
Multi-Robot Adversarial Patrolling: Handling
Sequential Attacks

Efrat Sless Lin
Department of Computer Science

Bar Ilan University,Israel

Noa Agmon
Department of Computer Science

Bar Ilan University,Israel

Sarit Kraus
Department of Computer Science

Bar Ilan University,Israel

Abstract

Robot teams are commonly used for security tasks, where they are required to
repeatedly monitor an area in order to prevent penetrations, initiated by an ad-
versary. Current research in this field focuses mainly on detecting penetration
attempts, but not on responding. Requiring the robots to also inspect and handle
the penetrations has a significant impact on the patrol, as each penetration attempt
also influences the robots’ behavior, making them vulnerable to multiple attacks.
Moreover, a knowledgeable adversary can initiate two sequential attacks, where
the second attempt exploits the vulnerable points caused by the requirement that
a robot handle the first penetration attempt. In this work, we consider the problem
of sequential attacks and examine different robot policies against such adversarial
behavior. We provide an optimal patrol strategy for various penetration attempt
patterns. Our novel approach considers a full history-length policy, while previ-
ous work only handled very limited lengths of history. The use of a longer history
improves the results. Moreover, we show how to significantly reduce, in practice,

Email addresses: efrat.sless.lin@gmail.com (Efrat Sless Lin),
agmon@cs.biu.ac.il (Noa Agmon), sarit@cs.biu.ac.il (Sarit Kraus)

Preprint submitted to Artificial Intelligence February 10, 2019

the exponential space state of the problem, while maintaining the optimality of
the solution.

Keywords: Multi-Robot Patrolling, Adversarial Modeling

1. Introduction

Robotic patrolling is becoming more and more prominent in the field of secu-
rity [1, 2, 3, 4, 5]. In such problems, a team of robots is required to repeatedly
monitor an area (a perimeter in our case) in the presence of an adversary who
is trying to penetrate it. Such patrolling is applicable for guarding high security
facilities, neighborhood watch, and more.

Previous work has focused on the robots’ goal to detect penetration attempts
[1, 6, 7]. That is, once a penetration is detected, the detecting robot reports it and
leaves the penetration point to continue its patrol. Therefore, sequential penetra-
tion attempts, coordinated or not, do not influence the patrol strategy and its per-
formance. However, in realistic scenarios, the robot might be required to handle
the penetration as well, instead of leaving it. Possible ways to handle a penetra-
tion, for example, are to scan the penetration point with additional sensors or to
confine the intruder.

In an optimal patrol strategy for patrolling a perimeter, as established by Ag-
mon et al. [1], the robots are distributed uniformly along the perimeter and follow
the same strategy, in a coordinated manner. However, they did not consider the
need to handle a penetration attempt. Extracting a robot from the patrolling force
to handle a penetration attempt means that an attack changes the structure of the
team and causes them to be vulnerable to a consequent attack. Therefore, an ad-
versary which knows the robots’ patrol strategy and their locations can initiate
two coordinated attacks in order to exploit the robots’ responses.

After initiating the first attack at one location, the adversary will try to pen-
etrate again through the vulnerable points that are caused by the need to handle
the first penetration. Thus, the remaining robots should reorganize to an optimal
patrol strategy. In order for the robots to start reorganizing, they are required to
communicate reliably, either with each other, or to a center of command. Three
different phases should be considered: Phase I, the steady state for k patrolling
robots prior to the penetration attempt and extraction of the robot; Phase II, the
reorganization phase (transitioning from having k to k − 1 patrolling robots); and
Phase III, the steady-state for k − 1 patrolling robots.

An optimal behavior maximizing probability of penetration detection for each

2

steady state (for k and k − 1 robots) is well established (e.g., [1]), thus we fo-
cus on achieving optimal behavior during the reorganization phase (Phase II), in
which the robots are most vulnerable to additional attacks. As an optimal patrol
strategy is achieved for k − 1 robots after the reorganization phase ends [1], an
intuitive solution would be to minimize the duration of this phase. However, the
shortest reorganization phase results in a deterministic solution, meaning it is the
most vulnerable to a knowledgeable adversary. Moreover, we show that when the
second penetration time is unbounded a-priori, any single reorganization time cre-
ates a vulnerable strategy and there is a need to randomize over different possible
durations in order to achieve an optimal patrol.

There are two common approaches for the multi-robot patrolling problem. The
first maximizes the point-visit frequency criterion (e.g., [8, 9]), assuming that the
robots do not act against a knowledgeable adversary. The second maximizes the
robots’ probability of detecting penetrations through the patrol path, originated by
an adversary (e.g., [1, 6]). Since we are dealing with knowledgeable adversaries
we consider the latter approach for the patrol strategies. A patrol strategy defines
the probabilities for the robots’ next actions. The model for the patrol strategy is
defined by the robots’ patrol policy, for example a Markovian policy. The optimal
patrol strategy is determined by the optimization criteria.

For the most part, only first-order Markovian models have been considered in
the literature [1, 3, 10, 11], which means that the previous locations of the robots
have no effect on their next action. It is clear that the longer the history length
of the paths, the results achieved from the patrol can only improve, i.e. better
penetration detection (or the same, at worst). However, as shown in previous
work, the ability to increase the history length is very limited [2, 6, 12]. This is
simply due to the fact that increasing the history length exponentially increases the
problem size, making it unsolvable. Whereas, we manage to consider high-order
Markovian policies for robots with full history lengths of their paths.

In this work we present a novel approach that is able to consider the full history
length (the complete paths), even when the use of smaller history lengths fails
to produce results. Our approach is based on performing preprocessing over all
possible paths for each robot, which leads the robot from its current position to
its final position where it finishes the reorganization phase, and then we find the
optimal probability distribution over the paths for each robot. As the number of all
possible paths is exponential in the amount of time allocated to the reorganization
phase, we show that it is unnecessary to consider all of them, but only a small
portion, without harming the optimality of the solution. This leads to a significant
drop in the state space of the problem.

3

The main contribution of this work is that it addresses the problem of sequen-
tial attacks, in a full knowledge adversarial environment. Requiring robots to both
detect and respond to events has not been considered in previous work with other
adversarial models. An additional contribution is the technical ability to consider
higher Markovian order policies for the robots, whereas in most previous works
only the first order Markovian has been considered. The results are also supported
by extensive simulations.

The rest of this work is organized as follows. In Section 2 we review previ-
ous works related to our research. Section 3 includes a description of the problem
settings, the adversarial model and the patrol task. In Section 4 we define the reor-
ganization phase, and we lay the foundations for this work in Section 5. In Section
6 we provide a polynomial optimal patrol algorithm for the case in which the time
between the sequential attacks is bounded. The unbounded case is handled in Sec-
tion 7, where we present our optimal algorithm and a Pareto optimization method
for reducing the problem size. In Section 8 we show how we have implemented
the optimization problem and conducted experiments with perimeters of different
lengths (up to 84 segments) as well as experiments with more than 11,000 settings
to show the efficiency of the Pareto optimization in practice. Finally, we conclude
our work and suggest venues for future research in Section 9.

2. Related Work

The problem of multi-robot patrolling has received considerable attention in
the literature over the past decade. The problem has been investigated in dif-
ferent areas, for example perimeter patrol [1], patrol along an open fence [13],
2D continuous environments [9] and graphs [8, 14, 15]. The problem has also
been examined with respect to two different perspectives of the patrolling robots:
frequency-based patrol [8, 13, 14, 15], where the robots’ goal is to optimize some
point-visit frequency criteria, (e.g., by maximizing the average frequency along
the area), and adversarial patrol [1, 2, 6], where the robots’ goal is to detect pen-
etrations controlled by an adversary.

For optimizing frequency criteria, the Idleness notion was introduced in [8,
14, 15], which marks the time between two consecutive visits of some robot at a
point. Marier et al. [15] considered online algorithms for solving the multi-agent
patrol problem. They modeled the problem as a graph where the travel time of
each edge is defined by a probability distribution which is a generalization of a
certain travel duration. However, online algorithms optimize only for the current
state at each time point (agents’ current locations and Idleness of points) and, in

4

order to determine the next state, consider only a subset of states reachable from
said point. This, however, may lead to non-optimal results. Thus, in our approach
we consider all possible states in order to ensure optimality.

Elmaliach et al. [9] considered patrolling a 2D area, determined the cyclic
path, and placed the robots uniformly in order to achieve uniform frequency. In
this type of problem, the resulting (optimal) patrol strategy would be determinis-
tic. Such an approach is good for non-adversarial domains, or for random behavior
of the adversary. It has been shown by Agmon et al. [16] that when the adversary
has no knowledge about the patrolling robots and acts randomly, an algorithm
maximizing the probability of penetration detection is the one that maximizes the
point-visit frequency. In more realistic scenarios, the adversary has some knowl-
edge about the patrol. Previous work considered different adversarial models. An
adversary with full knowledge was considered in [1, 6], and an adversary with
partial information was considered, for example, in [5]. Villacorta et al. [5] fol-
lowed an experimental approach to study deviations from the optimal behavior of
the adversary, contrary to our assumption that a full knowledge adversary will be
the best responder and attack the most vulnerable point.

A setting similar to our problem was investigated by Agmon et al. [1]. They
considered the problem of perimeter multi-robot patrol in the presence of a full
knowledge adversary. The authors modeled the problem as a Markov chain, and
developed a polynomial-time algorithm for determining the optimal patrol strat-
egy that maximizes the robots’ chances of detecting the adversary. However, their
solution deals only with the task of detecting one attacker at a time.

Another approach to adversarial patrol applies game-theory [2, 6, 7, 11, 17,
18]. In these works the problem is modeled as a Stackelberg game – a game
consisting of a leader that sets its strategy first, and a follower that sequentially
responds. Basilico et al. [6] considered a single robot patrolling along a graph
which contains targets of varied interests of the adversary. They modeled the
problem as an extensive form game with an infinite horizon, and adopted a leader-
follower solution concept. The patrolling robot is considered the leader, and the
adversary the follower that can observe the leader’s actions and acts as the best
responder. The adversary is considered to have full knowledge, and a penetration
time greater than zero. The authors formulated a non-linear optimization problem
to find the robot’s optimal randomized strategy. As stated by the authors, non-
linear problems are generally NP-hard. Though likely to be NP-hard, non-linear
formulations are common and appear in addition in [3, 7, 11]. One of the models
that we consider in our work is similar to the formulation devised by Basilico et
al. [11], which extended the work of Basilico et al. [6] to consider multiple robots,

5

which required adding more non-linear constraints to the previous formulation.
All of the aforementioned formulations considered a first order Markovian

model, namely the next action depends only on the current state. Such a model
was considered also in [1, 4]. In [6] the authors defined the strategy for a higher
Markovian order, but performed experiments only for a first order Markovian pol-
icy, due to computational reasons. Basilico et al. [2] showed that a first order
Markovian model performs well, even though not optimally, compared to a higher
order. While we examined policies with varied levels of Markovian order. In our
case they were also time-dependent strategies, based on the fact that reorganizing
is time-dependent.

Kučera and Lamser [19] suggest a new approach for modeling and analyzing
patrolling problems using regular strategies, that are not based on a Markovian
model. Their approach is still nontrivial to compute optimally (constructable in
exponential time), however they are able to adjust to different history lengths by
using rounds of improvements to an original strategy. While their approach seems
promising, they are still limited to a single patroller, and do not handle sequential
(or dependent) attacks. Therefore handling such complicated scenarios by regular
strategies is currently impractical.

Time-dependent patrolling strategies have also been considered in previous
research. Yin et al. [17] considered multiple agents patrolling a transit system in
order to detect illegal passengers. Agents move by trains which causes the patrol
graph to change according to time, making the strategy time-dependent. They
modeled the problem as a Stackleberg game, and followed an assumption that the
patrol units can be represented as flow units. Their assumption results in a linear
formulation. This does not hold in our case, as we assume that penetration is not
instantaneous, thus multiple robots covering the same segment contribute the same
as a single robot. Another time-dependent strategy was considered by Boansk et
al. [3] who extended the work of Basilico et al. [11] to a time-dependent strategy
in order to consider moving targets. They modeled the problem as a two player
non-zero-sum game and formulated a non-linear optimization problem, with the
same computation complexity issues of such formulations, as mentioned earlier.

To the best of our knowledge, the problem of sequential attacks, i.e., handling
more than one attack that affects the patrol, has been considered previously only
in the conference paper version of this work [20].

The problem of handling events was considered in a non-adversarial environ-
ment, or when the adversary has no knowledge. The latter was considered, among
others, by Elmaliach et al. [9] and by Fazli and Mackworth [4]. Elmaliach et
al. [9] considered the extraction of robots due to failure, where they focused on

6

minimizing the reorganization time. In the work done by Fazli and Mackworth
[4], the robots’ goal was to detect events (equivalent to penetration attempts). The
events occurred randomly, and the robots learned their distribution. Planning their
paths was done in a decentralized manner. This is equivalent to an adversary with
no knowledge, but with a pattern of its penetration attempts. Jensen et al. [21] ex-
tended the algorithm for the frequency-based patrol, and examined the problem of
extracting robots for re-charging. These events are predictable, and can be taken
into consideration in advance, as opposed to attacks by adversaries. In all of these
cases, the robots’ goal is to adjust to the new state with one less robot, as quickly
and efficiently as possible, by adopting a deterministic behavior. This behavior
is necessarily vulnerable to additional penetration attempts by a knowledgeable
adversary, thus cannot be used in our case. Note that our suggested solution may
be used in case a robot is extracted from the team due to a failure (yet still able to
temporarily monitor parts of his surrounding area), if it is known that an adversary
may take advantage of the vulnerability of the robots during their reorganization
phase.

The final issue concerns the size of the problem, which is affected by the pol-
icy of the patrol. In [17] in order to confront the exponential number of paths, the
authors proposed a compact representation, in which the agents’ strategy consid-
ers a history of a length of two. As mentioned above, this representation cannot be
applied when the penetration is not instantaneous. Basilico et al. [2] considered
solving large instances of security games, and decreasing the problem size without
utility loss by discarding dominated strategies. This was done by a computational
exponential algorithm, but the computational time was shown to be negligible in
practice. This method yields optimal results for medium sized problems. Another
method presented involves utility loss, which handles large instances with sub-
optimal results. These methods were applied to a first order Markovian model.
The algorithm of Basilico et al. for removing dominated strategies works under
their problem settings and model assumptions. Their settings are somewhat simi-
lar to ours, but differ in the fact that in our case every node is a target, and turning
around is costly. Consequently their implementation cannot be applied in our
settings to reduce the problem size.

Recent work by Basilico et al. [22] have considered the problem of detect-
ing penetrations controlled by an adversary, where the environment has an alarm
system, that informs the defender of a penetration. The alarm system is noisy,
and may produce false positive alarms and missed detections, and determining an
optimal strategy for the defender is APX -hard. In our case, one can consider an
initial penetration attempt as a false alarm, forcing the system to react to it. How-

7

ever, we consider a multi-robot setting, in which the robot inspecting the alarm
(penetration) is extracted from the team, thus the focus is on the behavior in the
transition phase (and not on the optimal way to react to the alarm).

This paper extends the work in [20], with an optimal patrol algorithm for the
bounded case, and different policies considered for the robots for the unbounded
case.

3. Problem Settings

The problem of handling sequential attacks consists of general settings re-
garding the patrol. In this section we formally describe the patrol settings, the
adversarial model, the patrol task and provide a formal definition of the problem.
Note that all notations are summarized in Table 1.

3.1. Patrol Settings
In our settings, there are k homogeneous robots R = {r0, . . . , rk−1} that are

required to patrol along a perimeter, i.e., a cyclic path around a closed polygon.
The perimeter is partitioned into n segments S = {s0, . . . , sn−1}, with endpoints
ep0, . . . , epn−1, such that si, 0 ≤ i < n − 1 starts at epi and ends at epi+1 and
sn−1 starts at epn−1 and ends at ep0. Without loss of generality, we assume that
the sections are numbered from s0 to sn−1 in a clockwise order (see example in
Figure 1). Each robot travels through one segment per time unit. The length
of the segments and the robots’ speed can differ from one segment to another,
as long as the motion time required to travel through the segments is equal. A
segment is said to be visited at some time if at least one robot travels through
that segment during that time. Each robot has a set of possible actions, denoted
by A, and at every step can move forward, turn around or stay put, respectively
A = {CONT, TURN, STAY }, where turning around has an associated cost,
modeled in time. We use τ to denote the number of time units it takes the robots
to turn around. When an attempt to penetrate is detected, a robot must investigate
it until the threat is eliminated, necessitating the extraction of the robot from the
team. During this inspection time the robot is still able to observe part of the
perimeter (this value is quantified in Section 4.1).

3.2. Adversarial Model
The system consists of two coordinated adversaries (this is equivalent to one

adversary initiating two attacks). We assume that the time it takes for each one of
the adversaries to penetrate lasts t time units, during which it may be detected and

8

captured by a robot traversing the segment in which it resides. Their joint goal is
that at least one of them will successfully penetrate the perimeter (that is, without
being detected by the robots). Therefore, there are three possible outcomes for the
adversaries: <penetrated,outside> (indicating that the first attempt succeeded, the
second was not initiated), <captured,penetrated> (first attempt detected, second
succeeded), and<captured,captured> (both attempts failed, adversary detected in
both cases). Both adversaries earn the same utility if they manage to achieve their
joint goal.

Their most preferred outcome is that one of them will penetrate and the other
will stay outside the perimeter. It is not acceptable to the adversary that, in order
to ensure that one of the attackers will penetrate for sure, the other attacker will
always be captured, which could be achieved by a simultaneous attack. Basing
this statement on the fact that patrolling algorithms require robots to maintain a
constant distance between them [1], then for example, if the robots r0 and r1 are
placed in segments s0 and sj s.t. j > t, then initiating penetration attempts in
segments st and sj−t+τ+1 will result in at least one definite penetration. This is
since during t time units r0 cannot reach st and r1 cannot reach sj−t+τ+1, meaning
only r0 can capture a penetration at sj−t+τ+1 and r1 at st. However, since it is not
acceptable, we assume sequential attacks, i.e., the second attack will be launched
only if the first attacker is captured.

We consider three cases for the knowledge of the defender on the second pen-
etration with respect to the detection of the first attempt (certain knowledge):

1. Known penetration period. The second penetration attempt is initiated at
some known time.

2. Bounded penetration time. The second penetration is bounded in time
[t1, t2], after the first penetration attempt is detected.

3. Unknown penetration time. The second penetration attempt is initiated at
an unknown time.

We consider a strong adversarial model, in which the adversary has full knowledge
of the patrol strategy and the robots’ positions at the time of the first attack. The
adversary chooses the segments to penetrate and the timing of both attacks prior
to the initiation of the first attempt. This assumption is applicable to cases where
the adversary is required to organize itself in advance (for example due to terrain
challenges, and/or the need to remain unobserved), and thus commit to certain
penetration locations, without the ability to change those easily on the fly.

9

3.3. Patrol Task
We define the Probability of Penetration Detection in a segment s of a penetra-

tion initiated at time ta, denoted by ppd(s, ta), as the probability that an adversary
trying to penetrate through s will be detected by some robot traversing s during t
time units of the penetration attempt (the t time units necessary for the adversary to
complete the penetration).1 We would like to find a patrol algorithm that finds the
optimal patrol strategies for the robot team when confronting a strong adversary
that will necessarily penetrate through the segment with the minimal ppd(s, ta) at
time ta, i.e., an algorithm that will maximize the minimal probability of penetra-
tion detection throughout the perimeter. More formally, the optimization criterion
is maxmins,tappd(s, ta).

Agmon et al. [1] proved that the optimal patrol algorithm that maximizes the
minimal ppd along the perimeter for a team of k robots is one in which the robots
are spread out uniformly (in time, thus in segments) along the perimeter. The
distance between every two consecutive robots for k robots is denoted by dk (dk =
n
k

), i.e, the number of segments between the robots. They also showed that the
minimal value of t such that the robots can have a probability greater than zero of
detecting the adversary is dk+τ

2
. This value is denoted by tkmin. In their work, they

defined a nondeterministic patrol framework in which, at each time step, the robots
either continue straight with a probability of p or turn around with a probability
of 1 − p. Based on this framework, it is possible to find, in polynomial time, the
optimal patrol strategy for k robots (characterized by the value p). Therefore, we
choose to adapt a scheme where we distinguish between the behavior of the robots
in three different phases and optimize each phase:

1. Phase I: the steady-state prior to the extraction of the robot handling the
first penetration attempt, i.e., patrolling by k robots;

2. Phase II: the reorganization phase, where the team’s composition changes
from k patrolling robots to k − 1 patrolling robots;

3. Phase III: the steady-state of patrolling by k − 1 robots.

Since the optimality of the patrol strategy was established in [1] for phases I and
III, in this research we focus on the reorganization phase. Thus, we are concerned
with the following problem:

1We refer to the probability of penetration detection ∀ta along the perimeter as ppd.

10

Given k robots patrolling around the perimeter, where one robot is extracted from
the team in order to handle a penetration at location si, determine the optimal
behavior for the robots that will maximize the minimal probability of penetration
detection along the perimeter during the reorganization phase.

Table 1: Notations.

Notation Definition

R Set of robots

k Number of robots

rj Robot j

S Set of segments

n Number of segments

si Segment number i

epi Endpoint i

A Set of actions for robots

τ Turning cost

t Adversary’s penetration cost

ta Adversary’s penetration initiation time

t0 Start time for the reorganization phase

t1, t2 bounds for the range of possible penetrations

dm Uniform distance between m robots

lj The path length of rj

lmax The maximal path length

v0(r) The initial position of robot r in the reorganization phase

vend(r) The final position of robot r in the reorganization phase

ppd(s, ta) Probability of penetration detection of segment s initiated at time ta

11

G := (V,E) The graph that models the problem

u, v A vertex consist of endpoint and direction

u′, v′ A vertex with the same endpoint as v but counter direction

W (u, v) The cost (time) to arrive from u to v

ρ Reorganization time

πr A path of robot r

h History of a robot actions

I(s, πr),I(s, h) The contribution of πr or history h to detecting a penetration attempt at seg-
ment s

ppdr(s, ta) Probability of penetration detection of segment s initiated at time ta by robot
r

ppdr1...rj(s, ta) Probability of penetration detection of segment s initiated at time ta by robots
r1 . . . rj

Pr,ρ(π) The probability of robot r to follow path π of length ρ

Pρ The set of Pr,ρ

ppd(P, s, ta) The ppd when the robots use probability distribution P

tmmin The lower bound of t for m robots

ρub[t1, t2] The upper bound for ρ to optimize ppd(t1, t2)

π[t1 : t2] the sub-path of π from time t1 to time t2

|π| The length of π

|h| The length of the history h

H The set of histories

Pr,h,a The probability of robot r to perform action a based on history h

Γ set of ρs

12

4. The Reorganization Phase

The reorganization phase starts when a penetration is detected by one robot
(that is assigned with handling the penetration), and its teammates reorganize into
their new positions. We denote the first penetration detection time by t0, and con-
sider all times with respect to it (i.e. set t0 = 0). When a robot is extracted from
the team to handle the first penetration, the remaining k − 1 robots need to be
organized such that they will again be spread uniformly around the perimeter, to
achieve optimal behavior [1]. The extracted robot remains close to the location
of the initial penetration to handle the penetration, and monitor the close environ-
ment for the detection of additional penetrations (refer to Section 4.1 for the exact
size of the monitored area). This robot’s involvement in the general patrolling task
diminishes, and by the end of phase II its sole responsibility is handling the pen-
etration it detected. In order for the robots to start reorganizing they are required
to communicate reliably, either directly with each other, or through a central com-
mand. The set of final positions of the robots is the set of positions in which all
robots are placed uniformly along the perimeter.

First, we are interested in determining the set of final positions, and then we
will determine the amount of time to allocate for the reorganization phase, i.e.,
the time it will take the robots to reach their final positions. The duration of the
reorganization phase is denoted by ρ. Note that the length of the shortest path
between a robot’s current position and its final position varies from one robot to
the other, and depends on its location relative to the penetration point. We use lj
to denote this path length for robot j, 1 ≤ j ≤ k − 1. The sign of lj indicates
the direction of the path: + for clockwise movement and - for counterclockwise
movement. See illustration in Figure 1.

Determining final positions. It is apparent that as ρ grows, each robot has a greater
range of segments it can visit during the reorganization phase, thus ppd(s, ta) po-
tentially increases. Hence, theoretically, it is preferable that ρ will have large val-
ues. However, this contradicts the fact that the reorganization phase length should
be minimized, since an optimal patrol is achieved when all robots are organized
uniformly. In order to find the ρ value that will balance this trade-off, we start
by finding the final positions for all the robots such that the reorganization time is
minimized, i.e., minimize the maximal distance that needs to be traveled by some
robot from the team.

We assume, without loss of generality, that r0 is the extracted robot. We begin
by proving the following supporting lemma in order to find the final positions (by
calculating the values of lj ’s). Let lmax := max1≤j≤k−1|lj|.

13

Figure 1: An illustration of the deterministic reorganization phase. The current positions of the
robots are represented by large points. Each robot goes straight to its final position. The robots
to the right of r0 travel in counterclockwise direction (thus their path length is negative), and the
robots to the left of r0 travel in clockwise direction (thus their path length is positive). dk denotes
the distance between two consecutive robots along the perimeter in phase I, and dk−1 denotes this
distance in phase III (by k − 1 robots). The unvisited segments are vulnerable to attacks.

Lemma 1. For k robots that are spread uniformly around the perimeter with a
distance of dk segments between every two consecutive robots, once robot r0 is
extracted from the system, lj = l1 + j−1

k−1
dk for 2 ≤ j ≤ k − 1, and lmax = |l1| =

|lk−1| = 1
2
k−2
k−1

dk.

Proof. After reorganizing, the distance between robots rj and rj−1, j = 2 . . . k−1,
is dk + lj − lj−1. The robots are distributed uniformly along their final positions,
hence they are within a distance of k

k−1
dk from each other, therefore dk+lj−lj−1 =

k
k−1

dk , and we find that lj = lj−1 + 1
k−1

dk. In addition, it is easy to verify that
lj = l1 + j−1

k−1
dk.

In order to show the maximal value of lj (lmax), notice that there are two robots
r1 and rk−1, within a distance of 2dk from each other after the extraction of r0,
and the rest of the robots remain within a distance of dk from each other. Since
2dk ≥ k

k−1
dk for all k ≥ 2, the minimal duration of reorganizing is achieved when

these two robots head towards each other in order to reduce the distance between
them.

Thus lk−1 − l1 = 2dk − k
k−1

dk = k−2
k−1

dk holds. The minimum path length is
achieved when lk−1 = −l1 = 1

2
k−2
k−1

dk. Hence the minimum of the longest path
length for all robots, denoted by lminmax, satisfies that lminmax ≥ 1

2
k−2
k−1

dk. The
maximum of |lj| is achieved at boundary points j = 1, k − 1 and |l1| = |lk−1|

14

holds, therefore lmax = max|lj| = |l1| = lk−1 = 1
2
k−2
k−1

dk. Since lmax is the
longest path length, lminmax ≤ lmax holds, thus lminmax = lmax.

Following Lemma 1, we can calculate the value of lj as follows:

lj = l1 +
j − 1

k − 1
dk = −1

2

k − 2

k − 1
dk +

j − 1

k − 1
dk =

j − 1
2
k

k − 1
dk (1)

The initial position of rj , j = 1 . . . k−1, is denoted by v0(r) and equals epj·dk ,
thus we can calculate the final position of rj (which is at a distance of lj from its
current position) as follows:

vend(rj) = epj·dk+lj = ep
j·dk+

j− 1
2 k

k−1
dk

= ep kdk·(j− 1
2)

k−1

(2)

Similarly, we can compute the final position of each robot given any initial
position and penetration segment.

After establishing the final positions by means of Equation (2), we will de-
termine the reorganization time. A naive approach would be for each robot to go
straight to its final position and wait until the reorganization phase ends, thus min-
imizing the time needed for reorganization. However, such an approach would
create vulnerability points as there are segments that will not be visited during t
time units. This is defined more formally by the following definition.

Definition 4.1. Segment s ∈ S is said to be vulnerable if there exists ta such that
ppd(s, ta) = 0.

Consequently, a knowledgeable adversary would manage to penetrate success-
fully through these vulnerable points. In the example in Figure 1, none of the
points between the final positions of the robots and the current positions of the
adjacent robots will be visited during the reorganization phase using this naive
algorithm. Thus, these vulnerable points can be chosen for penetration by the
adversary. We are therefore interested in a non-deterministic algorithm that will
guarantee that for each segment s around the perimeter, ppd(s, ta) > 0 during the
reorganization phase.

Note that since each segment corresponds to one time unit of travel time, we
refer to time and distance interchangeably. The minimal ρ is equivalent to the
maximal distance a robot will travel (straight) to its final final position, after turn-
ing to its direction (if needed). Therefore the following Corollary is derived di-
rectly from Lemma 1.

Corollary 1. The minimal ρ for reorganizing equals 1
2
k−2
k−1

dk + τ

15

4.1. Monitoring Requirement From the Extracted Robot
The transition from k robots to k−1 cannot be instantaneous, as the extraction

of a robot leaves segments that cannot be covered by the remaining robots during
t time units. Thus, extraction creates segments that a knowledgable adversary will
penetrate sucessfully through them. This means that the extracted robot needs to
monitor several segments before its extraction is completed. We are interested in
guaranteeing that ppd(s, ta) ≥ 0 for every s ∈ S and ta ≥ t0. For that, every
segment must be covered between ta to ta + t for every ta ≥ t0. Therefore,
it is necessary and reasonable to require that a range of the segments close to
the penetration location, that cannot be visited during that time by some robot
ri 6= r0, will be observed by the extracted robot r0. We turn to detrmine the
number of segments that r0 needs to monitor for every t′ time units after t0. The
number of segments that cannot be visited during a period of t time units after
t′ time units equals 2(dk − (t′ + t)). This is due to the fact that the number of
segments between r1 and rk−1 is 2dk. During t time units, r1 can visit at most
t of the segments between r1 and rk−1. The same holds for rk−1. Therefore, the
number of remaining unvisited segments is 2(dk−(t′+t)). These are the segments
that must be monitored by the extracted robot r0. Note that as t′ increases (more
time has passed since the initial penetration occurred), this value decreases, i.e.,
r0 needs to monitor less segments (and is not required to monitor any segment at
all after dk − t time units).Now, that we have finished defining the requirements
of the reorganization phase, we turn to model the problem.

5. Problem Modeling

Even though the final positions are determined in advance, there are still many
strategies that can lead each robot from its current position to its final position
during ρ time units. As stated before, because a deterministic approach does not
perform well against a full-knowledge adversary, we need a randomized strategy.
Unlike the steady state where the world is symmetric, thus enabling each robot
to execute the same patrol strategy, in our problem there is no symmetry, making
it necessary to calculate a different strategy for each robot. Randomizing at each
endpoint does not guarantee that the robot will arrive at its final position at the end
of the reorganization phase. Therefore we randomize over the possible paths that
start at the current locations of the robots and end at their final positions after ρ
time units.

In this section we describe the graphical modeling of the problem, and lay the
foundations and algorithms for finding paths for reorganization, and calculating

16

the resulting ppd values determined by the possible paths, along with some given
probability distribution over the possible paths. This will be used for determining
the optimal strategy for the patrolling robots, based on the adversarial model.

5.1. Modeling the Problem as a Graph
Similar to [1], we model the problem as a directed graph in order to capture

the directionality of the robots’ movements (facing forward is different than facing
backward, considering the time τ it takes the robots to turn around). The graph
G = (V,E) is constructed as follows (see the illustration in Figure 2):
For each pair of an endpoint and a direction in the original problem we construct
a vertex v = (epi, CW), and v′ = (epi, CCW), where CW stands for clockwise,
and CCW for counter-clockwise. Edges are directed according to the direction of
the vertices, with a uniform weight of 1. If τ equals 1 (turning cost, equivalent to
the time it takes to turn), then we connect (v, v′) to (v′, v). If τ > 1, we add τ − 1
vertices between v and v′, such that the cost of arriving at v′ from v and vice versa
is τ .

Note that G is actually a Markov chain representing the possible states of the
system, which corresponds to the location and direction of the robot.

Figure 2: Example of a weighted graph that takes into account the cost of turning around, τ .

17

5.2. Finding All Possible Paths
The behavior of the robots during the reorganization phase has to be random

in order to handle a knowledgeable adversary. In this case, we randomize over
the possible choices of paths leading the robots from their current position to
their final position during ρ time units. First, we need to find the possible paths
for each robot before further evaluation. This number is calculated by the func-
tion NumberOfPaths(u, v, ρ), which, given the endpoints of segments in a given
direction, uses the entry (u, v) of the adjacency matrix M of the graph G (the
Markov chain, as constructed above), in the power of ρ (denoted by Mρ(u, v)):

NumberOfPaths(u, v, ρ) = Mρ(u, v)

The time complexity of calculating NumberOfPaths is defined by the time
complexity of computing Mρ, which is O(nc · log(ρ)) for some fixed c, 2 < c < 3
[23] (Chapter 11.2.5).

Algorithm FindPaths(G, v0(r), vend(r), ρ) finds all paths of length ρ. The
algorithm considers the modeled graph G, the initial position and direction, en-
compassed by v0(r), and the final position and direction encompassed by vend(r).
We denote by W (u, v) the time it takes to arrive from u to v, for example, for
some u′, W (u, u′) = τ .

This algorithm uses a Depth-First-Search (DFS) traversal on the graph G,
which recursively generates the paths, and each step continues only to branches
that can yield a valid path of length up to ρ (until terminating in depth ρ). The
algorithm uses the function NumberOfPaths defined above to verify that the cur-
rent examined set of paths in nonempty. Clearly, as it uses a rigorous traversal
of paths, it returns a complete set of paths between u and goal of length ρ. The
time complexity of FindPaths is O(#Π · nc log(ρ)) and at most O(nρ+c log(ρ))
for some fixed c, 2 < c < 3.

5.3. ppd Computation
The values of the ppd throughout the perimeter depend on the probability of

each path being chosen. Suppose that for each robot r we are given a set of paths,
denoted by Πr. We can compute in advance the contribution of each path to every
segment at every time of penetration initiation, denoted by ta. Let πr be some path
of robot r, πr ∈ Πr, and define πr[ta : ta + t] to be a sub-path of πr between times
ta, ta + t. The contribution of this path to the probability of detection, denoted by
I(s, πr)[ta], indicates whether or not a robot following πr visits segment s during

18

t time units, starting at ta. More formally,

I(s, πr)[ta]←

{
1 πr[ta : ta + t] contains s
0 otherwise

For every distribution of probabilities of selecting a path over Πr, denoted by
Pr, we can calculate the probability for each robot to visit a segment s, denoted
by ppdr(s, ta), ∀s, using the following Equation (3).

ppdr(s, ta) =
∑
πr

Pr(πr) · I(s, πr)[ta] (3)

Finally, ppd values are calculated by the complement of the probability that none
of the robots will visit segment s.

ppd(s, ta) = 1−
k−1∏
l=1

(1− ppdrl(s, ta)) (4)

This equation is non-linear, and it is computationally harder to solve non-linear
constraints than linear or quadratic constraints. However, Equation (4) is equiva-
lent to a set of quadratic equations. In order to show this, we define ppdr1...rj(s, ta)
as the probability of robots r1 . . . rj to detect a penetration attempt to segment s
initiated at time ta. By definition:

ppd(s, ta) = ppdr1...rk−1
(s, ta) (5)

Similarly, ppdr1...rj(s, ta) is computed by the following Equation (6).

ppdr1...rj(s, ta) = 1−
j∏
l=1

(1− ppdrl(s, ta)) (6)

It is easy to see that the following holds for j > 1:

ppdr1...rj(s, ta) = 1− (1− ppdr1...rj−1
(s, ta))(1− ppdrj(s, ta)) (7)

After simplification we get the following recursive calculation:

ppdr1...rj(s, ta) = ppdr1...rj−1
(s, ta)(1− ppdrj(s, ta)) + ppdrj(s, ta) (8)

The above equations assist us in iteratively calculating the ppd for each seg-
ment, by integrating the contribution of each robot (by its paths).

19

6. Bounded Penetration Period

In some cases, once a penetration attempt is detected, we can assume that a
sequential attack will occur within a given time frame, for example, between now
and sunrise, or knowing that the adversary must spend some time to regroup, but
will still initiate an additional attack before the moon rises. In all those cases, the
time frame for the next attack is known to us (specifically, it is bounded). There-
fore, in this section we consider the case where the time of the second penetration,
denoted by ta, is bounded and known to the defender. Formally, t1 ≤ ta ≤ t2 for
some known t1, t2.

In this case it is sufficient to find an algorithm that maximizes the ppd between
[t1, t2] regardless of the ppd values in the times outside that range. Therefore we
can choose the reorganization time ρ such that ρ > t2, and only need to consider
the sub-paths between [t1, t2 + t] for every robot. Moreover, between [t2, ρ] a de-
terministic path towards the final position of each robot can be used. The number
of possible sub-paths between [t1, t2 + t] is affected by the reorganization time, ρ.
This is because the final positions after ρ time units might be reachable from every
position at time t2. The greater ρ is, the more possible sub-paths exist between
[t1, t2 + t] and thus the greater ppd values. In order to achieve the optimal results
we consider the state space of sub-paths to be all possible sub-paths, and compute
ρ accordingly.

We denote by π[t1 : t2] the sub-path of π from time t1 to time t2, and let |π|
denote the length of a path π. If π[t1 : t2] is a sub-path of π of length ρ, then clearly
for every ρ′ > ρ there exists π′ of length ρ′, such that pi′[t1 : t2] = pi[t1 : t2]. This
means that for π[t1 : t2] there exists a minimal ρ such that π[t1 : t2] is contained in
the set of sub-paths for paths of length ρ′, ρ′ > ρ. We wish to extend this so that we
are interested in finding such a ρ that its set of sub-paths between [t1, t2] contains
all possible sub-paths between [t1, t2]. We denote this bound by ρub[t1, t2]. That
is, using ρ = ρub[t1, t2] yields the maxmins,tappd(s, ta) during [t1, t2], and any
greater ρ yields the same value.

Lemma 2. ρub[t1, t2] := 2t2 + 2t+ lmax + τ is an upper bound for the minimal ρ
such that maxmins,tappd(s, ta) remains the same for every ρ̃ > ρ during [t1, t2].

Proof. In order to prove that ρub[t1, t2] is an upper bound, it is sufficient to prove
that:
{π[t1 : t2] such that |π| = ρ} = {π[t1 : t2] such that |π| = ρub[t1, t2]} for
ρ ≥ ρub[t1, t2], which means that sub-paths of length t2 − t1 + 1 from all paths of
length ρ are the same as sub-paths of paths of length ρub[t1, t2], hence they have

20

the same ppd. A path of length t2 + t can be at most t2 + t + lmax from its final
position. In order for a path of length ρ to be of that distance, ρ needs to be greater
than 2t2 + 2t+ lmax + τ .

We turn to present the main theorem of this section regarding the computa-
tional complexity of the algorithm when the time frame of the second penetration
is known.

Theorem 1. If the time range of the second penetration is known, then a polyno-
mial time algorithm exists that guarantees optimal ppd values.

In order to prove this theorem, we consider several cases in the following
Lemmas, 3-7. We distinguish between the case where the penetration time is
known exactly (t1 = t2), and the more general case of a range of values for the
penetration time. We partition the problem into four different cases of ranges
of [t1, t2]. For each case we find optimal patrolling algorithm and the optimal
resulting maxminppd. A summary of the cases and our results is presented in
Table 2.

Table 2: Optimal values of ppd with respect to the second penetration time range, [t1, t2].

Case Range maxminppd Section

A t1 = t2
1
2

6.1

B t1 ≥ dk − t
2

or t2 ≤ 1
2
(t1 + t− tkmin),t1 ≤ t− tkmin 1

2
6.2

C otherwise if t1 ≥ dk − t or t2 ≤ t+ t1 − tkmin 1
3

6.2

D otherwise t(k−1)
2kdk

6.2

6.1. Known Exact Penetration Time
We examine the first case, in which the exact time that the adversary is going

to initiate a second penetration is known (Case A of Table 2). This assumption is
not necessarily realistic, but its results provide an upper bound to the guaranteed
probability of detection of all other cases, thus important to analyze. Since the
penetration time is known, only the period of [ta, ta+ t] is of interest to us. During

21

a single period of t time units, it is sufficient for the robots to use only two paths
that together visit all points in the area, as t > dk

2
. This yields ppd values of 1

2
.

We prove this in the following lemma.

Lemma 3. In the case where ta is known a-priori, an optimal patrol algorithm
with polynomial time complexity exists which guarantees that maxminsppd(s, ta) =
1
2
.

Proof. When the distance between each pair of consecutive robots is at most 2t
during the reorganization phase, then all segments can be visited by one of two
paths for each robot: one forward and one backward, yielding ppd value of at
least 1

2
. Therefore, in order to prove the lemma, it is sufficient to show that at each

time step between [ta, ta + t], the distance between every two consecutive robots
(except for r0) is less than 2t.

In order for k − 1 robots to be able to handle a second penetration in the
steady state, t must be greater than dk−1+τ

2
, therefore 2t ≥ dk−1. In the steady

state the distance between each pair of consecutive robots is less than 2t, which
means that also during the reorganization the distance between them is less than
2t. The greatest distance between two consecutive robots is between r1 and rk−1

and equals 2dk. Reducing this distance to 2t requires dk − t time steps. Since the
initial distance between the rest of the pairs of robots equals dk, which is already
less than 2t, the remaining robots are required to move less than dk − t segments
to ensure a distance of at most 2t between them. Thus, for ta ≥ dk − t, the
robots can assure that they are distant at most 2t at time ta. Then, if each robot
moves forward or backward with a probability of 1

2
, all segments will be covered

for t time units with ppd(s, ta) = 1
2
. Hence the lemma holds for ta ≥ dk − t as

maxminsppd = 1
2
.

If ta < dk − t, then the segments that are required to be visited between
[ta, ta + t] are segments sdk−(t+ta) . . . sn−(dk−(t+ta)) (all segments besides 2(dk −
(t + ta)) segments around ep0). Let r1, rk−1 head towards ep0 for ta time units.
They are within a distance of t from the segments that need to be visited. The
distance between every remaining robot and their consecutive one can be less
than 2t in less than ta time units, because robots r1, rk−1 move only ta seg-
ments away. The number of segments where the middle robots move in oppo-
site directions is less than the number required for full reorganization. Therefore,
∀s ∈ S {sn−(dk−(t+ta)) . . . , s0, . . . , sdk−(t+ta)}, the probability of a robot visiting
it is at least 1

2
, completing the proof.

This result is the best that can be achieved, because the assumption for the

22

second penetration time is the strongest. Thus we achieve an immediate Corollary
for an upper bound of maxmins,tappd(s, ta) for all settings.

Corollary 2. maxmins,tappd(s, ta) ≤ 1
2

for any setting.

6.2. Known Penetration Time Range
We now assume that the exact timing of the second attack is unknown, how-

ever it is bounded between a given range. That is, ta is a-priori known to be within
[t1, t2] for some known t1, t2. In the following lemmas we analyze the effect of
the different values of t1, t2 on the maxmins,tappd(s, ta) that can be achieved for
ta ∈ [t1, t2].

In the following lemma we consider Case B (Table 2), where t2 ≤ 1
2
(t1 + t−

tkmin) and t1 ≤ t− tkmin, or t1 ≥ dk − t
2
.

Lemma 4. A patrol algorithm exists such that mins,tppd = 1
2

for t ∈ [t1, t2] if
and only if t2 ≤ 1

2
(t1 + t− tkmin) when t1 ≤ t− tkmin, or t1 ≥ dk − t

2
.

Proof. For each robot we determine two paths, as illustrated in Figure 3 (a). For
r1,rk−1, the first path is towards ep0, and on the second path the robot proceeds
x segments towards ep0 and then turns around. The remaining robots have two
paths in opposite directions, where they proceed x segments in each direction and
then turn around. The segments between r1 and r2 must be visited during t1 + t
time units. Due to the fact that rk−1 heads in the opposite direction, the paths for
r2 . . . rk−2 must be symmetric, hence they will visit at most dk

2
segments, therefore

x − t1 + x + τ + dk
2
≤ t (to guarantee a nonzero probability of reaching each

segment) which yields x ≤ 1
2
(t1 + t− dk

2
− τ) = 1

2
(t1 + t− tkmin). The segments

with a distance of x+1 from r1 and rk−1’s initial positions will not be visited after
the first visit, which means that the patrol algorithm is appropriate for values of ta
such that ta ≤ x, resulting in t2 ≤ 1

2
(t1 + t − tkmin). If t1 > t − tkmin then there

cannot be a path that visits both the segment within the distance of 1
2
(t1 +t−tkmin)

and the segment within the distance of dk
2

in the opposite direction.
If t1 ≥ dk, then during dk − t time units paths exist such that the robots can

be within a distance of at most 2t from each other. From that state we determine
for each robot both a path going forward and a path that turns around for t

2
− τ

time units and then turns around again and continues forward, as illustrated in
Figure 3 (b). All segments will be visited after dk− t+ 3t

2
, which means that from

ta = dk − t+ t
2

all segments will be visited during the following period of t time
units. Hence if t1 ≥ dk − t

2
then mins,t ppd = 1

2
for t ∈ [t1, t2]. The amount of

time between a visit in a segment to the next visit will not be greater than t time

23

Figure 3: The paths for the robots to achieve ppd = 1
2 (a) when t2 < 1

2 (t1 + t− tkmin). (b) when
t ≥ dk − t

2 . The y-axis represents the robots’ location, while the x-axis shows the progress along
time.

units. An overlap by rj, rj+1 for some 1 ≤ j ≤ k− 2 in the segments not between
their location can occur after dk time steps. Thus the second visit is carried out
by the same robot. This results in paths of either the first or second case. They
are sufficient to visit the segments if t1, t2 satisfies the inequalities. By Corollary
2 we find that 1

2
is the greatest result possible, hence the result is optimal for this

case.

In the following lemma we consider Case C (Table 2), where 1
2
(t1+t−tkmin) <

t2 ≤ t1 + t− tkmin when t− tkmin < t1 < dk − t
2
, or t1 ≥ dk − t.

Lemma 5. A patrol algorithm exists such that maxmins,tappd(s, ta) = 1
3

for ta ∈
[t1, t2] if and only if 1

2
(t1+t−tkmin) < t2 ≤ t1+t−tkmin when t−tkmin < t1 < dk− t

2
,

or t1 ≥ dk − t.

24

Proof. We first examine the case where t1 < dk − t. For each robot we determine
three possible paths, as illustrated in Figure 4. For r1, rk−1 the paths are: (1) A
path heading toward ep0; (2) A path waiting t time units and then heading toward
ep0; (3) A path waiting x time units and then turning away from ep0. The first two
paths visit the segments toward ep0 for 2t time units. The third path must visit dk

2

segments within t time units starting at t1. Hence x = t1 + t− dk
2

, and the greatest
value t2 can have is x, since s1 would not be visited during t time units after x+1.
Therefore t2 ≤ x = t1 + t− dk

2
. If ta ≤ dk then there are no overlaps between the

segments outside rj, rj+1. This means that the lowest ppd(s, ta) for ta ∈ [t1, t2]
equals the lowest probability given to one of these paths.

Let us observe three segments with different possible penetration times: seg-
ment s(1) = sdk−(t+t1) when t(1)

a = t1, segment s(2) = sd−(1
2

(t1+t−tkmin)+τ) when

t
(2)
a = 1

2
(t1 + t− tkmin) + 1, and segment s(3) = sd+ d

2
when t(3)

a = t1.
Only a direct path for robot r1 toward ep0 can visit segment sdk−(t+t1) during

the first t time units after t1. This path cannot visit segment s(2) or segment s(3),
for t(2)

a , t
(3)
a , respectively.

The distance between s(2) and s(3) equals 1
2
(t1 +t−tkmin)+τ+ dk

2
= 1

2
(t1 +t+

tkmin). When t1 > t− tkmin then this distance is greater than t. Therefore, no single
path exists that visits both s(1) and s(2) during the same t time units. If r2 does not
visit s(3) when t(3)

a = t1, then it must be visited by r1 and we hence no path of r1

can visit more than one of these segments in the examined penetration time. If r2

does have a path that can visit s(3), then it does not visit the segment sd+ t
2

when
ta = t1. The distance between this segment and s2dk is dk − t

2
, which is greater

than t. In other words, if r3 does not visit the latter segment then r2 must visit
it, and hence r2 has no path that can visit more than one of these three segments.
Similarly, it is proven that no robot exists with a path that allows it to visit more
than one of the three segments it must visit. Therefore, any additional path would
influence the ppd of only one of the segments, and the optimal solution is to have
a uniform distribution over three paths.

If t1 ≥ dk − t, then at t1 the robots can be within a distance of at most 2t from
each other. We determine a path forward for each robot, a path that turns around
for t

2
− τ time units and then turns around again and continues forward, as well

as a path backward. After t
2

all segments are visited by all pairs of the first two
paths of each robot. The third path is required to be visited between dk − t to t.
No additional path can visit all of the segments that the two paths have already
visited. Hence, ppd(s, ta) = 1

3
is optimal for ta ∈ [t1, t2].

25

Figure 4: The paths for the robots to achieve ppd = 1
3 (a) when t2 < t + t1 − tkmin; (b) when

t1 ≥ dk − t. The y-axis represents the robots’ location, while the x-axis shows the progress along
time.

26

Figure 5: Distinct cyclic paths that visit their segments (y-axis) for any range of t time units
(x-axis).

We now prove the last case, Case D (Table 2). In order to prove the guaran-
teed probability of detection in this case, we must first prove a supporting lemma
regarding the partitioning of the segments into distinct cyclic paths. Afterwards
we will allocate each robot such paths, which will yield the desired lower bound.
The paths are illustrated in Figure 5.

Lemma 6. Let π be a cyclic path that consists only of segments within a distance
of at most x from the starting position. Then π visits each of its segments during
any range of t time units if x ≤ t−τ+1

2
.

Proof. The time to return to the segment of the starting position is x−1+x+τ =
2x+ τ −1. In order to visit every segment within any range of t it is then required
that 2x+ τ − 1 ≤ t. Thus the distance is t−τ+1

2
.

The final case, Case D, applies when the conditions required for cases A, B,
C do not hold. In the following lemma we provide a lower bound for the optimal
ppd values for all of the possible settings in this case. The paths that we use are of
the form presented in the previous lemma with a uniform probability distribution.

27

Lemma 7. A polynomial patrol algorithm exists that guarantees that in the worst
case maxmins,tappd(s, ta) ≥ t(k−1)

2kdk
, which is at least 1

4
.

Proof. The number of paths with a distance of t−τ+1
2

that visit n segments is
2n

t−τ+1
. We allocate the paths uniformly between the robots, and for each robot

define a uniform distribution over its paths. Then for each path of k− 1 robots the
probability is (t−τ+1)(k−1)

2n
= (t−τ+1)(k−1)

2kdk
. Since t ≥ 1

2
k
k−1

dk + τ , it holds that the
probability is greater than or equal to 1

4
.

Thus, by Lemmas 3-7 we have proven Theorem 1, which states that there
exists a polynomial time algorithm yielding the optimal ppd values. Moreover,
we have shown that when the penetration period is known to us the optimal
maxminppds are 1

2
at best, and 1

4
at worst.

7. Unbounded Penetration Period

In the most general (and probable) case, when handling one penetration at-
tempt, it is unclear when the second penetration will occur. That is, the time of
the second penetration attempt is unbounded. We formulate a general optimiza-
tion problem and consider three specific models for computing the ppd. But first
we discuss the differences between this case and the bounded case, which will
lead us to conclude that the reorganziation time must be randomized.

In the previous case we maximized the minimal ppd during a bounded period,
which enabled the selection of a ρ (reorganization time) that may result in a ppd
value that could even be higher than the steady state. This is due to the fact that
we were able to neglect the time after the second penetration occurred (unlike the
steady state, that must guarantee a uniform behavior over time, since a penetration
may occur at any given time).

As an example, consider the case in which n = 84, k = 7, t = 8, ta = 0.
Let us choose ρ = 15, which means that although the first t = 8 time units are
handled, the remaining ρ − t = 7 time units are ignored during the optimization.
This allows the robots to be very well prepared against a sequential attack during
that time, but not against general attacks that may occur at any time. Following
this example, the minimal ppd in the steady state for k = 7 robots is 0.15, for
k − 1 = 6 robots it is 0.05, and during the reorganization phase (the first t time
units) it is 0.5. However, if a penetration is initiated after 12 time units (and not
at time 0) while the original patrol scheme in use, then the minimal ppd drops to
0. The reason is that the probabilities were chosen to handle a penetration attempt

28

only at time 0. Segments with ppd = 0 are points of vulnerability for a definite
successful attack by the adversary. This means that a patrol scheme designed
against a bounded penetration period cannot be used in the unbounded case.

We start by proving that there are points of inevitable vulnerability during the
reorganization phase, in every possible choice of a single ρ for reorganization.
In the bounded case we could increase ρ in order to avoid them, because the
penetration time is bounded. The problem arises when the penetration can occur
at any time during the reorganization phase, even during the vulnerability points.
Therefore, increasing ρ in this case would not solve the problem, thus we must
randomize the ρ value, to avoid vulnerability.

Lemma 8. For ρ − 1
2
dk−1 ≤ ta ≤ ρ − t + 1

2
dk−1, a segment s exists such that

ppd(s, ta) = 0.

Proof. After ρ time units all robots are located at their final positions of the re-
organization phase (established by Equation (2)). For ρ − t ≤ ta ≤ ρ, at time
ta each rj is at a distance of at most ρ − ta from its final position. During the
remaining t − (ρ − ta) time units, the robots are in the steady phase, and each rj
can be at a distance of at most t − (ρ − ta) from its final position of the reorga-
nization phase. Thus, during t time units each robot is at a distance of at most
max(ρ − ta, t − (ρ − ta)) from its final position. This is illustrated in Figure 6.
If none of the segments is overlooked then each pair of robots visit all of the seg-
ments between their final positions, at a distance of dk−1. Thus, it is necessary
that 2 max(ρ− ta), t− (ρ− ta)) ≥ dk−1, which implies either ta ≤ ρ− 1

2
dk−1 or

ta ≥ ρ− t+ 1
2
dk−1, meaning that when ρ− 1

2
dk−1 ≤ ta ≤ ρ− t+ 1

2
dk−1 segments

with ppd(s, ta) = 0 exist.

The above lemma implies that if the opponent has full knowledge of the patrol
scheme, namely, algorithm and robots positions, and in particular, ρ and the final
positions of the robots after reorganizing, it can choose to penetrate during that
time and it will be guaranteed to succeed.

Corollary 3. maxmins,tappd(P, s, ta) = 0 for a single reorganization time

As a corollary, ρ must be randomized in order to ensure ppd(s, ta) 6= 0 for all
ta. This is only true in the unbounded penetration period case, as the adversary’s
initiation time is not limited. In the bounded penetration period case, it is suffi-
cient to choose a greater enough ρ. In that case, the robots’ arrival to their final
positions does not need to be optimized and the robots only need to maximize the
number of segments visited during the period and choose their paths accordingly.

29

Figure 6: The limitations on the distance of the robots from the final positions. (a) represents the
most distant positions of the robots after ta ≤ ρ time units (during reorganization). (b) represents
the most distant positions of the robots during the remaining period of t (after the reorganization
phase).

Optimizing the entire reorganization phase requires considering the reorganiza-
tion constraints and possible vulnerability points when choosing the ρ values. If
we were to guarantee only that min ppd > 0, then using two different values of ρ
would be sufficient, with some probability greater than zero for each one of them.
Since all robots must end the reorganization phase at the same time, all robots
must draw paths for the same ρ. Consequently each robot can draw a path only
after a ρ is drawn. Hence, in order to optimize the coverage of the vulnerability
points, there is a need to consider the different reorganization times along with the
different paths for each case. We discuss the robots’ behavioral model in Section
7.1, the solution for the optimization problem in Section 7.2, an approximation
to the optimal solution in Section 7.3, and report experimental evaluation of the
approximation vs optimal solution in Section 7.4.

7.1. Robots’ Strategy Model
In most of the previous work, the patrol strategy of the robot was considered

to be a first order Markovian, where the next position is only affected by the
current position. We consider the robots’ strategy model to be Markovian, with
a history length |h|, of 1 ≤ |h| ≤ ρ. The parameter |h| affects the state space
of strategies which the patrol algorithm considers. Obviously, optimal results are

30

guaranteed only within each state space of strategies with the defined Markovian
order. It is clear that larger history lengths can only improve results, because they
contain all of the strategies with shorter history lengths. This introduces a trade-
off between optimality and the size of the state space. The size of the state space is
exponential in |h| : at each time step, a robot may decide to perform one of three
actions: {CONT,TURN,STAY}. Thus for a given initial position, there are 3|h|

different possible histories with length |h| starting at that position. Since there are
n possible initial positions, there are n · 3|h| different histories. A patrol strategy
consists of ρ decision points, therefore the size of the state space is O(ρ · n · 3|h|)

7.2. Optimization Problem
In order to solve the problem when the penetration period is unbounded, we

formulate it as an optimization problem that finds probabilities for robots’ actions
that will maximize the minimal ppd. In this subsection we discuss the different
parts of the general reorganization algorithm for the robots in three steps:

I Given a set of possible ρ values, formulate the general optimization problem
(Section 7.2.1)

II Compute the ppd constraints, given a certain reorganization time ρ (Section
7.2.2)

III Combining I+II into a general optimal algorithm, maximizing the minimal
ppd value during the reorganization phase (Section 7.2.3)

7.2.1. General Formulation
The patrol scheme first randomizes its reorganization phase length and then

randomizes over the paths of each robot. The set of multiple ρs is denoted by
Γ, and the probability for each ρ by qρ. Nevertheless, when considering various
values of ρ, all ppds of different ρs must be computed at the same time using the
same optimization problem.

Separating the solving process into two phases, where the first finds the op-
timal ppds for each ρ separately and the second finds the optimal probability
distribution over ρ, is useless. This is a result of Corollary 3 which states that
maxmins,tappd(Pρ, s, ta)) = 0, thus maxmin

qρ

∑
ρ (qρ · maxmins,ta

Pρ

ppd(Pρ, s, ta))

is 0 for every settings. This motivates the use of a combined solution, that ran-
domizes over the combination of both, together.

Therefore, all paths of different ρs must be considered together. This leads to
the general formulation of the optimization problem, where each specific model

31

defines the constraints of the computation of ppdρ(s, ta).
optimiaztionProblem(R, S,Γ, T,Π):

max m (9)
ppdρ(s, ta) constraints s ∈ S, ta ≤ ρ (10)

ppdρ(s, ta) = steady(s, ta) s ∈ S, ta > ρ (11)∑
π∈Πr,ρ

Pr,ρ(π) = 1 r ∈ R, ρ ∈ Γ (12)

Pr,ρ(π) ≥ 0 r ∈ R, ρ ∈ Γ, π ∈ Πr,ρ (13)∑
ρ∈Γ

qρ = 1 (14)

qρ ≥ 0 ρ ∈ Γ (15)

ppd(s, ta) =
∑
ρ

qρ · ppdρ(s, ta) s ∈ S, ta ∈ T (16)

ppd(s, ta) ≥ m s ∈ S, ta ∈ T (17)

Constraint (10) calculates the ppds contributed by each ρ with respect to the
distribution {Pr,ρ}. In the following sub-section we will present different models
for representing the ppd constraints. Constraint (11) considers the values of the
ppds after the reorganization phase, where the ppd values are calculated using
the patrol scheme introduced by Agmon et al.[1]. Constraints (12)-(15) are prob-
ability properties for Pr,ρ and qρ. The combined ppd equals the expected value
of the ppdρs, as shown by constraint (16). Finally, constraint (17) guarantees that
m is a minimum of the ppd values. Combining this while maximizing m by the
objective function in (9) results in m equaling the maxmins,tappd(s, ta).

7.2.2. ppd Constraints
First we begin by determining the constraints for the ppd calculation based

on a single reorganization duration ρ. We will later use this to randomize over
possible ρ values.

We examine three different models of formulations to calculate the ppd based
on the policy of the robots. All three models optimize the ppd for its policy, that
is, the models of formulations are used to solve the same optimization problem:
maximizing the minimal probability of detection (given a ρ value), and provide the
calculation of ppd values for this purpose. The difference between these models
is the amount of pre-process required for the formulation.

The first model—BGA extension—considers any Markovian order |h| and

32

adds helper variables to compute the ppd. This is an extension of previous work
(e.g., [6]). This model does not require any pre-processing for computing the ppd.

The second model—HISTORY-T—enables any |h|, but with an exponential
of t instead of |h| to be considered. The model requires pre-processing of com-
puting the contribution of paths of length t. This model is a novel formulation.

The third model—FULL model—considers histories of ρ length and thus in-
cludes all of the solutions of histories of different lengths. The model requires
pre-process of computing contribution of paths of length ρ.

Surprisingly, the first two models failed to produce results in experiments,
while the third model, which considers all of the histories, succeeded. This is
further discussed in Section 8.3.

We define the history as a sub-path of length |h| segments in a specific time.
This definition is affected by the reorganizing requirement, which requires the
robots’ actions be taken into account with respect to the robots’ locations, rather
than only the actions. This is due to the fact that the positions of the robots with
respect to their final positions should affect the probabilities of the next action. In
addition, the history model contains time specification, as the current time of the
patrol with respect to the time of reorganization should also affect the probabili-
ties. The history, H , is modeled by a sequence of vertices, {vi}|h|i=1. The decision
variables are of the form Pr,h,a where r ∈ R, a ∈ A (the actions) and h ∈ H ,
meaning the probability that robot r will perform an action a given the last |h|
vertices that occurred are encompassed by h.

The first model, the BGA extension, is an extension of similar formulations
from previous work [2, 3, 6]. The original formulation considered a set C of n
cells represented by a graph G, to be patrolled by a single patroller, with Marko-
vian strategy of order 1. The intruder has penetration cost of di (t in our notations).
To compute the probability of capturing the intruder they used helper variables
γh,wi,j to denote the probability that the patroller reaches cell j from cell i in h
steps without passing through cell w. Capturing an intruder at cell q given that the
patroller is in cell i is with probability of 1−

∑
i∈C\q γ

d,q
s,i .

The new formulation (BGA extension) extend this model to support reorga-
nization constraints, greater history length and multiple robots2. This model re-
quires an exponential number of paths in |h|, but for small values of |h|, it is
considerably small. The main issue is the helper variables γ which consider the
probability of visits between any pair of vertices at any time. Most of these cases

2We omit the mathematical formulation in this paper

33

are impossible, and therefore it is unnecessary to include them in the optimization
problem. In the original formulation of the BGA model the size of the problem
was O(n3 · t). Previous work discusses ways to reduce this problem size. In the
original BGA model they improved the problem size by assuming that the number
of targets that the adversary wishes to penetrate through is much smaller than the
number of nodes. This assumption does not hold in our formulation. Moreover,
in our problem we also consider multiple robots, multiple possible penetration
times, different re-organization times and re-organization constraints which re-
sults in O(ρ · n3T 2k) size of the helper variables γ, which is significantly greater
than the original formulation’s size. Though the size of the helper variables is
polynomial in the parameters of the problem, they can still be very large3. There-
fore, from our broad experience and experiments, solvers fail to solve this problem
due to the high number of variables.

These variables are required for computing the contribution of each robot to
each segment. To simplify this, in our next model, HISTORY-T, we extract this
computation to a preprocessing stage, and thus avoid the need to evaluate the
contribution when solving the optimization problem. In order to compute the
contribution to a specific segment at a certain point in time, we need to consider
only sub-paths of length t. By computing all of these sub-paths in advance, we
can calculate their absolute contributions (visits/not visits), and use it along all ρ
points in time. The size of this model is exponential with an exponent that is at
least t, regardless of the history length, as all histories of length t are computed.
But, compared to the previous model, even though it was polynomial, the size
of this model is considerably small, and the formulation is simpler. Also, it en-
ables considering greater history values without the need to compute the actual
histories of that length. However, because it still contains many non-linear con-
straints, when combined with the reorganization requirements, the solvers (MI-
NOS4,filter5, SNOPT6, Ipopt7) fail to solve instances of the problem. It is possible
that this model will perform well on settings of other patrolling problems, without
reorganizing constraints. If so, it will enable the consideration of large history

3For example, even in a small setting with only five robots, thirty segments and a maximal
reorganization time of 10, we obtain more than fifty million variables, without even considering
different history lengths.

4http://www.sbsi-sol-optimize.com/asp/sol product minos.htm
5http://www-unix.mcs.anl.gov/ leyffer/papers/SQP manual.pdf
6http://www.sbsi-sol-optimize.com/asp/sol product snopt.htm
7https://projects.coin-or.org/Ipopt

34

lengths in problems in which only small lengths of history have been addressed to
date.

In order to simplify the optimization problem even further, in the third model:
the FULL model we extract both the contribution computation and the reorgani-
zation constraints to a preprocessing stage. This is done by focusing on h = ρ
and only consider paths, πr that are valid for reorganizing, that is start with v0(r)
and end with vend(r). This means that we pre-compute all possible πr and their

contribution I(s, πr)[ta]←

{
1 πr[ta : ta + t] contains s
0 otherwise

.

It is worth noting that this is the optimal Markovian patrolling policy, for each ρ.
This is because every model of history length h′ can be described by any higher
h ≥ h′. The paths are of size ρ, hence there is no benefit from any policy with
h > ρ. Considering h = ρ simplifies the model, as our decision variables are of
the form Pr,ρ(π), where π is of length ρ, instead of a conditional probability.

The FULL model constraints for the ppd values are derived from Equations (
5)-(8):

ppdr(s, ta) =
∑
πr

Pr(πr) · I(s, πr)[ta] (18)

r ∈ R, s ∈ S, ta ∈ T
ppdr1...rj(s, ta) = ppdr1...rj−1

(s, ta)(1− ppdrj(s, ta)) + ppdrj(s, ta) (19)
j > 1, rj ∈ R, s ∈ S, ta ∈ T

ppd(s, ta) = ppdr1...rk−1
(s, ta) (20)

s ∈ S, ta ∈ T

Constraint (20) is quadratic and results from multiple robots that visit the same
segment during t time units. That is possible because the robots are not binded
to move in the same direction. Without this constraint the optimization problem
would be a simple linear programming problem, solved in polynomial time.

Hereinafter we will consider the formulation of the FULL model.

7.2.3. The Patrol Algorithm
The final algorithm for determining the paths for the robots is presented in

Algorithm 1, PatrolRearrange which computes the optimal distribution and ran-
domizes the path for each robot.

First, we calculate the final position for each robot and then find all paths

35

Algorithm 1 PatrolRearrange(R, S, {v0(r)}, t, τ, T,Γ)

Input:
R: the group of robots
S: the set of segments
{v0(r)}: the set of initial positions of the robots
t: the time it takes the adversary to penetrate
τ : the time it takes a robot to turn around
T : the range of considered penetration times
Γ: set of ρs

Output: the patrol algorithm

1: construct G
2: for each r in R do
3: vend(r)← CalcF inalPosition(v0(r))
4: for each ρ in Γ do
5: Πr,ρ ← FindPaths(G, v0(r), vend(r), ρ)
6: problem← optimizationProblem(R, S,Γ, T,Π)
7: P,Q← solve(problem)
8: randomize ρ from Γ with distribution Q
9: return randomize π from Πr,ρ with distribution Pr,ρ

36

from its initial position to its final position by means of algorithm FindPaths.
We construct the optimization problem as descibed in Section 7.2.1 with FULL
model ppd constraints and by calling solve we use a solver to solve the non-linear
optimization problem, which takes into consideration the paths of all robots, the
number of robots, the number of segments, and the inspected area. After solving
the optimization problem, first a ρ is drawn with a probability of qρ, and then a
path with a length of ρ is drawn for each robot.

7.3. Bounding the Reorganization Time
In the previous section we proved a bound for the value of ρ that yields the

maximum minimal ppd. In this section we prove that for any ε > 0 there exists
an upper bound for ρ that yields a solution within a distance of ε from the optimal
solution. We define the sequence {maxminppdρ} such that each element is the
maxminppd achieved by solving the optimization problem when the length of the
reorganization phase varies between 1 . . . ρ.

Lemma 9. When maxΓ → ∞, {maxminppdρ} converges to the maxminppd of
the reorganization phase.

Proof. The solution is monotonic with respect to ρ, because if a greater ρ does
not improve the results it will have a probability of 0. In addition the solution is
bounded (it represents a probability). Therefore, the process of adding more ρs
converges. Due to the fact that every possible path is contained in {Π}ρ→∞, the
optimal paths for reorganization are also contained in this set. Consequently a so-
lution to an optimization problem containing these paths will yield the maxminppd
of the reorganization phase.

The following corollary states the existence of a bound for adding greater ρs.

Corollary 4. For every ε > 0 a ρ0 exists such that adding any ρ > ρ0 would not
change more than ε of maxminppdρ0 .

Proof. Cauchy’s criterion [24] states that for a sequence ai to converge it is suf-
ficient and necessary that for every ε > 0 a fixed number n0 exists such that
|ai − aj| < ε for all i, j > n0. By Lemma 9 we find that {maxminppdρ} con-
verges. By applying Cauchy’s criterion to this sequence we find that for every ε
there exists n0 such that |maxminppdi − maxminppdj| < ε for all i, j > n0. We
set ρ0 = n0 + 1 and obtain ρ ≥ ρ0 > n0 |maxminppdρ −maxminppdρ0| < ε.

37

7.4. Experimental Results
Since the solution to the optimization problem is an approximation of the op-

timal solution, we were interested in examining the results in practice.
We conducted experiments based on 10 different setting combinations where

the number of robots varied between 3 and 8, and the distance between them
varied between 5 and 12 (resulting in graphs with up to 84 segments and 168
vertices). These parameters correspond to similar problem sizes in related work.
We used the MINOS solver 8 to solve the optimization problem. The results are
presented in Figure 7 and Figure 8.

Figure 7 demonstrates the convergence of the ppd. The theoretical analysis
shows that maxminppd converges to the optimal solution. Since the true optimal
solution is unknown, we compared the ppd results in the experiments to the re-
sults of the steady state. This is sufficient as the optimization problem consists of
the steady state phases as well and thus the optimal ppd values are at most the
values of the steady state. Figure 7 also demonstrates Lemma 8, which states the

Figure 7: The ratio between the maxminppd to the steady state, with respect to the maximal ρ
used, when all of the ρs in the range [ρmin, ρmax] are used.

vulnerability times for each ρ, and therefore ρs that cover each other’s vulnera-
bilities must be used in order to achieve ppd > 0. Respectively, in the graph the
ppd values start from 0 and increase only when a ρ large enough to eliminate the
vulnerabilities is used. When vulnerabilities remain, adding the constraint that
maxminppd > ε for some small ε enables solvers to pre-solve the constraints and
determine that there are vulnerabilities that are not covered. In these cases the

8http://sbsi-sol-optimize.com/asp/sol product minos.htm

38

results are conclusive, in contrast to general solutions of the solver, which are ap-
proximations of the optimal solution and better results are possible. After reaching
a ρ such that all vulnerabilities are covered, the ppd values increase to more than
70% of the ppd of the steady state. When considering greater ρ’s, the values of
the ppd attained reached 88 − 98% of the maxminppd of the steady state. As it
is a non-linear optimization problem, the solutions are approximations and it is
possible that higher values can be achieved.

The graph in Figure 8 shows the probability assigned to each value of ρ in
each of the approximated solutions, along with the ppd achieved. It is interesting
to see that even though higher ρs are required, the minimal ρ (the deterministic
case) is assigned the highest probability. This is due to the fact that the ppd of
the steady state is optimal, and the minimal ρ minimizes the time in which it is
achieved. Even though the results of the probability distributions might only yield
an approximated solution, we know the value that is guaranteed by following these
distributions and its comparison to the steady state.

Figure 8: Probability distribution over ρs for each case, with the percentage of the ppd achieved
with respect to the ppd of the steady state. The values of ρs are scaled with respect to the minimal
ρ of each case.

8. Reducing the Problem Size

As the problem size is exponential in |h|, there is a need to reduce its size.
Hitherto, our suggested algorithm (PatrolRearrange) considers every possible
history path for the optimization problem. Not only does this entails consideration

39

of a very large input, but it is also unnecessary, as some of the history paths clearly
make less contributions than others, and there is no need to consider them in the
optimization problem. To this end, we define and examine the dominance of paths
(rather than sub-paths).

Definition 8.1. A path π1 dominates π2 if I(s, π1)[ta] ≥ I(s, π2)[ta], for every
s ∈ S, 0 ≤ ta ≤ ρ.

Let Pr be a distribution function over the paths for robot r. We would like to
examine the effect of transferring the probability from π2 to π1, which dominates
it. We use Pr ′ to denote the resulting distribution function, and ppdr(Pr, s, ta) to
denote the value of ppd by robot r according to Pr.

Lemma 10. If π1 dominates π2 then ppdr(Pr
′, s, ta) ≥ ppdr(Pr, s, ta), for every

s ∈ S, 0 ≤ ta ≤ ρ.

Proof. First we calculate the difference between the probabilities ppdr(Pr
′, s, ta)

and ppdr(Pr, s, ta) and then we prove that it is greater than 0. By using Equation
(3) we find that the difference ppdr(Pr

′, s, ta)− ppdr(Pr, s, ta) equals∑
π Pr

′(π) · I(s, π)[ta] −
∑

π Pr(π) ·I(s, π)[ta] . Since Pr ′ differs from Pr only
by the probability for π1, π2, then the only remaining terms from the subtraction
of ppdr(Pr

′, s, ta) − ppdr(Pr, s, ta) are those regarding π1 and π2. The prob-
ability for π1 by P ′r is (Pr(π1) + Pr(π2)), and 0 for π2. The probability for
π1 by Pr is Pr(π1), and Pr(π2) for π2. Thus, the difference equals (Pr(π1) +
Pr(π2)) · I(s, π1)[ta] − Pr(π1) · I(s, π1)[ta] − Pr(π2) · I(s, π2)[ta]. This results
in (I(s, π1)[ta] − I(s, π2)[ta]) · Pr(π2). Thus, since π1 dominates π2, the above
expression is greater than 0.

We have proven that the probability for a robot to visit any segment is greater
when using a path that dominates another path, than when using the dominated
path. As a corollary we found that this also holds for ppd values.

Corollary 5. If π1 of robot r dominates π2 of robot r, then
ppd(P ′, s, ta)≥ ppd(P, s, ta) for every s ∈ S, 0 ≤ ta ≤ ρ.

Proof. By Equation (4) ppd(s, ta) = 1 −
∏k−1

l=1 (1 − ppdrl(s, ta)). The subtrac-
tion between the ppds equals (1 −

∏
l(1 − ppdrl(Prl

′, s, ta))) − (1 −
∏

l(1 −
ppdrl(Prl , s, ta))). The simplified expression is

∏
l(1−ppdrl(Prl , s, ta))−

∏
l(1−

ppdrl(Prl
′, s, ta)). As ppdrl(Prl , s, ta) = ppdrl(Prl

′, s, ta) for all rl 6= r, the prod-
uct

∏
rl 6=r(1 − ppdl(Pr, s, ta)) is mutual for both terms and thus the subtraction

40

equals
∏

rl 6=r(1 − ppdl(Prl , s, ta))(1 − ppdr(Pr, s, ta) − (1 − ppdr(Pr
′, s, ta))).

After simplifying the expression the result is
∏

rl 6=r(1− ppdrl(Pr, s, ta)) ·
(ppdr(Pr

′, s, ta)−ppdr(Pr, s, ta)). By Lemma 10 ppdr(Pr
′, s, ta)−ppdr(Pr, s, ta)

> 0 and thus the above expression is greater than 0.

By Corollary 5 we conclude that the optimal patrol algorithm does not use
dominated paths, since other paths that would yield better results exist. Thus we
should examine only paths that are not dominated by any other path.

Definition 8.2. A path π1 is said to be a Pareto path if there is no π2 ∈ Π such
that ppd1(s, ta) < ppd2(s, ta) for all s ∈ S, 0 ≤ ta ≤ ρ.

Pareto paths can be computed by a brute-force method. First, paths with equal
contribution to a previous path are eliminated. Then, the remaining paths are com-
pared with each other to eliminate dominated paths. In the following subsections
we perform a theoretical analysis of the number of Pareto-paths and present exper-
imental results showing that although their number is theoretically exponential, in
practice this number is significantly and sufficiently lower than the total number
of paths.

8.1. Size of Pareto-paths Space
The purpose of using Pareto-paths is to reduce the exponential number of

paths. In this section we discuss the complexity of the space of all Pareto-paths.
As the following lemma states, evidently the number of Pareto-paths is still ex-
ponential with respect to their length, ρ (the same holds for h). To prove that we
provide a very loose lower bound that is exponential in ρ.

Lemma 11. The number of Pareto-paths is Ω(2ρ/4t).

Proof. We prove this lemma by constructing an example, such that for every ρ, t
has at least 2(ρ/4t) paths. Let us consider two sub-paths with a length of 4t.

1. TURN, CONT t − 1 steps, TURN, CONT 2(t − 1) steps, TURN, CONT
t− 1, TURN

2. CONT t− 1 steps, TURN, CONT t− 1 steps, TURN, TURN, CONT t− 1
steps, TURN, CONT t− 1 steps

The sub-paths and their contributions are illustrated in Figure 9. These paths
are not dominated by each other. Moreover, there cannot be two valid paths that
have the same contribution. This is because a contributing to t − 1 segments

41

Figure 9: Two non-dominated sub-paths and their contributions at ta: 0, t, 2t, 3t.

requires continuing in the same direction (either forwards or backwards). The
initial position and direction determines the direction of the traversal over the
segments.

These two sub-paths start and end in the same position and in the same di-
rection. Therefore we can construct paths by concatenating these sub-paths. No
combination of these sub-paths can dominate another combination since their sub-
paths are non-dominating. Thus, we receive a sub-set of the Pareto-paths. The
number of such combinations for paths of length ρ is 2(ρ/4t).

8.2. Experimental Results
As we showed in Section 5.2, the number of total paths is exponential in the

input size. In sub-section 8.1 we have proven theoretically that the number of
Pareto-paths is also exponential. However, in this section we show that in practice,
in most cases the number of Pareto-paths is significantly lower than the exponen-
tial number of paths. We analyzed the results of the experiments we conducted
with more than 11,000 settings for the problem of reducing the input size. This
result is significant as it entails that we can apply this method successfully in or-
der to reduce the number of paths for unbounded penetration time problems. We
examined the following settings, and also examined the parameters that affect the
number of paths and Pareto-paths. The number of paths depends on ρ, the length
of the path over time, dist, the actual distance between a robot’s current and final
position (lj for some robot j), and n since the fence is cyclic and paths from u
to v can originate from different directions. The number of Pareto-paths depends
on these parameters, but it also depends on t, as it affects the contribution of each
path. Consequently, we examined k, dk (n = kdk), t, ρ and dist. We generated
settings with these parameters varying between different ranges that correspond to
similar problem sizes in related work: k = 2 . . . 10, dk = 3 . . . 6, t = 1 . . . d − 1,

42

ρ = 2 . . . 12, dist = 0 . . . ρ. We examined the influence of each parameter. Pa-
rameter n has a very minor influence on the number of paths, as almost no paths
visit all n segments. The most influential parameters were t and ρ. As t grows, the
contribution of each path is greater, and thus there are fewer Pareto-paths. Figure
10 shows that not only does the number of Pareto-paths decreases as t grows, but
it drops exponentially.

Figure 10: Exponential drop in the number of Pareto-paths with respect to t.

The ρ parameter has a reverse affect. As ρ grows, i.e. greater reorganization
time, both the number of paths and Pareto-paths increases exponentially. Figure
11 shows that even when the number of Pareto-paths grows exponentially as ρ
grows, the number of Pareto-paths is much smaller than the number of paths. For
example, when ρ equals 12 the number of paths is 21745, as opposed to only 3355
Pareto-paths.

The actual ratio between the number of Pareto-paths and the number of paths
is shown in Figure 12. As ρ grows the ratio decreases, even though there are
more Pareto-paths in general. This supports the hypothesis that the number of
Pareto-paths grows much slower than the growth of the number of paths, and
demonstrates the effectiveness of this method in practice.

In Figure 12 we can also see that as ρ grows dist has no effect over the ratio
between the number of Pareto-paths and the number of paths. The main influence
of the parameter dist is realized in the possible sizes of ρ. Since the minimal ρ is
at least the size of dist, choosing a greater size of dist requires that a greater size

43

Figure 11: Number of paths and Pareto-paths as a function of ρ.

of ρ be considered and thus a greater number of paths. For computational reasons
this justifies choosing the final positions for the reorganization that minimize the
distance the robots need to travel.

All of the above results suggest that using the Pareto-optimization is efficient
in decreasing the input size in practice. As for the practicability of the method
by means of time complexity, we present results regarding the computation time.
Figure 13 presents the measured time of computing the Pareto-paths in compared
to the time to compute the total paths, and the influence of ρ on the computation
time. Figure 14 presents the influence of n, k on the computation time of the
Pareto-paths, in additional settings: fixed ρ, t: ρ = 11, t = 3

4
dk−1 and variable

values for n, k: n = 20 . . . 60, k = 3 . . . n
2
. We used 1.9Ghz Intel i7 CPU with

4GB memory for the experiments. The graph in Figure 13 shows that the time
grows exponentially as ρ grows. This is due to the fact that the number of paths
and Pareto-paths grows exponentially. The graph in Figure 14 shows that as k
increases the computation time increases linearly. As n increases for a fixed k
the computation time decreases. This is due to the fact that dk increases and thus
dist increases. The greater dist is, for a fixed ρ, the fewer the number of possible
paths, and thus less computation time. The method used to compute the Pareto-
paths was brute-force, with an improvement of initially eliminating paths that
duplicate another path’s contribution. Clearly, there can be ways to improve this
computation, but even with a slightly improved brute-force, the time measured is

44

Figure 12: Exponential drop in the ratio between the number of Pareto-paths and all paths, with
respect to ρ. A smaller dist yields a higher ratio. Only k = 3, dk = 3, t = 2 is shown in the figure
as different cases cannot be distinguished in this type of graph.

still small in practice. It is important to note that the time invested in generating
the Pareto-paths is negligible compared to value of removing enough paths to
allow the solvers to generate a solution. In other words: if one does not reduce
the number of paths by using Pareto-paths (i.e., significantly improve the space
complexity), the solvers are unable to solve the problem. Hence we pay in time to
reduce the space, and enable the problem solving.

8.3. Discussion
In this work we focused on a Markovian patrolling policy with a history length

of ρ, which is an optimal Markovian policy. The challenge is that the input size
is exponential in ρ, which is the largest input size of all policies. In addition we
examined policies with smaller values of the history length, denoted by |h|, and
presented two models that address this problem.

It is surprising that both models are unsuccessful, because we had expected
that if we could apply a policy with |h| = ρ, then we could apply all policies with
|h| < ρ. However, in all previous work with similar formulations, only very small
values of history lengths were able to run in practicality, and in some problems
only |h| = 1 was possible. Higher values could not be tested due to either space
or time issues. This makes it interesting to understand the distinction between the
case where |h| = ρ and cases with smaller values of |h|.

First, we analyze the size of the problem. In order to confront the input
size of paths of length ρ we applied a Pareto-optimization to the paths. This

45

Figure 13: Demonstrating the time to extract the Pareto paths from the total number of paths. The
time it takes to compute the Pareto paths grows exponentially with ρ.

Figure 14: Demonstrating the time to extract the Pareto paths from the total number of paths. The
time it takes to compute the Pareto paths grows exponentially with ρ.

46

method can also be applied to sub-paths of lengths smaller than ρ, but with less
effectiveness. To show this we define dominance over sub-paths, which adds an
additional constraint to the paths dominance criterion, and in order to compute
Pareto sub-paths of length h we need to consider buffered sub-paths of length
2t+h−1. In order to determine dominance between two sub-paths µ1, µ2, requir-
ing I(s, µ1)[ta] ≥ I(s, µ2)[ta] for every s, ta is not sufficient. Assume that sub-
paths µ0, µ3 exist such that when concatenating the sub-paths to create µ0 µ1 µ3,
µ0 µ2 µ3 then I(s, µ0 µ1 µ3)[ta] ≤ I(s, µ0 µ2 µ3)[ta] for some s, ta. Hence, for
the path µ0 µ2 µ3 it is not profitable to consider µ0 µ1 µ3 instead. Consequently
we cannot replace every occurrence of µ2 with µ1.

Definition 8.3. A sub-path µ1 dominates µ2 if I(s, µ0 µ1 µ3)[ta]
≥ I(s, µ0 µ2 µ3)[ta], for every s ∈ S, 0 ≤ ta ≤ h+ t− 1 and every µ0, µ3, where
µ0, µ3 are sub-paths of length t− 1.

According to this definition, for any path that contains a dominated sub-path
we can replace it with its dominant sub-path, and receive a dominant path.

Namely, when Pareto-optimizing history paths (i.e., sub-paths), more paths
remain (created by concatenating sub-paths) than if the Pareto-optimization would
be applied to all paths, rather than the sub-paths. This causes the method to be
less effective. Even though the number of sub-paths is smaller than the number of
paths, in the optimization problem we consider the sub-paths over time, and with
different starting points. Accordingly their quantity is multiplied by V · T .

The second issue is the complexity of the optimization problem. When |h| =
ρ, non-linear constraints result from overlaps between the robots’ coverage and
using multiple ρs. When |h| < ρ substantially more non-linear constraints are
added, which influence the ability of a solver to produce results.

9. Conclusions

We examined the problem of defending against a sequential attack in a knowl-
edgeable adversarial environment. In this case the robots are required to respond
to a penetration attempt, and therefore a knowledgeable adversary can exploit the
influence of an attack in order to coordinate a second attack. We focused on opti-
mizing the reorganization phase after the first penetration attempt is detected and
one robot is extracted to handle it. In this phase the robots reorganize in order
to achieve optimal behavior for k − 1 robots as established by Agmon et al. [1].
Moreover, this method is applicative in scenarios of robot faults which require the

47

remaining robots to reorganize, for this case the faulty robot still needs to main-
tain some of its sensing ability or additional sensing elements need to be present.
We set the foundations for the models and distinguished between the cases where
the second penetration is bounded in time, and when it is not. Considering a
bounded period of penetration attempts enable the allocation of a single reorga-
nization time, as large as needed. We presented a polynomial time algorithm for
optimal coverage, divided into cases, which guarantees maxminppd of at least 1

4

during the reorganization phase.
When the second penetration attempt time is unknown, we formulated a non-

linear optimization problem. We considered policy with history and presented a
novel approach that uses a full history policy, the FULL model, even when formu-
lations with smaller history policies fail to yield results. We proved that a single
reorganization time is not sufficient, and that the reorganization time must be ran-
domized in order to avoid vulnerability points. In order to determine the range
of ρs to consider, we showed that from some value considering greater ρs has
no significant impact on the ppd. We validated this by conducting experiments
which also show that using the minimal length of range of ρs required to cover all
vulnerabilities yields a ppd that is greater than 70% of the steady state. Achieving
a ppd that is greater than the steady state has no effect, as the adversary would
then choose to penetrate at the steady state. Another interesting result is that when
randomizing over multiple ρs, using the deterministic approach with a high prob-
ability yields higher ppd values. This is due to the fact that the ppds of the steady
state are proven to be optimal, and the deterministic approach minimizes the re-
organization time. When using multiple ρs we are able to avoid the vulnerability
points that are created by the deterministic approach.

Finally, we introduced a method of reducing the number of paths, by using
Pareto-paths. The number of these paths is exponential in the worst case, but we
showed through extensive simulations that it is considerably smaller in practice.

In addition, we discussed two other models of the optimization problem to
address varied history lengths (and not only the full history). In these problem
settings the models failed to yield results using four different solvers. The first
model, the BGA-extension, even though polynomial in theory (and exponential
only in the history size), is too large in practice. The second model, HISTORY-
T, allows consideration of the history of every size, with a space complexity of
the number of histories only of a length of t. However, solvers failed to solve
instances with this model (MINOS, filter, SNOPT, Ipopt). It would be interest-
ing to apply this model to different problems without as many constraints (such
as reorganization constraints). Though we concentrated on two adversaries, the

48

extension to multiple adversaries is straightforward.
We limited this work to randomization of the paths towards the steady state,

which minimizes the distance traveled by the robots in the reorganization phase.
Future work warrants examination of randomization over the possible final posi-
tions. Another interesting venue would be to examine randomization during the
reorganization phase (without having the robots commit to a path once the first
attack is detected, as assumed in this work). We would also like to examine the
effect of the robot’s inspection time, as we believe it might lead to a more robust
patrol against multiple attacks. An additional direction for future work would be
to handle other sequential attack adversarial models, for example having more
than two penetration attempts, other timing constraints on the penetration time,
and more.

Acknowledgments

This research has been supported in part by the Ministry of Science and Tech-
nology, Israel and the Japan Science and Technology Agency (JST), Japan, and
by ISF grant 1337/15.

References

[1] N. Agmon, G. Kaminka, S. Kraus, Multi-robot adversarial patrolling: facing
a full-knowledge opponent, Journal of Artificial Intelligence Research 42
(2011) 887–916.

[2] N. Basilico, N. Gatti, F. Amigoni, Patrolling security games: Definition
and algorithms for solving large instances with single patroller and single
intruder, Artificial intelligence 184 (2012) 78–123.

[3] B. Bošanskỳ, V. Lisỳ, M. Jakob, M. Pěchouček, Computing time-dependent
policies for patrolling games with mobile targets, in: The Tenth Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AA-
MAS), 2011, pp. 989–996.

[4] P. Fazli, A. Mackworth, Multi-robot repeated boundary coverage under un-
certainty, in: IEEE International Conference on Robotics and Biometrics
(ROBIO), 2012, pp. 2167–2174.

49

[5] P. Villacorta, D. Pelta, Exploiting adversarial uncertainty in robotic pa-
trolling: A simulation-based analysis, Advances in Computational Intelli-
gence (2012) 529–538.

[6] N. Basilico, N. Gatti, F. Amigoni, Leader-follower strategies for robotic
patrolling in environments with arbitrary topologies, in: Proceeding of
the Eighth International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2009, pp. 57–64.

[7] Y. Vorobeychik, B. An, M. Tambe, Adversarial patrolling games, in: Pro-
ceeding of the Eleventh International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2012, pp. 1307–1308.

[8] Y. Chevaleyre, Theoretical analysis of the multi-agent patrolling problem,
in: IEEE/WIC/ACM International Conference on Intelligent Agent Technol-
ogy (IAT), 2004, pp. 302–308.

[9] Y. Elmaliach, N. Agmon, G. Kaminka, Multi-robot area patrol under fre-
quency constraints, Annals of Mathematics and Artificial Intelligence 57
(2009) 293–320.

[10] N. Agmon, G. Kaminka, S. Kraus, Multi-robot fence patrol in adversar-
ial domains, in: Proceedings of the Tenth Conference on Intelligent Au-
tonomous Systems (IAS), 2008, pp. 193–201.

[11] N. Basilico, N. Gatti, F. Villa, Asynchronous multi-robot patrolling against
intrusions in arbitrary topologies., in: Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence (AAAI), p. 1224-1229, 2010.

[12] Y. Vorobeychik, B. An, M. Tambe, S. Singh, Computing solutions in infinite-
horizon discounted adversarial patrolling games, in: Proc. 24th International
Conference on Automated Planning and Scheduling (ICAPS 2014), 2014.

[13] Y. Elmaliach, A. Shiloni, G. Kaminka, A realistic model of frequency-based
multi-robot polyline patrolling, in: Proceeding of the Seventh International
Conference on Autonomous Agents and Multiagent Systems (AAMAS),
2008, pp. 63–70.

[14] A. Machado, G. Ramalho, J. Zucker, A. Drogoul, Multi-agent patrolling:
An empirical analysis of alternative architectures, in: Multi-agent Based
Simulations (MABS), 2003, pp. 155–170.

50

[15] J. Marier, C. Besse, B. Chaib-draa, Solving the continuous time multia-
gent patrol problem, in: IEEE International Conference on Robotics and
Automation (ICRA), 2010, pp. 941–946.

[16] N. Agmon, V. Sadov, G. A. Kaminka, S. Kraus, The impact of adversarial
knowledge on adversarial planning in perimeter patrol, in: Proceeding of the
Seventh International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2008, pp. 55–62.

[17] Z. Yin, A. X. Jiang, M. P. Johnson, C. Kiekintveld, K. Leyton-Brown,
T. Sandholm, M. Tambe, J. P. Sullivan, TRUSTS: Scheduling randomized
patrols for fare inspection in transit systems, AI Magazine 33 (2012) 59–72.

[18] F. M. D. Fave, E. A. Shieh, M. Jain, A. X. Jiang, H. Rosoff, M. Tambe,
J. P. Sullivan, Efficient solutions for joint activity based security games: fast
algorithms, results and a field experiment on a transit system, Autonomous
Agents and Multi-Agent Systems 29 (2015) 787–820.

[19] A. Kučera, T. Lamser, Regular strategies and strategy improvement: Effi-
cient tools for solving large patrolling problems, in: Proceedings of the 2016
International Conference on Autonomous Agents and Multiagent Systems,
2016, pp. 1171–1179.

[20] E. Sless, N. Agmon, S. Kraus, Multi-robot adversarial patrolling: Facing
coordinated attacks, in: Proceedings of the 2014 international conference on
Autonomous agents and multi-agent systems, International Foundation for
Autonomous Agents and Multiagent Systems, 2014, pp. 1093–1100.

[21] E. Jensen, M. Franklin, S. Lahr, M. Gini, Sustainable multi-robot patrol
of an open polyline, in: IEEE International Conference on Robotics and
Automation (ICRA), 2011, pp. 4792–4797.

[22] N. Basilico, G. De Nittis, N. Gatti, Adversarial patrolling with spatially
uncertain alarm signals, Artificial Intelligence 246 (2017) 220–257.

[23] G. H. Golub, C. F. Van Loan, Matrix computations, 3rd Edition, volume 3,
JHU Press, 1996.

[24] H. N. Jahnke, Cauchys cours danalyse. an annotated translation by robert e.
bradley, and c. edward sandifer. sources and studies in the history of mathe-
matics and physical sciences. dordrecht (springer), 2009.

51

