, while replacing Lemma 2 with Lemma 7. ��
To summarize, all the voting rules we have presented in this section, in the worst case

require all the agents’ preferences to determine the winners [3]. In the best case these rules
require only one preference from each agent (for instance, if all the agents rank the same
candidate first). To evaluate the average case we will present, as mentioned above, a compre-
hensive experimental evaluation in Sect. 5 for two representative rules: Borda and Range.

4 Greedy voting procedure

The basic idea of iterative voting (Algorithm 2) is that the center gathers information on the
preferences of the agents in rounds. Increasing the amount of information (adding rounds)
narrows down the possible winners set, until the procedure completes when only the neces-
sary winners remain. Thus iterative voting as described above might still require the agents
to submit a large number of preference values (i.e., through many rounds), and in the worst
case the whole set [3], in order to find the necessary winners. Moreover, in some applications
each such round entails interruption of a user (e.g., [14]). Thus our objectives of minimizing
communication and user interruption might not be met.

To address this challenge, we now turn to a heuristic iterative voting procedure. Using
the following heuristic, the center could hypothesize who is the winning candidate even with
very limited information about the candidates. In this heuristic the agents send their pref-
erence values only in P pre-defined number of iterations, either in Range voting or Borda.
Based on the information gathered in these P iterations the center selects the Q most pre-
ferred candidates (Q is also pre-defined). Here we evaluate the most preferred candidates
as the candidates whose minimum possible scores are maximized (the minimum column in
Table 8). At this point, the center asks for the completion of the preference values of only the
selected Q candidates in one shot. Based on full information about the Q candidates it can
compute the winner among the Q candidates by means of the pre-defined protocol. When P
is unlimited this algorithm is the same as Algorithm 2.

Algorithm 7 presents the greedy heuristic for Range voting. In the main loop (lines 5–14),
the agents send their candidates to the center over P iterations at most, one candidate with
each iteration, in a decreasing order of preference values. Similar to Algorithm 2, in every

Table 8 The possible maximum and minimum values of candidates {C1, C2, C3, C4}
t c1 c2 c3 c4

max min max min max min max min

1 18 12 18 6 N/A N/A N/A N/A

2 15 12 13 10 10 3 10 3

3 14 14 13 13 N/A N/A N/A N/A

123

Auton Agent Multi-Agent Syst

Algorithm 7 GREEDY_HEURISTIC
(input: limit number of iterations P , limit number of candidates Q

output: set of greedy winning candidates Cg)

1: t ← 1
2: O1

t ← ∅, O2
t ← ∅, . . . , On

t ← ∅
3: C p ← ∅
4: Cn ← ∅
5: while (C p − Cn
= ∅ ∨ t = 1)

∧
j < P do

6: for all ai ∈ A do
7: receive 〈c, d〉it
8: Oi

t ← Oi
t
⋃{〈c, d〉it }

9: end for
10: OA

t ← {O1
t , O2

t , . . . , On
t }

11: C p ← C ALCU L AT E_P O SSI BL E_W I N N E RS(OA
t)

12: Cn ← C ALCU L AT E_N EC E SS ARY _W I N N E RS(OA
t)

13: t ← t + 1
14: end while
15: if C p − Cn = ∅ then
16: return Cn
17: else
18: Cq ← C ALCU L AT E_M O ST _P RE F E R RE D_Q(OA

t)

19: for all ai ∈ A do
20: receive from ai values of Cq
21: end for
22: Cw ← C ALCU L AT E_W I N N E R(Cq)

23: return Cw

24: end if

iteration the center calculates the possible winners (C p) and the necessary winners (Cn)
based on the minimal and maximal preference values of the candidates. If set C p contains
only necessary winners then the voting is completed (lines 15–17). Otherwise, in line 18, the
algorithm invokes the CALCULATE_MOST_PREFERRED_Q Algorithm (not presented)
which returns the most preferred Q candidates. It computes the possible minimal and max-
imal preference values of the candidates based on current partial information. Then, it sorts
the candidates by the possible minimum as the first key and by the possible maximum as the
second key, and returns the first Q candidates. The center asks the agents for their preference
values for the Q candidates (lines 19–21) and then invokes the CALCULATE_WINNERS
Algorithm (not presented) which returns the set of winners Cw out of Cq candidates, based
on full information for the Q candidates.2

Example 3 Based on Example 1, assume P = 2 and Q = 2. After two iterations (P = 2) the
center selects the two (Q = 2) candidates with the highest possible minimum as a primary
key (c1 in the second row of Table 8) and the highest possible maximum as a secondary key
(c2 has the same minimum as c3 and c4 but a higher maximum). The center asks the agents
to complete the information about c1 and c2. Finally, the center selects c1 as the winner since
it has the maximal sum (5+ 1+ 4 = 10). Thus it chooses the optimal winner.

The greedy heuristic does not guarantee the optimal winner, since it is possible that the
optimal winner is not included in the greedy Q preferred candidates after P iterations. How-
ever, as the value of P and/or Q increases, the probability that the optimal winner will be
selected among the most preferred candidates also increases. Nevertheless, if P is much

2 Although this heuristic also works for the Borda protocol, once an agent is required to complete its prefer-
ence for a certain candidate it must do so in relation to the other candidates. Considering our attempt to reduce
user interruption, this requirement may be much more serious in the Borda protocol than in the Range voting
protocol.

123

Auton Agent Multi-Agent Syst

Table 9 The preferences for
candidates {c1, c2, c3} vi (c j) c1 c2 c3

a1 10 1 9

a2 1 10 9

a3 3 2 9

smaller than the actual number of iterations required to find the optimal winner (in Algo-
rithm 2) and/or if Q is much smaller than the size of the set of the candidates, then we expect
to significantly reduce communication.

Let us demonstrate the non-optimal property of the greedy algorithm:

Example 4 Table 9 summarizes the preference values of three agents {a1, a2, a3} for candi-
dates {c1, c2, c3} with domain D = {1, 2, . . . , 10}.

Assume P = 1 and Q = 2. After the first iteration the center selects c1 and c2 as the
most preferred candidates, and based on the information gathered on these candidates it will
select c1 as the winner. However, unfortunately, this winner is not the optimal winner, since
the total sum of c3 is 27 in contrast to 14 of c1. Indeed, in this case, if P = 2 then after
two iterations the center would have selected c1 and c3 and would have concluded that the
optimal winner is c3.

Since the greedy algorithm does not guarantee the optimal winner, we consider the pos-
sibility of a loser candidate to win (a candidate that would have been ranked last where the
voters submit their preferences in one shot). In particular, we examine the possibility of a
loser to win as dependence on P and Q.

P is the number of iterations to proceed. The lower bound of P to enable a loser to be
in the selected Q candidates is 1, since it suffices that at least one voter prefers the loser to
include it in the Q candidates set. The upper bound of P is determined by the possibility of
a loser to be in the possible winner set after P iterations, since as long as the loser exists
in the possible winner set it could be included in the selected Q candidates. This possibility
depends on the voting rule.

In Range voting, a loser could be a possible winner until the whole candidate set received
by the voters. Thus, the upper bound is P = |C |. For example, assume n voters that assign
the highest range (dk) to all the m candidates except of one voter that assigns the lowest range
(d1) to one of the candidates. Since the voters submit their preference values in a decreasing
order the loser will be proved as an impossible winner only in the last iteration. In Borda,
an upper bound for number of voters of n > 3 is P = |C | and for n ≤ 3 is P = |C | − 1 (the
proof is presented in the Appendix).

Let us demonstrate the upper bound of P on the following setting using Borda. Assume
n = 4 voters vote over m = 5 candidates as presented in Table 4. The score of the loser
c1 is 7, and the score of the winner c2 is 9. One round before the last one (after receiving
the candidates with scores 4, 3 and 2), the expected minimum of c1 is 7 and its expected
maximum is 9 since the maximum next score that a3 and a4 can submit is 1. The minimum
of the winner c2 is 9, thus the center has to wait to the last round in order to determine that
c1 is an impossible winner (Table 10).

Now we will examine the possibility of a loser to win, depending on Q, the number of
candidates that the center asks the voters about to complete the information. The question is
what is the possibility of a loser to win given |Q|? For voting rules that satisfy the criterion of
independence of irrelevant alternatives (like Range) we can guarantee that the |Q|− 1 losers

123

Auton Agent Multi-Agent Syst

(the |Q|−1 candidates that are ranked last) will not win. The reason is that the center receives
the whole information about the Q candidates and no information about other candidates can
influence the rank of the Q candidates. Thus, we are guaranteed that the winning candidate
among the Q candidates will beat the other Q − 1 candidates.

For voting rules that do not satisfy the criterion of independence of irrelevant alternatives
(like Borda), in case that the loser exists in the possible winner set (depending on P as
mentioned above) we could not guarantee that the loser will not win, since the final rank is
determined only by the information about all the candidate set. Receiving the information
only about part of the candidate set (Q) may determine a winner that in the full voting process
is a loser. For example, assume a set of 4 voters with the following preferences:

2 voters: c1 > c3 > c4 > c5 > c2

2 voters: c2 > c4 > c3 > c5 > c1

1 voter: c5 > c1 > c2 > c3 > c4

In this setting c5 is the loser with 8 points. Assume P = 1, Q = 3. Then after one itera-
tion the center will ask the voters to complete the information on c1, c2 and c5. Based on the
information about these candidates the center ranks them as follow: c5 is the winner with 6
points, then c1 with 5 points and finally c2 with 4 points. In this example we can see that a
loser can be selected as the winner.

To summarize, in Range voting a loser may exist in the possible winner set for P ≤ |C |,
but we are guaranteed that the Q − 1 candidates ranked last in regular Range voting will not
win. On the other hand, in Borda, a loser may exist in the possible winner set for P ≤ |C |
only for a number of voters of n > 3, but for n ≤ 3 a loser exists as far as P ≤ |C | − 1.
But, once it exists in the possible winner set we are not guaranteed that a loser will not win.
Although this result shows that a loser may win, actually this may happen only in extreme
settings where the difference between the candidates’ scores is very small. Indeed, in our
experiments with simulation and real-world data, the winner found by Algorithm 7 was of
very high quality (see next section).

5 Evaluation

In this section we will present the evaluation of the iterative algorithm (Algorithm 2) and the
greedy algorithm (Algorithm 7) in terms of communication and the quality of the selected
winners. We examined these algorithms through thousands of tests in a simulation of the
example of setting a meeting, and in a real world domain of movie selection using the Netflix
Prize database [10].

Setting a meeting simulation: We built a simulation where every agent has a calendar of
5 days containing ten time slots a day. The agents vote for a time slot in order to set a meeting
that requires all agents to participate. The agents submit their preference values for the time

Table 10 The preferences of the
agents in Borda protocol, where
the loser maximizes its score

vi (c j) c1 c2 c3 c4 c5

a1 4 0 2 1 3

a2 3 1 2 4 0

a3 0 4 1 2 3

a3 0 4 3 1 2

123

Auton Agent Multi-Agent Syst

Fig. 1 Algorithm 2 (iterative):
Number of iterations over a set
size using Range voting

0

0.2

0.4

0.6

0.8

1

0 10 20 30

Group Size

N
um

be
r

of
 It

er
at

io
ns

Uniform Normal 1

Normal 3 Netflix Prize

slots as the iterations proceed. In order to examine the influence of the distribution on the
agents’ preferences of the time slots, we varied our experiments according to three different
distributions:

1. Uniform: the agents select the value of each time slot uniformly.
2. Normal 1: the preference values are normally distributed over the day, where the time

slots in the middle of the day are assigned a higher value than the time slots in the
beginning and at the end of the day.

3. Normal 3: the same as the previous distribution, but the agents are divided into three
sub-sets where each one of them applies a normal distribution with a different peak.

In addition, we examined different sizes of groups to show the results for small (4 agents),
medium (10 agents) and large groups (30 agents). Finally, we ran the experiments using the
Borda voting protocol and the Range voting protocol. Since the preference values of the can-
didates were randomly assigned based on the selected distribution, we ran each experiment
50 times.

Real world movie selection applying the Netflix Prize database: Netflix provided a
training data set of over 100 million ratings that over 480,000 users gave for almost 18,000
movies. The movies are ranked in a range of 1–5. We examined our algorithms through six
sets each containing 50 voters for 50 movies, with a total of 300 movies and 300 people.

5.1 Evaluating the iterative algorithm

Figure 1 presents the result for the iterative algorithm (Algorithm 2) using the Range voting
protocol. The x-axis represents the size of the set of voters and the y-axis represents the per-
centage over the maximum number of iterations (where the agents send all their candidates’
preference values). Every data point in the graphs is an average of 50 test-runs, except of the
Netflix curve which is an average of 6 test-runs. As proven above in Theorem 5 this algorithm
finds the optimal winners. As we see in the graph our algorithm improves the worst case and
much fewer iterations (number of candidates) are required in order to find the winners.

In addition, Fig. 1 shows that the number of iterations increases with the number of
agents since the probability of obtaining a certain candidate’s value from all the agents
decreases as the group size increases (the probability that all the agents will submit their
preference value for a certain candidate is (1

|C |)
n , where |C | is the number of candidates,

and n is the number of agents). Finally, we can see that in terms of the number of itera-
tions Normal 3 > Uni f orm > Normal 1. Consequently, as the homogeneity of the agents
increases, i.e., their preference values for the candidates become more similar and they can
find a winner faster. For instance, in Normal 1 distribution, where all the agents have the

123

Auton Agent Multi-Agent Syst

Fig. 2 Netflix Prize domain:
Number of messages over
iterations using Range voting in
Algorithm 7 (greedy)

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10

Iteration #

N
um

be
r

of
 M

es
sa

ge
s

Q=1 Q=2 Q=3 Q=4

Fig. 3 Normal distribution:
Quality of winner over iterations
using Range voting found by
Algorithm 7 (greedy)

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Iteration #

Q
ua

lit
y

of
 W

in
ne

r
Q=1 Q=2 Q=3 Q=4

same normal distribution and they all prefer the middle of the day rather than the edges, the
agents identify the winner in the smallest number of iterations.

5.2 Evaluating the greedy algorithm

We examined the greedy algorithm (Algorithm 7) by varying P = {1, . . . , 10} and Q =
{1, 2, 3, 4} (P is the number of iterations after which the center selects the most preferred Q
candidates).

The greedy algorithm does not guarantee the optimal winner. We measured the quality
of the winner it finds, by calculating its percentage rank out of the real winner computed
post-hoc. In addition, we measured the number of messages needed to find the winner. The
number of messages is affected by three parameters: P, Q and the set size (n). Analytically,
the number of messages is bounded by Pn + 2Qn (Pn for the first P iterations that the
agents send and 2Qn for the Q candidates that the center asks about and the agents reply).
However, in practice part of the Q preference values are already sent by the agents during
the first P iterations, so the number of messages may be smaller.

Figure 2 presents the percentage over the maximum number of messages in the Netflix
Prize (where the agents send all their candidates’ preference values). The x-axis is the number
of iterations (P) and the y-axis is the percentage of the max messages. As mentioned, in the
Netflix domain there are at most 50 voters, but here we show the experiments in three group
sizes of 4, 10 and 30. Every data point in the graph is an average of 18 test-runs (6 test-runs
for every group size of voters: 4, 10, 30). As expected, as the number of iterations (P) or
number of candidates to ask about (Q) increases, the number of messages also increases.
Obviously, by comparing Fig. 2 to Fig. 1 we can see that the greedy algorithm saves much
communication, compared to the iterative algorithm.

123

Auton Agent Multi-Agent Syst

Fig. 4 Netflix Prize domain:
Quality of winner over iterations
using Range voting found by
Algorithm 7 (greedy)

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Iteration #

Q
ua

lit
y

of
 W

in
ne

r

Q=1 Q=2 Q=3 Q=4

Fig. 5 Quality of the winner
over iterations where Q = 2 in
Algorithm 7 (the greedy
algorithm) using Range voting

60

65

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10

Uniform Normal 1 Normal 3

Number of Iterations

Q
u

al
it

y
o

f W
in

n
er

Fig. 6 Netflix Prize domain:
Normalized value of the
utility-cost using Range voting in
Algorithm 7 (greedy). The higher
the better

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

Iteration #

N
or

m
al

iz
ed

 U
til

ity
-C

os
t

of
 W

in
ne

r

Q=1 Q=2 Q=3 Q=4

In Fig. 3 we examine the quality of the winner in the Range voting protocol found by
the greedy algorithm (for the simulation domain of normal-1 distribution). The x-axis is the
number of iterations (P) and the y-axis is the quality in percent, where 100% denotes that it
finds the exact winner that would have been found in regular Range voting. In general, we
can conclude that as P or Q increases, the quality of the winner increases.

In Fig. 4 we can see similar results for the Netflix Prize domain (each data point is an aver-
age of 18 tests). However, in normal distribution (Fig. 3) the quality increases more quickly
than in the Netflix Prize domain, due to the homogeneity of the set, i.e., agents have similar
preference values and consequently they agree more quickly about the optimal winner. To
strengthen this claim we present Fig. 5 which shows the quality of the winner for three distri-
butions (presented above) over the iterations, where Q = 2. All the distributions show a high
quality even after a few iterations. The quality of Normal 1 distribution is higher than the
quality of Uni f orm distribution and the quality of Uni f orm distribution is higher than the
quality of Normal 3 distribution. This is due to the fact that the homogeneity of the agents
influences the possibility of distinguishing between the candidates.

123

Auton Agent Multi-Agent Syst

The quality of the winner is affected by the number of messages. In general the larger
the number of messages the higher the quality of the winner. The question arises as to the
relation between the number of messages (which is affected by P and Q) and the quality of
the winner, i.e., what factor is more dominant in increasing the quality, additional iterations
(P) or the additional value of more candidates (Q)? In order to examine this question in Fig. 6
we present the normalized value of the utility-cost, namely, the ratio between the number of
messages and the quality of the winner based on the number of iterations (in the Netflix Prize
domain). Each data point is an average of 18 tests; the higher utility-cost value the better
combination of Q and P . According to this graph we can conclude, for instance, that it is
preferable to wait three iterations and then ask about the value of the best two candidates than
to ask about the best three candidates immediately following the first iteration. On the other
hand, waiting six iterations where Q = 2 provides worse results (in terms of utility-cost)
than one iteration where Q = 3. The significant increase in the curve from iteration 2 to 3 is
affected by the significant increase in the quality of the winner. The best P/Q combination
according to this graph is Q = 1 and P = 3.

5.3 The impact of the diversity factor

In the last set of experiments we examine the impact of the diversity of the candidates’ scores
on the different algorithms. We hypothesize in this section that the greater the diversity of
the candidates’ scores (within each of the sets of preferences of the agents), the quicker the
impossible candidates will be pruned. In order to examine this hypothesis, we have simu-
lated Borda voting by randomly extending rank-ties to non rank-ties, where ties are broken
uniformly at random. For instance, in the Netflix domain, if three movie candidates where
ranked with the lowest preference value 1, then in Borda ranking their rank was modified to
0, 1, 2 randomly. We ran 50 experiments while extending the order randomly. The algorithms
fit Borda, where the candidates are fully distinct from each other, better than Range where
the candidates are distributed over a range of only 1–5.

In Fig. 7, we can see a comparison between Borda and Range voting in terms of the
number of iterations required to find the winners, in the iterative algorithm (Algorithm
2) in the Netflix domain. In Fig. 8 we can see a comparison between the two protocols in
terms of the quality of the winner using the greedy algorithm (Algorithm 7) in the Netflix
domain (where Q = 2). The improvement was achieved by increasing the diversity among
the candidates’ preferences in Borda, and enabling easier distinction between the candidates
and thus pruning the impossible candidates faster and more accurately.

Fig. 7 A comparison between
Borda voting and Range voting
using Algorithm 2 in the Netflix
domain

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

Borda range voting

Group Size

N
u

m
b

er
 o

f
It

er
at

io
n

s

123

Auton Agent Multi-Agent Syst

In order to strengthen our hypothesis about the influence of the diversity, we ran experi-
ments to compare Range voting and Borda with rank-ties permitted. In Borda with rank-ties
the score of a candidate is the number of candidates less than it. In order to simulate Borda
with rank-ties, we changed the preference values of each agent in Range voting to a set
of Borda preferences with rank-ties by keeping only the relations between the candidates
but not their values. For instance, the set: {〈c1, 8〉 〈c2, 5〉, 〈c3, 5〉, 〈c4, 1〉} in Range voting is
represented as {〈c1, 2〉 〈c2, 1〉, 〈c3, 1〉, 〈c4, 0〉} in Borda with rank-ties.

Generally, the algorithms fit Range voting better than Borda since the candidates’ diver-
sity in Range setting is greater than that of Borda with rank-ties setting. For instance, in
Fig. 9, we can see a comparison between Borda with rank-ties and Range voting in terms
of the number of iterations required to find the winners, in the iterative algorithm (Algo-
rithm 2) with Normal 1 distribution. In Fig. 10 we can see a comparison between the two
protocols in terms of the quality of the winner in the greedy algorithm (Algorithm 7) with
Normal 3 distribution. The reason for this improvement is that in Range voting the calcula-
tion of the maximum and minimum of the candidates takes into consideration the preference
values of the candidates and not only their order as in Borda with rank-ties. Thus, Range
voting increases the diversity among the candidates’ preference values, and enables easier
distinction between the candidates for pruning the impossible candidates.

The last experiments that show the effect of the diversity compare Borda with no rank-ties
to Borda with rank-ties in the Netflix domain. We attained the same results which show that
regular Borda, where the candidates set is more diverse, outperforms Borda with rank-ties
(Figs. 11 and 12).

Fig. 8 A comparison between
Borda and Range voting using
Algorithm 7 (the greedy
algorithm) in the Netflix domain

60

65

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Borda range voting

Number of Iterations

Q
u

al
it

y
o

f
W

in
n

er

Fig. 9 A comparison between
Borda voting and Range voting
using Algorithm 2 for Normal 1
distribution

Borda with rank-ties range voting

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Borda with rank-ties range voting

Group Size

N
u

m
b

er
 o

f
It

er
at

io
n

s

123

Auton Agent Multi-Agent Syst

Fig. 10 A comparison between
Borda and Range voting using
Algorithm 7 (the greedy
algorithm) for Normal 3
distribution

60

65

70

75

80

85

90

95

1 2 3 4 5 6 7 8 9 10

Borda with rank-ties range voting

Number of Iterations

Q
u

al
it

y
o

f
W

in
n

er
Fig. 11 A comparison between
Borda and Borda with rank-ties
using Algorithm 2 in the Netflix
domain

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

Borda Borda with rank-ties

Group Size

N
u

m
b

er
 o

f
It

er
at

io
n

s

Fig. 12 A comparison between
Borda and Borda with rank-ties
using Algorithm 7 (the greedy
algorithm) in the Netflix domain

60

65

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Borda Borda with rank-ties

Number of Iterations

Q
u

al
it

y
o

f
W

in
n

er

6 Summary

Voting protocols typically assume that all agents provide their entire set of preferences over
candidates to the center agent which collects the votes and determines the winner. However,
in practice, this assumption may entail significant costs (e.g., in communication bandwidth)
and effort (e.g., requiring users to enter their preferences needlessly).

In this paper we presented an iterative voting protocol which addresses this problem. The
key to iterative voting is that agents submit their preferences for candidates incrementally,
in rounds. We described the implementation of this protocol in Range voting and in Borda.
We presented several variants of iterative voting (for different voting rules), and proved their
completeness. We then presented a greedy heuristic algorithm to further reduce communica-
tion, and show that while it is not guaranteed to find the true winner, it significantly reduces
communication while keeping the high quality of the winner.

123

Auton Agent Multi-Agent Syst

We have empirically shown that: (a) the iterative algorithm reduces communication in
relation to a regular protocol in which agents submit their entire information; (b) as the set
size decreases and the distribution of the preference values over the agents is homogeneous,
the number of preference values that are required for the voting decreases. For the greedy
voting algorithm we have demonstrated that in environments with low bandwidth or where
communication is expensive, we can significantly reduce communication costs while trad-
ing off a small loss in quality. In addition, we have established that the homogeneity also
influences the quality of the winner in the greedy voting algorithm. Finally, we have empir-
ically showed that increasing the diversity of the candidates enables easier pruning of the
impossible candidates.

In the future we plan to improve the greedy algorithm. Currently, we set the number of
iterations (P) and the number of best candidates (Q) in advance. However, these parameters
depend on the number of agents, the number of candidates, the distribution of the candidates’
preference values etc. We plan to investigate the effect of these factors on P and Q, and con-
sequently attempt to determine these parameters online. In addition, in this paper we focused
on voting protocols in which the agents submit a single preference value in rounds. It may
be challenge to investigate compact representation in iterative voting where the preference
of the candidates are result of multi-criteria calculation.

Appendix

The upper bound of P (the number of iterations to proceed in Algorithm 7) is determined by
the possibility of a loser to be in the possible winner set after P iterations.

Theorem 6 In Borda, an upper bound for a group size of n > 3 is P = |C | and for n ≤ 3
is P = |C | − 1.

Proof Let us assume an extreme voting case where the loser has the highest possible score:
(m−1)n

2 −1. In this case the gap between the winner and the loser must be 2. The votes, in this
case, that maximize the expected maximum of the loser is: (n/2) − 1 voters rank the loser
first, one voter ranks it second (m − 2) and n/2 of the voters rank it last. In this vote setting,
after two rounds the expected minimum score of the loser is its real score which is less in 2
points from that of the winner. The expected maximum of the loser at that point is its current
score ((n

2 − 1)(m − 1) + m − 2) plus the possible maximum score received by n/2 of the
voters that have not submitted yet their score for the loser. In order to prune the loser from
the possible winners set, the expected maximum of the loser must be less than the expected
minimum of the winner. Specifically, one round before the last one the maximum score
that an agent could assign a candidate that has not submitted yet is 1. Thus, the additional
expected maximum for those agents that have not submitted yet their preference is n

2 ∗1, and
the condition for the loser to be pruned from the possible winners set is:

(n

2
− 1

)
(m − 1)+ m − 2+ n

2
<

(n

2
− 1

)
(m − 1)+ m

by investigating this inequality we conclude that the condition is n < 4. Meaning, in a group
of n ≤ 3 voters, a loser is not able to be a possible winner after |C | − 1 iterations. For group
size of n > 3 this inequality does not hold so the minimum of the winner could not be greater
than the maximum of the loser and so it could not be pruned in the round before the last but
in the last round.

123

Auton Agent Multi-Agent Syst

On the other hand, the maximum score that an agent could assign a candidate that has not
submitted yet two rounds before the last one is 2. Thus, the condition for the loser to be
pruned from the possible winners set is:

(n

2
− 1

)
(m − 1)+ m − 2+ n

2
· 2 <

(n

2
− 1

)
(m − 1)+ m

This inequality entails n < 2, but a voting system is defined for n ≥ 2. The constant in the
right side of the inequality n < 2 monotonically decreases as the number of rounds before the
last one increases. Thus, we conclude, based on the expected maximum in the round before
the last round, that the upper bound for n > 3 is P = |C | and for n ≤ 3 is P = |C | − 1. ��
Acknowledgements We thank Israeli Ministry of Science grant number 3-6797 and ISF Grant number
1357/07. As always, thanks to K. Ushi and K. Ravit.

References

1. Blosser, G., & Zhan, J. (2008). Privacy-preserving collaborative e-voting. In Intelligence and security
informatics (pp. 508–513). Berlin, Heidelberg: Springer.

2. Conitzer, V., & Sandholm, T. (2002). Vote elicitation: Complexity and strategy-proofness. In Eighteenth
national conference on artificial intelligence, pp. 392–397.

3. Conitzer, V., & Sandholm, T. (2005). Communication complexity of common voting rules. In
EC ’05: Proceedings of the 6th ACM conference on electronic commerce, pp. 78–87.

4. Faltings, B., & Macho-Gonzalez, S. (2005). Open constraint programming. Artifitial Intelligence,
161(1–2), 181–208.

5. Gelain, M., Pini, M. S., Rossi, F., & Venable, K. B. (2007) Dealing with incomplete preferences in
soft constraint problems. In The 13th international conference on principles and practice of constraint
prgramming (CP-07), pp. 286–300.

6. Hudson, B., & Sandholm, T. (2003). Generalizing preference elicitation in combinatorial auctions.
In Proceedings of the second international joint conference on autonomous agents and multiagent
systems (AAMAS), pp. 1014–1015.

7. Konczak, K. (2006). Voting theory in answer set programming. In The 20th workshop on logic
programming (WLP-06), pp. 45–53.

8. Konczak, K., & Lang, J. (2005). Voting procedures with incomplete preferences. In Proceedings of
multidisciplinary IJCAI’05 workshop on advances in preference handling, Edinburg, Scotland.

9. Lang, J., Pini, M. S., Rossi, F., Venable, K. B., & Walsh, T. (2007). Winner determination in sequential
majority voting. In Proceedings of the international joint conference on artificial intelligence (IJCAI),
pp. 1372–1377.

10. Netflix prize: http://www.netflixprize.com.
11. Pini, M. S., Rossi, F., Venable, K. B., & Walsh, T. (2007). Incompleteness and incomparability in

preference aggregation. In M. M. Veloso (Ed.), In Proceedings of the international joint conference
on artificial intelligence (IJCAI), pp. 1464–1469.

12. Pini, M. S., Rossi, F., Venable, K. B., & Walsh, T. (2009). Aggregating partially ordered prefer-
ences. Journal of Logic and Computation, 19(3), 475–502.

13. Pitt, J., Kamara, L., Sergot, M., & Artikis, A. (2006). Voting in multi-agent systems. Computer
Journal, 49(2), 156–170.

14. Tambe, M., Bowring, E., Pearce, J. P., Varakantham, P., Scerri, P., & Pynadath, D. V. (2006). Electric
elves: What went wrong and why. In Proceedings of the AAAI spring symposium on what went wrong
and why: Lessons from AI research and applications.

15. Walsh, T. (2007). Uncertainty in preference elicitation and aggregation. In Proceedings of the 22nd
national conference on Artificial intelligence (AAAI-07), pp. 3–8.

16. Walsh, T. (2008). Complexity of terminating preference elicitation. In Proceedings of the 7th inter-
national joint conference on Autonomous agents and multiagent systems (AAMAS), pp. 967–974.

123

http://www.netflixprize.com

Auton Agent Multi-Agent Syst

17. Xia, L., & Conitzer, V. (2008) Determining possible and necessary winners under common voting
rules given partial orders. In Proceedings of the 23rd national conference on artificial intelligence
(AAAI-08), pp. 196–201.

18. Zhan, J., Matwin, S., & Chang, L.-W. (2004). Privacy-preserving electronic voting. Information &
Security: An International Journal, 15(2), 165–180.

123

	Practical voting rules with partial information
	Abstract
	1 Introduction
	2 Related work
	3 Iterative voting procedure
	3.1 Iterative range voting
	3.2 Iterative Borda voting
	3.3 Other voting rules
	3.3.1 Rank-based rules
	3.3.2 Non-ranking rules

	4 Greedy voting procedure
	5 Evaluation
	5.1 Evaluating the iterative algorithm
	5.2 Evaluating the greedy algorithm
	5.3 The impact of the diversity factor

	6 Summary
	Appendix
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

